51
|
Bilusic M, Heery CR, Collins JM, Donahue RN, Palena C, Madan RA, Karzai F, Marté JL, Strauss J, Gatti-Mays ME, Schlom J, Gulley JL. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J Immunother Cancer 2019; 7:240. [PMID: 31488216 PMCID: PMC6729083 DOI: 10.1186/s40425-019-0706-x] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/07/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND HuMax-IL8 (now known as BMS-986253) is a novel, fully human monoclonal antibody that inhibits interleukin-8 (IL-8), a chemokine that promotes tumor progression, immune escape, epithelial-mesenchymal transition, and recruitment of myeloid-derived suppressor cells. Studies have demonstrated that high serum IL-8 levels correlate with poor prognosis in many malignant tumors. Preclinical studies have shown that IL-8 blockade may reduce mesenchymal features in tumor cells, making them less resistant to treatment. METHODS Fifteen patients with metastatic or unresectable locally advanced solid tumors were enrolled in this 3 + 3 dose-escalation trial at four dose levels (4, 8, 16, or 32 mg/kg). HuMax-IL8 was given IV every 2 weeks, and patients were followed for safety and immune monitoring at defined intervals up to 52 weeks. RESULTS All enrolled patients (five chordoma, four colorectal, two prostate, and one each of ovarian, papillary thyroid, chondrosarcoma, and esophageal) received at least one dose of HuMax-IL8. Eight patients had received three or more prior lines of therapy and five patients had received prior immunotherapy. Treatment-related adverse events occurred in five patients (33%), mostly grade 1. Two patients receiving the 32 mg/kg dose had grade 2 fatigue, hypophosphatemia, and hypersomnia. No dose-limiting toxicities were observed, and maximum tolerated dose was not reached. Although no objective tumor responses were observed, 11 patients (73%) had stable disease with median treatment duration of 24 weeks (range, 4-54 weeks). Serum IL-8 was significantly reduced on day 3 of HuMax-IL8 treatment compared to baseline (p = 0.0004), with reductions in IL-8 seen at all dose levels. CONCLUSIONS HuMax-IL8 is safe and well-tolerated. Ongoing studies are evaluating the combination of IL-8 blockade and other immunotherapies. TRIAL REGISTRATION NCTN, NCT02536469. Registered 23 August 2015, https://clinicaltrials.gov/ct2/show/NCT02536469?term=NCT02536469&rank=1 .
Collapse
Affiliation(s)
- Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Precision Biosciences, Durham, NC, USA
| | - Julie M Collins
- Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Margaret E Gatti-Mays
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
52
|
Haynes D, Topham C, Hagstrom E, Greiling T. Tofacitinib for the treatment of recalcitrant palmoplantar pustulosis: A case report. Australas J Dermatol 2019; 61:e108-e110. [PMID: 31318041 DOI: 10.1111/ajd.13117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Dylan Haynes
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Christina Topham
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Erika Hagstrom
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Teri Greiling
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
53
|
Matsumoto Y, Harada K, Maeda T, Egusa C, Hirano H, Okubo Y, Tsuboi R. Molecular detection of fungal and bacterial DNA from pustules in patients with palmoplantar pustulosis: special focus on Malassezia species. Clin Exp Dermatol 2019; 45:36-40. [PMID: 31220362 DOI: 10.1111/ced.14026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Palmoplantar pustulosis (PPP) is a distinct, chronic skin disorder characterized by intraepidermal pustules on the palms and soles. It is hypothesized that microorganisms on the skin might induce the symptoms of PPP via inflammatory cell activation. However, the microbiota has not been studied in detail because of the assumption that the pustules in PPP are sterile. AIM To elucidate the role of microorganisms in pathogenesis of PPP. METHODS PCR analysis was performed of microbial DNA fragments in the pustules of patients with PPP. The sequence of the D1/D2 LSU 26s rRNA gene and that of the 16S rRNA gene was used for fungal and bacterial DNA detection, respectively. RESULTS In total, 71 samples were carefully collected from the pustules of patients with PPP. Fungal DNA bands were detected in 68 samples, and fungi including Malassezia spp. were identified in 30 of 71 samples (42.3%). Malassezia restricta was the most frequently encountered fungus (14/71; 19.7%). However, bacterial DNA was not detected by the methods used. Furthermore, identical fungal DNA was not detected in the outer lid of the pustules, suggesting that the fungi detected within the pustule did not derive from contamination via the skin surface. CONCLUSIONS In the present study, we demonstrated for the first time that certain pustules in patients with PPP contain fungal DNA fragments, especially those of Malassezia spp. Our findings provide new insights on the role of skin microbiota in the pathogenesis of PPP.
Collapse
Affiliation(s)
- Y Matsumoto
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - K Harada
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - T Maeda
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - C Egusa
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - H Hirano
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Y Okubo
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - R Tsuboi
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
54
|
Kang DW, Dong SH, Kim SH, Kim YI, Park DC, Yeo SG. Expression of endoplasmic reticulum stress-related mRNA in otitis media with effusion. Int J Pediatr Otorhinolaryngol 2019; 121:109-113. [PMID: 30878556 DOI: 10.1016/j.ijporl.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The endoplasmic reticulum (ER) is an intracellular organelle involved in the synthesis and secretion of proteins. The ER stress response, which protects cells from cytotoxic proteins such as unfolded proteins, is related to several diseases including inflammation. In this study, we investigated the effect of ER stress on the pathophysiology of otitis media with effusion (OME). METHODS Thirty-nine pediatric patients who were diagnosed with OME and underwent ventilation tube insertion were enrolled in this study. Exudate from the middle ear cavity was collected through ventilation insertion, and ER stress gene expression was analyzed via real-time polymerase chain reactions(PCR). RESULTS There were no significant differences in ER stress-related mRNA expression between effusion culture-positive and culture-negative groups (p > 0.05). Expression of the C/EBP-homologous protein (CHOP) was higher in the otitis-prone group than in the non-otitis-prone group (p < 0.05). The most common type of fluid was mucoid, and inositol-requiring enzyme 1α expression was higher in serous fluid than in mucoid, mucopurulent, or purulent fluid (p < 0.05). CONCLUSIONS Endoplasmic reticulum stress-related responses are activated in pediatric OME patients, and specific ER-stress related pathways are related to both the characteristics of fluid and the frequency of OME. Thus, ER stress-related responses affect the pathophysiology of OME in pediatric OME patients.
Collapse
Affiliation(s)
- Dae Woong Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sung Hwa Dong
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Dong Choon Park
- Department of Obstetrics and Gynecology, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
55
|
Miller FC, Coburn PS, Huzzatul MM, LaGrow AL, Livingston E, Callegan MC. Targets of immunomodulation in bacterial endophthalmitis. Prog Retin Eye Res 2019; 73:100763. [PMID: 31150824 DOI: 10.1016/j.preteyeres.2019.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
Abstract
Bacterial infection of the posterior segment of the eye (endophthalmitis) leads to a robust host response that often results in irreversible damage to the layers of the retina, significant vision loss, and in some patients, enucleation of the globe. While a great deal of effort has gone into understanding the role of bacterial virulence factors in disease initiation and propagation, it is becoming increasingly clear that the host response to infection plays a major role in causing the damage associated with endophthalmitis. Researchers have identified the host receptors which detect infecting organisms and initiate the cascade of events that result in inflammation. This inflammation may damage nonregenerative tissues of the eye while attempting to clear the infection. Both Gram-positive and Gram-negative bacteria can cause endophthalmitis. These organisms initiate an immune response by activating toll-like receptor (TLR) pathways. Once an inflammatory response is initiated, the expression of immunomodulators, such as proinflammatory chemokines and cytokines, affect the recruitment of PMNs and other inflammatory cells into the eye. We and others have reported that knockout mice that do not express specific inflammatory pathways and molecules have an attenuated response to infection and retain significant retinal function. These findings suggest that host immune mediators are important components of the response to infections in the posterior segment of the eye, and the timing and level of their production may be related to the severity of the damage and the ultimate visual outcome. If that is the case, a better understanding of the complex and often redundant role of these pathways and inflammatory mediators may identify host molecules as potential anti-inflammatory therapeutic targets. This review highlights potential anti-inflammatory targets during acute inflammation in endophthalmitis, compares and contrasts those with findings in other models of ocular inflammation, and translates current immunomodulatory strategies for other types of infection and inflammation to this blinding disease. Given the poor visual outcomes seen in patients treated with antibiotics alone or in combination with corticosteroids, immunomodulation in addition to antibiotic therapy might be more effective in preserving vision than current regimens.
