51
|
Vermeulen MCM, Van der Heijden KB, Swaab H, Van Someren EJW. Sleep spindle characteristics and sleep architecture are associated with learning of executive functions in school-age children. J Sleep Res 2018; 28:e12779. [PMID: 30338601 PMCID: PMC7378945 DOI: 10.1111/jsr.12779] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
The macro‐ and microstructural characteristics of sleep electroencephalography have been associated with several aspects of executive functioning. However, only a few studies have addressed the association of sleep characteristics with the learning involved in the acquisition of executive functions, and no study has investigated this for planning and problem‐solving skills in the developing brain of children. The present study examined whether children's sleep stages and microstructural sleep characteristics are associated with performance improvement over repeated assessments of the Tower of Hanoi task, which requires integrated planning and problem‐solving skills. Thirty children (11 boys, mean age 10.7 years, SD = 0.8) performed computerized parallel versions of the Tower of Hanoi three times across 2 days, including a night with polysomnographically assessed sleep. Pearson correlations were used to evaluate the associations of Tower of Hanoi solution time improvements across repeated assessments with sleep stages (% of total sleep time), slow‐wave activity, and fast and slow spindle features. The results indicated a stronger performance improvement across wake in children with more Stage N2 sleep and less slow‐wave sleep. Stronger improvements across sleep were present in children in whom slow spindles were more dense, and in children in whom fast spindles were less dense, of shorter duration and had less power. The findings indicate that specific sleep electroencephalography signatures reflect the ability of the developing brain to acquire and improve on integrated planning and problem‐solving skills.
Collapse
Affiliation(s)
- Marije C M Vermeulen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Clinical Child and Adolescent Studies, Institute of Education and Child Studies, Leiden University, Leiden, The Netherlands
| | - Kristiaan B Van der Heijden
- Department of Clinical Child and Adolescent Studies, Institute of Education and Child Studies, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Hanna Swaab
- Department of Clinical Child and Adolescent Studies, Institute of Education and Child Studies, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Departments of Psychiatry and Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
52
|
Affiliation(s)
- Péter Przemyslaw Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
- National Institute of Clinical Neuroscience, Budapest, Hungary
| |
Collapse
|
53
|
Reynolds C, Short M, Gradisar M. Sleep spindles and cognitive performance across adolescence: A meta-analytic review. J Adolesc 2018; 66:55-70. [DOI: 10.1016/j.adolescence.2018.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022]
|
54
|
Sleep spindle activity in children with obstructive sleep apnea as a marker of neurocognitive performance: A pilot study. Eur J Paediatr Neurol 2018; 22:434-439. [PMID: 29477593 DOI: 10.1016/j.ejpn.2018.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 11/22/2022]
Abstract
STUDY OBJECTIVES To assess spindle activity as possible markers for neurocognitive consequences in children with mild obstructive sleep apnea. METHODS Children aged 6-11 years diagnosed with mild OSA (i.e., an apnea hypopnea index <5.0) were recruited and compared with age and gender-matched healthy controls. Polysomnographic recordings were analyzed for sleep microstructure and spindle activity. All children completed also an intelligence test battery (i.e., the Wechsler intelligence test for children, 4th version). RESULTS Nineteen children with OSA (13 boys, mean age 7.1 ± 1.4 y), and 14 controls (7 boys, mean age 8.1 ± 1.9 y) were included. Mean IQ was 110 ± 12 for the complete sample, in children with OSA 111 ± 13, and in controls 108 ± 12 (p = 0.602). Controls showed a higher spindle index in N2 stage than children with OSA: 143.0 ± 42.5 vs 89.5 ± 56.9, respectively (p = 0.003). Spindle index in NREM was strongly and significantly correlated with Verbal Comprehension Index (VCI), Working Memory Index (WMI), Processing Speed Index (PSI), and total IQ in children with OSA. CONCLUSIONS Children with mild OSA demonstrate a different pattern of sleep spindle activity that seems to be linked with neurocognitive performance, especially concerning memory. Sleep spindle activity seems to be involved with mechanisms related with neurocognitive consequences in children with OSA.
Collapse
|
55
|
Mikoteit T, Brand S, Perren S, von Wyl A, von Klitzing K, Kurath J, Holsboer-Trachsler E, Hatzinger M. Visually detected non-rapid eye movement stage 2 sleep spindle density at age five years predicted prosocial behavior positively and hyperactivity scores negatively at age nine years. Sleep Med 2018; 48:101-106. [PMID: 29879654 DOI: 10.1016/j.sleep.2018.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/06/2018] [Accepted: 03/04/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE A higher density of sleep electroencephalogram (EEG) spindles has been cross-sectionally associated with more efficient cortical-subcortical connectivity, superior intellectual and learning abilities, and healthier emotional and behavioral traits. In the present study, we explored to what extent sleep spindle density (SSD) at age five years could predict emotional and behavioral traits at six and nine years. METHODS A total of 19 healthy preschoolers at age five years underwent in-home sleep EEG recordings for visual scoring of non-rapid eye movement stage 2 (NREM-S2) sleep spindles, and SSD in NREM-S2 was calculated. Parents and teachers rated children's emotional and behavioral characteristics at ages five, six, and nine years. RESULTS Higher SSD at five years predicted higher prosocial behavior scores at nine years, as rated by parents and teachers, and lower hyperactivity scores as rated by teachers. Multiple regression analyses showed that SSD predicted prosocial behavior and hyperactivity independently of earlier prosocial behavior or hyperactivity. CONCLUSION The pattern of results suggests that a higher SSD at five years is predictive of higher scores for positive emotional and behavioral characteristics four years later. Therefore, spindle density indices might be acknowledged as an indicator not only of cognitive but also of emotional-behavioral development in children.
