51
|
Huang W, Rainbow DB, Wu Y, Adams D, Shivakumar P, Kottyan L, Karns R, Aronow B, Bezerra J, Gershwin ME, Peterson LB, Wicker LS, Ridgway WM. A Novel Pkhd1 Mutation Interacts with the Nonobese Diabetic Genetic Background To Cause Autoimmune Cholangitis. THE JOURNAL OF IMMUNOLOGY 2017; 200:147-162. [PMID: 29158418 DOI: 10.4049/jimmunol.1701087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
We previously reported that NOD.c3c4 mice develop spontaneous autoimmune biliary disease (ABD) with anti-mitochondrial Abs, histopathological lesions, and autoimmune T lymphocytes similar to human primary biliary cholangitis. In this article, we demonstrate that ABD in NOD.c3c4 and related NOD ABD strains is caused by a chromosome 1 region that includes a novel mutation in polycystic kidney and hepatic disease 1 (Pkhd1). We show that a long terminal repeat element inserted into intron 35 exposes an alternative polyadenylation site, resulting in a truncated Pkhd1 transcript. A novel NOD congenic mouse expressing aberrant Pkhd1, but lacking the c3 and c4 chromosomal regions (NOD.Abd3), reproduces the immunopathological features of NOD ABD. RNA sequencing of NOD.Abd3 common bile duct early in disease demonstrates upregulation of genes involved in cholangiocyte injury/morphology and downregulation of immunoregulatory genes. Consistent with this, bone marrow chimera studies show that aberrant Pkhd1 must be expressed in the target tissue (cholangiocytes) and the immune system (bone marrow). Mutations of Pkhd1 produce biliary abnormalities in mice but have not been previously associated with autoimmunity. In this study, we eliminate clinical biliary disease by backcrossing this Pkhd1 mutation onto the C57BL/6 genetic background; thus, the NOD genetic background (which promotes autoimmunity) is essential for disease. We propose that loss of functional Pkhd1 on the NOD background produces early bile duct abnormalities, initiating a break in tolerance that leads to autoimmune cholangitis in NOD.Abd3 congenic mice. This model is important for understanding loss of tolerance to cholangiocytes and is relevant to the pathogenesis of several human cholangiopathies.
Collapse
Affiliation(s)
- Wenting Huang
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - David Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Pranavkumar Shivakumar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Leah Kottyan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Rebekah Karns
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jorge Bezerra
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616; and
| | | | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267;
| |
Collapse
|
52
|
Ma WT, Liu QZ, Yang JB, Yang YQ, Zhao ZB, Ma HD, Gershwin ME, Lian ZX. A Mouse Model of Autoimmune Cholangitis via Syngeneic Bile Duct Protein Immunization. Sci Rep 2017; 7:15246. [PMID: 29127360 PMCID: PMC5681628 DOI: 10.1038/s41598-017-15661-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by the destruction of interlobular biliary ductules, which progressively leads to cholestasis, hepatic fibrosis, cirrhosis, and eventually liver failure. Several mouse models have been used to clarify the pathogenesis of PBC and are generally considered reflective of an autoimmune cholangitis. Most models focus on issues of molecular mimicry between the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the major mitochondrial autoantigen of PBC and xenobiotic cross reactive chemicals. None have focused on the classic models of breaking tolerance, namely immunization with self-tissue. Here, we report a novel mouse model of autoimmune cholangitis via immunization with syngeneic bile duct protein (BDP). Our results demonstrate that syngeneic bile duct antigens efficiently break immune tolerance of recipient mice, capturing several key features of PBC, including liver-specific inflammation focused on portal tract areas, increased number and activation state of CD4 and CD8 T cells in the liver and spleen. Furthermore, the germinal center (GC) responses in the spleen were more enhanced in our mouse model. Finally, these mice were 100% positive for anti-mitochondrial antibodies (AMAs). In conclusion, we developed a novel mouse model of PBC that may help to elucidate the detailed mechanism of this complex disease.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Qing-Zhi Liu
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jing-Bo Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yan-Qing Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhi-Bin Zhao
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.,Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Zhe-Xiong Lian
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China. .,Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China. .,Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230027, China.
| |
Collapse
|
53
|
Wang X, Wen X, Zhou J, Qi Y, Wu R, Wang Y, Kui Y, Hua R, Jin Q. MicroRNA-223 and microRNA-21 in peripheral blood B cells associated with progression of primary biliary cholangitis patients. PLoS One 2017; 12:e0184292. [PMID: 28886078 PMCID: PMC5590910 DOI: 10.1371/journal.pone.0184292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/20/2017] [Indexed: 12/17/2022] Open
Abstract
Recently, there is ample evidence suggesting the important role of microRNAs (miRNAs) in autoimmune diseases via modulating B cells function. Primary biliary cholangitis (PBC) is a progressive immune-mediated liver disease with unclear pathogenic mechanism. Whether the miRNA in peripheral B cells of PBC involve the mechanisms of pathology and progression is not known. The present study explores miRNA deregulation in peripheral B-cell of PBC from stage I to IV and healthy controls. Peripheral B cells were obtained from 72 PBC patients (stage I, n = 17; stage II, n = 23; stage III, n = 16; stage IV, n = 16) and 15 healthy controls. Initially, in a discovery study, miRNA array analysis was performed, subsequently, in a validation study, quantitative PCR was used to investigate miRNA expression profile in B cells of PBS patients compared to healthy controls. Based on bioinformatics analysis, we identified the potential biological processes and significant signaling pathways affected by these microRNAs, and generated the microRNA–gene network. The discovery study identified 558 miRNAs differentially expressed in B cells of PBC patients compared to controls. Interestingly, among all differentially expressed miRNAs, hsa-miR-223-3p and hsa-miR-21-5p were the only miRNAs that showed consistent and significant down-regulation from stage I to stage III of PBC. Bioinformatics showed that potential target genes of both miRNAs involved in migration, cell differentiation, apoptosis, and signal transduction pathways. In conclusion, our results suggest that the expression profiles of miRNA in peripheral B cells of PBC patients are closely associated with the disease progression, especially the down-regulation of hsa-miR-223-3p and hsa-miR-21-5p. Taken together, our study offers novel perspectives on the role of miRNAs in PBC pathogenesis.
Collapse
Affiliation(s)
- Xiaomei Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry Education, Changchun, China
| | - Xiaoyu Wen
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Zhou
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Yue Qi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Ruihong Wu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Yiwen Kui
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Rui Hua
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Qinglong Jin
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
- * E-mail: .
| |
Collapse
|
54
|
Ehrlich L, Hall C, Meng F, Lairmore T, Alpini G, Glaser S. A Review of the Scaffold Protein Menin and its Role in Hepatobiliary Pathology. Gene Expr 2017; 17:251-263. [PMID: 28485270 PMCID: PMC5765438 DOI: 10.3727/105221617x695744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a familial cancer syndrome with neuroendocrine tumorigenesis of the parathyroid glands, pituitary gland, and pancreatic islet cells. The MEN1 gene codes for the canonical tumor suppressor protein, menin. Its protein structure has recently been crystallized, and it has been investigated in a multitude of other tissues. In this review, we summarize recent advancements in understanding the structure of the menin protein and its function as a scaffold protein in histone modification and epigenetic gene regulation. Furthermore, we explore its role in hepatobiliary autoimmune diseases, cancers, and metabolic diseases. In particular, we discuss how menin expression and function are regulated by extracellular signaling factors and nuclear receptor activation in various hepatic cell types. How the many signaling pathways and tissue types affect menin's diverse functions is not fully understood. We show that small-molecule inhibitors affecting menin function can shed light on menin's broad role in pathophysiology and elucidate distinct menin-dependent processes. This review reveals menin's often dichotomous function through analysis of its role in multiple disease processes and could potentially lead to novel small-molecule therapies in the treatment of cholangiocarcinoma or biliary autoimmune diseases.
Collapse
Affiliation(s)
- Laurent Ehrlich
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Chad Hall
- †Department of Surgery, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Fanyin Meng
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| | - Terry Lairmore
- †Department of Surgery, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Gianfranco Alpini
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| | - Shannon Glaser
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| |
Collapse
|
55
|
Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger KP, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of Autoantibody-Induced Pathology. Front Immunol 2017; 8:603. [PMID: 28620373 PMCID: PMC5449453 DOI: 10.3389/fimmu.2017.00603] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies are frequently observed in healthy individuals. In a minority of these individuals, they lead to manifestation of autoimmune diseases, such as rheumatoid arthritis or Graves' disease. Overall, more than 2.5% of the population is affected by autoantibody-driven autoimmune disease. Pathways leading to autoantibody-induced pathology greatly differ among different diseases, and autoantibodies directed against the same antigen, depending on the targeted epitope, can have diverse effects. To foster knowledge in autoantibody-induced pathology and to encourage development of urgently needed novel therapeutic strategies, we here categorized autoantibodies according to their effects. According to our algorithm, autoantibodies can be classified into the following categories: (1) mimic receptor stimulation, (2) blocking of neural transmission, (3) induction of altered signaling, triggering uncontrolled (4) microthrombosis, (5) cell lysis, (6) neutrophil activation, and (7) induction of inflammation. These mechanisms in relation to disease, as well as principles of autoantibody generation and detection, are reviewed herein.