Collapse
Affiliation(s)
- Frederick C Miller
- Department of Family and Preventive Medicine, USA; Department of Cell Biology, USA
| | | | | | | | | | - Michelle C Callegan
- Department of Ophthalmology, USA; Department of Microbiology and Immunology, USA; Oklahoma Center for Neuroscience, USA; University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK, USA.
| |
Collapse
|
56
|
Terui T, Kobayashi S, Okubo Y, Murakami M, Hirose K, Kubo H. Efficacy and Safety of Guselkumab, an Anti-interleukin 23 Monoclonal Antibody, for Palmoplantar Pustulosis: A Randomized Clinical Trial. JAMA Dermatol 2019; 154:309-316. [PMID: 29417135 DOI: 10.1001/jamadermatol.2017.5937] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Importance Palmoplantar pustulosis (PPP) is a recalcitrant skin disease with no biologics currently approved for treatment. The involvement of interleukin 23 (IL-23) and cytokines of the type 17 helper T cell lineage in the pathogenesis of PPP has been recently postulated. Objective To evaluate the efficacy and safety of guselkumab, an anti-IL-23 monoclonal antibody, in Japanese patients with PPP. Design, Setting, and Participants This double-blind, randomized, placebo-controlled, parallel-group, 24-week trial was conducted between May 14, 2013, and September 27, 2014, at 11 centers in Japan. Participants were patients with moderate to severe PPP that did not respond adequately to conventional treatments. Interventions Patients were randomized 1:1 to receive guselkumab, 200 mg, by subcutaneous injection or matching placebo at weeks 0 and 4. Main Outcomes and Measures Changes in total scores of skin-related outcomes from baseline at the end of week 16 (primary clinical cutoff) and through week 24 were measured. Serum biomarker analyses were performed at baseline, week 4, and week 16, and safety was monitored through week 24. Results Of 49 randomized patients (35 [71%] women; median [range] age, 52 [28-77] years), 41 completed the study at week 24. Mean (SD) PPP severity index total scores (primary end point) improved significantly from baseline in guselkumab-treated patients (-3.3 [2.43]) vs placebo (-1.8 [2.09]) (least squares mean difference, -1.5; 95% CI, -2.9 to -0.2; P = .03). At week 16, PPP area and severity index scores (least squares mean difference, -5.65; 95% CI, -9.80 to -1.50; P = .009) and proportion of patients achieving 50% reduction in these scores (difference in proportion, 39.2; 95% CI, 14.0-64.3; P = .009) improved significantly. A numerically higher proportion of patients had a physician's global assessment score of 1 or less in the guselkumab group vs placebo. Improvement in efficacy scores was maintained through week 24 in the guselkumab group. Significant reductions from baseline in serum IL-17A and IL-17F cytokine levels were observed at weeks 4 and 16. Frequency of treatment-emergent adverse events was comparable between the guselkumab group (19 of 25 patients [76%]) and the placebo group (18 of 24 patients [75%]). Frequent adverse effects included nasopharyngitis (14 patients [29%]), headache (3 patients [6%]), contact dermatitis (3 patients [6%]), and injection site erythema (3 patients [6%]). No major safety concerns emerged during the study. Conclusions and Relevance Targeting IL-23 and its associated immune cascade with guselkumab may be a safe and useful therapeutic option for treatment of PPP. Trial Registration clinicaltrials.gov Identifier: NCT01845987.
Collapse
Affiliation(s)
- Tadashi Terui
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Satomi Kobayashi
- Department of Dermatology, Seibo International Catholic Hospital, Tokyo, Japan
| | - Yukari Okubo
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University School of Medicine, Ehime, Japan
| | | | | |
Collapse
|
57
|
Cheng C, Hua J, Tan J, Qian W, Zhang L, Hou X. Identification of differentially expressed genes, associated functional terms pathways, and candidate diagnostic biomarkers in inflammatory bowel diseases by bioinformatics analysis. Exp Ther Med 2019; 18:278-288. [PMID: 31258663 PMCID: PMC6566124 DOI: 10.3892/etm.2019.7541] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn's disease (CD), are chronic inflammatory disorders caused by genetic influences, the immune system and environmental factors. However, the underlying pathogenesis of IBDs and the pivotal molecular interactions remain to be fully elucidated. The aim of the present study was to identify genetic signatures in patients with IBDs and elucidate the potential molecular mechanisms underlying IBD subtypes. The gene expression profiles of the GSE75214 datasets were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in UC and CD patients compared with controls using the GEO2R tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of DEGs were performed using DAVID. Furthermore, protein-protein interaction (PPI) networks of the DEGs were constructed using Cytoscape software. Subsequently, significant modules were selected and the hub genes were identified. In the GO and KEGG pathway analysis, the top enriched pathways in UC and CD included Staphylococcus aureus infection, rheumatoid arthritis, complement and coagulation cascades, PI3K/Akt signaling pathway and osteoclast differentiation. In addition, the GO terms in the category biological process significantly enriched by these genes were inflammatory response, immune response, leukocyte migration, cell adhesion, response to molecules of bacterial origin and extracellular matrix (ECM) organization. However, several other biological processes (GO terms) and pathways (e.g., ‘chemotaxis’, ‘collagen catabolic process’ and ‘ECM-receptor interaction’) exhibited significant differences between the two subtypes of IBD. The top 10 hub genes were identified from the PPI network using respective DEGs. Of note, the hub genes G protein subunit gamma 11 (GNG11), G protein subunit beta 4 (GNB4), Angiotensinogen (AGT), Phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) and C-C motif chemokine receptor 7 (CCR7) are disease-specific and may be used as biomarkers for differentiating UC from CD. Furthermore, module analysis further confirmed that common significant pathways involved in the pathogenesis of IBD subtypes were associated with chemokine-induced inflammation, innate immunity, adapted immunity and infectious microbes. In conclusion, the present study identified DEGs, key target genes, functional pathways and enrichment analysis of IBDs, enhancing the understanding of the pathogenesis of IBDs and also advancing the clarification of the underlying molecular mechanisms of UC and CD. Furthermore, these results may provide potential molecular targets and diagnostic biomarkers for UC and CD.
Collapse
Affiliation(s)
- Chunwei Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Juan Hua
- Department of Cardiology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei 430015, P.R. China
| | - Jun Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
58
|
Patra MC, Shah M, Choi S. Toll-like receptor-induced cytokines as immunotherapeutic targets in cancers and autoimmune diseases. Semin Cancer Biol 2019; 64:61-82. [PMID: 31054927 DOI: 10.1016/j.semcancer.2019.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Immune cells of the myeloid and lymphoid lineages express Toll-like receptors (TLRs) to recognize pathogenic components or cellular debris and activate the immune system through the secretion of cytokines. Cytokines are signaling molecules that are structurally and functionally distinct from one another, although their secretion profiles and signaling cascades often overlap. This situation gives rise to pleiotropic cell-to-cell communication pathways essential for protection from infections as well as cancers. Nonetheless, deregulated signaling can have detrimental effects on the host, in the form of inflammatory or autoimmune diseases. Because cytokines are associated with numerous autoimmune and cancerous conditions, therapeutic strategies to modulate these molecules or their biological responses have been immensely beneficial over the years. There are still challenges in the regulation of cytokine function in patients, even in those who take approved biological therapeutics. In this review, our purpose is to discuss the differential expression patterns of TLR-regulated cytokines and their cell type specificity that is associated with cancers and immune-system-related diseases. In addition, we highlight key structural features and molecular recognition of cytokines by receptors; these data have facilitated the development and approval of several biologics for the treatment of autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
59
|
Mrowietz U, Bachelez H, Burden AD, Rissler M, Sieder C, Orsenigo R, Chaouche-Teyara K. Secukinumab for moderate-to-severe palmoplantar pustular psoriasis: Results of the 2PRECISE study. J Am Acad Dermatol 2019; 80:1344-1352. [DOI: 10.1016/j.jaad.2019.01.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 02/08/2023]
|
60
|
Association of Interleukin-6 -174G/C Polymorphism with the Risk of Diabetic Nephropathy in Type 2 Diabetes: A Meta-analysis. Curr Med Sci 2019; 39:250-258. [PMID: 31016518 DOI: 10.1007/s11596-019-2027-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/15/2019] [Indexed: 02/08/2023]
Abstract
Previous studies reported the association between interleukin-6 (IL-6) -174G/C gene polymorphism and the risk of diabetic nephropathy in type 2 diabetes mellitus (T2DN). However, the results remain controversial. In the present study, we conducted a meta-analysis to further examine this relationship between IL-6-174G/C gene polymorphism and T2DN. Three databases (PubMed, SinoMed and ISI Web of Science) were used to search clinical case-control studies about IL-6-174G/C polymorphism and T2DN published until Apr. 14, 2018. Fixed- or random-effects models were used to calculate the effect sizes of odds ratio (OR) and 95% confidence intervals (95% CI). Moreover, subgroup analysis was performed in terms of the excretion rate of albuminuria. All the statistical analyses were conducted using Stata 12.0. A total of 11 case-control studies were included in this study, involving 1203 cases of T2DN and 1571 cases of T2DM without DN. Meta-analysis showed that there was an association between IL-6-174G/C polymorphism and increased risk of T2DN under the allelic and recessive genetic models (G vs. C: OR=1.10, 95%CI 1.03-1.18, P=0.006; GG vs. CC+GC: OR=1.11, 95%CI 1.02-1.21 P=0.016). In the subgroup analysis by albuminuria, a significant association of IL-6-174G/C polymorphism with risk of T2DN was noted in the microalbuminuria group under the recessive model (OR=1.54, 95% CI 1.02-2.32, _P=0.038). In conclusion, this meta-analysis suggests that IL-6-174G/C gene polymorphism is associated with the risk of T2DN.
Collapse
|
61
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
62
|
Tabatabaei-Panah PS, Moravvej H, Sadaf Z, Babaei H, Geranmayeh M, Hajmanouchehri S, Karimi A, Sajjadi F, Arghand F, Ludwig RJ, Witte M, Akbarzadeh R. Proinflammatory Cytokine Gene Polymorphisms in Bullous Pemphigoid. Front Immunol 2019; 10:636. [PMID: 31001258 PMCID: PMC6455081 DOI: 10.3389/fimmu.2019.00636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Bullous pemphigoid (BP) is a rare autoimmune skin blistering disease, characterized by the presence of autoantibodies against hemidesmosomal autoantigens. Cytokine expression is altered in BP patients, and several of these differently expressed cytokines, including IL-1α, IL-1β, IL-8, and TNF-α, contribute to disease pathogenesis. Since genetic polymorphisms in the genes of these cytokines might be implicated in susceptibility to BP disease, we aimed at testing this implication in susceptibility to BP in an Iranian cohort. Blood samples were collected from the subjects and genomic DNA was extracted. To detect the single nucleotide polymorphisms (SNPs), IL-1α (rs1800587), IL-1β (rs1143627, rs16944, rs1143634), IL-8 (rs4073), and TNF-α (rs1799964, rs1800630, rs1799724, and rs361525) genes were genotyped in BP patients and healthy controls as well as IL-8 (rs4073) in pemphigus vulgaris (PV) patients. Quantitative gene expression was evaluated by RT-PCR analysis. A significant difference was observed in the distribution of genotypes or alleles of IL-8 SNP between the BP patients and controls. The A-allele of IL-8 SNP is significantly more prevalent in the control individuals compared to the BP patient. To further validate this observation, we included PV patients as an additional control. Again, the A-allele of IL-8 SNP is significantly more prevalent in the PV compared to the BP patients. While we observed a trend toward significant differences regarding alleles of TNF-α rs1799724 as well as alleles of TNF-α rs1799964, this difference was, however, not evident after correction for multiple analysis. There was no significant difference in all other studied SNPs. In contrast to IL-1α, IL-1β, and TNF-α, IL-8 gene expression levels were significantly higher in the patients than that of controls. The minor allele in IL-8 SNP might play a protective role in susceptibility to BP in Iranian patients. Although higher expression levels of IL-8 gene was found in the patients compared with healthy controls, these levels, however, suggest no association with the examined polymorphism. Moreover, further investigation revealed an elevation in gene expression between wild and polymorphic genotypes of IL-1α rs1800587 and TNF-α rs361525 in the patient group and these SNPs are therefore associated with altering the levels of gene expression.