Collapse
Affiliation(s)
- Thorsten Mikoteit
- Psychiatric Clinics (UPK), Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland; Psychiatric Services Solothurn and University of Basel, Solothurn, Switzerland; Max Planck Institute of Psychiatry, Munich, Germany.
| | - Serge Brand
- Psychiatric Clinics (UPK), Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland; Department of Sport, Exercise and Health, Division of Sport and Psychosocial Health, University of Basel, Basel, Switzerland; Psychiatry Department, Substance Use Disorders Prevention Center, and Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sonja Perren
- Department of Empirical Educational Research, University of Konstanz, Konstanz, Germany
| | - Agnes von Wyl
- Psychological Institut, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Kai von Klitzing
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Leipzig, Leipzig, Germany
| | - Jennifer Kurath
- Psychiatric Clinics (UPK), Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland; Department of Psychology, Cognitive and Decision Sciences, University of Basel, Basel, Switzerland
| | - Edith Holsboer-Trachsler
- Psychiatric Clinics (UPK), Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland
| | - Martin Hatzinger
- Psychiatric Clinics (UPK), Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland; Psychiatric Services Solothurn and University of Basel, Solothurn, Switzerland
| |
Collapse
|
56
|
Koo PC, Mölle M, Marshall L. Efficacy of slow oscillatory‐transcranial direct current stimulation on
EEG
and memory – contribution of an inter‐individual factor. Eur J Neurosci 2018; 47:812-823. [DOI: 10.1111/ejn.13877] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/08/2018] [Accepted: 02/16/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Ping Chai Koo
- Institute of Experimental and Clinical Pharmacology and Toxicology University of Lübeck Ratzeburger Allee 160, Bldg 66 23562 Lübeck Germany
- Center of Brain, Behavior and Metabolism University of Lübeck Lübeck Germany
- Department of Psychiatry and Psychotherapy Rostock University Medical Centre Rostock Germany
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism University of Lübeck Lübeck Germany
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology and Toxicology University of Lübeck Ratzeburger Allee 160, Bldg 66 23562 Lübeck Germany
- Center of Brain, Behavior and Metabolism University of Lübeck Lübeck Germany
| |
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW Review of recent literature pertaining to frequency, associations, mechanisms, and overall significance of sleep--wake disturbances (SWD) in the premotor and early phase of Parkinson's disease. RECENT FINDINGS SWD are frequent in Parkinson's disease and their prevalence increases with disease progression. Recent studies confirm previous findings that SWD can appear as initial manifestation of Parkinson's disease even decades before motor signs appear and highlight their clinical associations in these early stages. More intriguingly, new evidence underpins their role as risk factors, predictors, or even as driving force for the neurodegenerative process. As our understanding of sleep--wake neurobiology increases, new hypotheses emerge concerning the pathophysiology of SWD in early Parkinson's disease stages involving dopaminergic and nondopaminergic mechanisms. SUMMARY SWD are predictors for the development of parkinsonian syndromes including Parkinson's disease. This may offer the opportunity of developing new preventive strategies and interventions at an early stage of this neurodegenerative disease.
Collapse
|
58
|
Ujma PP, Konrad BN, Gombos F, Simor P, Pótári A, Genzel L, Pawlowski M, Steiger A, Bódizs R, Dresler M. The sleep EEG spectrum is a sexually dimorphic marker of general intelligence. Sci Rep 2017; 7:18070. [PMID: 29273758 PMCID: PMC5741768 DOI: 10.1038/s41598-017-18124-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/19/2017] [Indexed: 12/28/2022] Open
Abstract
The shape of the EEG spectrum in sleep relies on genetic and anatomical factors and forms an individual "EEG fingerprint". Spectral components of EEG were shown to be connected to mental ability both in sleep and wakefulness. EEG sleep spindle correlates of intelligence, however, exhibit a sexual dimorphism, with a more pronounced association to intelligence in females than males. In a sample of 151 healthy individuals, we investigated how intelligence is related to spectral components of full-night sleep EEG, while controlling for the effects of age. A positive linear association between intelligence and REM anterior beta power was found in females but not males. Transient, spindle-like "REM beta tufts" are described in the EEG of healthy subjects, which may reflect the functioning of a recently described cingular-prefrontal emotion and motor regulation network. REM sleep frontal high delta power was a negative correlate of intelligence. NREM alpha and sigma spectral power correlations with intelligence did not unequivocally remain significant after multiple comparisons correction, but exhibited a similar sexual dimorphism. These results suggest that the neural oscillatory correlates of intelligence in sleep are sexually dimorphic, and they are not restricted to either sleep spindles or NREM sleep.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, H-1089, Budapest, Hungary.