Collapse
Affiliation(s)
- Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University of Kiel, Kiel, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Lars Komorowski
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | | | | | - Jon M. Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Andrea Fischer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Klaus-Peter Wandinger
- Department of Neurology, Institute of Clinical Chemistry, University Medical-Centre Schleswig-Holstein, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Alan Verkman
- Department of Medicine, University of California, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, CA, United States
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
56
|
Tanakaa A, Leung PS, Young HA, Gershwin ME. Toward solving the etiological mystery of primary biliary cholangitis. Hepatol Commun 2017; 1:275-287. [PMID: 29057387 PMCID: PMC5646686 DOI: 10.1002/hep4.1044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary biliary cholangitis (PBC) is considered a model autoimmune disease due to its signature anti‐mitochondrial antibody (AMA) autoantibody, female predominance, and relatively specific portal infiltration and cholestasis. The identification and cloning of the major mitochondrial autoantigens recognized by AMA have served as an immunologic platform to identify the earliest events involved in loss of tolerance. Despite the relatively high concordance rate in identical twins, genome‐wide association studies have not proven clinically useful and have led to suggestions of epigenetic events. To understand the natural history and etiology of PBC, several murine models have been developed, including spontaneous models, models induced by chemical xenobiotic immunization, and by “designer” mice with altered interferon metabolism. Herein, we describe five such models, including 1) NOD.c3c4 mice, 2) dominant negative form of transforming growth factor receptor type II mice, 3) interleukin‐2R α−/− mice, 4) adenylate‐uridylate‐rich element Del−/− mice, and 5) 2‐octynoic acid‐conjugated bovine serum albumin immunized mice. Individually there is no perfect murine model, but collectively the models point to loss of tolerance to PDC‐E2, the major mitochondrial autoantigen, as the earliest event that occurs before clinical disease is manifest. Although there is no direct association of AMA titer and PBC disease progression, it is noteworthy that the triad of PBC monocytes, biliary apotopes, and AMA leads to an intense proinflammatory cytokine burst. Further, the recurrence of PBC after liver transplantation indicates that, due to major histocompatibility complex restriction, disease activity must include not only adaptive immunity but also innate immune mechanisms. We postulate that successful treatment of PBC may require a personalized approach with therapies designed for different stages of disease. (Hepatology Communications 2017;1:275–287)
Collapse
Affiliation(s)
- Atsushi Tanakaa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Patrick Sc Leung
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA
| | - M Eric Gershwin
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA
| |
Collapse
|
57
|
Petersen F, Yue X, Riemekasten G, Yu X. Dysregulated homeostasis of target tissues or autoantigens - A novel principle in autoimmunity. Autoimmun Rev 2017; 16:602-611. [PMID: 28411168 DOI: 10.1016/j.autrev.2017.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/11/2017] [Indexed: 01/22/2023]
Abstract
Monogenic autoimmune disorders provide a powerful tool for our understanding of the principles of autoimmunity due to the obvious impact of a single gene on the disease. So far, approximately 100 single gene defects causing murine monogenic autoimmune disorders have been reported and the functional characterization of these genes will provide significant progress in understanding the nature of autoimmunity. According to their function, genes leading to monogenic autoimmune disorders can be categorized into two groups. An expectable first group contains genes involved in the homeostasis of the immune system, including homeostasis of immune organs and immune cells. Intriguingly, the second group consists of genes functionally involved in the homeostasis of target tissues or autoantigens. According to our novel hypothesis, we propose that autoimmunity represents a consequence of a dysregulated homeostasis of the immune system and/or its targets including autoantigens and target tissues. In this review we refer to both aspects of homeostasis in autoimmunity with a highlight on the role of the homeostasis of target tissues and autoantigens.
Collapse
Affiliation(s)
- Frank Petersen
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Xiaoyang Yue
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Gabriela Riemekasten
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany; Department of Rheumatology, University of Lübeck, 23538 Lübeck, Germany
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany; Xiamen-Borstel Joint Laboratory of Autoimmunity, Medical College of Xiamen University, Xiamen 361102, China.
| |
Collapse
|
58
|
Liver immunology: How to reconcile tolerance with autoimmunity. Clin Res Hepatol Gastroenterol 2017; 41:6-16. [PMID: 27526967 DOI: 10.1016/j.clinre.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/01/2016] [Indexed: 02/04/2023]
Abstract
There are several examples of liver tolerance: the relative ease by which liver allografts are accepted and the exploitation of the hepatic microenvironment by the malarial parasite and hepatotrophic viruses are notable examples. The vasculature of the liver supports a unique population of antigen presenting cells specialised to maintain immunological tolerance despite continuous exposure to gut-derived antigens. Liver sinusoidal endothelial cells and Kupffer cells appear to be key to the maintenance of immune tolerance, by promoting T cell anergy or deletion and the generation of regulatory cell subsets. Despite this, there are three liver diseases with likely autoimmune involvement: primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune hepatitis. How can we reconcile this with the inherent tolerogenicity of the liver? Genetic studies have uncovered several associations with genes involved in the activation of the innate and adaptive immune systems. There is also evidence pointing to pathogenic and xenobiotic triggers of autoimmune liver disease. Coupled to this, impaired immunoregulatory mechanisms potentially play a permissive role, allowing the autoimmune response to proceed.
Collapse
|
59
|
Ma HD, Ma WT, Liu QZ, Zhao ZB, Liu MZY, Tsuneyama K, Gao JM, Ridgway WM, Ansari AA, Gershwin ME, Fei YY, Lian ZX. Chemokine receptor CXCR3 deficiency exacerbates murine autoimmune cholangitis by promoting pathogenic CD8 + T cell activation. J Autoimmun 2017; 78:19-28. [PMID: 28129932 DOI: 10.1016/j.jaut.2016.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
Abstract
CXC Chemokine Receptor 3 (CXCR3) is functionally pleiotropic and not only plays an important role in chemotaxis, but also participates in T cell differentiation and may play a critical role in inducing and maintaining immune tolerance. These observations are particularly critical for autoimmune cholangitis in which CXCR3 positive T cells are found around the portal areas of both humans and mouse models of primary biliary cholangitis (PBC). Herein, we investigated the role of CXCR3 in the pathogenesis of autoimmune cholangitis. We have taken advantage of a unique CXCR3 knockout dnTGFβRII mouse to focus on the role of CXCR3, both by direct observation of its influence on the natural course of disease, as well as through adoptive transfer studies into Rag-/- mice. We report herein that not only do CXCR3 deficient mice develop an exacerbation of autoimmune cholangitis associated with an expanded effector memory T cell number, but also selective adoptive transfer of CXCR3 deficient CD8+ T cells induces autoimmune cholangitis. In addition, gene microarray analysis of CXCR3 deficient CD8+ T cells reveal an intense pro-inflammatory profile. Our data suggests that the altered gene profiles induced by CXCR3 deficiency promotes autoimmune cholangitis through pathogenic CD8+ T cells. These data have significance for human PBC and other autoimmune liver diseases in which therapeutic intervention might be directed to chemokines and/or their receptors.
Collapse
Affiliation(s)
- Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen-Tao Ma
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing-Zhi Liu
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Bin Zhao
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Mu-Zi-Ying Liu
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Koichi Tsuneyama
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Jin-Ming Gao
- Department of Respiratory Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, OH, USA
| | - Aftab A Ansari
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Yun-Yun Fei
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China; Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China.
| |
Collapse
|
60
|
Brown DL. Immunopathology of the Hepatobiliary System. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2017:329-417. [DOI: 10.1007/978-3-319-47385-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
61
|
Inflammation-induced CD69 + Kupffer cell feedback inhibits T cell proliferation via membrane-bound TGF-β1. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1259-1269. [PMID: 27933593 DOI: 10.1007/s11427-016-0357-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023]
Abstract
Kupffer cells, tissue-resident macrophage lineage cell, are enriched in vertebrate liver. The mouse F4/80+ Kupffer cells have been subclassified into two subpopulations according to their phenotype and function: CD68+ subpopulation with potent reactive oxygen species (ROS) production and phagocytic capacities, and CD11b+ subpopulation with a potent capacity to produce T helper 1 cytokines. In addition, CD11b+ Kupffer cells/macrophages may be migrated from the bone marrow or spleen, especially in inflammatory conditions of the liver. For analyzing diverse Kupffer cell subsets, we infected mice with Listeria monocytogenes and analyzed the phenotype variations of hepatic Kupffer cells. During L. monocytogenes infection, hepatic CD69+ Kupffer cells were significantly induced and expanded, and CD69+ Kupffer cells expressed higher level of CD11b, and particularly high level of membrane-bound TGF-β1 (mTGF-β1) but lower level of F4/80. We also found that clodronate liposome administration did not eliminate hepatic CD69+ Kupffer cell subset. We consider the hepatic CD69+ Kupffer cell population corresponds to CD11b+ Kupffer cells, the bone marrow-derived population. Hepatic CD69+ Kupffer cells suppressed Ag-nonspecific and OVA-specific CD4 T cell proliferation through mTGF-β1 both in vitro and in vivo, meanwhile, they did not interfere with activation of CD4 T cells. Thus, we have identified a new subset of inflammation-induced CD69+ Kupffer cells which can feedback inhibit CD4 T cell response via cell surface TGF-β1 at the late stage of immune response against infection. CD69+ Kupffer cells may contribute to protect host from pathological injure by preventing overactivation of immune response.
Collapse
|
62
|
Tian J, Yang G, Chen HY, Hsu DK, Tomilov A, Olson KA, Dehnad A, Fish SR, Cortopassi G, Zhao B, Liu FT, Gershwin ME, Török NJ, Jiang JX. Galectin-3 regulates inflammasome activation in cholestatic liver injury. FASEB J 2016; 30:4202-4213. [PMID: 27630169 PMCID: PMC5102125 DOI: 10.1096/fj.201600392rr] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022]
Abstract
Macrophage activation is an important feature of primary biliary cholangitis (PBC) pathogenesis and other cholestatic liver diseases. Galectin-3 (Gal3), a pleiotropic lectin, is produced by monocytic cells and macrophages. However, its role in PBC has not been addressed. We hypothesized that Gal3 is a key to induce NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in macrophages and in turn to propagate proinflammatory IL-17 signaling. In liver tissues from patients with PBC and dnTGF-βRII mice, a model of autoimmune cholangitis, the expression of Gal3, NLRP3, and the adaptor protein adaptor apoptosis-associated speck-like protein was induced, with the downstream activation of caspase-1 and IL-1β. In wild-type hepatic macrophages, deoxycholic acid induced the association of Gal3 and NLRP3 with direct activation of the inflammasome, resulting in an increase in IL-1β. Downstream retinoid-related orphan receptor C mRNA, IL-17A, and IL-17F were induced. In Gal3-/- macrophages, no inflammasome activation was detected. To confirm the key role of Gal3 in the pathogenesis of cholestatic liver injury, we generated dnTGF-βRII/galectin-3-/- (dn/Gal3-/-) mice, which showed impaired inflammasome activation along with significantly improved inflammation and fibrosis. Taken together, our data point to a novel role of Gal3 as an initiator of inflammatory signaling in autoimmune cholangitis, mediating the activation of NLRP3 inflammasome and inducing IL-17 proinflammatory cascades. These studies provide a rationale to target Gal3 in autoimmune cholangitis and potentially other cholestatic diseases.-Tian, J., Yang, G., Chen, H.-Y., Hsu, D. K., Tomilov, A., Olson, K. A., Dehnad, A., Fish, S. R., Cortopassi, G., Zhao, B., Liu, F.-T., Gershwin, M. E., Török, N. J., Jiang, J. X. Galectin-3 regulates inflammasome activation in cholestatic liver injury.