Collapse
Affiliation(s)
| | - Hamideh Moravvej
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadaf
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hadis Babaei
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Geranmayeh
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Ahmad Karimi
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sajjadi
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fereshteh Arghand
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mareike Witte
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Reza Akbarzadeh
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute of Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
63
|
Milard M, Penhoat A, Durand A, Buisson C, Loizon E, Meugnier E, Bertrand K, Joffre F, Cheillan D, Garnier L, Viel S, Laugerette F, Michalski MC. Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion? J Nutr Biochem 2019; 65:128-138. [DOI: 10.1016/j.jnutbio.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/30/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
|
64
|
Yuvaraj N, Arul V. Sulfated polysaccharides of seagrass Halophila ovalis suppresses tumor necrosis factor-α-induced chemokine interleukin-8 secretion in HT-29 cell line. Indian J Pharmacol 2019; 50:336-343. [PMID: 30783327 PMCID: PMC6364340 DOI: 10.4103/ijp.ijp_202_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES: The present study aims to investigate the anti-oxidant and anti-inflammatory properties of seagrass Halophila ovalis sulfated polysaccharide on HT-29 cell line. SUBJECTS AND METHODS: Monosaccharides composition was identified using liquid chromatography-mass spectrometry (LC-MS) and the functional groups were analyzed using Fourier transform-infrared (FT-IR) spectroscopy. The antioxidant and anti-inflammatory potential of crude extract and purified fractions was investigated in vitro. RESULTS: FT-IR spectra revealed that the presence of different functional groups and the presence of galactose (82.4%), xylose (7.6%), fructose (4.0%), mannose (2.0%), fucose (1.6%), glucose (1.2%), and arabinose (1.0%) was observed using LC-MS. Ho-SP and its fractions showed radical scavenging activity in hydroxyl, 2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid, and ferric reducing antioxidant power assay in a dose-dependent manner. Noticeable anti-inflammatory activity of purified fraction Ho FrIV (IC
50= 43.85 μg/ml) was observed in a noncytotoxic range of concentrations and inhibited the tumor necrosis factor-α (TNF-α)-induced interleukin-8 (IL-8) secretion (0.27 ng/ml) in HT-29 cell line. CONCLUSION: Overall, the results presented in this study suggest that purified fraction Ho FrIV of Ho-SP could suppress the TNF-α-induced secretion of IL-8 in HT-29 and thus could be used as a promising antioxidant and anti-inflammatory candidate with potential benefits.
Collapse
Affiliation(s)
- Neelakandan Yuvaraj
- Department of Biotechnology, Achariya Arts and Science College, Puducherry, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
65
|
Yamamoto T. Clinical Characteristics of Japanese Patients with Palmoplantar Pustulosis. Clin Drug Investig 2019; 39:241-252. [DOI: 10.1007/s40261-018-00745-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
66
|
Inhibition of inflammasome activation by a clinical strain of Klebsiella pneumoniae impairs efferocytosis and leads to bacterial dissemination. Cell Death Dis 2018; 9:1182. [PMID: 30518854 PMCID: PMC6281591 DOI: 10.1038/s41419-018-1214-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/11/2023]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium responsible for severe cases of nosocomial pneumonia. During the infectious process, both neutrophils and monocytes migrate to the site of infection, where they carry out their effector functions and can be affected by different patterns of cell death. Our data show that clinical strains of K. pneumoniae have dissimilar mechanisms for surviving within macrophages; these mechanisms include modulation of microbicidal mediators and cell death. The A28006 strain induced high IL-1β production and pyroptotic cell death in macrophages; by contrast, the A54970 strain induced high IL-10 production and low IL-1β production by macrophages. Pyroptotic cell death induced by the A28006 strain leads to a significant increase in bacterial sensitivity to hydrogen peroxide, and efferocytosis of the pyroptotic cells results in efficient bacterial clearance both in vitro and in vivo. In addition, the A54970 strain was able to inhibit inflammasome activation and pyroptotic cell death by inducing IL-10 production. Here, for the first time, we present a K. pneumoniae strain able to inhibit inflammasome activation, leading to bacterial survival and dissemination in the host. The understanding of possible escape mechanisms is essential in the search for alternative treatments against multidrug-resistant bacteria.
Collapse
|
67
|
Kim S, You D, Jeong Y, Yu J, Kim SW, Nam SJ, Lee JE. Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:43-49. [PMID: 30466991 DOI: 10.1016/j.phymed.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/08/2018] [Accepted: 08/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Interleukin-8 (IL-8) expression is associated with metastasis in a variety of cancer cells. PURPOSE Here, we investigated the regulatory mechanism of IL-8 expression as well as the pharmacological effect of berberine (BBR) on IL-8 expression in triple-negative breast cancer (TNBC) cells. METHODS The clinical value of IL-8 was analyzed by from a public database [Kaplan‑Meier plotter database. IL-8 mRNA and protein expression was analyzed by real-time PCR and ELISA, respectively. Cell invasion was analyzed by Boyden chamber assay. Tumor cell growth was analyzed by colony forming assay. RESULTS Clinically, we observed that breast cancer patients with highly expressed IL-8 are associated with poor outcomes in areas such as relapse-free, overall, and distant metastasis-free survival. We showed that IL-8 expression is higher in TNBC cells than in non-TNBC cells. In addition, the rates of cell invasion were significantly increased by IL-8 treatment. These IL-8 levels were decreased by EGFR (Neratinib and Afatinib) and MEK (PD98059) inhibitors in TNBC cells. Finally, we observed that BBR dramatically suppresses IL-8 expression. In addition, BBR also inhibited cell invasiveness and anchorage-independent growth. Interestingly, our results showed that BBR down-regulates EGFR protein expression and dose-dependently inhibits MEK and ERK phosphorylation. CONCLUSION Here, we demonstrate that BBR may be a promising drug to suppress cell invasiveness and growth of TNBC through IL-8-related mechanisms.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea.
| | - Daeun You
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea
| | - Yisun Jeong
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea
| | - Jonghan Yu
- Department of Breast Cancer Center, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea; Department of Surgery, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea
| | - Seok Won Kim
- Department of Breast Cancer Center, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea; Department of Surgery, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea
| | - Seok Jin Nam
- Department of Breast Cancer Center, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea; Department of Surgery, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea
| | - Jeong Eon Lee
- Department of Breast Cancer Center, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea; Department of Surgery, Samsung Medical Center, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul 06351, South Korea.
| |
Collapse
|
68
|
Silva AKS, Silva TRN, Nicoli JR, Vasquez-Pinto LMC, Martins FS. In vitro evaluation of antagonism, modulation of cytokines and extracellular matrix proteins by Bifidobacterium strains. Lett Appl Microbiol 2018; 67:497-505. [PMID: 30099746 DOI: 10.1111/lam.13062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/30/2018] [Accepted: 08/05/2018] [Indexed: 12/31/2022]
Abstract
A healthy skin provides a protective barrier against pathogenic micro-organisms. Recent studies have shown that probiotics, as those of Bifidobacterium genus, could act beneficially in dermatology, both when ingested and by topical use. In the present study, we evaluated by in vitro antagonism assays and using two skin cell lines the potential of four strains of Bifidobacterium spp. Among the four bifidobacteria, Bifidobacterium longum 51A was the only one able to inhibit the growth of the eight pathogenic indicators tested. Production of some cytokines and extracellular matrix proteins was determined when ccc or inactivated cells of the bifidobacteria were incubated with keratinocyte and/or fibroblast cell cultures. Significant results were observed only for IL-6, IL-8 and IL-18 production, and inactivated Bifidobacterium pseudolongum 1191A was the only one which significantly stimulated collagen production, whereas lumican was stimulated by treatments with live Bifidobacterium bifidum 1622A , B. longum 51A and B. pseudolongum 1191A . Highest adhesion and internalization capabilities were observed with B. bifidum 1622A and Bifidobacterium breve 1101A . Concluding, B. longum 51A was highlighted for its antagonistic capacity and B. bifidum 1622A and B. pseudolongum 1191A for stimulating the production of cytokines and proteins of the extracellular matrix. SIGNIFICANCE AND IMPACT OF THE STUDY The skin is the first line of defence against invasive micro-organisms, and its local microbiota provides additional protective functions based on antagonism against pathogenic micro-organisms and immunomodulation. Based on in vitro assays using Bifidobacterium spp. we demonstrated the antagonistic potential, as well as capacity in stimulating the production of cytokines and proteins of the extracellular matrix that these bacteria may exert on skin cells. This positive influence suggests the use of a consortium of these bifidobacteria in a topical product for dermatological treatments.