- National Institute of Clinical Neuroscience, H-1145, Budapest, Hungary.
| | - Boris N Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands
| | - Ferenc Gombos
- National Institute of Clinical Neuroscience, H-1145, Budapest, Hungary
| | - Péter Simor
- Nyírő Gyula Hospital, National Institute of Psychiatry and Addictions, H-1135, Budapest, Hungary
- Department of Cognitive Sciences, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Adrián Pótári
- Department of Cognitive Sciences, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands
- Centre for Cognitive and Neural Systems, University of Edinburgh, EH8 9JZ, Edinburg, United Kingdom
| | | | - Axel Steiger
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, H-1089, Budapest, Hungary
- National Institute of Clinical Neuroscience, H-1145, Budapest, Hungary
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands
| |
Collapse
|
59
|
Fan D, Wang Q, Su J, Xi H. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus. J Comput Neurosci 2017; 43:203-225. [PMID: 28939929 DOI: 10.1007/s10827-017-0658-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
Abstract
It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191, China.
| | - Jianzhong Su
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| | - Hongguang Xi
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| |
Collapse
|
60
|
Horváth K, Hannon B, Ujma PP, Gombos F, Plunkett K. Memory in 3-month-old infants benefits from a short nap. Dev Sci 2017; 21:e12587. [PMID: 28722249 DOI: 10.1111/desc.12587] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
A broad range of studies demonstrate that sleep has a facilitating role in memory consolidation (see Rasch & Born, ). Whether sleep-dependent memory consolidation is also apparent in infants in their first few months of life has not been investigated. We demonstrate that 3-month-old infants only remember a cartoon face approximately 1.5-2 hours after its first presentation when a period of sleep followed learning. Furthermore, habituation time, that is, the time to become bored with a stimulus shown repetitively, correlated negatively with the density of infant sleep spindles, implying that processing speed is linked to specific electroencephalographic components of sleep. Our findings show that without a short period of sleep infants have problems remembering a newly seen face, that sleep enhances memory consolidation from a very early age, highlighting the importance of napping in infancy, and that infant sleep spindles may be associated with some aspects of cognitive ability.
Collapse
Affiliation(s)
- Klára Horváth
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Benjamin Hannon
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Peter P Ujma
- Institute for Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - Ferenc Gombos
- Department of Developmental and Social Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Kim Plunkett
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
61
|
Fan D, Liao F, Wang Q. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles. CHAOS (WOODBURY, N.Y.) 2017; 27:073103. [PMID: 28764392 DOI: 10.1063/1.4991869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE→TC→Cortex. Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE1→TC1→Cortex1 and Cortex1→Cortex2→Cortex3 projecting paths, respectively. Overall, those results imply that RE possesses the pacemaker function in controlling SWDs and spindling oscillations, which computationally provide causal support for the involvement of RE in absence seizures and sleep spindles.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Fucheng Liao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
62
|
Wilhelm I, Groch S, Preiss A, Walitza S, Huber R. Widespread reduction in sleep spindle activity in socially anxious children and adolescents. J Psychiatr Res 2017; 88:47-55. [PMID: 28086128 DOI: 10.1016/j.jpsychires.2016.12.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/19/2022]
Abstract
Social anxiety disorder (SAD) is one of the most prevalent psychiatric diseases typically emerging during childhood and adolescence. Biological vulnerabilities such as a protracted maturation of prefrontal cortex functioning together with heightened reactivity of the limbic system leading to increased emotional reactivity are discussed as factors contributing to the emergence and maintenance of SAD. Sleep slow wave activity (SWA, 0.75-4.5 Hz) and sleep spindle activity (9-16 Hz) reflect processes of brain maturation and emotion regulation. We used high-density electroencephalography to characterize sleep SWA and spindle activity and their relationship to emotional reactivity in children and adolescents suffering from SAD and healthy controls (HC). Subjectively rated arousal was assessed using an emotional picture-word association task. SWA did not differ between socially anxious and healthy participants. We found a widespread reduction in fast spindle activity (13-16 Hz) in SAD patients compared to HC. SAD patients rated negative stimuli to be more arousing and these arousal ratings were negatively correlated with fast spindle activity. These results suggest electrophysiological alterations that are evident at an early stage of psychopathology and that are closely linked to one core symptom of anxiety disorders such as increased emotional reactivity. The role of disturbed GABAergic neurotransmission is discussed as an underlying factor.