Collapse
Affiliation(s)
- Jijing Tian
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis Medical Center, Sacramento, California, USA
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guoxiang Yang
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis Medical Center, Sacramento, California, USA
| | - Huan-Yuan Chen
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Daniel K Hsu
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
| | - Alexey Tomilov
- Department of Molecular Biosciences, University of California Davis, Sacramento, California, USA
| | - Kristin A Olson
- Department of Pathology, University of California Davis Medical Center, Sacramento, California, USA; and
| | - Ali Dehnad
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis Medical Center, Sacramento, California, USA
| | - Sarah R Fish
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis Medical Center, Sacramento, California, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California Davis, Sacramento, California, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fu-Tong Liu
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - M Eric Gershwin
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis Medical Center, Sacramento, California, USA
| | - Natalie J Török
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis Medical Center, Sacramento, California, USA
- Veterans Administration Northern California Medical Center, Mather, California, USA
| | - Joy X Jiang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis Medical Center, Sacramento, California, USA;
| |
Collapse
|
63
|
Bae HR, Leung PS, Tsuneyama K, Valencia JC, Hodge DL, Kim S, Back T, Karwan M, Merchant AS, Baba N, Feng D, Park O, Gao B, Yang GX, Gershwin ME, Young HA. Chronic expression of interferon-gamma leads to murine autoimmune cholangitis with a female predominance. Hepatology 2016; 64:1189-201. [PMID: 27178326 PMCID: PMC5033675 DOI: 10.1002/hep.28641] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 12/21/2022]
Abstract
UNLABELLED In most autoimmune diseases the serologic hallmarks of disease precede clinical pathology by years. Therefore, the use of animal models in defining early disease events becomes critical. We took advantage of a "designer" mouse with dysregulation of interferon gamma (IFNγ) characterized by prolonged and chronic expression of IFNγ through deletion of the IFNγ 3'-untranslated region adenylate uridylate-rich element (ARE). The ARE-Del(-/-) mice develop primary biliary cholangitis (PBC) with a female predominance that mimics human PBC that is characterized by up-regulation of total bile acids, spontaneous production of anti-mitochondrial antibodies, and portal duct inflammation. Transfer of CD4 T cells from ARE-Del(-/-) to B6/Rag1(-/-) mice induced moderate portal inflammation and parenchymal inflammation, and RNA sequencing of liver gene expression revealed that up-regulated genes potentially define early stages of cholangitis. Interestingly, up-regulated genes specifically overlap with the gene expression signature of biliary epithelial cells in PBC, implying that IFNγ may play a pathogenic role in biliary epithelial cells in the initiation stage of PBC. Moreover, differentially expressed genes in female mice have stronger type 1 and type 2 IFN signaling and lymphocyte-mediated immune responses and thus may drive the female bias of the disease. CONCLUSION Changes in IFNγ expression are critical for the pathogenesis of PBC. (Hepatology 2016;64:1189-1201).
Collapse
Affiliation(s)
- Heekyong R. Bae
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, California
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Julio C. Valencia
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| | - Deborah L. Hodge
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| | - Seohyun Kim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| | - Tim Back
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| | - Megan Karwan
- Laboratory of Animal Science, National Cancer Institute-Frederick, Frederick, Maryland
| | - Anand S. Merchant
- CCR Collaborative Bioinformatics Core, National Cancer Institute, Bethesda, Maryland
| | - Nobuyuki Baba
- Central Laboratory Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland
| | - Ogyi Park
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland
| | - Guo-Xiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, California
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, California
| | - Howard A. Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, and SAIC Frederick, Frederick, MD
| |
Collapse
|
64
|
Choi J, Leung PSC, Bowlus C, Gershwin ME. IL-35 and Autoimmunity: a Comprehensive Perspective. Clin Rev Allergy Immunol 2016; 49:327-32. [PMID: 25619872 DOI: 10.1007/s12016-015-8468-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin 35 (IL-35) is the most recently identified member of the IL-12 family of cytokines and offers the potential to be a target for new therapies for autoimmune, inflammatory, and infectious diseases. Similar to other members of the IL-12 family including IL-12, IL-23, and IL-27, IL-35 is composed of a heterodimer of α and β chains, which in the case of IL-35 are the p35 and Epstein-Barr virus-induced gene 3 (EBI3) proteins. However, unlike its proinflammatory relatives, IL-35 has immunosuppressive effects that are mediated through regulatory T and B cells. Although there are limited data available regarding the role of IL-35 in human autoimmunity, several murine models of autoimmunity suggest that IL-35 may have potent effects in regulating immunoreactivity via IL-10-dependent mechanisms. We suggest that similar effects are operational in human disease and IL-35-directed therapies hold significant promise. In particular, we emphasize that IL-35 has immunosuppressive ability that are mediated via regulatory T and B cells that are IL-10 dependent. Further, although deletion of IL-35 does not result in spontaneous breach of tolerance, recombinant IL-35 can improve autoimmune responses in several experimental models.
Collapse
Affiliation(s)
- Jinjung Choi
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA.,Division of Rheumatology, CHA University Medical Center, Bundang, 463-712, Korea
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Christopher Bowlus
- Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA, 95817, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
65
|
Yang GX, Sun Y, Tsuneyama K, Zhang W, Leung PSC, He XS, Ansari AA, Bowlus C, Ridgway WM, Gershwin ME. Endogenous interleukin-22 protects against inflammatory bowel disease but not autoimmune cholangitis in dominant negative form of transforming growth factor beta receptor type II mice. Clin Exp Immunol 2016; 185:154-64. [PMID: 27148790 PMCID: PMC4955007 DOI: 10.1111/cei.12806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022] Open
Abstract
During chronic inflammation, interleukin (IL)-22 expression is up-regulated in both CD4 and CD8 T cells, exerting a protective role in infections. However, in autoimmunity, IL-22 appears to have either a protective or a pathogenic role in a variety of murine models of autoimmunity and, by extrapolation, in humans. It is not clear whether IL-22 itself mediates inflammation or is a by-product of inflammation. We have taken advantage of the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice that develop both inflammatory bowel disease and autoimmune cholangitis and studied the role and the biological function of IL-22 by generating IL-22(-/-) dnTGF-βRII mice. Our data suggest that the influence of IL-22 on autoimmunity is determined in part by the local microenvironment. In particular, IL-22 deficiency exacerbates tissue injury in inflammatory bowel disease, but has no influence on either the hepatocytes or cholangiocytes in the same model. These data take on particular significance in the previously defined effects of IL-17A, IL-12p40 and IL-23p19 deficiency and emphasize that, in colitis, there is a dominant role of IL-23/T helper type 17 (Th17) signalling. Furthermore, the levels of IL-22 are IL-23-dependent. The use of cytokine therapy in patients with autoimmune disease has significant potential, but must take into account the overlapping and often promiscuous effects that can theoretically exacerbate inflammation.
Collapse
Affiliation(s)
- G-X Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Y Sun
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Diagnostic and Treatment Center for Non-Infectious Liver Diseases, 302nd Military Hospital, Beijing, China
| | - K Tsuneyama
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - W Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - P S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - X-S He
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - A A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - C Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Sacramento, CA, USA
| | - W M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M E Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| |
Collapse
|
66
|
Kopec AK, Joshi N, Luyendyk JP. Role of hemostatic factors in hepatic injury and disease: animal models de-liver. J Thromb Haemost 2016; 14:1337-49. [PMID: 27060337 PMCID: PMC5091081 DOI: 10.1111/jth.13327] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/14/2022]
Abstract
Chronic liver damage is associated with unique changes in the hemostatic system. Patients with liver disease often show a precariously rebalanced hemostatic system, which is easily tipped towards bleeding or thrombotic complications by otherwise benign stimuli. In addition, some clinical studies have shown that hemostatic system components contribute to the progression of liver disease. There is a strong basic science foundation for clinical studies with this particular focus. Chronic and acute liver disease can be modeled in rodents and large animals with a variety of approaches, which span chronic exposure to toxic xenobiotics, diet-induced obesity, and surgical intervention. These experimental approaches have now provided strong evidence that, in addition to perturbations in hemostasis caused by liver disease, elements of the hemostatic system have powerful effects on the progression of experimental liver toxicity and disease. In this review, we cover the basis of the animal models that are most often utilized to assess the impact of the hemostatic system on liver disease, and highlight the role that coagulation proteases and their targets play in experimental liver toxicity and disease, emphasizing key similarities and differences between models. The need to characterize hemostatic changes in existing animal models and to develop novel animal models recapitulating the coagulopathy of chronic liver disease is highlighted. Finally, we emphasize the continued need to translate knowledge derived from highly applicable animal models to improve our understanding of the reciprocal interaction between liver disease and the hemostatic system in patients.