Collapse
Affiliation(s)
- A K S Silva
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T R N Silva
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - J R Nicoli
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - L M C Vasquez-Pinto
- Department of Innovation and Technology of Products, Natura Cosméticos S.A., São Paulo, Brazil
| | - F S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
69
|
The Effect of Whole-Body Cryotherapy at Different Temperatures on Proinflammatory Cytokines, Oxidative Stress Parameters, and Disease Activity in Patients with Ankylosing Spondylitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2157496. [PMID: 30402204 PMCID: PMC6192087 DOI: 10.1155/2018/2157496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 11/17/2022]
Abstract
Purpose Patients with ankylosing spondylitis (AS) have increased production of proinflammatory cytokines, increased oxidants, and decreased antioxidant capacity. The aim of this study was to determine the effect of whole-body cryotherapy (WBC) at -110°C and -60°C, on disease activity, selected proinflammatory cytokines, and oxidative stress in patients with AS. Methods Sixty-five patients with AS were recruited to one of three study procedures: WBC at -110°C, -60°C, or exercise therapy (non-WBC). The Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Ankylosing Spondylitis Disease Activity Score (ASDAS-CRP), concentration of C-reactive protein (CRP), and the concentrations of interleukin 8 and 17 (IL-8, IL-17) were measured at the beginning of the study and at the end of the intervention. The concentration of thiobarbituric acid reactive substances (TBARS), as a lipid peroxidation result, and total antioxidant status, an antioxidant organism potential, were measured. Results All the studied groups showed significantly decreased posttherapy disease activity expressed as a function of the BASDAI, ASDAS-CRP, and the IL-8 concentration. We found that the TBARS concentration after therapy was significantly increased in the WBC at -110°C group. A comparison of the therapeutic effects between the treatment groups showed a significantly lower BASDAI after therapy in the WBC at -110°C group compared to the non-WBC group. Conclusion WBC at -110°C had a positive effect on lowering AS clinical activity as measured by the BASDAI.
Collapse
|
70
|
Xiaoling Y, Chao W, Wenming W, Feng L, Hongzhong J. Interleukin (IL)-8 and IL-36γ but not IL-36Ra are related to acrosyringia in pustule formation associated with palmoplantar pustulosis. Clin Exp Dermatol 2018; 44:52-57. [PMID: 29896852 DOI: 10.1111/ced.13689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Y. Xiaoling
- Department of Dermatology; Peking Union Medical College Hospital; Beijing China
| | - W. Chao
- Department of Dermatology; Peking Union Medical College Hospital; Beijing China
| | - W. Wenming
- Department of Dermatology; Peking Union Medical College Hospital; Beijing China
| | - L. Feng
- Department of Dermatology; Peking Union Medical College Hospital; Beijing China
| | - J. Hongzhong
- Department of Dermatology; Peking Union Medical College Hospital; Beijing China
| |
Collapse
|
71
|
Angelini A, Miyabe Y, Newsted D, Kwan BH, Miyabe C, Kelly RL, Jamy MN, Luster AD, Wittrup KD. Directed evolution of broadly crossreactive chemokine-blocking antibodies efficacious in arthritis. Nat Commun 2018; 9:1461. [PMID: 29654232 PMCID: PMC5899157 DOI: 10.1038/s41467-018-03687-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Chemokine receptors typically have multiple ligands. Consequently, treatment with a blocking antibody against a single chemokine is expected to be insufficient for efficacy. Here we show single-chain antibodies can be engineered for broad crossreactivity toward multiple human and mouse proinflammatory ELR+ CXC chemokines. The engineered molecules recognize functional epitopes of ELR+ CXC chemokines and inhibit neutrophil activation ex vivo. Furthermore, an albumin fusion of the most crossreactive single-chain antibody prevents and reverses inflammation in the K/BxN mouse model of arthritis. Thus, we report an approach for the molecular evolution and selection of broadly crossreactive antibodies towards a family of structurally related, yet sequence-diverse protein targets, with general implications for the development of novel therapeutics. CXCR2 antagonism has been shown to be anti-arthritic, but anti-chemokine therapies usually fail in the clinic owing to redundancy in chemokine-receptor interactions. Here the authors develop single-chain antibodies with multiple chemokine specificities to achieve high affinity and broad specificity to mouse and human CXC chemokines with efficacy in a K/BxN serum transfer model of arthritis.
Collapse
Affiliation(s)
- Alessandro Angelini
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA. .,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA. .,Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Italy.
| | - Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Daniel Newsted
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Byron H Kwan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Chie Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Ryan L Kelly
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Misha N Jamy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA. .,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
72
|
Sharifi S, Pakdel A, Ebrahimi M, Reecy JM, Fazeli Farsani S, Ebrahimie E. Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. PLoS One 2018; 13:e0191227. [PMID: 29470489 PMCID: PMC5823400 DOI: 10.1371/journal.pone.0191227] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli (E. coli) are assumed to be among the main agents that cause severe mastitis disease with clinical signs in dairy cattle. Rapid detection of this disease is so important in order to prevent transmission to other cows and helps to reduce inappropriate use of antibiotics. With the rapid progress in high-throughput technologies, and accumulation of various kinds of '-omics' data in public repositories, there is an opportunity to retrieve, integrate, and reanalyze these resources to improve the diagnosis and treatment of different diseases and to provide mechanistic insights into host resistance in an efficient way. Meta-analysis is a relatively inexpensive option with good potential to increase the statistical power and generalizability of single-study analysis. In the current meta-analysis research, six microarray-based studies that investigate the transcriptome profile of mammary gland tissue after induced mastitis by E. coli infection were used. This meta-analysis not only reinforced the findings in individual studies, but also several novel terms including responses to hypoxia, response to drug, anti-apoptosis and positive regulation of transcription from RNA polymerase II promoter enriched by up-regulated genes. Finally, in order to identify the small sets of genes that are sufficiently informative in E. coli mastitis, the differentially expressed gene introduced by meta-analysis were prioritized by using ten different attribute weighting algorithms. Twelve meta-genes were detected by the majority of attribute weighting algorithms (with weight above 0.7) as most informative genes including CXCL8 (IL8), NFKBIZ, HP, ZC3H12A, PDE4B, CASP4, CXCL2, CCL20, GRO1(CXCL1), CFB, S100A9, and S100A8. Interestingly, the results have been demonstrated that all of these genes are the key genes in the immune response, inflammation or mastitis. The Decision tree models efficiently discovered the best combination of the meta-genes as bio-signature and confirmed that some of the top-ranked genes -ZC3H12A, CXCL2, GRO, CFB- as biomarkers for E. coli mastitis (with the accuracy 83% in average). This research properly indicated that by combination of two novel data mining tools, meta-analysis and machine learning, increased power to detect most informative genes that can help to improve the diagnosis and treatment strategies for E. coli associated with mastitis in cattle.
Collapse
Affiliation(s)
- Somayeh Sharifi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Abbas Pakdel
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - James M. Reecy
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | | | - Esmaeil Ebrahimie
- School of Medicine, The University of Adelaide, Adelaide, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- Division of Information Technology, Engineering and the Environment, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
73
|
IL-8 signaling is involved in resistance of lung carcinoma cells to erlotinib. Oncotarget 2018; 7:42031-42044. [PMID: 27248176 PMCID: PMC5173114 DOI: 10.18632/oncotarget.9662] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/14/2016] [Indexed: 12/16/2022] Open
Abstract
A signaling pathway that is frequently deregulated in human carcinomas and has been explored as a therapeutic target involves the activation of the epidermal growth factor receptor (EGFR). Inhibition of EGFR via the small molecule inhibitors erlotinib and gefitinib commonly results in tumor resistance, even in patients with EGFR-mutant tumors that initially show substantial clinical responses. This study was designed to broaden our understanding of the molecular mechanisms of acquired resistance to erlotinib in lung cancer cells bearing wild type or mutated EGFR. We report here that generation of erlotinib-resistant lung cancer cells in vitro resulted in a phenotypic alteration reminiscent of an epithelial-mesenchymal transition (EMT) concomitant with a robust upregulation of the IL-8/IL-8R axis. Our results also demonstrate that upregulation of p38 MAPK signaling is responsible for the enhanced IL-8 secretion in the erlotinib-resistant tumor cells. Blockade of IL-8 signaling effectively reduced mesenchymal features of the resistant cells and also markedly enhanced their susceptibility to erlotinib. These results provide a rationale for the development of new therapeutic approaches involving blockade of IL-8 signaling for the management of acquired resistance to EGFR inhibition in patients with lung cancer.
Collapse
|
74
|
Taipale K, Tähtinen S, Havunen R, Koski A, Liikanen I, Pakarinen P, Koivisto-Korander R, Kankainen M, Joensuu T, Kanerva A, Hemminki A. Interleukin 8 activity influences the efficacy of adenoviral oncolytic immunotherapy in cancer patients. Oncotarget 2018; 9:6320-6335. [PMID: 29464075 PMCID: PMC5814215 DOI: 10.18632/oncotarget.23967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
After the landmark approval of T-VEC, oncolytic viruses are finding their way to the clinics. However, response rates have still room for improvement, and unfortunately there are currently no available markers to predict responses for oncolytic immunotherapy. Interleukin 8 (IL-8) production is upregulated in many cancers and it also connects to several pathways that have been shown to impair the efficacy of adenoviral immunotherapy. We studied the role of IL-8 in 103 cancer patients treated with oncolytic adenoviruses. We found high baseline serum IL-8 concentration to be independently associated with poor prognosis (p<0.001). Further, normal baseline IL-8 was associated with improved prognostic potential of calculation of the neutrophil-to-lymphocyte ratio (p<0.001). Interestingly, a decrease in IL-8 concentration after treatment with oncolytic adenovirus predicted better overall survival (p<0.001) and higher response rate, although this difference was not significant (p=0.066). We studied the combination of adenovirus and IL-8 neutralizing antibody ex vivo in single cell suspensions and in co-cultures of tumor-associated CD15+ neutrophils and CD3+ tumor-infiltrating lymphocytes derived from fresh patient tumor samples. These results indicate a role for IL-8 as a biomarker in oncolytic virotherapy, but additionally provide a rationale for targeting IL-8 to improve treatment efficacy. In conclusion, curtailing the activity of IL-8 systemically or locally in the tumor microenvironment could improve anti-tumor immune responses resulting in enhanced efficacy of adenoviral immunotherapy of cancer.