Collapse
Affiliation(s)
- Ines Wilhelm
- University Children's Hospital Zürich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Switzerland; Department of Experimental Psychopathology and Psychotherapy, University of Zürich, Switzerland
| | - Sabine Groch
- University Children's Hospital Zürich, Switzerland
| | - Andrea Preiss
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Switzerland
| | - Reto Huber
- University Children's Hospital Zürich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Switzerland.
| |
Collapse
|
63
|
Lunsford-Avery JR, Krystal AD, Kollins SH. Sleep disturbances in adolescents with ADHD: A systematic review and framework for future research. Clin Psychol Rev 2016; 50:159-174. [PMID: 27969004 DOI: 10.1016/j.cpr.2016.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/15/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Biological mechanisms underlying symptom and prognostic heterogeneity in Attention-Deficit/Hyperactivity Disorder (ADHD) are unclear. Sleep impacts neurocognition and daytime functioning and is disrupted in ADHD, yet little is known about sleep in ADHD during adolescence, a period characterized by alterations in sleep, brain structure, and environmental demands as well as diverging ADHD trajectories. METHODS A systematic review identified studies published prior to August 2016 assessing sleep in adolescents (aged 10-19years) with ADHD or participating in population-based studies measuring ADHD symptoms. RESULTS Twenty-five studies were identified (19 subjective report, 6 using actigraphy/polysomnography). Findings are mixed but overall suggest associations between sleep disturbances and 1) ADHD symptoms in the population and 2) poorer clinical, neurocognitive, and functional outcomes among adolescents with ADHD. Common limitations of studies included small or non-representative samples, non-standardized sleep measures, and cross-sectional methodology. CONCLUSIONS Current data on sleep in adolescent ADHD are sparse and limited by methodological concerns. Future studies are critical for clarifying a potential role of sleep in contributing to heterogeneity of ADHD presentation and prognosis. Potential mechanisms by which sleep disturbances during adolescence may contribute to worsened symptom severity and persistence of ADHD into adulthood and an agenda to guide future research are discussed.
Collapse
Affiliation(s)
- Jessica R Lunsford-Avery
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road Suite 300, Durham, NC 27705, United States.
| | - Andrew D Krystal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road Suite 300, Durham, NC 27705, United States; Departments of Psychiatry and Neurology, University of California San Francisco School of Medicine, 401 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Scott H Kollins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, 2608 Erwin Road Suite 300, Durham, NC 27705, United States
| |
Collapse
|
64
|
Sleep Spindle Characteristics in Children with Neurodevelopmental Disorders and Their Relation to Cognition. Neural Plast 2016; 2016:4724792. [PMID: 27478646 PMCID: PMC4958463 DOI: 10.1155/2016/4724792] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/11/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population.
Collapse
|
65
|
Form and Function of Sleep Spindles across the Lifespan. Neural Plast 2016; 2016:6936381. [PMID: 27190654 PMCID: PMC4848449 DOI: 10.1155/2016/6936381] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 01/11/2023] Open
Abstract
Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia) and during aging (such as neurodegenerative conditions), both types of disorders may benefit from therapies based on a better understanding of spindle function.
Collapse
|
66
|
McClain IJ, Lustenberger C, Achermann P, Lassonde JM, Kurth S, LeBourgeois MK. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood. Neural Plast 2016; 2016:3670951. [PMID: 27110405 PMCID: PMC4826705 DOI: 10.1155/2016/3670951] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles, a prominent feature of the non-rapid eye movement (NREM) sleep electroencephalogram (EEG), are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density) and power in the sigma frequency range (10-16 Hz) across ages 2, 3, and 5 years (n = 8; 3 males). At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps < 0.05). We also found a developmental decrease in mean spindle frequency (p < 0.05) but no change in spindle density with increasing age. Thus, sleep spindles increased in duration and amplitude but decreased in frequency across early childhood. Our data characterize early developmental changes in sleep spindles, which may advance understanding of thalamocortical brain connectivity and associated lifelong disease processes. These findings also provide unique insights into spindle ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation.
Collapse
Affiliation(s)
- Ian J. McClain
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Caroline Lustenberger
- Child Development Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Jonathan M. Lassonde
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Salome Kurth
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Monique K. LeBourgeois
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
67
|
Sprecher KE, Riedner BA, Smith RF, Tononi G, Davidson RJ, Benca RM. High Resolution Topography of Age-Related Changes in Non-Rapid Eye Movement Sleep Electroencephalography. PLoS One 2016; 11:e0149770. [PMID: 26901503 PMCID: PMC4764685 DOI: 10.1371/journal.pone.0149770] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel) electroencephalography (EEG) during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18–65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson’s coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor.
