51
|
Yu K, Lin CCJ, Hatcher A, Lozzi B, Kong K, Huang-Hobbs E, Cheng YT, Beechar VB, Zhu W, Zhang Y, Chen F, Mills GB, Mohila CA, Creighton CJ, Noebels JL, Scott KL, Deneen B. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 2020; 578:166-171. [PMID: 31996845 PMCID: PMC7577741 DOI: 10.1038/s41586-020-1952-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
Glioblastoma is a universally lethal form of brain cancer that exhibits an array of pathophysiological phenotypes, many of which are mediated by interactions with the neuronal microenvironment1,2. Recent studies have shown that increases in neuronal activity have an important role in the proliferation and progression of glioblastoma3,4. Whether there is reciprocal crosstalk between glioblastoma and neurons remains poorly defined, as the mechanisms that underlie how these tumours remodel the neuronal milieu towards increased activity are unknown. Here, using a native mouse model of glioblastoma, we develop a high-throughput in vivo screening platform and discover several driver variants of PIK3CA. We show that tumours driven by these variants have divergent molecular properties that manifest in selective initiation of brain hyperexcitability and remodelling of the synaptic constituency. Furthermore, secreted members of the glypican (GPC) family are selectively expressed in these tumours, and GPC3 drives gliomagenesis and hyperexcitability. Together, our studies illustrate the importance of functionally interrogating diverse tumour phenotypes driven by individual, yet related, variants and reveal how glioblastoma alters the neuronal microenvironment.
Collapse
Affiliation(s)
- Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Chia-Ching John Lin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Asante Hatcher
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Kathleen Kong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Emmet Huang-Hobbs
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Ting Cheng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Vivek B Beechar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Wenyi Zhu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Yiqun Zhang
- Dan L. Duncan Cancer Center, Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
| | - Fengju Chen
- Dan L. Duncan Cancer Center, Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
| | - Gordon B Mills
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health Science University, Portland, OR, USA
| | - Carrie A Mohila
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Chad J Creighton
- Dan L. Duncan Cancer Center, Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey L Noebels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Kenneth L Scott
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
52
|
Roy A, Deng M, Aldinger K, Glass I, Millen K. Laser Capture Micro-dissection (LCM) of Neonatal Mouse Forebrain for RNA Isolation. Bio Protoc 2020; 10:e3475. [DOI: 10.21769/bioprotoc.3475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
53
|
Early dorsomedial tissue interactions regulate gyrification of distal neocortex. Nat Commun 2019; 10:5192. [PMID: 31729356 PMCID: PMC6858446 DOI: 10.1038/s41467-019-12913-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
The extent of neocortical gyrification is an important determinant of a species’ cognitive abilities, yet the mechanisms regulating cortical gyrification are poorly understood. We uncover long-range regulation of this process originating at the telencephalic dorsal midline, where levels of secreted Bmps are maintained by factors in both the neuroepithelium and the overlying mesenchyme. In the mouse, the combined loss of transcription factors Lmx1a and Lmx1b, selectively expressed in the midline neuroepithelium and the mesenchyme respectively, causes dorsal midline Bmp signaling to drop at early neural tube stages. This alters the spatial and temporal Wnt signaling profile of the dorsal midline cortical hem, which in turn causes gyrification of the distal neocortex. Our study uncovers early mesenchymal-neuroepithelial interactions that have long-range effects on neocortical gyrification and shows that lissencephaly in mice is actively maintained via redundant genetic regulation of dorsal midline development and signaling. The contribution of long-range signaling to cortical gyrification remains poorly understood. In this study, authors demonstrate that the combined genetic loss of transcription factors Lmx1a and Lmx1b, expressed in the telencephalic dorsal midline neuroepithelium and head mesenchyme, respectively, induces gyrification in the mouse neocortex
Collapse
|
54
|