Collapse
Affiliation(s)
- Kristian Taipale
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Siri Tähtinen
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Anniina Koski
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland.,Department of Neurosurgery, HUCH, Helsinki, Finland
| | - Ilkka Liikanen
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Päivi Pakarinen
- Department of Obstetrics and Gynecology, HUCH, Helsinki, Finland
| | | | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Anna Kanerva
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland.,Department of Obstetrics and Gynecology, HUCH, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland.,Docrates Cancer Center, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
75
|
Dominguez C, David JM, Palena C. Epithelial-mesenchymal transition and inflammation at the site of the primary tumor. Semin Cancer Biol 2017; 47:177-184. [PMID: 28823497 PMCID: PMC5698091 DOI: 10.1016/j.semcancer.2017.08.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
Tumor growth and progression are the products of complex signaling networks between different cell types within the tumor and its surrounding stroma. In particular, established tumors are known to stimulate an inflammatory reaction via the secretion of cytokines, chemokines, and growth factors that favor the recruitment of a range of infiltrating immune cell populations into the tumor microenvironment. While potentially able to exert tumor control, this inflammatory reaction is typically seized upon by the tumor to promote its own growth and progression towards metastasis. This review focuses on recent advances in understanding how an established tumor can initiate an inflammatory response via the release of pro-inflammatory mediators, such as IL-6 and IL-8, and their roles in cancer metastasis. In particular, the role of the epithelial-mesenchymal transition (EMT), a phenotypic switch observed in carcinomas that promotes progression towards metastasis, is discussed here in relation to cancer inflammation.
Collapse
Affiliation(s)
- Charli Dominguez
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States.
| |
Collapse
|
76
|
Dominguez C, McCampbell KK, David JM, Palena C. Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight 2017; 2:94296. [PMID: 29093275 PMCID: PMC5752275 DOI: 10.1172/jci.insight.94296] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
The complex signaling networks of the tumor microenvironment that facilitate tumor growth and progression toward metastatic disease are becoming a focus of potential therapeutic options. The chemokine IL-8 is overexpressed in multiple cancer types, including triple-negative breast cancer (TNBC), where it promotes the acquisition of mesenchymal features, stemness, resistance to therapies, and the recruitment of immune-suppressive cells to the tumor site. The present study explores the utility of a clinical-stage monoclonal antibody that neutralizes IL-8 (HuMax-IL8) as a potential therapeutic option for TNBC. HuMax-IL8 was shown to revert mesenchymalization in claudin-low TNBC models both in vitro and in vivo as well as to significantly decrease the recruitment of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) at the tumor site, an effect substantiated when used in combination with docetaxel. In addition, HuMax-IL8 enhanced the susceptibility of claudin-low breast cancer cells to immune-mediated lysis with NK and antigen-specific T cells in vitro. These results demonstrate the multifaceted way in which neutralizing this single chemokine reverts mesenchymalization, decreases recruitment of MDSCs at the tumor site, assists in immune-mediated killing, and forms the rationale for using HuMax-IL8 in combination with chemotherapy or immune-based therapies for the treatment of TNBC.
Collapse
|
77
|
The clinical and prognostic value of CXCL8 in cervical carcinoma patients: immunohistochemical analysis. Biosci Rep 2017; 37:BSR20171021. [PMID: 28883082 PMCID: PMC5629562 DOI: 10.1042/bsr20171021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
Cysteine-X-cysteine ligand 8 (CXCL8) was originally discovered as a proinflammatory chemokine. Recently, CXCL8 has been shown to act as an oncogene in several types of human cancers. However, the clinical and prognostic significance of CXCL8 in cervical cancer is poorly understood. In our study, we found that CXCL8 was highly expressed in cervical cancer tissues compared with normal cervical tissues in microarray datasets (GSE9750 and GSE7803). CXCL8 mRNA and protein expressions were increased in cervical cancer tissues and cell lines compared with normal cervical tissues and cervical epithelial cell lines. CXCL8 protein expression was significantly correlated with clinical stage, distant metastasis, histological type, and histological grade. CXCL8 high expression was a poor independent prognostic parameter for cervical cancer patients. In conclusion, CXCL8 is highly expressed in cervical cancer tissues and cell lines, and correlated with malignant status and prognosis in cervical cancer patients.
Collapse
|
78
|
Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, Teijeira Á, Oñate C, González Á, Ponz M, Schalper KA, Pérez-Gracia JL, Melero I. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev 2017; 60:24-31. [PMID: 28866366 DOI: 10.1016/j.ctrv.2017.08.004] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 12/23/2022]
Abstract
Interleukin-8 (CXCL8) was originally described asa chemokine whose main function is the attraction of a polymorphonuclear inflammatory leukocyte infiltrate acting on CXCR1/2. Recently, it has been found that tumors very frequently coopt the production of this chemokine, which in this malignant context exerts different pro-tumoral functions. Reportedly, these include angiogenesis, survival signaling for cancer stem cells and attraction of myeloid cells endowed with the ability to immunosuppress and locally provide growth factors. Given the fact that in cancer patients IL-8 is mainly produced by tumor cells themselves, its serum concentration has been shown to correlate with tumor burden. Thus, IL-8 serum concentrations have been shown to be useful asa pharmacodynamic biomarker to early detect response to immunotherapy. Finally, because of the roles that IL-8 plays in favoring tumor progression, several therapeutic strategies are being developed to interfere with its functions. Such interventions hold promise, especially for therapeutic combinations in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Carlos Alfaro
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain.
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Álvaro Teijeira
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Carmen Oñate
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain
| | - Álvaro González
- CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain; Department of Biochemistry, University Clinic of Navarra, Pamplona, Spain
| | - Mariano Ponz
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - José L Pérez-Gracia
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Ignacio Melero
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain.
| |
Collapse
|
79
|
Mohammed S, Alhussien MN, Ahmad Aljader M, Kamboj A, Gachuiwo Shimray P, Ahmad Sheikh A, lal Yadav M, Kumar Mohanty A, Kumar Dang A. Alteration in some pro and anti-inflammatory cytokines associated with complete and incomplete gestation cycle of cows. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1319636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Seid Mohammed
- Lactation and Immuno-Physiology Laboratory, ICAR- National Dairy Research Institute, Karnal, India
| | - Mohanned Naif Alhussien
- Animal Production Division, Agricultural College, Aleppo University, Aleppo, Syrian Arab Republic
| | - Mustafa Ahmad Aljader
- Animal Production Division, Agricultural College, Aleppo University, Aleppo, Syrian Arab Republic
| | - Aarti Kamboj
- Lactation and Immuno-Physiology Laboratory, ICAR- National Dairy Research Institute, Karnal, India
| | | | - Aasif Ahmad Sheikh
- Lactation and Immuno-Physiology Laboratory, ICAR- National Dairy Research Institute, Karnal, India
| | - Munna lal Yadav
- Animal Biotechnology Centre, ICAR- National Dairy Research Institute, Karnal, India
| | - Ashok Kumar Mohanty
- Animal Biotechnology Centre, ICAR- National Dairy Research Institute, Karnal, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory ICAR- National Dairy Research Institute, Karnal, India
| |
Collapse
|
80
|
Bouma G, Zamuner S, Hicks K, Want A, Oliveira J, Choudhury A, Brett S, Robertson D, Felton L, Norris V, Fernando D, Herdman M, Tarzi R. CCL20 neutralization by a monoclonal antibody in healthy subjects selectively inhibits recruitment of CCR6 + cells in an experimental suction blister. Br J Clin Pharmacol 2017; 83:1976-1990. [PMID: 28295451 DOI: 10.1111/bcp.13286] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 01/10/2023] Open
Abstract
AIMS GSK3050002, a humanized IgG1κ antibody with high binding affinity to human CCL20, was administered in a first-in-human study to evaluate safety, pharmacokinetics (PK) and pharmacodynamics (PD). An experimental skin suction blister model was employed to assess target engagement and the ability of the compound to inhibit recruitment of inflammatory CCR6 expressing cells. METHODS This study was a randomized, double-blind (sponsor open), placebo-controlled, single-centre, single ascending intravenous dose escalation trial in 48 healthy male volunteers. RESULTS GSK3050002 (0.1-20 mg kg-1 ) was well tolerated and no safety concerns were identified. The PK was linear over the dose range, with a half-life of approximately 2 weeks. Complex of GSK3050002/CCL20 increased in serum and blister fluid with increasing doses of GSK3050002. There were dose-dependent decreases in CCR6+ cell recruitment to skin blisters with maximal effects at doses of 5 mg kg-1 and higher, doses at which GSK3050002/CCL20 complex in serum and blister fluid also appeared to reach maximum levels. CONCLUSIONS These results indicate a relationship between PK, target engagement and PD, suggesting a selective inhibition of recruitment of CCR6+ cells by GSK3050002 and support further development of GSK3050002 in autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Virginia Norris
- GlaxoSmithKline, Hertfordshire, UK.,GN Clinical Consulting Ltd, London, UK
| | | | | | | |
Collapse
|
81
|
Zhao Z, Wang S, Lin Y, Miao Y, Zeng Y, Nie Y, Guo P, Jiang G, Wu J. Epithelial-mesenchymal transition in cancer: Role of the IL-8/IL-8R axis. Oncol Lett 2017; 13:4577-4584. [PMID: 28599458 DOI: 10.3892/ol.2017.6034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process that is associated with cancer metastasis and invasion. In cancer, EMT promotes cell motility, invasion and distant metastasis. Interleukin (IL)-8 is highly expressed in tumors and may induce EMT. The IL-8/IL-8R axis has a vital role in EMT in carcinoma, which is regulated by several signaling pathways, including the transforming growth factor β-spleen associated tyrosine kinase/Src-AKT/extracellular signal-regulated kinase, p38/Jun N-terminal kinase-activating transcription factor-2, phosphoinositide 3-kinase/AKT, nuclear factor-κB and Wnt signaling pathways. Blocking the IL-8/IL-8R signaling pathway may be a novel strategy to reduce metastasis and improve patient survival rates. This review will cover IL-8-IL-8R signaling pathway in tumor epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhiwei Zhao
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shichao Wang
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, Cancer Centre Karolinska, SE-171 76 Stockholm, Sweden
| | - Yali Miao
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ye Zeng
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongmei Nie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Peng Guo
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guangyao Jiang
- Outpatient Building, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
82
|
Inflammatory Cytokines as Uremic Toxins: "Ni Son Todos Los Que Estan, Ni Estan Todos Los Que Son". Toxins (Basel) 2017; 9:toxins9040114. [PMID: 28333114 PMCID: PMC5408188 DOI: 10.3390/toxins9040114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/03/2023] Open
Abstract
Chronic kidney disease is among the fastest growing causes of death worldwide. An increased risk of all-cause and cardiovascular death is thought to depend on the accumulation of uremic toxins when glomerular filtration rate falls. In addition, the circulating levels of several markers of inflammation predict mortality in patients with chronic kidney disease. Indeed, a number of cytokines are listed in databases of uremic toxins and uremic retention solutes. They include inflammatory cytokines (IL-1β, IL-18, IL-6, TNFα), chemokines (IL-8), and adipokines (adiponectin, leptin and resistin), as well as anti-inflammatory cytokines (IL-10). We now critically review the cytokines that may be considered uremic toxins. We discuss the rationale to consider them uremic toxins (mechanisms underlying the increased serum levels and evidence supporting their contribution to CKD manifestations), identify gaps in knowledge, discuss potential therapeutic implications to be tested in clinical trials in order to make this knowledge useful for the practicing physician, and identify additional cytokines, cytokine receptors and chemokines that may fulfill the criteria to be considered uremic toxins, such as sIL-6R, sTNFR1, sTNFR2, IL-2, CXCL12, CX3CL1 and others. In addition, we suggest that IL-10, leptin, adiponectin and resistin should not be considered uremic toxins toxins based on insufficient or contradictory evidence of an association with adverse outcomes in humans or preclinical data not consistent with a causal association.