Collapse
Affiliation(s)
- Kate E. Sprecher
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin Center for Sleep Medicine and Research, University of Wisconsin, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| | - Brady A. Riedner
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin Center for Sleep Medicine and Research, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Richard F. Smith
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Richard J. Davidson
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Psychology, University of Wisconsin, Madison, Wisconsin, United States of America
- Center for Investigating Healthy Minds, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ruth M. Benca
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin Center for Sleep Medicine and Research, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
68
|
Novelli L, D'atri A, Marzano C, Finotti E, Ferrara M, Bruni O, De Gennaro L. Mapping changes in cortical activity during sleep in the first 4 years of life. J Sleep Res 2016; 25:381-9. [PMID: 26854271 DOI: 10.1111/jsr.12390] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/07/2015] [Indexed: 02/05/2023]
Abstract
A coherent body of evidence supports the notion that sleep is a local and use-dependent process. Significant changes in brain morphology and function occur in the first years of life, revealing a postero-anterior trajectory of cortical maturation. On this basis, a recent study demonstrated that regional cortical maturation between early childhood and late adolescence is reflected in regional changes of sleep slow wave activity (SWA) during non-rapid eye movement (NREM) sleep. Our hypothesis is that changes of electroencephalogram (EEG) rhythms during sleep from birth to childhood are also mirrored by parallel regional changes in the EEG rhythms of sleep according to the assumption of a postero-anterior gradient in cortical maturation. We studied all-night EEG of 39 healthy, full-term, infants and children aged between 0 and 48 months, evaluating regional differences in NREM sleep. We confirmed the strictly local nature of sleep with frequency-specific regional differences. Specifically, we found a general shift of maxima of the upper alpha activity from occipital to prefrontal regions, expressed mainly by the ~11 Hz frequency. This shift corresponds to a postero-anterior trajectory of the so-called 'slow spindles'. The theta and alpha EEG activity of the frontal cortex exhibits a clear, positive, correlation with age. We conclude that specific local differences during NREM sleep, parallel cortical maturation also in the first 4 years of life.
Collapse
Affiliation(s)
- Luana Novelli
- Department of Psychology, University of Rome 'La Sapienza', Rome, Italy
| | - Aurora D'atri
- Department of Psychology, University of Rome 'La Sapienza', Rome, Italy
| | - Cristina Marzano
- Department of Psychology, University of Rome 'La Sapienza', Rome, Italy
| | - Elena Finotti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Michele Ferrara
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, University of Rome 'La Sapienza', Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, University of Rome 'La Sapienza', Rome, Italy
| |
Collapse
|
69
|
Doucette MR, Kurth S, Chevalier N, Munakata Y, LeBourgeois MK. Topography of Slow Sigma Power during Sleep is Associated with Processing Speed in Preschool Children. Brain Sci 2015; 5:494-508. [PMID: 26556377 PMCID: PMC4701024 DOI: 10.3390/brainsci5040494] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 12/04/2022] Open
Abstract
Cognitive development is influenced by maturational changes in processing speed, a construct reflecting the rapidity of executing cognitive operations. Although cognitive ability and processing speed are linked to spindles and sigma power in the sleep electroencephalogram (EEG), little is known about such associations in early childhood, a time of major neuronal refinement. We calculated EEG power for slow (10-13 Hz) and fast (13.25-17 Hz) sigma power from all-night high-density electroencephalography (EEG) in a cross-sectional sample of healthy preschool children (n = 10, 4.3 ± 1.0 years). Processing speed was assessed as simple reaction time. On average, reaction time was 1409 ± 251 ms; slow sigma power was 4.0 ± 1.5 μV²; and fast sigma power was 0.9 ± 0.2 μV². Both slow and fast sigma power predominated over central areas. Only slow sigma power was correlated with processing speed in a large parietal electrode cluster (p < 0.05, r ranging from -0.6 to -0.8), such that greater power predicted faster reaction time. Our findings indicate regional correlates between sigma power and processing speed that are specific to early childhood and provide novel insights into the neurobiological features of the EEG that may underlie developing cognitive abilities.
Collapse
Affiliation(s)
- Margaret R Doucette
- Sleep and Development Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Salome Kurth
- Sleep and Development Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Nicolas Chevalier
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK.
| | - Yuko Munakata
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Monique K LeBourgeois
- Sleep and Development Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
70
|
Chokroverty S, Bhat S, Donnelly D, Gupta D, Rubinstein M, DeBari VA. Sleep spindle density increases after continuous positive airway pressure titration in severe obstructive sleep apnea: a preliminary study. Sleep Med 2015; 16:1029. [PMID: 26143164 DOI: 10.1016/j.sleep.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Sudhansu Chokroverty
- JFK Neuroscience Institute, Edison, NJ, USA; Seton Hall University, South Orange, NJ, USA.