Pinson A, Namba T, Huttner WB. Malformations of Human Neocortex in Development - Their Progenitor Cell Basis and Experimental Model Systems. Front Cell Neurosci 2019; 13:305. [PMID: 31338027 PMCID: PMC6629864 DOI: 10.3389/fncel.2019.00305] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Malformations of the human neocortex in development constitute a heterogeneous group of complex disorders, resulting in pathologies such as intellectual disability and abnormal neurological/psychiatric conditions such as epilepsy or autism. Advances in genomic sequencing and genetic techniques have allowed major breakthroughs in the field, revealing the molecular basis of several of these malformations. Here, we focus on those malformations of the human neocortex, notably microcephaly, and macrocephaly, where an underlying basis has been established at the level of the neural stem/progenitor cells (NPCs) from which neurons are directly or indirectly derived. Particular emphasis is placed on NPC cell biology and NPC markers. A second focus of this review is on experimental model systems used to dissect the underlying mechanisms of malformations of the human neocortex in development at the cellular and molecular level. The most commonly used model system have been genetically modified mice. However, although basic features of neocortical development are conserved across the various mammalian species, some important differences between mouse and human exist. These pertain to the abundance of specific NPC types and/or their proliferative capacity, as exemplified in the case of basal radial glia. These differences limit the ability of mouse models to fully recapitulate the phenotypes of malformations of the human neocortex. For this reason, additional experimental model systems, notably the ferret, non-human primates and cerebral organoids, have recently emerged as alternatives and shown to be of increasing relevance. It is therefore important to consider the benefits and limitations of each of these model systems for studying malformations of the human neocortex in development.
Collapse
Affiliation(s)
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
55
|
Roy A, Murphy RM, Deng M, MacDonald JW, Bammler TK, Aldinger KA, Glass IA, Millen KJ. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. eLife 2019; 8:45961. [PMID: 31094678 PMCID: PMC6544437 DOI: 10.7554/elife.45961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023] Open
Abstract
Mechanisms driving the initiation of brain folding are incompletely understood. We have previously characterized mouse models recapitulating human PIK3CA-related brain overgrowth, epilepsy, dysplastic gyrification and hydrocephalus (Roy et al., 2015). Using the same, highly regulatable brain-specific model, here we report PI3K-dependent mechanisms underlying gyrification of the normally smooth mouse cortex, and hydrocephalus. We demonstrate that a brief embryonic Pik3ca activation was sufficient to drive subtle changes in apical cell adhesion and subcellular Yap translocation, causing focal proliferation and subsequent initiation of the stereotypic ‘gyrification sequence’, seen in naturally gyrencephalic mammals. Treatment with verteporfin, a nuclear Yap inhibitor, restored apical surface integrity, normalized proliferation, attenuated gyrification and rescued the associated hydrocephalus, highlighting the interrelated role of regulated PI3K-Yap signaling in normal neural-ependymal development. Our data defines apical cell-adhesion as the earliest known substrate for cortical gyrification. In addition, our preclinical results support the testing of Yap-related small-molecule therapeutics for developmental hydrocephalus.
Collapse
Affiliation(s)
- Achira Roy
- Center for Integrative Brain Research, Seattle Children's Research Institute, Washington, United States
| | - Rory M Murphy
- Center for Integrative Brain Research, Seattle Children's Research Institute, Washington, United States
| | - Mei Deng
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Washington, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Washington, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Washington, United States
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Washington, United States.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Washington, United States
| | - Ian A Glass
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Washington, United States
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Washington, United States.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Washington, United States
| |
Collapse
|
56
|
Kim JK, Lee JH. Mechanistic Target of Rapamycin Pathway in Epileptic Disorders. J Korean Neurosurg Soc 2019; 62:272-287. [PMID: 31085953 PMCID: PMC6514310 DOI: 10.3340/jkns.2019.0027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.