Collapse
|
83
|
Abstract
SAPHO syndrome (synovitis, acne, pustulosis, hyperostosis, and osteitis) is a rare autoimmune disease which, due to its clinical presentation and symptoms, is often misdiagnosed and unrecognized. Its main features are prominent inflammatory cutaneous and articular manifestations. Treatments with immunosuppressive drugs have been used for the management of SAPHO with variable results. To date, the use of anti-TNF-α agents has proved to be an effective alternative to conventional treatment for unresponsive or refractory SAPHO cases. TNF-α is a pro-inflammatory cytokine and pivotal regulator of other cytokines, including IL-1 β, IL-6, and IL-8, involved in inflammation, acute-phase response induction, and chemotaxis. IL-1 inhibition strategies with anakinra have shown efficacy as first and second lines of treatment. In this review, we will describe the main characteristics of biological drugs currently used for SAPHO syndrome. We also describe some of the promising therapeutic effects of ustekinumab, an antibody against the p40 subunit of IL-12 and IL-23, after failure of multiple drugs including anti-TNF-α and anakinra. We discuss the use and impact of the new anti-IL-1 antagonists involved in the IL-17 blockade, in particular for the most difficult-to-treat SAPHO cases.
Collapse
|
84
|
Mangold AR, Costello CM, Pittelkow MR, DiCaudo DJ. Concomitant pemphigus herpetiformis and sarcoidosis. JAAD Case Rep 2016; 2:436-438. [PMID: 27981211 PMCID: PMC5144745 DOI: 10.1016/j.jdcr.2016.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
| | - Collin M Costello
- Department of Medical Education, University of Arizona, Scottsdale, Arizona
| | | | | |
Collapse
|
85
|
David JM, Dominguez C, Palena C. Pharmacological and immunological targeting of tumor mesenchymalization. Pharmacol Ther 2016; 170:212-225. [PMID: 27916651 DOI: 10.1016/j.pharmthera.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlling the spread of carcinoma cells to distant organs is the foremost challenge in cancer treatment, as metastatic disease is generally resistant to therapy and is ultimately incurable for the majority of patients. The plasticity of tumor cell phenotype, in which the behaviors and functions of individual tumor cells differ markedly depending upon intrinsic and extrinsic factors, is now known to be a central mechanism in cancer progression. Our expanding knowledge of epithelial and mesenchymal phenotypic states in tumor cells, and the dynamic nature of the transitions between these phenotypes has created new opportunities to intervene to better control the behavior of tumor cells. There are now a variety of innovative pharmacological approaches to preferentially target tumor cells that have acquired mesenchymal features, including cytotoxic agents that directly kill these cells, and inhibitors that block or revert the process of mesenchymalization. Furthermore, novel immunological strategies have been developed to engage the immune system in seeking out and destroying mesenchymalized tumor cells. This review highlights the relevance of phenotypic plasticity in tumor biology, and discusses recently developed pharmacological and immunological means of targeting this phenomenon.
Collapse
Affiliation(s)
- Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Charli Dominguez
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
86
|
Murakami M, Kameda K, Tsumoto H, Tsuda T, Masuda K, Utsunomiya R, Mori H, Miura Y, Sayama K. TLN-58, an Additional hCAP18 Processing Form, Found in the Lesion Vesicle of Palmoplantar Pustulosis in the Skin. J Invest Dermatol 2016; 137:322-331. [PMID: 27771329 DOI: 10.1016/j.jid.2016.07.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/27/2016] [Accepted: 07/20/2016] [Indexed: 10/20/2022]
Abstract
We previously reported that the early vesicle of the palmoplantar pustulosis (PPP) vesicle originated from eccrine sweat in the acrosyringium and that the PPP vesicle contains the antimicrobial peptide human cathelicidin-18/LL-37. The concentration of LL-37 was sufficient to induce the subsequent inflammation in lesions and human keratinocytes, and the PPP vesicles contained additional small fragments of human cathelicidin-18, of approximately 7 kDa, which have not been identified. The aim of the present study was to clarify the additional processed forms found in PPP vesicles and their physiological effects on normal keratinocytes and sweat gland cells. Lesional PPP vesicles were collected from PPP patients, and endogenous human cathelicidin-18/LL-37 was depleted using a LL-37 antibody affinity column. A designed recombinant human cathelicidin-18 peptide was prepared and incubated with the depleted PPP vesicle fluid to confirm the additional processed form. In-gel digestion analysis and protein sequencing confirmed the additional form as TLN-58. TLN-58 up-regulated IL-17C, IL-8, IL-23, IL-1α, and IL-1β mRNA and protein expression in normal human keratinocytes and also showed antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, and group A Streptococcus species, similar to LL-37. This additional form could be involved in the continued inflammation in PPP lesions.
Collapse
Affiliation(s)
- Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Kenji Kameda
- Advanced Research Support Center, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroki Tsumoto
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Teruko Tsuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kana Masuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryo Utsunomiya
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hideki Mori
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yuri Miura
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
87
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
88
|
David JM, Dominguez C, Hamilton DH, Palena C. The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance. Vaccines (Basel) 2016; 4:vaccines4030022. [PMID: 27348007 PMCID: PMC5041016 DOI: 10.3390/vaccines4030022] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/31/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022] Open
Abstract
Interleukin-8 (IL-8, CXCL8) is a pro-inflammatory chemokine produced by various cell types to recruit leukocytes to sites of infection or tissue injury. Acquisition of IL-8 and/or its receptors CXCR1 and CXCR2 are known to be a relatively common occurrence during tumor progression. Emerging research now indicates that paracrine signaling by tumor-derived IL-8 promotes the trafficking of neutrophils and myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment, which have the ability to dampen anti-tumor immune responses. Furthermore, recent studies have also shown that IL-8 produced by the tumor mass can induce tumor cells to undergo the transdifferentiation process epithelial-to-mesenchymal transition (EMT) in which tumor cells shed their epithelial characteristics and acquire mesenchymal characteristics. EMT can increase metastatic dissemination, stemness, and intrinsic resistance, including to killing by cytotoxic immune cells. This review highlights the dual potential roles that the inflammatory cytokine IL-8 plays in promoting tumor resistance by enhancing the immunosuppressive microenvironment and activating EMT, and then discusses the potential for targeting the IL-8/IL-8 receptor axis to combat these various resistance mechanisms.