| | - Sushanth Bhat
- JFK Neuroscience Institute, Edison, NJ, USA; Seton Hall University, South Orange, NJ, USA
| | - Diane Donnelly
- JFK Neuroscience Institute, Edison, NJ, USA; Seton Hall University, South Orange, NJ, USA
| | - Divya Gupta
- JFK Neuroscience Institute, Edison, NJ, USA; Seton Hall University, South Orange, NJ, USA
| | | | | |
Collapse
|
71
|
Tessier S, Lambert A, Chicoine M, Scherzer P, Soulières I, Godbout R. Intelligence measures and stage 2 sleep in typically-developing and autistic children. Int J Psychophysiol 2015; 97:58-65. [PMID: 25958790 DOI: 10.1016/j.ijpsycho.2015.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/20/2015] [Accepted: 05/04/2015] [Indexed: 11/26/2022]
Abstract
The relationship between intelligence measures and 2 EEG measures of non-rapid eye movement sleep, sleep spindles and Sigma activity, was examined in 13 typically-developing (TD) and 13 autistic children with normal IQ and no complaints of poor sleep. Sleep spindles and Sigma EEG activity were computed for frontal (Fp1, Fp2) and central (C3, C4) recording sites. Time in stage 2 sleep and IQ was similar in both groups. Autistic children presented less spindles at Fp2 compared to the TD children. TD children showed negative correlation between verbal IQ and sleep spindle density at Fp2. In the autistic group, verbal and full-scale IQ scores correlated negatively with C3 sleep spindle density. The duration of sleep spindles at Fp1 was shorter in the autistic group than in the TD children. The duration of sleep spindles at C4 was positively correlated with verbal IQ only in the TD group. Fast Sigma EEG activity (13.25-15.75 Hz) was lower at C3 and C4 in autistic children compared to the TD children, particularly in the latter part of the night. Only the TD group showed positive correlation between performance IQ and latter part of the night fast Sigma activity at C4. These results are consistent with a relationship between EEG activity during sleep and cognitive processing in children. The difference between TD and autistic children could derive from dissimilar cortical organization and information processing in these 2 groups.
Collapse
Affiliation(s)
- Sophie Tessier
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Centre de Recherche, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montréal, Québec, Canada
| | - Andréane Lambert
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Centre de Recherche, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montréal, Québec, Canada
| | - Marjolaine Chicoine
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Centre de Recherche, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montréal, Québec, Canada
| | - Peter Scherzer
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Isabelle Soulières
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada; Autism Clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Centre de Recherche, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montréal, Québec, Canada
| | - Roger Godbout
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Department of Psychiatry, Université de Montréal, Montréal, Québec, Canada; Autism Clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Centre de Recherche, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
72
|
Abstract
Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased thalamocortical oscillations in sleep is one particular mechanism typical for females but not males.
Collapse
|
73
|
Ujma PP, Gombos F, Genzel L, Konrad BN, Simor P, Steiger A, Dresler M, Bódizs R. A comparison of two sleep spindle detection methods based on all night averages: individually adjusted vs. fixed frequencies. Front Hum Neurosci 2015; 9:52. [PMID: 25741264 PMCID: PMC4330897 DOI: 10.3389/fnhum.2015.00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/19/2015] [Indexed: 11/13/2022] Open
Abstract
Sleep spindles are frequently studied for their relationship with state and trait cognitive variables, and they are thought to play an important role in sleep-related memory consolidation. Due to their frequent occurrence in NREM sleep, the detection of sleep spindles is only feasible using automatic algorithms, of which a large number is available. We compared subject averages of the spindle parameters computed by a fixed frequency (FixF) (11–13 Hz for slow spindles, 13–15 Hz for fast spindles) automatic detection algorithm and the individual adjustment method (IAM), which uses individual frequency bands for sleep spindle detection. Fast spindle duration and amplitude are strongly correlated in the two algorithms, but there is little overlap in fast spindle density and slow spindle parameters in general. The agreement between fixed and manually determined sleep spindle frequencies is limited, especially in case of slow spindles. This is the most likely reason for the poor agreement between the two detection methods in case of slow spindle parameters. Our results suggest that while various algorithms may reliably detect fast spindles, a more sophisticated algorithm primed to individual spindle frequencies is necessary for the detection of slow spindles as well as individual variations in the number of spindles in general.