Collapse
Affiliation(s)
- Jang Keun Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
57
|
Abstract
Individual cell types have characteristic sizes, suggesting that size sensing mechanisms may coordinate transcription, translation, and metabolism with cell growth rates. Two types of size-sensing mechanisms have been proposed: spatial sensing of the location or dimensions of a signal, subcellular structure or organelle; or titration-based sensing of the intracellular concentrations of key regulators. Here we propose that size sensing in animal cells combines both titration and spatial sensing elements in a dynamic mechanism whereby microtubule motor-dependent localization of RNA encoding importin β1 and mTOR, coupled with regulated local protein synthesis, enable cytoskeleton length sensing for cell growth regulation.
Collapse
Affiliation(s)
- Ida Rishal
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
58
|
Mitchell CB, Phillips WA. Mouse Models for Exploring the Biological Consequences and Clinical Significance of PIK3CA Mutations. Biomolecules 2019; 9:biom9040158. [PMID: 31018529 PMCID: PMC6523081 DOI: 10.3390/biom9040158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is involved in a myriad of cellular signalling pathways that regulate cell growth, metabolism, proliferation and survival. As a result, alterations in the PI3K pathway are frequently associated with human cancers. Indeed, PIK3CA-the gene encoding the p110α catalytic subunit of PI3K-is one of the most commonly mutated human oncogenes. PIK3CA mutations have also been implicated in non-malignant conditions including congenital overgrowth syndromes and vascular malformations. In order to study the role of PIK3CA mutations in driving tumorigenesis and tissue overgrowth and to test potential therapeutic interventions for these conditions, model systems are essential. In this review we discuss the various mouse models currently available for preclinical studies into the biological consequences and clinical significance of PIK3CA mutations.
Collapse
Affiliation(s)
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
59
|
Guarnieri FC, de Chevigny A, Falace A, Cardoso C. Disorders of neurogenesis and cortical development. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936766 PMCID: PMC6436956 DOI: 10.31887/dcns.2018.20.4/ccardoso] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of the cerebral cortex requires complex sequential processes that have to be precisely orchestrated. The localization and timing of neuronal progenitor proliferation and of neuronal migration define the identity, laminar positioning, and specific connectivity of each single cortical neuron. Alterations at any step of this organized series of events—due to genetic mutations or environmental factors—lead to defined brain pathologies collectively known as malformations of cortical development (MCDs), which are now recognized as a leading cause of drug-resistant epilepsy and intellectual disability. In this heterogeneous group of disorders, macroscopic alterations of brain structure (eg, heterotopic nodules, small or absent gyri, double cortex) can be recognized and probably subtend a general reorganization of neuronal circuits. In this review, we provide an overview of the molecular mechanisms that are implicated in the generation of genetic MCDs associated with aberrations at various steps of neurogenesis and cortical development.
Collapse
Affiliation(s)
| | | | - Antonio Falace
- Aix-Marseille University, INSERM U1249, INMED, Marseille 13009, France
| | - Carlos Cardoso
- Aix-Marseille University, INSERM U1249, INMED, Marseille 13009, France
| |
Collapse
|
60
|
Mühlebner A, Bongaarts A, Sarnat HB, Scholl T, Aronica E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat 2019; 235:521-542. [PMID: 30901081 DOI: 10.1111/joa.12956] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years the role of the mammalian target of rapamycin (mTOR) pathway has emerged as crucial for normal cortical development. Therefore, it is not surprising that aberrant activation of mTOR is associated with developmental malformations and epileptogenesis. A broad spectrum of malformations of cortical development, such as focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC), have been linked to either germline or somatic mutations in mTOR pathway-related genes, commonly summarised under the umbrella term 'mTORopathies'. However, there are still a number of unanswered questions regarding the involvement of mTOR in the pathophysiology of these abnormalities. Therefore, a monogenetic disease, such as TSC, can be more easily applied as a model to study the mechanisms of epileptogenesis and identify potential new targets of therapy. Developmental neuropathology and genetics demonstrate that FCD IIb and hemimegalencephaly are the same diseases. Constitutive activation of mTOR signalling represents a shared pathogenic mechanism in a group of developmental malformations that have histopathological and clinical features in common, such as epilepsy, autism and other comorbidities. We seek to understand the effect of mTOR dysregulation in a developing cortex with the propensity to generate seizures as well as the aftermath of the surrounding environment, including the white matter.