Collapse
Affiliation(s)
- Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Charli Dominguez
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
89
|
Cui A, Quon G, Rosenberg AM, Yeung RSM, Morris Q. Gene Expression Deconvolution for Uncovering Molecular Signatures in Response to Therapy in Juvenile Idiopathic Arthritis. PLoS One 2016; 11:e0156055. [PMID: 27244050 PMCID: PMC4887077 DOI: 10.1371/journal.pone.0156055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 05/09/2016] [Indexed: 01/10/2023] Open
Abstract
Gene expression-based signatures help identify pathways relevant to diseases and treatments, but are challenging to construct when there is a diversity of disease mechanisms and treatments in patients with complex diseases. To overcome this challenge, we present a new application of an in silico gene expression deconvolution method, ISOpure-S1, and apply it to identify a common gene expression signature corresponding to response to treatment in 33 juvenile idiopathic arthritis (JIA) patients. Using pre- and post-treatment gene expression profiles only, we found a gene expression signature that significantly correlated with a reduction in the number of joints with active arthritis, a measure of clinical outcome (Spearman rho = 0.44, p = 0.040, Bonferroni correction). This signature may be associated with a decrease in T-cells, monocytes, neutrophils and platelets. The products of most differentially expressed genes include known biomarkers for JIA such as major histocompatibility complexes and interleukins, as well as novel biomarkers including α-defensins. This method is readily applicable to expression datasets of other complex diseases to uncover shared mechanistic patterns in heterogeneous samples.
Collapse
Affiliation(s)
- Ang Cui
- Division of Engineering Science, University of Toronto, Toronto, ON, Canada
| | - Gerald Quon
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Alan M. Rosenberg
- Department of Pediatrics, Division of Rheumatology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rae S. M. Yeung
- Divisions of Rheumatology and Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Paediatrics, Immunology and Medical Sciences, University of Toronto, Toronto, ON, Canada
- * E-mail: (RY); (QM)
| | - Quaid Morris
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- * E-mail: (RY); (QM)
| | | |
Collapse
|
90
|
SAPHO Syndrome: Current Developments and Approaches to Clinical Treatment. Curr Rheumatol Rep 2016. [PMID: 27108452 DOI: 10.1007/s11926-016-0583-y.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
SAPHO syndrome (synovitis, acne, pustulosis, hyperostosis, and osteitis) is a rare autoimmune disease which, due to its clinical presentation and symptoms, is often misdiagnosed and unrecognized. Its main features are prominent inflammatory cutaneous and articular manifestations. Treatments with immunosuppressive drugs have been used for the management of SAPHO with variable results. To date, the use of anti-TNF-α agents has proved to be an effective alternative to conventional treatment for unresponsive or refractory SAPHO cases. TNF-α is a pro-inflammatory cytokine and pivotal regulator of other cytokines, including IL-1 β, IL-6, and IL-8, involved in inflammation, acute-phase response induction, and chemotaxis. IL-1 inhibition strategies with anakinra have shown efficacy as first and second lines of treatment. In this review, we will describe the main characteristics of biological drugs currently used for SAPHO syndrome. We also describe some of the promising therapeutic effects of ustekinumab, an antibody against the p40 subunit of IL-12 and IL-23, after failure of multiple drugs including anti-TNF-α and anakinra. We discuss the use and impact of the new anti-IL-1 antagonists involved in the IL-17 blockade, in particular for the most difficult-to-treat SAPHO cases.
Collapse
|
91
|
Sharma R, Deacon SE, Nowak D, George SE, Szymonik MP, Tang AAS, Tomlinson DC, Davies AG, McPherson MJ, Wälti C. Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/ml sensitivity. Biosens Bioelectron 2016; 80:607-613. [PMID: 26897263 PMCID: PMC4785862 DOI: 10.1016/j.bios.2016.02.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 01/01/2023]
Abstract
Biosensors with high sensitivity and short time-to-result that are capable of detecting biomarkers in body fluids such as serum are an important prerequisite for early diagnostics in modern healthcare provision. Here, we report the development of an electrochemical impedance-based sensor for the detection in serum of human interleukin-8 (IL-8), a pro-angiogenic chemokine implicated in a wide range of inflammatory diseases. The sensor employs a small and robust synthetic non-antibody capture protein based on a cystatin scaffold that displays high affinity for human IL-8 with a KD of 35±10 nM and excellent ligand specificity. The change in the phase of the electrochemical impedance from the serum baseline, ∆θ(ƒ), measured at 0.1 Hz, was used as the measure for quantifying IL-8 concentration in the fluid. Optimal sensor signal was observed after 15 min incubation, and the sensor exhibited a linear response versus logarithm of IL-8 concentration from 900 fg/ml to 900 ng/ml. A detection limit of around 90 fg/ml, which is significantly lower than the basal clinical levels of 5–10 pg/ml, was observed. Our results are significant for the development of point-of-care and early diagnostics where high sensitivity and short time-to-results are essential. A label-free electrochemical impedance-based sensor for the detection of human interleukin-8 (IL-8) in full serum was developed. Detection limit of 90 fg/ml and time-to-result of 15 min was found. A large dynamic range of the sensor was observed, with sensor response linear vs logarithm of IL-8 concentration from 900 fg/ml to 900 ng/ml. The sensor employs a small and robust synthetic non-antibody capture protein, with high stability and excellent ligand specificity. Findings are particularly relevant for the development of point-of-care and early diagnosis sensors where high sensitivity and short time-to-results are essential.
Collapse
Affiliation(s)
- R Sharma
- School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - S E Deacon
- School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - D Nowak
- School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - S E George
- School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - M P Szymonik
- School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - A A S Tang
- School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK; BioScreening Technology Group, Astbury Building, University of Leeds, Leeds LS2 9JT, UK
| | - D C Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK; BioScreening Technology Group, Astbury Building, University of Leeds, Leeds LS2 9JT, UK
| | - A G Davies
- School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - M J McPherson
- School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK; BioScreening Technology Group, Astbury Building, University of Leeds, Leeds LS2 9JT, UK.
| | - C Wälti
- School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| |
Collapse
|
92
|
Asarat M, Vasiljevic T, Apostolopoulos V, Donkor O. Short-Chain Fatty Acids Regulate Secretion of IL-8 from Human Intestinal Epithelial Cell Linesin vitro. Immunol Invest 2015; 44:678-93. [DOI: 10.3109/08820139.2015.1085389] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
93
|
The role of chemokines in adjusting the balance between CD4+ effector T cell subsets and FOXp3-negative regulatory T cells. Int Immunopharmacol 2015; 28:829-35. [DOI: 10.1016/j.intimp.2015.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|
94
|
Wei W, Lewis MT. Identifying and targeting tumor-initiating cells in the treatment of breast cancer. Endocr Relat Cancer 2015; 22:R135-55. [PMID: 25876646 PMCID: PMC4447610 DOI: 10.1530/erc-14-0447] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2015] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most common cancer in women (excluding skin cancer), and it is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - because of traits that tumor cells possess before treatment - or acquired - because of traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes the existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSCs). TICs have the capacity to self-renew and to generate new tumors that consist entirely of clonally derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies and that they can survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow, which results in disease relapse. It has also been hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative for achieving a cure. In the present review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear to be important for TIC function and may represent promising therapeutic targets.
Collapse
Affiliation(s)
- Wei Wei
- Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA
| | - Michael T Lewis
- Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA
| |
Collapse
|
95
|
Reich K, Papp KA, Matheson RT, Tu JH, Bissonnette R, Bourcier M, Gratton D, Kunynetz RA, Poulin Y, Rosoph LA, Stingl G, Bauer WM, Salter JM, Falk TM, Blödorn-Schlicht NA, Hueber W, Sommer U, Schumacher MM, Peters T, Kriehuber E, Lee DM, Wieczorek GA, Kolbinger F, Bleul CC. Evidence that a neutrophil-keratinocyte crosstalk is an early target of IL-17A inhibition in psoriasis. Exp Dermatol 2015; 24:529-35. [PMID: 25828362 PMCID: PMC4676308 DOI: 10.1111/exd.12710] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
The response of psoriasis to antibodies targeting the interleukin (IL)-23/IL-17A pathway suggests a prominent role of T-helper type-17 (Th17) cells in this disease. We examined the clinical and immunological response patterns of 100 subjects with moderate-to-severe psoriasis receiving 3 different intravenous dosing regimens of the anti-IL-17A antibody secukinumab (1 × 3 mg/kg or 1 × 10 mg/kg on Day 1, or 3 × 10 mg/kg on Days 1, 15 and 29) or placebo in a phase 2 trial. Baseline biopsies revealed typical features of active psoriasis, including epidermal accumulation of neutrophils and formation of microabscesses in >60% of cases. Neutrophils were the numerically largest fraction of infiltrating cells containing IL-17 and may store the cytokine preformed, as IL-17A mRNA was not detectable in neutrophils isolated from active plaques. Significant clinical responses to secukinumab were observed 2 weeks after a single infusion, associated with extensive clearance of cutaneous neutrophils parallel to the normalization of keratinocyte abnormalities and reduction of IL-17-inducible neutrophil chemoattractants (e.g. CXCL1, CXCL8); effects on numbers of T cells and CD11c-positive dendritic cells were more delayed. Histological and immunological improvements were generally dose dependent and not observed in the placebo group. In the lowest-dose group, a recurrence of neutrophils was seen in some subjects at Week 12; these subjects relapsed faster than those without microabscesses. Our findings are indicative of a neutrophil-keratinocyte axis in psoriasis that may involve neutrophil-derived IL-17 and is an early target of IL-17A-directed therapies such as secukinumab.