Collapse
Affiliation(s)
- Anna K. Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Nikita Joshi
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
67
|
Li P, Lu G, Cui Y, Wu Z, Chen S, Li J, Wen X, Zhang H, Mu S, Zhang F, Li Y. Association of IL12A Expression Quantitative Trait Loci (eQTL) With Primary Biliary Cirrhosis in a Chinese Han Population. Medicine (Baltimore) 2016; 95:e3665. [PMID: 27175695 PMCID: PMC4902537 DOI: 10.1097/md.0000000000003665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Genome-wide association studies in European individuals have revealed that IL12A is strongly associated with primary biliary cirrhosis (PBC). However, this association was not detected in replicative studies conducted in Chinese Han and Japanese populations.To verify contributions of genetic variants of IL12A to the pathogenesis of PBC in Chinese populations, a replicative study of 22 single nucleotide polymorphisms (SNPs) around the IL12A gene locus was performed in a cohort of 586 PBC cases and 726 healthy controls. Three out of the 22 SNPs were significantly associated with PBC. The 2 SNPs with the most significant association signal were rs4679868 (P = 6.59E-05, odds ratio [OR] = 1.554 [1.253-1.927]) and rs6441286 (P = 8.00E-05, OR = 1.551 [1.250-1.924]). These 2 SNPs were strongly linked to each other (r = 0.981), and both were found to be significantly associated with PBC in European populations.An expression quantitative trait loci (eQTL) analysis was performed based on the observation that these 2 SNPs were located in proximity to 2 enhancers verified by luciferase reporter systems in the HEK293 cell line. The results of eQTL analysis, conducted using the publically accessible data, showed that the risk alleles of rs4679868 and rs6441286 were significantly associated with decreased expression of IL12A in lymphoblastoid cell lines derived from individuals of Chinese Han ancestry (P = 0.0031 for rs4679868 and P = 0.0073 for rs6441286). In addition, the risk alleles of the 2 SNPs were significantly associated with down-regulation of SCHIP1, a celiac disease susceptible gene, 91.5 kb upstream of IL12A.These results not only demonstrated that IL12A is associated with PBC in the Chinese Han population but also identified a potential mechanism for its involvement in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Ping Li
- From the Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing (PL, GL, ZW, SC, JL, XW, HZ, FZ, YL) and Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an (GL, YC, MJ), China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Leung PSC, Choi J, Yang G, Woo E, Kenny TP, Gershwin ME. A contemporary perspective on the molecular characteristics of mitochondrial autoantigens and diagnosis in primary biliary cholangitis. Expert Rev Mol Diagn 2016; 16:697-705. [PMID: 26953925 DOI: 10.1586/14737159.2016.1164038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune hepatobiliary disease characterized by immune mediated destruction of the intrahepatic small bile ducts and the presence of antimitochondrial antibodies (AMAs). The mitochondrial autoantigens have been identified as the E2 subunits of the 2-oxo-acid dehydrogenase complex, including the E2 subunits of pyruvate dehydrogenase, branched-chain 2-oxo acid dehydrogenase complex, oxoglutarate dehydrogenase complex, E3 binding protein and PDC E1 alpha subunit. The AMA epitope is mapped within the E2 lipoic acid binding domain, which is particularly important for oxidative phosphorylation. In addition, lipoic acid, which serves as a swinging arm to capture electrons, is particularly susceptible to an electrophilic attack and may provide clues to the etiology of PBC. This review emphasizes the molecular characteristics of AMAs, including detection, immunochemistry and the putative role in disease. These data have significance not only specifically for PBC, but generically for autoimmunity.
Collapse
Affiliation(s)
- Patrick S C Leung
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California at Davis School of Medicine , Davis , CA , USA
| | - Jinjung Choi
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California at Davis School of Medicine , Davis , CA , USA
| | - Guoxiang Yang
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California at Davis School of Medicine , Davis , CA , USA
| | - Elena Woo
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California at Davis School of Medicine , Davis , CA , USA
| | - Thomas P Kenny
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California at Davis School of Medicine , Davis , CA , USA
| | - M Eric Gershwin
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California at Davis School of Medicine , Davis , CA , USA
| |
Collapse
|
69
|
Abstract
The immune-mediated hepatobiliary diseases, primary biliary cirrhosis and primary sclerosing cholangitis are relatively rare, albeit and account for a significant amount of liver transplant activity and liver-related mortality globally. Precise disease mechanisms are yet to be described although a contributory role of genetic predisposition is firmly established. In addition to links with the major histocompatibility complex, a number of associations outside this region harbor additional loci which underscore the fundamental role of breaks in immune tolerance and mucosal immunogenicity in the pathogenesis of autoimmune biliary disease. We provide an overview of these key discoveries before discussing putative avenues of therapeutic exploitation based on existing findings.
Collapse
|
70
|
Extrahepatic malignancies in primary biliary cirrhosis: a comparative study at two European centers. Clin Rev Allergy Immunol 2016; 48:254-62. [PMID: 25205363 DOI: 10.1007/s12016-014-8446-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Limited information and divergent results are available on the prevalence/incidence, survival, and risk factors for developing extrahepatic malignancies (EMs) in primary biliary cirrhosis (PBC). The aim of the study was to analyze the epidemiology and survival rates for EM in PBC patients. The study was conducted on two series of patients followed up at two European centers (361 in Padova, Italy, and 397 in Barcelona, Spain) for a mean 7.7 ± 7 and 12.2 ± 7 years, respectively. The cancer incidence was compared with the standardized incidence ratios (SIRs) calculated using the Cancer Registry of the Veneto Region (Italy) and the Cancer Registry of Tarragona (Spain). Seventy-two patients developed EM. The prevalence of cases was similar in Padova (9.7 %) and Barcelona (9.4 %). The overall cancer incidence was similar to the expected incidence for the general population in the same geographical area (SIR = 1.2), and so was the crude EM rate (855.01 vs 652.86 per 100,000 patient-years, respectively, RR = 1.3). Logistic regression analysis showed that advanced histological stage and extrahepatic autoimmune diseases were significantly associated with the onset of EM. Survival was similar for PBC patients with and without EM (p = n.s.), and actual survival was similar to the one predicted by the Mayo model. The incidence of EM in PBC patients was found similar in Italy and Spain and no different from that of the general population. Advanced histological stage and extrahepatic autoimmune disease were risk factors significantly associated with EM developing in PBC. The onset of cancer in PBC patients does not influence the natural history of their liver disease.
Collapse
|
71
|
The coexistence of Sjögren's syndrome and primary biliary cirrhosis: a comprehensive review. Clin Rev Allergy Immunol 2016; 48:301-15. [PMID: 25682089 DOI: 10.1007/s12016-015-8471-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organ-specific and systemic autoimmune diseases share numerous features and often coexist in the same patient. Autoimmune cholangitis/primary biliary cirrhosis and Sjogren syndrome represent paradigmatic examples of the common grounds of different autoimmunity phenotypes based on similarities in clinical manifestations and immunopathogenesis. In fact, primary biliary cirrhosis and Sjogren's syndrome have both been coined as an autoimmune epithelitis in which apoptosis may be in both cases the key element to explain the organ-specific immune-mediated injury against the biliary and exocrine gland epithelia, respectively. Further, growing evidence supports in both diseases the view that B cells, T cytotoxic cells, and T helper cells are involved in chronic inflammation, likely via the altered expression of pro-inflammatory cytokines. The presence of estrogen receptors on the biliary and exocrine gland epithelia has been advocated as a key to the female predominance encountered in primary biliary cirrhosis and Sjogren's syndrome. Sadly, despite available data, therapeutic approaches remain largely unsatisfactory and recent studies with mechanistic approaches (as in the case of B cell depletion with rituximab) have been of partial benefit only. Future studies should focus on new molecular tools (single-cell transcriptomics, microRNA, epigenetics) to provide unique insights into common mechanisms.
Collapse
|
72
|
Abstract
Primary biliary cirrhosis (PBC) is characterized histologically by the presence of chronic non-suppurative destructive cholangitis of the small interlobular bile duct, leading to chronic progressive cholestasis. Most PBC patients are asymptomatic and have a reasonable prognosis, but a few develop esophageal varices or jaundice, rapidly leading to liver failure within a short period. As multiple factors appear to be involved in the onset of PBC, its clinical course may be complicated. Therefore, the use of an animal model would be valuable for clarifying the pathogenesis of PBC. Here, we review recent data of selected PBC models, particularly spontaneous models, xenobiotic immunized models, and infection-triggered models. There are a number of spontaneous models: the NOD.c3c4, dominant-negative TGF-β receptor II, IL-2Rα-/-, Scurfy, and Ae2a,b-/- mice. These animal models manifest distinct clinical and immunological features similar, but also often different, from those of human PBC. It is clear that a combination of genetic predisposition, environmental factors, and immunological dysfunction contribute to the pathogenesis of PBC. The diverse clinical course and complexity of the immunological mechanisms of PBC cannot be fully recapitulated solely any single animal model. The challenge remains to develop a progressive PBC disease model that exhibits fibrosis, and ultimately hepatic failure.
Collapse
|
73
|
Noor F. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases. J Physiol 2015; 593:5043-55. [PMID: 26417843 DOI: 10.1113/jp271124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation.
Collapse
Affiliation(s)
- Fozia Noor
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| |
Collapse
|
74
|
Webb GJ, Siminovitch KA, Hirschfield GM. The immunogenetics of primary biliary cirrhosis: A comprehensive review. J Autoimmun 2015; 64:42-52. [PMID: 26250073 PMCID: PMC5014907 DOI: 10.1016/j.jaut.2015.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022]
Abstract
Primary biliary cirrhosis (PBC), a classic autoimmune liver disease, is characterised by a progressive T cell predominant lymphocytic cholangitis, and a serologic pattern of reactivity in the form of specific anti-mitochondrial antibodies (AMA). CD4+ T cells are particularly implicated by PBC's cytokine signature, the presence of CD4+ T cells specific to mitochondrial auto-antigens, the expression of MHC II on injured biliary epithelial cells, and PBC's coincidence with other similar T cell mediated autoimmune conditions. CD4+ T cells are also central to current animal models of PBC, and their transfer typically also transfers disease. The importance of genetic risk to developing PBC is evidenced by a much higher concordance rate in monozygotic than dizygotic twins, increased AMA rates in asymptomatic relatives, and disproportionate rates of disease in siblings of PBC patients, PBC family members and certain genetically defined populations. Recently, high-throughput genetic studies have greatly expanded our understanding of the gene variants underpinning risk for PBC development, so linking genetics and immunology. Here we summarize genetic association data that has emerged from large scale genome-wide association studies and discuss the evidence for the potential functional significance of the individual genes and pathways identified; we particularly highlight associations in the IL-12-STAT4-Th1 pathway. HLA associations and epigenetic effects are specifically considered and individual variants are linked to clinical phenotypes where data exist. We also consider why there is a gap between calculated genetic risk and clinical data: so-called missing heritability, and how immunogenetic observations are being translated to novel therapies. Ultimately whilst genetic risk factors will only account for a proportion of disease risk, ongoing efforts to refine associations and understand biologic links to disease pathways are hoped to drive more rational therapy for patients.