Collapse
Affiliation(s)
- A Mühlebner
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Bongaarts
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology) and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada
| | - T Scholl
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| |
Collapse
|
61
|
Abstract
Somatic Mutations Activating the mTOR Pathway in Dorsal
Telencephalic Progenitors Cause a Continuum of Cortical
Dysplasias D’Gama AM, Woodworth MB, Hossain AA, Bizzotto S, Hatem NE, LaCoursiere
CM, Najm I, Ying Z, Yang E, Barkovich AJ, Kwiatkowski DJ, Vinters HV,
Madsen JR, Mathern GW, Blümcke I, Poduri A, Walsh CA. Cell
Rep. 2017;21:3754-3766. doi:10.1016/j.celrep.2017.11.106 Focal cortical dysplasia (FCD) and hemimegalencephaly (HME) are
epileptogenic neurodevelopmental malformations caused by mutations in
mTOR pathway genes. Deep sequencing of these genes in FCD/HME brain
tissue identified an etiology in 27 (41%) of 66 cases. Radiographically
indistinguishable lesions are caused by somatic activating mutations in
AKT3, MTOR, and
PIK3CA and germline loss-of-function mutations in
DEPDC5, NPRL2, and
TSC1/2, including TSC2 mutations
in isolated HME demonstrating a “two-hit” model. Mutations in the same
gene cause a disease continuum from FCD to HME to bilateral brain
overgrowth, reflecting the progenitor cell and developmental time when
the mutation occurred. Single-cell sequencing demonstrated mTOR
activation in neurons in all lesions. Conditional
Pik3ca activation in the mouse cortex showed that
mTOR activation in excitatory neurons and glia, but not interneurons, is
sufficient for abnormal cortical overgrowth. These data suggest that
mTOR activation in dorsal telencephalic progenitors, in some cases
specifically the excitatory neuron lineage, causes cortical
dysplasia.
Collapse
|
62
|
Marsan E, Baulac S. Review: Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol Appl Neurobiol 2019; 44:6-17. [PMID: 29359340 DOI: 10.1111/nan.12463] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
Over the last decade, there has been increasing evidence that hyperactivation of the mechanistic target of rapamycin (mTOR) pathway is a hallmark of malformations of cortical development such as focal cortical dysplasia (FCD) or hemimegalencephaly. The mTOR pathway governs protein and lipid synthesis, cell growth and proliferation as well as metabolism and autophagy. The molecular genetic aetiology of mTOR hyperactivation has only been recently clarified. This article will review the current and still evolving genetic advances in the elucidation of the molecular basis of FCD. Activating somatic mutations in the MTOR gene are to date the most frequent mutations found in FCD brain specimens.