Collapse
Affiliation(s)
- Kristian Reich
- Dermatologikum Hamburg and SCIderm Research Institute, Hamburg, Germany
| | - Kim A Papp
- Probity Medical Research Inc, Waterloo, ON, Canada
| | | | - John H Tu
- Skin Search of Rochester, Rochester, NY, USA
| | | | | | - David Gratton
- International Dermatology Research, Montreal, QC, Canada
| | | | - Yves Poulin
- Centre de Recherche Dermatologique du Québec Métropolitain, Quebec City, QC, Canada
| | - Les A Rosoph
- North Bay Dermatology Centre, North Bay, ON, Canada
| | - Georg Stingl
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Janeen M Salter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas M Falk
- Dermatologikum Hamburg and SCIderm Research Institute, Hamburg, Germany
| | | | - Wolfgang Hueber
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ulrike Sommer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Thomas Peters
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ernst Kriehuber
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - David M Lee
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Frank Kolbinger
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Conrad C Bleul
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
96
|
He S, Lin K, Ma R, Xu R, Xiao Y. Effect of the urinary tryptin inhibitor ulinastatin on cardiopulmonary bypass-related inflammatory response and clinical outcomes: a meta-analysis of randomized controlled trials. Clin Ther 2015; 37:643-53. [PMID: 25660078 DOI: 10.1016/j.clinthera.2014.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 11/19/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Cardiopulmonary bypass (CPB) can cause systemic inflammatory responses and a series of subsequent complications that may harm patients. The aim of this study was to explore the effects of ulinastatin on inflammatory responses and clinical outcomes of CPB via a meta-analysis of published randomized controlled trials. METHODS A literature search was conducted, both manually and by using the PubMed, EMBASE, Cochrane Library, and Web of Knowledge databases from inception to February 2013, to identify randomized controlled trials. The abstracted efficacy measures included changes in the plasma levels of cytokines (interleukin-6 [IL-6], IL-8, and tumor necrosis factor-α [TNF-α]) measured during the perioperative period and clinical indicators of efficacy, including the duration of mechanical ventilation and the length of intensive care unit stay. Ten ulinastatin-related randomized controlled trials related to cardiac surgeries involving CPB were selected. FINDINGS In terms of cytokine concentrations, there were no significant differences between patients who received ulinastatin and those who received placebo before CPB. However, as the surgeries progressed, cytokine concentrations were all significantly lower in the ulinastatin group (P < 0.05 at 1 hour; P < 0.0001 at 6 hours), and the respective plasma concentrations returned to baseline values 24 hours after CPB. In terms of the clinical outcome indices, the length of intensive care unit stay was not significantly different, but the duration of mechanical ventilation (95% CI, -6.75 to -0.39; P = 0.03) was significantly shorter in the ulinastatin group. IMPLICATIONS This meta-analysis found that changes in inflammatory cytokines occurred in a time-dependent manner and that the use of ulinastatin resulted in decreased duration of mechanical ventilation with CPB compared with placebo.
Collapse
Affiliation(s)
- Siyi He
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Cardiovascular Surgery, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Kailong Lin
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ruiyan Ma
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rufu Xu
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
97
|
Singh JK, Simões BM, Howell SJ, Farnie G, Clarke RB. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res 2014; 15:210. [PMID: 24041156 PMCID: PMC3978717 DOI: 10.1186/bcr3436] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are purported to be responsible for tumor initiation, maintenance, metastases, and disease recurrence. Interleukin-8 (IL-8) is upregulated in breast cancer compared with normal breast tissue and is associated with poor prognosis. IL-8 is reported to promote breast cancer progression by increasing cell invasion, angiogenesis, and metastases and is upregulated in HER2-positive cancers. Recently, we and others have established that IL-8 via its cognate receptors, CXCR1 and CXCR2, is also involved in regulating breast CSC activity. Our work demonstrates that in metastatic breast CSCs, CXCR1/2 signals via transactivation of HER2. Given the importance of HER2 in breast cancer and in regulating CSC activity, a pathway driving the activation of these receptors would have important biological and clinical consequences, especially in tumors that express high levels of IL-8 and other CXCR1/2-activating ligands. Here, we review the IL-8 signaling pathway and the role of HER2 in maintaining an IL-8 inflammatory loop and discuss the potential of combining CXCR1/2 inhibitors with other treatments such as HER2-targeted therapy as a novel approach to eliminate CSCs and improve patient survival.
Collapse
|
98
|
Prognostic significance of interleukin-8 and CD163-positive cell-infiltration in tumor tissues in patients with oral squamous cell carcinoma. PLoS One 2014; 9:e110378. [PMID: 25461761 PMCID: PMC4251830 DOI: 10.1371/journal.pone.0110378] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/12/2014] [Indexed: 02/06/2023] Open
Abstract
Purpose We investigated whether serum interleukin (IL)-8 reflects the tumor microenvironment and has prognostic value in patients with oral squamous cell carcinoma (OSCC). Experimental Design Fifty OSCC patients who received radical resection of their tumor(s) were enrolled. Preoperative sera were measured for IL-8 by ELISA. Expression of IL-8 and the infiltration of immune cells in tumor tissues were analyzed by an immunohistochemical staining of surgical specimens. Results We found that disease-free survival (DFS) was significantly longer in the Stage I/II OSCC patients with low serum IL-8 levels compared to those with high levels (p = 0.001). The tumor expression of IL-8, i.e., IL-8(T) and the density of CD163-positive cells in the tumor invasive front, i.e., CD163(IF) were correlated with the serum IL-8 level (p = 0.033 and p = 0.038, respectively), and they were associated with poor clinical outcome (p = 0.007 and p = 0.002, respectively, in DFS) in all patients. A multivariate analysis revealed that N status, IL-8(T) and CD163(IF) significantly affected the DFS of the patients. Further analysis suggested that combination of N status with serum IL-8, IL-8(T) or CD163(IF) may be a new criterion for discriminating between OSCC patients at high and low risk for tumor relapse. Interestingly, the in vitro experiments demonstrated that IL-8 enhanced generation of CD163-positive M2 macrophages from peripheral blood monocytes, and that the cells produced IL-10. Conclusions These findings indicate that IL-8 may be involved in poor clinical outcomes via generation of CD163-positive M2 macrophages, and that these factors in addition to N status may have prognostic value in patients with resectable OSCSS.
Collapse
|
99
|
Lactoferrin suppresses the Epstein-Barr virus-induced inflammatory response by interfering with pattern recognition of TLR2 and TLR9. J Transl Med 2014; 94:1188-99. [PMID: 25068657 DOI: 10.1038/labinvest.2014.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/17/2014] [Accepted: 06/30/2014] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) infection contributes to tumorigenesis of various human malignancies including nasopharyngeal carcinoma (NPC). EBV triggers innate immune and inflammatory responses partly through Toll-like receptor (TLR) signaling. Lactoferrin (LF), with its anti-inflammatory properties, is an important component of the innate immune system. We previously reported that LF protects human B lymphocytes from EBV infection by its ability to bind to the EBV receptor CD21, but whether LF can suppress EBV-induced inflammation is unclear. Here, we report that LF reduced synthesis of IL-8 and monocyte chemoattractant protein-1 (MCP-1) induced by EBV in macrophages via its suppression of NF-κB activity. LF interacted with TLR2 and interfered with EBV-triggered TLR2-NF-κB activation. LF inhibited the ability of TLR9 to recognize dsDNA by binding to its co-receptor CD14, which blocked the interaction between CD14 and TLR9. EBV-induced inflammation was thus aggravated in the presence of CD14. In addition, LF expression levels were significantly downregulated in NPC specimens, and correlated inversely with IL-8 and MCP-1 expression. These findings suggest that LF may suppress the EBV-induced inflammatory response through interfering with the activation of TLR2 and TLR9.
Collapse
|
100
|
Murakami M, Kaneko T, Nakatsuji T, Kameda K, Okazaki H, Dai X, Hanakawa Y, Tohyama M, Ishida-Yamamoto A, Sayama K. Vesicular LL-37 contributes to inflammation of the lesional skin of palmoplantar pustulosis. PLoS One 2014; 9:e110677. [PMID: 25330301 PMCID: PMC4199729 DOI: 10.1371/journal.pone.0110677] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/21/2014] [Indexed: 01/25/2023] Open
Abstract
“Pustulosis palmaris et plantaris”, or palmoplantar pustulosis (PPP), is a chronic pustular dermatitis characterized by intraepidermal palmoplantar pustules. Although early stage vesicles (preceding the pustular phase) formed in the acrosyringium contain the antimicrobial peptides cathelicidin (hCAP-18/LL-37) and dermcidin, the details of hCAP-18/LL-37 expression in such vesicles remain unclear. The principal aim of the present study was to clarify the manner of hCAP-18/LL-37 expression in PPP vesicles and to determine whether this material contributed to subsequent inflammation of lesional skin. PPP vesicle fluid (PPP-VF) induced the expression of mRNAs encoding IL-17C, IL-8, IL-1α, and IL-1β in living skin equivalents, but the level of only IL-8 mRNA decreased significantly upon stimulation of PPP vesicle with depletion of endogenous hCAP-18/LL-37 by affinity chromatography (dep-PPP-VF). Semi-quantitative dot-blot analysis revealed higher concentrations of hCAP-18/LL-37 in PPP-VF compared to healthy sweat (2.87±0.93 µM vs. 0.09±0.09 µM). This concentration of hCAP-18/LL-37 in PPP-VF could upregulate expression of IL-17C, IL-8, IL-1α, and IL-1β at both the mRNA and protein levels. Recombinant hCAP-18 was incubated with dep-PPP-VF. Proteinase 3, which converts hCAP-18 to the active form (LL-37), was present in PPP-VF. Histopathological and immunohistochemical examination revealed that early stage vesicles contained many mononuclear cells but no polymorphonuclear cells, and the mononuclear cells were CD68-positive. The epidermis surrounding the vesicle expresses monocyte chemotactic chemokine, CCL2. In conclusion, PPP-VF contains the proteinase required for LL-37 processing and also may directly upregulate IL-8 in lesional keratinocytes, in turn contributing to the subsequent inflammation of PPP lesional skin.
Collapse
Affiliation(s)
- Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
- * E-mail:
| | - Takaaki Kaneko
- Department of Dermatology, Asahikawa Medical College, Asahikawa, Japan
| | - Teruaki Nakatsuji
- Division of Dermatology, University of California San Diego, and VA San Diego Healthcare Center, San Diego, California, United States of America
| | - Kenji Kameda
- Integrated Center for Science, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hidenori Okazaki
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasushi Hanakawa
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mikiko Tohyama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|