51
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
52
|
Uchida N, Ryu Y, Takagi Y, Yoshizawa K, Suzuki K, Anraku Y, Ajioka I, Shimokawa N, Takagi M, Hoshino N, Akutagawa T, Matsubara T, Sato T, Higuchi Y, Ito H, Morita M, Muraoka T. Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery. J Am Chem Soc 2023; 145:6210-6220. [PMID: 36853954 PMCID: PMC10037323 DOI: 10.1021/jacs.2c12348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yunosuke Ryu
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yuichiro Takagi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ken Yoshizawa
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kotono Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuji Higuchi
- Institute for Solid State Physics, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, Japan
| | - Hiroaki Ito
- Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masamune Morita
- National Institute of Advanced Industrial Science and Technology, Center 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| |
Collapse
|
53
|
Nowak C, Zhou XW. An interplay between a hydrogen atmosphere and dislocation characteristics in BCC Fe from time-averaged molecular dynamics. Phys Chem Chem Phys 2023; 25:8369-8375. [PMID: 36722451 DOI: 10.1039/d2cp05024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The interplay between hydrogen and dislocations (e.g., core and elastic energies, and dislocation-dislocation interactions) has implications on hydrogen embrittlement but is poorly understood. Continuum models of hydrogen enhanced local plasticity have not considered the effect of hydrogen on dislocation core energies. Energy minimization atomistic simulations can only resolve dislocation core energies in hydrogen-free systems because hydrogen motion is omitted so hydrogen atmosphere formation can't occur. Additionally, previous studies focused more on face-centered-cubic than body-centered-cubic metals. Discrete dislocation dynamics studies of hydrogen-dislocation interactions assume isotropic elasticity, but the validity of this assumption isn't understood. We perform time-averaged molecular dynamics simulations to study the effect of hydrogen on dislocation energies in body-centered-cubic iron for several dislocation character angles. We see atmosphere formation and highly converged dislocation energies. We find that hydrogen reduces dislocation core energies but can increase or decrease elastic energies of isolated dislocations and dislocation-dislocation interaction energies depending on character angle. We also find that isotropic elasticity can be well fitted to dislocation energies obtained from simulations if the isotropic elastic constants are not constrained to their anisotropic counterparts. These results are relevant to ongoing efforts in understanding hydrogen embrittlement and provide a foundation for future work in this field.
Collapse
Affiliation(s)
- C Nowak
- Sandia National Laboratories, Livermore, California 94550, USA.
| | - X W Zhou
- Sandia National Laboratories, Livermore, California 94550, USA.
| |
Collapse
|
54
|
Seki K, Muramatsu N, Miura T, Ikoma T. Transient photocurrent and optical absorption of disordered thin-film semiconductors: In-depth injection and nonlinear response. J Chem Phys 2023; 158:114704. [PMID: 36948811 DOI: 10.1063/5.0143683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The time-of-flight method is a fundamental approach for characterizing the transport properties of semiconductors. Recently, the transient photocurrent and optical absorption kinetics have been simultaneously measured for thin films; pulsed-light excitation of thin films should give rise to non-negligible in-depth carrier injection. Yet, the effects of in-depth carrier injection on the transient currents and optical absorption have not yet been elucidated theoretically. Here, by considering the in-depth carrier injection in simulations, we found a 1/t1-α/2 initial time (t) dependence rather than the conventional 1/t1-α dependence under a weak external electric field, where α < 1 is the index of dispersive diffusion. The asymptotic transient currents are not influenced by the initial in-depth carrier injection and follow the conventional 1/t1+α time dependence. We also present the relation between the field-dependent mobility coefficient and the diffusion coefficient when the transport is dispersive. The field dependence of the transport coefficients influences the transit time in the photocurrent kinetics dividing two power-law decay regimes. The classical Scher-Montroll theory predicts that a1 + a2 = 2 when the initial photocurrent decay is given by 1/ta1 and the asymptotic photocurrent decay is given by 1/ta2 . The results shed light on the interpretation of the power-law exponent of 1/ta1 when a1 + a2 ≠ 2.