Collapse
Affiliation(s)
- E Marsan
- Department of Genetics and Cytogenetics, AP-HP, Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, Paris, France
| | - S Baulac
- Department of Genetics and Cytogenetics, AP-HP, Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U1127, CNRS UMR 7225, Paris, France
| |
Collapse
|
63
|
Llinares-Benadero C, Borrell V. Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nat Rev Neurosci 2019; 20:161-176. [DOI: 10.1038/s41583-018-0112-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
64
|
Somatic mosaicism and neurodevelopmental disease. Nat Neurosci 2018; 21:1504-1514. [PMID: 30349109 DOI: 10.1038/s41593-018-0257-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022]
Abstract
Traditionally, we have considered genetic mutations that cause neurodevelopmental diseases to be inherited or de novo germline mutations. Recently, we have come to appreciate the importance of de novo somatic mutations, which occur postzygotically and are thus present in only a subset of the cells of an affected individual. The advent of next-generation sequencing and single-cell sequencing technologies has shown that somatic mutations contribute to normal and abnormal human brain development. Somatic mutations are one important cause of neuronal migration and brain overgrowth disorders, as suggested by visible focal lesions. In addition, somatic mutations contribute to neurodevelopmental diseases without visible lesions, including epileptic encephalopathies, intellectual disability, and autism spectrum disorder, and may contribute to a broad range of neuropsychiatric diseases. Studying somatic mutations provides insight into the mechanisms underlying human brain development and neurodevelopmental diseases and has important implications for diagnosis and treatment.
Collapse
|
65
|
Miterko LN, Lackey EP, Heck DH, Sillitoe RV. Shaping Diversity Into the Brain's Form and Function. Front Neural Circuits 2018; 12:83. [PMID: 30364100 PMCID: PMC6191489 DOI: 10.3389/fncir.2018.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/18/2018] [Indexed: 11/23/2022] Open
Abstract
The brain contains a large diversity of unique cell types that use specific genetic programs to control development and instruct the intricate wiring of sensory, motor, and cognitive brain regions. In addition to their cellular diversity and specialized connectivity maps, each region's dedicated function is also expressed in their characteristic gross external morphologies. The folds on the surface of the cerebral cortex and cerebellum are classic examples. But, to what extent does structure relate to function and at what spatial scale? We discuss the mechanisms that sculpt functional brain maps and external morphologies. We also contrast the cryptic structural defects in conditions such as autism spectrum disorders to the overt microcephaly after Zika infections, taking into consideration that both diseases disrupt proper cognitive development. The data indicate that dynamic processes shape all brain areas to fit into jigsaw-like patterns. The patterns in each region reflect circuit connectivity, which ultimately supports local signal processing and accomplishes multi-areal integration of information processing to optimize brain functions.
Collapse
Affiliation(s)
- Lauren N. Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Elizabeth P. Lackey
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Detlef H. Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
66
|
Madsen RR, Vanhaesebroeck B, Semple RK. Cancer-Associated PIK3CA Mutations in Overgrowth Disorders. Trends Mol Med 2018; 24:856-870. [PMID: 30197175 PMCID: PMC6185869 DOI: 10.1016/j.molmed.2018.08.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/24/2022]
Abstract
PIK3CA is one of the most commonly mutated genes in solid cancers. PIK3CA mutations are also found in benign overgrowth syndromes, collectively known as PIK3CA-related overgrowth spectrum (PROS). As in cancer, PIK3CA mutations in PROS arise postzygotically, but unlike in cancer, these mutations arise during embryonic development, with their timing and location critically influencing the resulting disease phenotype. Recent evidence indicates that phosphoinositide 3-kinase (PI3K) pathway inhibitors undergoing trials in cancer can provide a therapy for PROS. Conversely, PROS highlights gaps in our understanding of PI3K's role during embryogenesis and in cancer development. Here, we summarize current knowledge of PROS, evaluate challenges and strategies for disease modeling, and consider the implications of PROS as a paradigm for understanding activating PIK3CA mutations in human development and cancer.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK
| | - Robert K Semple
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK; Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
67
|