Collapse
Affiliation(s)
- G J Webb
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | - K A Siminovitch
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto General Research Institute, and Departments of Immunology and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - G M Hirschfield
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK.
| |
Collapse
|
75
|
Boghal RH, Stephenson B, Afford SC. Immune cell communication in liver disease and liver regeneration. SIGNALING PATHWAYS IN LIVER DISEASES 2015:110-129. [DOI: 10.1002/9781118663387.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
76
|
Yang JB, Wang YH, Yang W, Lu FT, Ma HD, Zhao ZB, Jia YJ, Tang W, Tsuneyama K, Ridgway WM, Gershwin ME, Lian ZX. Successful treatment of murine autoimmune cholangitis by parabiosis: Implications for hematopoietic therapy. J Autoimmun 2015; 66:108-17. [PMID: 26432598 DOI: 10.1016/j.jaut.2015.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
There is a significant unmet need in the treatment of primary biliary cirrhosis (PBC) despite significant data on the effector pathways that lead to biliary duct damage. We focused attention on a murine model of PBC, the dominant negative transforming growth factor β receptor II (Tg) mice. To further define the pathways that lead to biliary pathology in these mice, we developed Tg mice deleted of CD4 cells (CD4(-/-)Tg). Interestingly, these mice developed more severe cholangitis than control Tg mice. These mice, which lack CD4 cells, manifested increased levels of IFN-γ produced by effector CD8 cells. It appears that increased cholangitis is due to the absence of CD4 Treg cells. Based on these data, we parabiosed CD4(-/-)Tg mice with established disease at 8-9 weeks of age with C57BL/6 control mice. Such parabiotic "twins" had a significant reduction in autoimmune cholangitis, even though they had established pathology at the time of surgery. We prepared mixed bone marrow chimera mice constructed from CD4(-/-)Tg and CD8(-/-) mice and not only was cholangitis improved, but a decrease in terminally differentiated CD8(+) T effector cells in the presence of wild type CD4 cells was noted. In conclusion, "correcting" the CD4 T cell subset, even in the presence of pathogenic CD8 T cells, is effective in treating autoimmune cholangitis.
Collapse
Affiliation(s)
- Jing-Bo Yang
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Yang
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Fang-Ting Lu
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Zhi-Bin Zhao
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yan-Jie Jia
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Tang
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 930-0194, Japan.
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, OH 45220, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|
77
|
Tanaka H, Yang GX, Tomiyama T, Tsuneyama K, Zhang W, Leung PSC, Coppel RL, Joh T, Nadler SG, Ansari AA, Bowlus C, Gershwin ME. Immunological potential of cytotoxic T lymphocyte antigen 4 immunoglobulin in murine autoimmune cholangitis. Clin Exp Immunol 2015; 180:371-82. [PMID: 25581259 DOI: 10.1111/cei.12581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic T lymphocyte antigen 4 (CTLA-4) immunoglobulin (Ig) is an important regulator of T cell activation and a fusion protein directed at CD80 and CD86; it blocks co-stimulatory signalling and T cell activation. We have taken advantage of a murine model of human primary biliary cirrhosis (PBC), mice expressing a transforming growth factor (TGF)-β receptor II dominant negative (dnTGF-βRII) transgene to address the potential therapeutic efficacy of CTLA-4 Ig. To mimic patients with PBC at different stages or duration of disease, we treated mice with either CTLA-4 Ig or control IgG three times weekly from 3 to 12 or 24 weeks of age, or from 12 to 24 weeks of age. CTLA-4 Ig treatment from 3 weeks of age significantly reduced liver inflammation to 12 weeks of age. Treatment initiated at 12 weeks of age also ameliorated the autoimmune cholangitis at 24 weeks of age. However, in mice treated at 3 weeks of age, suppression of liver inflammation was not sustained and colitis was aggravated when treatment was extended to 24 weeks of age. Our data indicate that, in dnTGF-βRII mice, CTLA-4 Ig treatment has short-term beneficial effects on autoimmune cholangitis, but the effect varies according to duration of treatment and the time in which therapy was initiated. Further dissection of the events that lead to the reduction in therapeutic effectiveness of CTLA-4 Ig will be critical to determining whether such efforts can be applied to human PBC.
Collapse
Affiliation(s)
- H Tanaka
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - G-X Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - T Tomiyama
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.,Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | - K Tsuneyama
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.,Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - W Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - P S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - R L Coppel
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - T Joh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - S G Nadler
- Department of Immunology, Bristol Myers Squibb, Princeton, NJ, USA
| | - A A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - C Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Sacramento, CA, USA
| | - M E Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| |
Collapse
|
78
|
Lu FT, Yang W, Wang YH, Ma HD, Tang W, Yang JB, Li L, Ansari AA, Lian ZX. Thymic B cells promote thymus-derived regulatory T cell development and proliferation. J Autoimmun 2015; 61:62-72. [PMID: 26071985 DOI: 10.1016/j.jaut.2015.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/10/2023]
Abstract
Thymic CD4(+) FoxP3(+) regulatory T (Treg) cells are critical for the development of immunological tolerance and immune homeostasis and requires contributions of both thymic dendritic and epithelial cells. Although B cells have been reported to be present within the thymus, there has not hitherto been a definition of their role in immune cell development and, in particular, whether or how they contribute to the Treg cellular thymic compartment. Herein, using both phenotypic and functional approaches, we demonstrate that thymic B cells contribute to the maintenance of thymic Treg cells and, using an in vitro culture system, demonstrate that thymic B cells contribute to the size of the thymic Treg compartment via cell-cell MHC II contact and the involvement of two independent co-stimulatory pathways that include interactions between the CD40/CD80/CD86 co-stimulatory molecules. Our data also suggest that thymic B cells promote the generation of thymic Treg cell precursors (pre-Treg cells), but not the conversion of FoxP3(+) Treg cells from pre-Treg cells. In addition, thymic B cells directly promote the proliferation of thymic Treg cells that is MHC II contact dependent with a minimal if any role for co-stimulatory molecules including CD40/CD80/CD86. Both pathways are independent of TGFβ. In conclusion, we rigorously define the critical role of thymic B cells in the development of thymic Treg cells from non-Treg to precursor stage and in the proliferation of mature thymic Treg cells.
Collapse
Affiliation(s)
- Fang-Ting Lu
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Tang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Jing-Bo Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Liang Li
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Aftab A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026, China.
| |
Collapse
|
79
|
Therapeutic Potential of IL-17-Mediated Signaling Pathway in Autoimmune Liver Diseases. Mediators Inflamm 2015; 2015:436450. [PMID: 26146463 PMCID: PMC4471389 DOI: 10.1155/2015/436450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence reveals that various cytokines and tissue microenvironments contribute to liver inflammation and autoimmunity, and IL-17 family is one of highlights acknowledged. Although the implication of IL-17 family in most common autoimmune diseases (such as psoriasis, inflammatory bowel disease, and rheumatoid arthritis) has been extensively characterized, the role of this critical family in pathophysiology of autoimmune liver diseases (AILD) still needs to be clarified. In the review, we look into the intriguing biology of IL-17 family and further dissect on the intricate role of IL-17-mediated pathway in AILD. Considering encouraging data from preclinical and clinical trials, IL-17 targeted therapy has shown promises in several certain autoimmune conditions. However, blocking IL-17-mediated pathway is just beginning, and more fully investigation and reflection are required. Taking together, targeting IL-17-mediated responses may open up new areas of potential clinical treatment for AILD.
Collapse
|
80
|
Abstract
Cholangiocytes are the epithelial cells that line the bile ducts. Along the biliary tree, two different kinds of cholangiocytes exist; small and large cholangiocytes. Each type has important differences in their biological role in physiological and pathological conditions. In response to injury, cholangiocytes become reactive and acquire a neuroendocrine-like phenotype with the secretion of a number of peptides. These molecules act in an autocrine/paracrine fashion to modulate cholangiocyte biology and determine the evolution of biliary damage. The failure of such mechanisms is believed to influence the progression of cholangiopathies, a group of diseases that selectively target biliary cells. Therefore, the understanding of mechanisms regulating cholangiocyte response to injury is expected to foster the development of new therapeutic options to treat biliary diseases. In the present review, we will discuss the most recent findings in the mechanisms driving cholangiocyte adaptation to damage, with particular emphasis on molecular pathways that are susceptible of therapeutic intervention. Morphogenic pathways (Hippo, Notch, Hedgehog), which have been recently shown to regulate biliary ontogenesis and response to injury, will also be reviewed. In addition, the results of ongoing clinical trials evaluating new drugs for the treatment of cholangiopathies will be discussed.
Collapse
|
81
|
Grape polyphenols supplementation reduces muscle atrophy in a mouse model of chronic inflammation. Nutrition 2015; 31:1275-83. [PMID: 26333892 DOI: 10.1016/j.nut.2015.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Polyphenols (PP) have demonstrated beneficial effects on low-grade inflammation and oxidative stress; however, little is known about their effect on highly inflamed muscle. The purposes of this study were (i) to evaluate muscle alteration induced by high-grade inflammation, and (ii) to test the effects of red grape PP supplementation on these alterations. METHODS We used a transgenic mice model (transforming growth factor [TGF] mice) to develop a high T cell-dependent inflammation and C57 BL/6 control (CTL) mice model. Skeletal muscles of TGF and CTL mice were investigated for inflammation, atrophy and oxidative stress markers. Isolated mitochondria from hindlimb muscles were used for respiration with pyruvate as substrate and oxidative damages were measured by Western blot. TGF mice were supplemented with a mixture of red grape polyphenols (50 mg/kg/d) for 4 wk. Data were analyzed by one-way analysis of variance (ANOVA) and post hoc Bonferroni's multiple comparison tests. RESULTS TGF mice presented skeletal muscle inflammation, oxidative stress, mitochondrial alteration and muscle atrophy. Atrophy was associated with two distinct pathways: (i) one linked to inflammation, NF-κB activation and increased ubiquitin ligase expression, and (ii) one dependent on reactive oxygen species (ROS) production leading to damaged mitochondria accumulation and activation of caspase-9 and 3. Supplementation of TGF mice with a mixture of red grape polyphenols (50 mg/kg/d) for 4 wk improved mitochondrial function and highly decreased caspases activation, which allowed muscle atrophy mitigation. CONCLUSIONS These observations suggest that nutritional dosages of red grape polyphenols might be beneficial for reducing skeletal muscle atrophy, even in a high-grade inflammation environment.