Collapse
Affiliation(s)
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University Budapest, Hungary
| | - Lisa Genzel
- Centre for Cognitive and Neural Systems, University of Edinburgh Edinburgh, UK
| | - Boris Nikolai Konrad
- Department of Clinical Research, Max Planck Institute of Psychiatry Munich, Germany
| | - Péter Simor
- Department of Cognitive Sciences, Budapest University of Technology and Economics Budapest, Hungary ; Nyírõ Gyula Hospital, National Institute of Psychiatry and Addictions Budapest, Hungary
| | - Axel Steiger
- Department of General Psychology, Pázmány Péter Catholic University Budapest, Hungary
| | - Martin Dresler
- Department of Clinical Research, Max Planck Institute of Psychiatry Munich, Germany ; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre Nijmegen, Netherlands
| | - Róbert Bódizs
- Institute of Behavioral Science, Semmelweis University Budapest, Hungary ; Department of General Psychology, Pázmány Péter Catholic University Budapest, Hungary
| |
Collapse
|
74
|
Bódizs R, Gombos F, Ujma PP, Kovács I. Sleep spindling and fluid intelligence across adolescent development: sex matters. Front Hum Neurosci 2014; 8:952. [PMID: 25506322 PMCID: PMC4246682 DOI: 10.3389/fnhum.2014.00952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/08/2014] [Indexed: 12/21/2022] Open
Abstract
Evidence supports the intricate relationship between sleep electroencephalogram (EEG) spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ) with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males) with an age range of 15-22 years (mean: 18 years) and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test). Slow spindles (SSs) and fast spindles (FSs) were analyzed in 21 EEG derivations by using the individual adjustment method (IAM). A significant age-dependent increase in average FS density (r = 0.57; p = 0.005) was found. Moreover, fluid IQ correlated with FS density (r = 0.43; p = 0.04) and amplitude (r = 0.41; p = 0.049). The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = 0.80 (p = 0.002) and r = 0.67 (p = 0.012), for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = 0.60, p = 0.04). Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unraveling gender differences in adolescent brain maturation and perhaps cognitive strategy.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis UniversityBudapest, Hungary
- Department of General Psychology, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Péter P. Ujma
- Institute of Behavioural Sciences, Semmelweis UniversityBudapest, Hungary
| | - Ilona Kovács
- Department of General Psychology, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
75
|
Astill RG, Piantoni G, Raymann RJEM, Vis JC, Coppens JE, Walker MP, Stickgold R, Van Der Werf YD, Van Someren EJW. Sleep spindle and slow wave frequency reflect motor skill performance in primary school-age children. Front Hum Neurosci 2014; 8:910. [PMID: 25426055 PMCID: PMC4227520 DOI: 10.3389/fnhum.2014.00910] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/23/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND AIM The role of sleep in the enhancement of motor skills has been studied extensively in adults. We aimed to determine involvement of sleep and characteristics of spindles and slow waves in a motor skill in children. HYPOTHESIS We hypothesized sleep-dependence of skill enhancement and an association of interindividual differences in skill and sleep characteristics. METHODS 30 children (19 females, 10.7 ± 0.8 years of age; mean ± SD) performed finger sequence tapping tasks in a repeated-measures design spanning 4 days including 1 polysomnography (PSG) night. Initial and delayed performance were assessed over 12 h of wake; 12 h with sleep; and 24 h with wake and sleep. For the 12 h with sleep, children were assigned to one of three conditions: modulation of slow waves and spindles was attempted using acoustic perturbation, and compared to yoked and no-sound control conditions. ANALYSES Mixed effect regression models evaluated the association of sleep, its macrostructure and spindles and slow wave parameters with initial and delayed speed and accuracy. RESULTS AND CONCLUSIONS Children enhance their accuracy only over an interval with sleep. Unlike previously reported in adults, children enhance their speed independent of sleep, a capacity that may to be lost in adulthood. Individual differences in the dominant frequency of spindles and slow waves were predictive for performance: children performed better if they had less slow spindles, more fast spindles and faster slow waves. On the other hand, overnight enhancement of accuracy was most pronounced in children with more slow spindles and slower slow waves, i.e., the ones with an initial lower performance. Associations of spindle and slow wave characteristics with initial performance may confound interpretation of their involvement in overnight enhancement. Slower frequencies of characteristic sleep events may mark slower learning and immaturity of networks involved in motor skills.
Collapse
Affiliation(s)
- Rebecca G Astill
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Department of Clinical Neurophysiology, Amsterdam Sleep Centre, Slotervaartziekenhuis Amsterdam, Netherlands
| | - Giovanni Piantoni
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Department of Neurology, Massachusetts General Hospital Boston, MA, USA
| | - Roy J E M Raymann
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | - Jose C Vis
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Sleepvision, Berg en Dal Netherlands
| | - Joris E Coppens
- Department of Technology and Software Development, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | - Matthew P Walker
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California Berkeley, CA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA
| | - Ysbrand D Van Der Werf
- Department of Emotion and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Department of Anatomy and Neurosciences, VU University and Medical Center Amsterdam, Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Departments of Integrative Neurophysiology and Medical Psychology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University and Medical Center Amsterdam, Netherlands
| |
Collapse
|
76
|
Hoedlmoser K, Heib DPJ, Roell J, Peigneux P, Sadeh A, Gruber G, Schabus M. Slow sleep spindle activity, declarative memory, and general cognitive abilities in children. Sleep 2014; 37:1501-12. [PMID: 25142558 DOI: 10.5665/sleep.4000] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Functional interactions between sleep spindle activity, declarative memory consolidation, and general cognitive abilities in school-aged children. DESIGN Healthy, prepubertal children (n = 63; mean age 9.56 ± 0.76 y); ambulatory all-night polysomnography (2 nights); investigating the effect of prior learning (word pair association task; experimental night) versus nonlearning (baseline night) on sleep spindle activity; general cognitive abilities assessed using the Wechsler Intelligence Scale for Children-IV (WISC-IV). MEASUREMENTS AND RESULTS Analysis of spindle activity during nonrapid eye movement sleep (N2 and N3) evidenced predominant peaks in the slow (11-13 Hz) but not in the fast (13-15 Hz) sleep spindle frequency range (baseline and experimental night). Analyses were restricted to slow sleep spindles. Changes in spindle activity from the baseline to the experimental night were not associated with the overnight change in the number of recalled words reflecting declarative memory consolidation. Children with higher sleep spindle activity as measured at frontal, central, parietal, and occipital sites during both baseline and experimental nights exhibited higher general cognitive abilities (WISC-IV) and declarative learning efficiency (i.e., number of recalled words before and after sleep). CONCLUSIONS Slow sleep spindles (11-13 Hz) in children age 8-11 y are associated with inter-individual differences in general cognitive abilities and learning efficiency.