Cao Q, Liu X, Yang F, Wang H. CB2R induces a protective response for epileptic seizure via the PI3K 110α-AKT signaling pathway. Exp Ther Med 2018; 16:4784-4790. [PMID: 30542433 DOI: 10.3892/etm.2018.6788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/11/2018] [Indexed: 01/29/2023] Open
Abstract
Epilepsy is a chronic brain disease caused by abnormal discharging in the brain, which induces momentary brain dysfunction. Cannabinoid 2 receptor (CB2R) is expressed in central nervous system (CNS) and serves an important role in the pathogenesis of CNS diseases. The aim of the present study was to explore the effects of CB2R activation on phosphoinositide 3-kinase (PI3K) 110α-protein kinase B (AKT) signaling in an astrocyte model of epilepsy. Rat CTX TNA2 astrocytes were treated with Mg free solution to establish a cell model of epilepsy and were subsequently treated with a CB2R agonist (JWH133) and antagonist (AM630). Cell cycle analysis revealed that treatment using Mg free solution inhibited cell cycle transition. JWH133 facilitated cell cycle progression while AM630 inhibited it. Western blotting results demonstrated that treatment with Mg free solution downregulated the expression of cyclin D1, cyclin E, phosphorylated Retinoblastoma (p-Rb), B-cell lymphoma 2 (Bcl-2), PI3K 110α, p-AKT and p-mammalian target of rapamycin, whereas JWH133 treatment upregulated these proteins. AM630 ameliorated the JWH133-induced upregulation of these proteins. To confirm the involvement of AKT signaling, the AKT inhibitor wortmannin was used. The results revealed that wortmannin inhibited the effect of JWH133 on p-AKT, cyclin D1, p-Rb and Bcl-2 expression. In addition, the effects of JWH133 and AM630 on PI3K 110α-AKT signaling were verified using a rat model of epilepsy. In conclusion, the present study demonstrates that CB2R activation induces astrocyte proliferation and survival via activation of the PI3K 110α-AKT signaling pathway.
Collapse
Affiliation(s)
- Qingjun Cao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fenghua Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
68
|
In vitro efficacy of ARQ 092, an allosteric AKT inhibitor, on primary fibroblast cells derived from patients with PIK3CA-related overgrowth spectrum (PROS). Neurogenetics 2018; 19:77-91. [PMID: 29549527 PMCID: PMC5956072 DOI: 10.1007/s10048-018-0540-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/27/2017] [Indexed: 01/19/2023]
Abstract
Postzygotic mutations of the PIK3CA [phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha] gene constitutively activate the PI3K/AKT/mTOR pathway in PIK3CA-related overgrowth spectrum (PROS) patients, causing congenital mosaic tissue overgrowth that even multiple surgeries cannot solve. mTOR inhibitors are empirically tested and given for compassionate use in these patients. PROS patients could be ideal candidates for enrolment in trials with PI3K/AKT pathway inhibitors, considering the "clean" cellular setting in which a unique driver, a PIK3CA mutation, is present. We aimed to assess the effects of blocking the upstream pathway of mTOR on PROS patient-derived cells by using ARQ 092, a potent, selective, allosteric, and experimental orally bioavailable and highly selective AKT-inhibitor with activity and long-term tolerability, currently under clinical development for treatment of cancer and Proteus syndrome. Cell samples (i.e., primary fibroblasts) were derived from cultured tissues obtained from six PROS patients [3 boys, 3 girls; aged 2 to 17 years] whose spectrum of PIK3A-related overgrowth included HHML [hemihyperplasia multiple lipomatosis; n = 1], CLOVES [congenital lipomatosis, overgrowth, vascular malformations, epidermal nevi, spinal/skeletal anomalies, scoliosis; n = 1], and MCAP [megalencephaly capillary malformation syndrome; n = 4]. We performed the following: (a) a deep sequencing assay of PI3K/AKT pathway genes in the six PROS patients' derived cells to identify the causative mutations and (b) a pathway analysis to assess the phosphorylation status of AKT [Ser473 and Thr308] and its downstream targets [pAKTS1 (Thr246), pRPS6 (Ser235/236), and pRPS6Kβ1 (Ser371)]. The anti-proliferative effect of ARQ 092 was tested and compared to other PI3K/AKT/mTOR inhibitors [i.e., wortmannin, LY249002, and rapamycin] in the six PROS patient-derived cells. Using ARQ 092 to target AKT, a critical node connecting PI3K and mTOR pathways, we observed the following: (1) strong anti-proliferative activity [ARQ 092 at 0.5, 1, and 2.5 μM blunted phosphorylation of AKT and its downstream targets (in the presence or absence of serum) and inhibited proliferation after 72 h; rapamycin at 100 nM did not decrease AKT phosphorylation] and (2) less cytotoxicity as compared to rapamycin and wortmannin. We demonstrated the following: (a) that PROS cells are dependent on AKT; (b) the advantage of inhibiting the pathway immediately downstream of PI3K to circumventing problems depending on multiple classes a PI3K kinases; and (c) that PROS patients benefit from inhibition of AKT rather than mTOR. Clinical development of ARQ 092 in PROS patients is on going in these patients.