Collapse
Affiliation(s)
- Kazuhiko Seki
- National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1 AIST West, Ibaraki 305-8569, Japan
| | - Naoya Muramatsu
- Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Nishi-Ku, Niigata 950-2181, Japan
| | - Tomoaki Miura
- Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Nishi-Ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Nishi-Ku, Niigata 950-2181, Japan
| |
Collapse
|
55
|
Hannecart C, Clasen C, van Ruymbeke E. Constraint Release Rouse Mechanisms in Bidisperse Linear Polymers: Investigation of the Release Time of a Short-Long Entanglement. Polymers (Basel) 2023; 15:polym15061569. [PMID: 36987349 PMCID: PMC10058622 DOI: 10.3390/polym15061569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Despite a wide set of experimental data and a large number of studies, the quantitative description of the relaxation mechanisms involved in the disorientation process of bidisperse blends is still under discussion. In particular, while it has been shown that the relaxation of self-unentangled long chains diluted in a short chain matrix is well approximated by a Constraint Release Rouse (CRR) mechanism, there is no consensus on the value of the average release time of their entanglements, τobs, which fixes the timescale of the CRR relaxation. Therefore, the first objective of the present work is to discuss the different approaches proposed to determine this time and compare them to a large set of experimental viscoelastic data, either newly measured (poly(methyl-)methacrylate and 1,4-polybutadiene blends) or coming from the literature (polystyrene and polyisoprene blends). Based on this large set of data, it is found that with respect to the molar mass of the short chain matrix, τobs follows a power law with an exponent close to 2.5, rather than 3 as previously proposed. While this slight change in the power law exponent does not strongly affect the values of the constraint release times, the results obtained suggest the universality of the CRR process. Finally, we propose a new description of τobs, which is implemented in a tube-based model. The accurate description of the experimental data obtained provides a good starting point to extend this approach to self-entangled binary blends.
Collapse
Affiliation(s)
- Céline Hannecart
- Bio- and Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Christian Clasen
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Evelyne van Ruymbeke
- Bio- and Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
56
|
Hou L, Ni W, Zhang S, Fu N, Zhang D. PPDU: dynamic graph publication with local differential privacy. Knowl Inf Syst 2023. [DOI: 10.1007/s10115-023-01838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
57
|
Zhang J, Lei J, Tian W, Zhang G, Floudas G, Zhou J. Capillary Filling of Polymer Chains in Nanopores. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Jianwei Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinyu Lei
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenzhang Tian
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - George Floudas
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
58
|
Zhu Q, Tree DR. Simulations of morphology control of self‐assembled amphiphilic surfactants. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Qinyu Zhu
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| | - Douglas R. Tree
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| |
Collapse
|
59
|
Chalas N, Omigie D, Poeppel D, van Wassenhove V. Hierarchically nested networks optimize the analysis of audiovisual speech. iScience 2023; 26:106257. [PMID: 36909667 PMCID: PMC9993032 DOI: 10.1016/j.isci.2023.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/22/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In conversational settings, seeing the speaker's face elicits internal predictions about the upcoming acoustic utterance. Understanding how the listener's cortical dynamics tune to the temporal statistics of audiovisual (AV) speech is thus essential. Using magnetoencephalography, we explored how large-scale frequency-specific dynamics of human brain activity adapt to AV speech delays. First, we show that the amplitude of phase-locked responses parametrically decreases with natural AV speech synchrony, a pattern that is consistent with predictive coding. Second, we show that the temporal statistics of AV speech affect large-scale oscillatory networks at multiple spatial and temporal resolutions. We demonstrate a spatial nestedness of oscillatory networks during the processing of AV speech: these oscillatory hierarchies are such that high-frequency activity (beta, gamma) is contingent on the phase response of low-frequency (delta, theta) networks. Our findings suggest that the endogenous temporal multiplexing of speech processing confers adaptability within the temporal regimes that are essential for speech comprehension.
Collapse
Affiliation(s)
- Nikos Chalas
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, P.C., 48149 Münster, Germany
- CEA, DRF/Joliot, NeuroSpin, INSERM, Cognitive Neuroimaging Unit; CNRS; Université Paris-Saclay, 91191 Gif/Yvette, France
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, P.C., 54124 Thessaloniki, Greece
- Corresponding author
| | - Diana Omigie
- Department of Psychology, Goldsmiths University London, London, UK
| | - David Poeppel
- Department of Psychology, New York University, New York, NY 10003, USA
- Ernst Struengmann Institute for Neuroscience, 60528 Frankfurt am Main, Frankfurt, Germany
| | - Virginie van Wassenhove
- CEA, DRF/Joliot, NeuroSpin, INSERM, Cognitive Neuroimaging Unit; CNRS; Université Paris-Saclay, 91191 Gif/Yvette, France
- Corresponding author
| |
Collapse
|
60
|
Abstract
The theory of electron transfer reactions establishes the conceptual foundation for redox solution chemistry, electrochemistry, and bioenergetics. Electron and proton transfer across the cellular membrane provide all energy of life gained through natural photosynthesis and mitochondrial respiration. Rates of biological charge transfer set kinetic bottlenecks for biological energy storage. The main system-specific parameter determining the activation barrier for a single electron-transfer hop is the reorganization energy of the medium. Both harvesting of light energy in natural and artificial photosynthesis and efficient electron transport in biological energy chains require reduction of the reorganization energy to allow fast transitions. This review article discusses mechanisms by which small values of the reorganization energy are achieved in protein electron transfer and how similar mechanisms can operate in other media, such as nonpolar and ionic liquids. One of the major mechanisms of reorganization energy reduction is through non-Gibbsian (nonergodic) sampling of the medium configurations on the reaction time. A number of alternative mechanisms, such as electrowetting of active sites of proteins, give rise to non-parabolic free energy surfaces of electron transfer. These mechanisms, and nonequilibrium population of donor-acceptor vibrations, lead to a universal phenomenology of separation between the Stokes shift and variance reorganization energies of electron transfer.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, USA.