Collapse
|
82
|
Sharon D, Chen M, Zhang G, Girgis S, Sis B, Graham D, McDougall C, Wasilenko ST, Montano-Loza A, Mason AL. Impact of combination antiretroviral therapy in the NOD.c3c4 mouse model of autoimmune biliary disease. Liver Int 2015; 35:1442-50. [PMID: 25302564 PMCID: PMC4403978 DOI: 10.1111/liv.12699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 10/02/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS The NOD.c3c4 mouse model develops autoimmune biliary disease characterized by spontaneous granulomatous cholangitis, antimitochondrial antibodies and liver failure. This model for primary biliary cirrhosis (PBC) has evidence of biliary infection with mouse mammary tumour virus (MMTV), suggesting that the virus may have a role in cholangitis development and progression of liver disease in this mouse model. We tested the hypothesis that MMTV infection is associated with cholangitis in the NOD.c3c4 mouse model by investigating whether antiretroviral therapy impacts on viral levels and liver disease. METHODS NOD.c3c4 mice were treated with combination antiretroviral therapy. Response to treatment was studied by measuring MMTV RNA in the liver, liver enzyme levels in serum and liver histology using a modified Ishak score. RESULTS Combination therapy with the reverse transcriptase inhibitors, tenofovir and emtricitabine, resulted in a significant reduction in serum liver enzyme levels, attenuation of cholangitis and decreased MMTV levels in the livers of NOD.c3c4 mice. Furthermore, treatment with the retroviral protease inhibitors, lopinavir and ritonavir, in addition to the reverse transcriptase inhibitors, resulted in further decrease in MMTV levels and attenuation of liver disease in this model. CONCLUSIONS The attenuation of cholangitis with regimens containing the reverse transcriptase inhibitors, tenofovir and emtricitabine, and the protease inhibitors, lopinavir and ritonavir, suggests that retroviral infection may play a role in the development of cholangitis in this model.
Collapse
Affiliation(s)
- David Sharon
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
| | - Min Chen
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
| | - Guangzhi Zhang
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
| | - Safwat Girgis
- Department of Pathology, University of AlbertaEdmonton, AB, Canada
| | - Banu Sis
- Department of Pathology, University of AlbertaEdmonton, AB, Canada
| | - Don Graham
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
| | | | | | | | - Andrew L Mason
- Department of Medicine, University of AlbertaEdmonton, AB, Canada,Correspondence Andrew L. Mason, Division of Gastroenterology, Center of Excellence in Gastrointestinal Inflammation and Immunity Research 7-142 KGR, University of Alberta, Edmonton, Alberta, T6G 2X8 Canada, Tel: (780) 492-8172, Fax: (780) 492-1655, e-mail:
| |
Collapse
|
83
|
Role of novel retroviruses in chronic liver disease: assessing the link of human betaretrovirus with primary biliary cirrhosis. Curr Infect Dis Rep 2015; 17:460. [PMID: 25754451 PMCID: PMC4353873 DOI: 10.1007/s11908-014-0460-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A human betaretrovirus resembling mouse mammary tumor virus has been characterized in patients with primary biliary cirrhosis. The agent triggers a disease-specific phenotype in vitro with aberrant cell-surface expression of mitochondrial antigens. The presentation of a usually sequestered self-protein is thought to lead to the loss of tolerance and the production of anti-mitochondrial antibodies associated with the disease. Similar observations have been made in mouse models, where mouse mammary tumor virus infection has been linked with the development of cholangitis and production of anti-mitochondrial antibodies. The use of combination antiretroviral therapy has been shown to impact on histological and biochemical disease in mouse models of autoimmune biliary disease and in clinical trials of patients with primary biliary cirrhosis. However, the HIV protease inhibitors are not well tolerated in patients with primary biliary cirrhosis, and more efficacious regimens will be required to clearly link reduction of viral load with improvement of cholangitis.
Collapse
|
84
|
Wang YH, Yang W, Yang JB, Jia YJ, Tang W, Gershwin ME, Ridgway WM, Lian ZX. Systems biologic analysis of T regulatory cells genetic pathways in murine primary biliary cirrhosis. J Autoimmun 2015; 59:26-37. [PMID: 25701076 DOI: 10.1016/j.jaut.2015.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/30/2015] [Indexed: 01/05/2023]
Abstract
CD4(+)Foxp3(+) regulatory T cells (Tregs) play a non-redundant role in control of excessive immune responses, and defects in Tregs have been shown both in patients and murine models of primary biliary cirrhosis (PBC), a progressive autoimmune biliary disease. Herein, we took advantage of a murine model of PBC, the dominant negative transforming growth factor β receptor II (dnTGFβRII) mice, to assess Treg genetic defects and their functional effects in PBC. By using high-resolution microarrays with verification by PCR and protein expression, we found profound and wide-ranging differences between dnTGFβRII and normal, wild type Tregs. Critical transcription factors were down-regulated including Eos, Ahr, Klf2, Foxp1 in dnTGFβRII Tregs. Functionally, dnTGFβRII Tregs expressed an activated, pro-inflammatory phenotype with upregulation of Ccl5, Granzyme B and IFN-γ. Genetic pathway analysis suggested that the primary effect of loss of TGFβ pathway signaling was to down regulate immune regulatory processes, with a secondary upregulation of inflammatory processes. These findings provide new insights into T regulatory genetic defects; aberrations of the identified genes or genetic pathways should be investigated in human PBC Tregs. This approach which takes advantage of biologic pathway analysis illustrates the ability to identify genes/pathways that are affected both independently and dependent on abnormalities in TGFβ signaling. Such approaches will become increasingly useful in human autoimmunity.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Jing-Bo Yang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yan-Jie Jia
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Tang
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, OH 45220, USA.
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Innovation Center for Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|
85
|
Tanaka H, Zhang W, Yang GX, Ando Y, Tomiyama T, Tsuneyama K, Leung P, Coppel RL, Ansari AA, Lian ZX, Ridgway WM, Joh T, Gershwin ME. Successful immunotherapy of autoimmune cholangitis by adoptive transfer of forkhead box protein 3(+) regulatory T cells. Clin Exp Immunol 2014; 178:253-61. [PMID: 25041369 DOI: 10.1111/cei.12415] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 01/01/2023] Open
Abstract
Treatment of primary biliary cirrhosis (PBC) has lagged behind that of other autoimmune diseases. In this study we have addressed the potential utility of immunotherapy using regulatory T cells (Treg ) to treat murine autoimmune cholangitis. In particular, we have taken advantage of our ability to produce portal inflammation and bile duct cell loss by transfer of CD8(+) T cells from the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice to recombination-activating gene (Rag)1(-/-) recipients. We then used this robust established adoptive transfer system and co-transferred CD8(+) T cells from dnTGF-βRII mice with either C57BL/6 or dnTGF-βRII forkhead box protein 3 (FoxP3(+) ) T cells. Recipient mice were monitored for histology, including portal inflammation and intralobular biliary cell damage, and also included a study of the phenotypical changes in recipient lymphoid populations and local and systemic cytokine production. Importantly, we report herein that adoptive transfer of Treg from C57BL/6 but not dnTGF-βRII mice significantly reduced the pathology of autoimmune cholangitis, including decreased portal inflammation and bile duct damage as well as down-regulation of the secondary inflammatory response. Further, to define the mechanism of action that explains the differential ability of C57BL/6 Treg versus dnTGF-βRII Treg on the ability to down-regulate autoimmune cholangitis, we noted significant differential expression of glycoprotein A repetitions predominant (GARP), CD73, CD101 and CD103 and a functionally significant increase in interleukin (IL)-10 in Treg from C57BL/6 compared to dnTGF-βRII mice. Our data reflect the therapeutic potential of wild-type CD4(+) FoxP3(+) Treg in reducing the excessive T cell responses of autoimmune cholangitis, which has significance for the potential immunotherapy of PBC.
Collapse
Affiliation(s)
- H Tanaka
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Chang CH, Chen YC, Yu YH, Tao MH, Leung PSC, Ansari AA, Gershwin ME, Chuang YH. Innate immunity drives xenobiotic-induced murine autoimmune cholangitis. Clin Exp Immunol 2014; 177:373-80. [PMID: 24547942 DOI: 10.1111/cei.12298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 12/19/2022] Open
Abstract
Although primary biliary cirrhosis (PBC) is considered a model autoimmune disease, it has not responded therapeutically to traditional immunosuppressive agents. In addition, PBC may recur following liver transplantation, despite the absence of major histocompatibility complex (MHC) matching, in sharp contrast to the well-known paradigm of MHC restriction. We have suggested previously that invariant natural killer T (iNK T) cells are critical to the initiation of PBC. In this study we have taken advantage of our ability to induce autoimmune cholangitis with 2-octynoic acid, a common component of cosmetics, conjugated to bovine serum albumin (2-OA-BSA), and studied the natural history of pathology in mice genetically deleted for CD4 or CD8 following immunization with 2-OA-BSA in the presence or absence of α-galactosylceramide (α-GalCer). In particular, we address whether autoimmune cholangitis can be induced in the absence of traditional CD4 and CD8 responses. We report herein that CD4 and CD8 knock-out mice immunized with 2-OA-BSA/PBS or 2-OA-BSA/α-GalCer develop anti-mitochondrial antibodies (AMAs), portal infiltrates and fibrosis. Indeed, our data suggest that the innate immunity is critical for immunopathology and that the pathology is exacerbated in the presence of α-GalCer. In conclusion, these data provide not only an explanation for the recurrence of PBC following liver transplantation in the absence of MHC compatibility, but also suggest that effective therapies for PBC must include blocking of both innate and adaptive pathways.