Collapse
|
77
|
Huber R, Born J. Sleep, synaptic connectivity, and hippocampal memory during early development. Trends Cogn Sci 2014; 18:141-52. [PMID: 24462334 DOI: 10.1016/j.tics.2013.12.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 01/01/2023]
Abstract
Sleep, specifically sleep slow-wave activity (SWA), contributes to global synaptic homeostasis in neocortical networks by downscaling synaptic connections that were potentiated during prior wakefulness. In parallel, SWA supports the consolidation of hippocampus-dependent episodic memory, a process linked to local increases in synaptic connectivity. During development, both SWA and episodic memory show parallel time courses: distinct SWA and capabilities to form episodic memory become established during infancy and then profoundly increase across childhood until puberty. We propose that the parallel increases across childhood reflect an imbalance in the underlying regulation of synaptic connectivity during sleep; although memory consolidation favoring synaptic potentiation is enhanced, global synaptic downscaling during sleep SWA does not attain complete recovery of homeostatic baseline levels.
Collapse
Affiliation(s)
- Reto Huber
- University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Jan Born
- University of Tübingen, Institute of Medical Psychology and Behavioral Neurobiology, Otfried-Mueller-Str. 25, 72076 Tübingen, Germany; University of Tübingen, Center for Integrative Neuroscience, Otfried-Mueller-Str. 25, 72076 Tübingen, Germany.
| |
Collapse
|
78
|
Abstract
Despite the fact that midday naps are characteristic of early childhood, very little is understood about the structure and function of these sleep bouts. Given that sleep benefits memory in young adults, it is possible that naps serve a similar function for young children. However, children transition from biphasic to monophasic sleep patterns in early childhood, eliminating the nap from their daily sleep schedule. As such, naps may contain mostly light sleep stages and serve little function for learning and memory during this transitional age. Lacking scientific understanding of the function of naps in early childhood, policy makers may eliminate preschool classroom nap opportunities due to increasing curriculum demands. Here we show evidence that classroom naps support learning in preschool children by enhancing memories acquired earlier in the day compared with equivalent intervals spent awake. This nap benefit is greatest for children who nap habitually, regardless of age. Performance losses when nap-deprived are not recovered during subsequent overnight sleep. Physiological recordings of naps support a role of sleep spindles in memory performance. These results suggest that distributed sleep is critical in early learning; when short-term memory stores are limited, memory consolidation must take place frequently.
Collapse
|
79
|
Urbain C, Galer S, Van Bogaert P, Peigneux P. Pathophysiology of sleep-dependent memory consolidation processes in children. Int J Psychophysiol 2013; 89:273-83. [DOI: 10.1016/j.ijpsycho.2013.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022]
|
80
|
Sleep deprivation and neurobehavioral functioning in children. Int J Psychophysiol 2013; 89:259-64. [DOI: 10.1016/j.ijpsycho.2013.06.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/11/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2022]
|
81
|
Gruber R, Wise MS, Frenette S, Knäauper B, Boom A, Fontil L, Carrier J. The association between sleep spindles and IQ in healthy school-age children. Int J Psychophysiol 2013; 89:229-40. [DOI: 10.1016/j.ijpsycho.2013.03.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 01/07/2023]
|
82
|
Novelli L, Ferri R, Bruni O. Sleep cyclic alternating pattern and cognition in children: a review. Int J Psychophysiol 2013; 89:246-51. [PMID: 23911606 DOI: 10.1016/j.ijpsycho.2013.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Several studies have been recently focused on the relationship between sleep cyclic alternating pattern (CAP) and daytime cognitive performance, supporting the idea that the CAP slow components may play a role in sleep-related cognitive processes. Based on the results of these reports, it can be hypothesized that the analysis of CAP might be helpful in characterizing sleep microstructure patterns of different phenotypes of intellectual disability and a series of studies has been carried out that are reviewed in this paper. First the studies exploring the correlations between CAP and cognitive performance in normal adults and children are described; then, those analyzing the correlation between CAP and cognitive patterns of several developmental conditions with neurocognitive dysfunction (with or without mental retardation) are reported in detail in order to achieve a unitary view of the role of CAP in these conditions that allows to detect a particular "sleep microstructure phenotype" of children with neurologic/neuropsychiatric disorders.
Collapse
Affiliation(s)
- Luana Novelli
- Centre for Pediatric Sleep Disorders, Department of Social and Developmental Psychology, Sapienza University, Rome, Italy
| | | | | |
Collapse
|