Collapse
|
69
|
D'Gama AM, Woodworth MB, Hossain AA, Bizzotto S, Hatem NE, LaCoursiere CM, Najm I, Ying Z, Yang E, Barkovich AJ, Kwiatkowski DJ, Vinters HV, Madsen JR, Mathern GW, Blümcke I, Poduri A, Walsh CA. Somatic Mutations Activating the mTOR Pathway in Dorsal Telencephalic Progenitors Cause a Continuum of Cortical Dysplasias. Cell Rep 2017; 21:3754-3766. [PMID: 29281825 PMCID: PMC5752134 DOI: 10.1016/j.celrep.2017.11.106] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/02/2017] [Accepted: 11/29/2017] [Indexed: 01/16/2023] Open
Abstract
Focal cortical dysplasia (FCD) and hemimegalencephaly (HME) are epileptogenic neurodevelopmental malformations caused by mutations in mTOR pathway genes. Deep sequencing of these genes in FCD/HME brain tissue identified an etiology in 27 of 66 cases (41%). Radiographically indistinguishable lesions are caused by somatic activating mutations in AKT3, MTOR, and PIK3CA and germline loss-of-function mutations in DEPDC5, NPRL2, and TSC1/2, including TSC2 mutations in isolated HME demonstrating a "two-hit" model. Mutations in the same gene cause a disease continuum from FCD to HME to bilateral brain overgrowth, reflecting the progenitor cell and developmental time when the mutation occurred. Single-cell sequencing demonstrated mTOR activation in neurons in all lesions. Conditional Pik3ca activation in the mouse cortex showed that mTOR activation in excitatory neurons and glia, but not interneurons, is sufficient for abnormal cortical overgrowth. These data suggest that mTOR activation in dorsal telencephalic progenitors, in some cases specifically the excitatory neuron lineage, causes cortical dysplasia.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Mollie B Woodworth
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Amer A Hossain
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sara Bizzotto
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Nicole E Hatem
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Imad Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhong Ying
- Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - A James Barkovich
- Departments of Radiology and Diagnostic Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Harry V Vinters
- Departments of Pathology and Laboratory Medicine (Neuropathology) and Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Gary W Mathern
- Departments of Neurosurgery and Psychiatry and Biobehavioral Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ingmar Blümcke
- Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
70
|
Borrie SC, Brems H, Legius E, Bagni C. Cognitive Dysfunctions in Intellectual Disabilities: The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways. Annu Rev Genomics Hum Genet 2017; 18:115-142. [DOI: 10.1146/annurev-genom-091416-035332] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah C. Borrie
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00173 Rome, Italy
| |
Collapse
|
71
|
Nikolaeva I, Kazdoba TM, Crowell B, D'Arcangelo G. Differential roles for Akt and mTORC1 in the hypertrophy of Pten mutant neurons, a cellular model of brain overgrowth disorders. Neuroscience 2017; 354:196-207. [PMID: 28457820 DOI: 10.1016/j.neuroscience.2017.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Mutations in the PI3K/Akt/mTOR signaling pathway or in the upstream negative regulator Pten cause human brain overgrowth disorders, such as focal cortical dysplasia and megalencephaly, and are characterized by the presence of hypertrophic neurons. These disorders often have a pediatric onset and a high comorbidity with drug-resistant epilepsy; however, effective pharmacological treatments are lacking. We established forebrain excitatory neuron-specific Pten-deficient cultures as an in vitro model of brain overgrowth disorders, and investigated the effects of this Pten mutation on PI3K/Akt/mTOR signaling and neuronal growth. Mutant neurons exhibit excessive PI3K/Akt/mTOR signaling activity, enlarged somas and increased dendritic