Collapse
Affiliation(s)
- C-H Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Martínez AK, Maroni L, Marzioni M, Ahmed ST, Milad M, Ray D, Alpini G, Glaser SS. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies. CURRENT PATHOBIOLOGY REPORTS 2014; 2:143-153. [PMID: 25396098 DOI: 10.1007/s40139-014-0050-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted.
Collapse
Affiliation(s)
- Allyson K Martínez
- Department of Internal Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Syed T Ahmed
- Department of Internal Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas ; Baylor Scott & White, Texas A&M Internal Medicine Residency Program, Temple, TX
| | - Mena Milad
- Baylor Scott & White, Texas A&M Internal Medicine Residency Program, Temple, TX
| | - Debolina Ray
- Department of Internal Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Gianfranco Alpini
- Department of Internal Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas ; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas ; Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Shannon S Glaser
- Department of Internal Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas ; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas ; Research, Central Texas Veterans Health Care System, Temple, Texas
| |
Collapse
|
88
|
Boltjes A, Movita D, Boonstra A, Woltman AM. The role of Kupffer cells in hepatitis B and hepatitis C virus infections. J Hepatol 2014; 61:660-71. [PMID: 24798624 DOI: 10.1016/j.jhep.2014.04.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 04/04/2014] [Accepted: 04/25/2014] [Indexed: 12/12/2022]
Abstract
Globally, over 500 million people are chronically infected with the hepatitis B virus (HBV) or hepatitis C virus (HCV). These chronic infections cause liver inflammation, and may result in fibrosis/cirrhosis or hepatocellular carcinoma. Albeit that HBV and HCV differ in various aspects, clearance, persistence, and immunopathology of either infection depends on the interplay between the innate and adaptive responses in the liver. Kupffer cells, the liver-resident macrophages, are abundantly present in the sinusoids of the liver. These cells have been shown to be crucial players to maintain homeostasis, but also contribute to pathology. However, it is important to note that especially during pathology, Kupffer cells are difficult to distinguish from infiltrating monocytes/macrophages and other myeloid cells. In this review we discuss our current understanding of Kupffer cells, and assess their role in the regulation of anti-viral immunity and disease pathogenesis during HBV and HCV infection.
Collapse
Affiliation(s)
- Arjan Boltjes
- Dept. of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Dowty Movita
- Dept. of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - André Boonstra
- Dept. of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Andrea M Woltman
- Dept. of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
89
|
Animal Models in Primary Biliary Cirrhosis and Primary Sclerosing Cholangitis. Clin Rev Allergy Immunol 2014; 48:207-17. [DOI: 10.1007/s12016-014-8442-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
90
|
Abstract
Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by selective destruction of intrahepatic cholangiocytes. Mechanisms underlying the development and progression of the disease are still controversial and largely undefined. Evidence suggests that PBC results from an articulated immunologic response against an immunodominant mitochondrial autoantigen, the E2 component of the pyruvate dehydrogenase complex (PDC-E2); characteristics of the disease are also the presence of disease-specific antimitochondrial autoantibodies (AMAs) and autoreactive CD4 and CD8 T cells. Recent evidence suggests that cholangiocytes show specific immunobiological features that are responsible for the selective targeting of those cells by the immune system. The immune reaction in PBC selectively targets small sized, intrahepatic bile ducts; although a specific reason for that has not been defined yet, it has been established that the biliary epithelium displays a unique heterogeneity, for which the physiological and pathophysiological features of small and large cholangiocytes significantly differ. In this review article, the authors provide a critical overview of the current evidence on the role of cholangiocytes in the immune-mediated destruction of the biliary tree that characterizes PBC.
Collapse
Affiliation(s)
- Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Luca Maroni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Scott & White Digestive Disease Research Center, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Department of Medicine, Division Gastroenterology, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Scott & White Digestive Disease Research Center, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas,Department of Medicine, Division Gastroenterology, S and W and Texas A and M System Health Science Center, College of Medicine, Temple, Texas
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
91
|
Wang JJ, Yang GX, Zhang WC, Lu L, Tsuneyama K, Kronenberg M, Véla JL, Lopez-Hoyos M, He XS, Ridgway WM, Leung PSC, Gershwin ME. Escherichia coli infection induces autoimmune cholangitis and anti-mitochondrial antibodies in non-obese diabetic (NOD).B6 (Idd10/Idd18) mice. Clin Exp Immunol 2014; 175:192-201. [PMID: 24128311 DOI: 10.1111/cei.12224] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2013] [Indexed: 01/14/2023] Open
Abstract
Several epidemiological studies have demonstrated that patients with primary biliary cirrhosis (PBC) have a higher incidence of urinary tract infections (UTI) and there is significant homology of the immunodominant mitochondrial autoantigen, the E2 component of the pyruvate dehydrogenase complex (PDC-E2), between mammals and bacteria. Previous work has demonstrated that non-obese diabetic (NOD).B6 Idd10/Idd18 infected with Novosphingobium aromaticivorans developed liver lesions similar to human PBC. It was postulated that the biliary disease was dependent upon the presence of the unique N. aro glycosphingolipids in activating natural killer T (NK T) cells. To address this issue, we infected NOD.B6 Idd10/Idd18 mice with either Escherichia coli, N. aro or use of a phosphate-buffered saline (PBS) vehicle control and serially followed animals for the appearance of liver pathology and anti-mitochondrial autoantibodies (AMA). Of striking importance, the biliary disease of E. coli-infected mice was more severe than N. Aro-infected mice and the titre of AMA was higher in E. coli-infected mice. Furthermore, the immunopathology did not correlate with the ability of bacterial extracts to produce antigen-dependent activation of NK T cells. Our data suggest that the unique glycosphingolipids of N. aro are not required for the development of autoimmune cholangitis. Importantly, the data highlight the clinical significance of E. coli infection in a genetically susceptible host, and we suggest that the appearance of autoimmune cholangitis is dependent upon molecular mimicry. These data highlight that breach of tolerance to PDC-E2 is probably the first event in the natural history of PBC in genetically susceptible hosts.
Collapse
Affiliation(s)
- J J Wang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Yang CY, Ma X, Tsuneyama K, Huang S, Takahashi T, Chalasani NP, Bowlus CL, Yang GX, Leung PS, Ansari AA, Wu L, Coppel R, Gershwin ME. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology 2014; 59:1944-53. [PMID: 24375552 PMCID: PMC3999171 DOI: 10.1002/hep.26979] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED The interleukin (IL)-12/IL-23-mediated Th1/Th17 signaling pathway has been associated with the etiopathogenesis of primary biliary cirrhosis (PBC). To address the cytokine microenvironment specifically in the liver, we examined the localized expression of cytokine subunits and their corresponding receptors using previously optimized immunohistochemistry with an extensive panel of antibodies directed at IL-12p70, IL-12p35, interferon-gamma (IFN-γ), IL-12RB2, IL-23p40, IL-23p19, IL-17, and IL-23R using liver from PBC (n = 51) and non-PBC (n = 80) control liver disease patients. Multiple portal tracts in each patient were blindly evaluated and individually scored. We report herein that although IL-12/Th1 and IL-23/Th17 staining was detected in all of the liver sections, they were primarily localized around the damaged interlobular bile ducts in PBC. Most important, Th17 skewing was prominent in advanced PBC patients with intensive secretion of IL-23p19 by inflamed hepatocytes around IL-23R, IL-12RB2, and IFN-γ expressing degenerated cholangiocytes. Our novel finding on the direct association of Th17 skewing and disease severity illustrates the significance of the IL-23/Th17 pathway in the perpetuation of IL-12/Th1-mediated immunopathology in PBC. Furthermore, localized IL-23p19 production by hepatocytes may enhance profibrotic Th17 signaling and proinflammatory IFN-γ production that contribute to PBC pathology. CONCLUSION Our data emphasize the pathogenic relevance of IL-12/Th1 and IL-23/Th17 in the evolution of PBC. Of significance, however, the shift from a Th1 to a Th17 imbalance at advanced stages of the disease suggests the necessity to consider modulation of the IL-23/Th17 pathway as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Chen-Yen Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shanshan Huang
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | | | - Naga P. Chalasani
- Division of Gastroenterology and Hepatology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Christopher L. Bowlus
- Division of Gastroenterology and Hepatology, University of California, Davis, CA, USA
| | - Guo-Xiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Aftab A. Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Linda Wu
- Department of Immunology, Janssen R&D, Spring House, PA, USA
| | - Ross Coppel
- Departments of Microbiology and Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| |
Collapse
|
93
|
Bhattacharya D, Dwivedi VP, Maiga M, Maiga M, Van Kaer L, Bishai WR, Das G. Small molecule-directed immunotherapy against recurrent infection by Mycobacterium tuberculosis. J Biol Chem 2014; 289:16508-15. [PMID: 24711459 PMCID: PMC4047417 DOI: 10.1074/jbc.m114.558098] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tuberculosis remains the biggest infectious threat to humanity with one-third of the population infected and 1.4 million deaths and 8.7 million new cases annually. Current tuberculosis therapy is lengthy and consists of multiple antimicrobials, which causes poor compliance and high treatment dropout, resulting in the development of drug-resistant variants of tuberculosis. Therefore, alternate methods to treat tuberculosis are urgently needed. Mycobacterium tuberculosis evades host immune responses by inducing T helper (Th)2 and regulatory T (Treg) cell responses, which diminish protective Th1 responses. Here, we show that animals (Stat-6−/−CD4-TGFβRIIDN mice) that are unable to generate both Th2 cells and Tregs are highly resistant to M. tuberculosis infection. Furthermore, simultaneous inhibition of these two subsets of Th cells by therapeutic compounds dramatically reduced bacterial burden in different organs. This treatment was associated with the generation of protective Th1 immune responses. As these therapeutic agents are not directed to the harbored organisms, they should avoid the risk of promoting the development of drug-resistant M. tuberculosis variants.