arborization. To understand the contributions of Akt and mTORC1 kinases to the hypertrophy phenotype, we evaluated the effects of short-term treatment with the Akt inhibitor MK-2206, and the mTORC1 inhibitor RAD001, which have shown safety and efficacy in human cancer clinical trials. We found that RAD001 treatment only partially reversed the morphological abnormalities of Pten mutant neurons, whereas MK-2206 treatment completely rescued the phenotype. Interestingly, neither treatment altered the size or morphology of normal neurons. Our results suggest that Akt is a major determinant of neuronal growth, and that Akt inhibition may be an effective strategy for pharmacological intervention in brain overgrowth disorders.
Collapse
Affiliation(s)
- Ina Nikolaeva
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, USA; Molecular Biosciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Tatiana M Kazdoba
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, USA; Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Beth Crowell
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
72
|
The mTOR signalling cascade: paving new roads to cure neurological disease. Nat Rev Neurol 2016; 12:379-92. [PMID: 27340022 DOI: 10.1038/nrneurol.2016.81] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Defining the multiple roles of the mechanistic (formerly 'mammalian') target of rapamycin (mTOR) signalling pathway in neurological diseases has been an exciting and rapidly evolving story of bench-to-bedside translational research that has spanned gene mutation discovery, functional experimental validation of mutations, pharmacological pathway manipulation, and clinical trials. Alterations in the dual contributions of mTOR - regulation of cell growth and proliferation, as well as autophagy and cell death - have been found in developmental brain malformations, epilepsy, autism and intellectual disability, hypoxic-ischaemic and traumatic brain injuries, brain tumours, and neurodegenerative disorders. mTOR integrates a variety of cues, such as growth factor levels, oxygen levels, and nutrient and energy availability, to regulate protein synthesis and cell growth. In line with the positioning of mTOR as a pivotal cell signalling node, altered mTOR activation has been associated with a group of phenotypically diverse neurological disorders. To understand how altered mTOR signalling leads to such divergent phenotypes, we need insight into the differential effects of enhanced or diminished mTOR activation, the developmental context of these changes, and the cell type affected by altered signalling. A particularly exciting feature of the tale of mTOR discovery is that pharmacological mTOR inhibitors have shown clinical benefits in some neurological disorders, such as tuberous sclerosis complex, and are being considered for clinical trials in epilepsy, autism, dementia, traumatic brain injury, and stroke.
Collapse
|
73
|
Sending Mixed Signals: The Expanding Role of Molecular Cascade Mutations in Malformations of Cortical Development and Epilepsy. Epilepsy Curr 2016; 16:158-63. [PMID: 27330441 DOI: 10.5698/1535-7511-16.3.158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Advances in gene sequencing techniques have led to a dramatic increase in the number of signaling cascade and cytoskeletal assembly mutations associated with malformations of cortical development and epilepsy. At the forefront of this research are novel mutations found in regulators of the PI3K/AKT/mTOR cascade and tubulin-associated malformations of cortical development. However, there is limited understanding of the consequences of these newly discovered germline and somatic mutations on cellular function or how these changes in cell biology may lead to areas-large or small-of malformed cortex and recurrent spontaneous seizures. We summarize and discuss what is currently known in this field in an effort to shine light on vast gaps in our knowledge of relatively common causes of cortical malformations.
Collapse
|