Collapse
Affiliation(s)
- Debapriya Bhattacharya
- From the Laboratory Medicine and Medical Sciences, College of Health Sciences, University of Kwazulu Natal, Durban 4001, South Africa
| | - Ved Prakash Dwivedi
- From the Laboratory Medicine and Medical Sciences, College of Health Sciences, University of Kwazulu Natal, Durban 4001, South Africa
| | - Mamoudou Maiga
- the Center for Tuberculosis Research, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231-1001, and
| | - Mariama Maiga
- the Center for Tuberculosis Research, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231-1001, and
| | - Luc Van Kaer
- the Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - William R Bishai
- the Center for Tuberculosis Research, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21231-1001, and
| | - Gobardhan Das
- From the Laboratory Medicine and Medical Sciences, College of Health Sciences, University of Kwazulu Natal, Durban 4001, South Africa,
| |
Collapse
|
94
|
Murine autoimmune cholangitis requires two hits: cytotoxic KLRG1(+) CD8 effector cells and defective T regulatory cells. J Autoimmun 2014; 50:123-34. [PMID: 24556277 DOI: 10.1016/j.jaut.2014.01.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/26/2023]
Abstract
Primary biliary cirrhosis (PBC) is an enigmatic disease mediated by autoimmune destruction of cholangiocytes in hepatic bile ducts. The early immunological events leading to PBC are poorly understood; clinical signs of disease occur very late in the pathological process. We have used our unique murine model of PBC in dominant-negative TGF-β receptor type II transgenic mice to delineate critical early immunopathological pathways, and previously showed that dnTGFβRII CD8 T cells transfer biliary disease. Herein we report significantly increased numbers of hepatic dnTGFβRII terminally differentiated (KLRG1(+)) CD8 T cells, a CD8 subset previously shown to be enriched in antigen specific cells during hepatic immune response to viral infections. We performed bone marrow chimera studies to assess whether dnTGFβRII CD8 mediated disease was cell intrinsic or extrinsic. Unexpectedly, mixed (dnTGFβRII and B6) bone marrow chimeric (BMC) mice were protected from biliary disease compared to dnTGFβRII single bone marrow chimerics. To define the protective B6 cell subset, we performed adoptive transfer studies, which showed that co-transfer of B6 Tregs prevented dnTGFβRII CD8 T cell mediated cholangitis. Treg mediated disease protection was associated with significantly decreased numbers of hepatic KLRG1(+) CD8 T cells. In contrast, co-transfer of dnTGFβRII Tregs offered no protection, and dnTGFβRII Treg cells were functionally defective in suppressing effector CD8 T cells in vitro compared to wild type B6 Tregs. In vitro cholangiocyte cytotoxicity assays demonstrated significantly increased numbers of cytotoxic hepatic dnTGFβRII KLRG1(+) CD8 cells compared to B6. Protection from disease by B6 Tregs was associated with elimination of hepatic dnTGFβRII CD8 mediated cholangiocyte cytotoxicity. These results emphasize that autoimmune cholangitis requires defects in both the T effector and regulatory compartments, and that an intrinsic T cell effector defect is not sufficient to mediate autoimmune biliary disease in the setting of intact immune regulation. These results have important implications for understanding the early pathogenesis of human PBC.
Collapse
|
95
|
Tanaka H, Yang GX, Iwakoshi N, Knechtle SJ, Kawata K, Tsuneyama K, Leung P, Coppel RL, Ansari AA, Joh T, Bowlus C, Gershwin ME. Anti-CD40 ligand monoclonal antibody delays the progression of murine autoimmune cholangitis. Clin Exp Immunol 2014; 174:364-71. [PMID: 23981074 DOI: 10.1111/cei.12193] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2013] [Indexed: 01/04/2023] Open
Abstract
While there have been significant advances in our understanding of the autoimmune responses and the molecular nature of the target autoantigens in primary biliary cirrhosis (PBC), unfortunately these data have yet to be translated into new therapeutic agents. We have taken advantage of a unique murine model of autoimmune cholangitis in which mice expressing a dominant negative form of transforming growth factor β receptor II (dnTGFβRII), under the control of the CD4 promoter, develop an intense autoimmune cholangitis associated with serological features similar to human PBC. CD40-CD40 ligand (CD40L) is a major receptor-ligand pair that provides key signals between cells of the adaptive immune system, prompting us to determine the therapeutic potential of treating autoimmune cholangitis with anti-CD40L antibody (anti-CD40L; MR-1). Four-week-old dnTGFβRII mice were injected intraperitoneally with either anti-CD40L or control immunoglobulin (Ig)G at days 0, 2, 4 and 7 and then weekly until 12 or 24 weeks of age and monitored for the progress of serological and histological features of PBC, including rigorous definition of liver cellular infiltrates and cytokine production. Administration of anti-CD40L reduced liver inflammation significantly to 12 weeks of age. In addition, anti-CD40L initially lowered the levels of anti-mitochondrial autoantibodies (AMA), but these reductions were not sustained. These data indicate that anti-CD40L delays autoimmune cholangitis, but the effect wanes over time. Further dissection of the mechanisms involved, and defining the events that lead to the reduction in therapeutic effectiveness will be critical to determining whether such efforts can be applied to PBC.
Collapse
Affiliation(s)
- H Tanaka
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
E. coli Induced Experimental Model of Primary Biliary Cirrhosis: At Last. Int J Hepatol 2014; 2014:848373. [PMID: 25580301 PMCID: PMC4280654 DOI: 10.1155/2014/848373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023] Open
Abstract
Recurrent urinary tract infections (UTI) have been considered potential triggers of primary biliary cirrhosis (PBC), an autoimmune cholestatic liver disease characterised by progressive destruction of intrahepatic bile ducts. Additional support for the link made between PBC and UTI was based on early observations of recurrent episodes of bacteriuria in female patients with PBC. A series of large epidemiological studies demonstrated a strong correlation between recurrent UTI and PBC, initiating a series of studies investigating the role of Escherichia coli (E. coli, the most prevalent organism isolated in women with UTI) as a trigger of PBC. Immunological evidence of B- and T-cell cross-reactive responses implicating PBC-specific autoantigens and E. coli mimics have been clearly demonstrated, adding support to the notion that E. coli is a potential infectious inducer of PBC in susceptible individuals. One of the major limitations in proving the E. coli/PBC association was the lack of reliable E. coli-infected animal models of PBC. This review provides an overview of the evidence linking this infectious agent with PBC and discusses the pros and cons of a recently developed E. coli-infected animal model of PBC.
Collapse
|
97
|
Guidelines for the management of primary biliary cirrhosis: The Intractable Hepatobiliary Disease Study Group supported by the Ministry of Health, Labour and Welfare of Japan. Hepatol Res 2014; 44 Suppl S1:71-90. [PMID: 24397841 DOI: 10.1111/hepr.12270] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
98
|
Abstract
The liver is the largest organ in the body and is generally regarded by nonimmunologists as having little or no lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and it is instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena, which if not controlled by regulatory lymphoid populations, may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events that lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discuss selected, but not all, immune-mediated liver disease and attempt to place these data in the context of human autoimmunity.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Institute of Liver Studies, Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | |
Collapse
|
99
|
Pollheimer MJ, Fickert P, Stieger B. Chronic cholestatic liver diseases: clues from histopathology for pathogenesis. Mol Aspects Med 2013; 37:35-56. [PMID: 24141039 DOI: 10.1016/j.mam.2013.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
Chronic cholestatic liver diseases include fibrosing cholangiopathies such as primary biliary cirrhosis or primary sclerosing cholangitis. These and related cholangiopathies clearly display pathologies associated with (auto)immunologic processes. As the cholangiocyte's apical membrane is exposed to the toxic actions of the bile fluid, the interaction of bile with cholangiocytes and the biliary tree in general must be considered to completely understand the pathogenesis of cholangiopathies. While the molecular processes involved in the hepatocellular formation of bile are well understood in both normal and pathophysiologic conditions, those in the bile ducts of normal liver and in livers with cholangiopathies lag behind. This survey highlights key mechanisms known to date that are important for the formation of bile by hepatocytes and its modification by the biliary tree. It also delineates the clinical pathophysiologic findings for cholangiopathies and puts them in perspective with current experimental models to reveal the pathogenesis of cholangiopathies and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Marion J Pollheimer
- Division of Gastroenterology and Hepatology, Laboratory of Experimental and Molecular Hepatology, Department of Internal Medicine, Medical University of Graz, Austria; Institute of Pathology, Medical University of Graz, Austria
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Laboratory of Experimental and Molecular Hepatology, Department of Internal Medicine, Medical University of Graz, Austria; Institute of Pathology, Medical University of Graz, Austria.
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
100
|
Liedtke C, Luedde T, Sauerbruch T, Scholten D, Streetz K, Tacke F, Tolba R, Trautwein C, Trebicka J, Weiskirchen R. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. FIBROGENESIS & TISSUE REPAIR 2013; 6:19. [PMID: 24274743 PMCID: PMC3850878 DOI: 10.1186/1755-1536-6-19] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/11/2013] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is defined as excessive extracellular matrix deposition and is based on complex interactions between matrix-producing hepatic stellate cells and an abundance of liver-resident and infiltrating cells. Investigation of these processes requires in vitro and in vivo experimental work in animals. However, the use of animals in translational research will be increasingly challenged, at least in countries of the European Union, because of the adoption of new animal welfare rules in 2013. These rules will create an urgent need for optimized standard operating procedures regarding animal experimentation and improved international communication in the liver fibrosis community. This review gives an update on current animal models, techniques and underlying pathomechanisms with the aim of fostering a critical discussion of the limitations and potential of up-to-date animal experimentation. We discuss potential complications in experimental liver fibrosis and provide examples of how the findings of studies in which these models are used can be translated to human disease and therapy. In this review, we want to motivate the international community to design more standardized animal models which might help to address the legally requested replacement, refinement and reduction of animals in fibrosis research.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - David Scholten
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Konrad Streetz
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - René Tolba
- Institute of Laboratory Animal Science, RWTH University Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Aachen D-52074, Germany
| |
Collapse
|