| |
Collapse
|
61
|
Parto M, Leefmans C, Williams J, Nori F, Marandi A. Non-Abelian effects in dissipative photonic topological lattices. Nat Commun 2023; 14:1440. [PMID: 36922499 PMCID: PMC10017693 DOI: 10.1038/s41467-023-37065-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Topology is central to phenomena that arise in a variety of fields, ranging from quantum field theory to quantum information science to condensed matter physics. Recently, the study of topology has been extended to open systems, leading to a plethora of intriguing effects such as topological lasing, exceptional surfaces, as well as non-Hermitian bulk-boundary correspondence. Here, we show that Bloch eigenstates associated with lattices with dissipatively coupled elements exhibit geometric properties that cannot be described via scalar Berry phases, in sharp contrast to conservative Hamiltonians with non-degenerate energy levels. This unusual behavior can be attributed to the significant population exchanges among the corresponding dissipation bands of such lattices. Using a one-dimensional example, we show both theoretically and experimentally that such population exchanges can manifest themselves via matrix-valued operators in the corresponding Bloch dynamics. In two-dimensional lattices, such matrix-valued operators can form non-commuting pairs and lead to non-Abelian dynamics, as confirmed by our numerical simulations. Our results point to new ways in which the combined effect of topology and engineered dissipation can lead to non-Abelian topological phenomena.
Collapse
Affiliation(s)
- Midya Parto
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Christian Leefmans
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, USA
| | - James Williams
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN, Wakoshi, Saitama, Japan.,RIKEN Center for Quantum Computing, Wakoshi, Saitama, Japan.,Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Alireza Marandi
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA. .,Department of Applied Physics, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
62
|
Fast approach for link prediction in complex networks based on graph decomposition. EVOLVING SYSTEMS 2023. [DOI: 10.1007/s12530-023-09492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
63
|
Moore F, Russo J, Liverpool TB, Royall CP. Active Brownian particles in random and porous environments. J Chem Phys 2023; 158:104907. [PMID: 36922118 DOI: 10.1063/5.0131340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The transport of active particles may occur in complex environments, in which it emerges from the interplay between the mobility of the active components and the quenched disorder of the environment. Here, we explore the structural and dynamical properties of active Brownian particles (ABPs) in random environments composed of fixed obstacles in three dimensions. We consider different arrangements of the obstacles. In particular, we consider two particular situations corresponding to experimentally realizable settings. First, we model pinning particles in (non-overlapping) random positions and, second, in a percolating gel structure and provide an extensive characterization of the structure and dynamics of ABPs in these complex environments. We find that the confinement increases the heterogeneity of the dynamics, with new populations of absorbed and localized particles appearing close to the obstacles. This heterogeneity has a profound impact on the motility induced phase separation exhibited by the particles at high activity, ranging from nucleation and growth in random disorder to a complex phase separation in porous environments.
Collapse
Affiliation(s)
- Fergus Moore
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1FD, United Kingdom
| | - John Russo
- Department of Physics, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | - C Patrick Royall
- H. H. Wills Physics Laboratory, Tyndall Ave., Bristol BS8 1TL, United Kingdom
| |
Collapse
|
64
|
Gecko-inspired self-adhesive packaging for strain-free temperature sensing based on optical fibre Bragg gratings. Sci Rep 2023; 13:4148. [PMID: 36914710 PMCID: PMC10011361 DOI: 10.1038/s41598-023-30949-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
The large development of fibre Bragg gratings (FBGs) over decades has made this kind of structures one of the most mature optical fibre sensing technologies existing today, demonstrating key features for a very wide range of applications. FBG sensors are fragile and must be normally protected for real-field applications, although challenging packaging designs are required to mitigate temperature-strain cross-sensitivity issues. Here, a polydimethylsiloxane (PDMS) packaging with a microarray structure that provides gecko-inspired dry adhesion is proposed for strain-free FBG-based temperature sensing. Besides offering protection, the PDMS packaging with an embedded polyamide capillary damps the mechanical strain transferred to the optical fibre, providing FBG-based temperature sensing with a negligible impact of strain. In addition, the microarray structure imprinted on one surface of the packaging provides gecko-inspired dry adhesion based on van der Waals forces. This feature enables the packaged optical fibre sensor to be attached and detached dynamically to nearly any kind of smooth surface, leaving no residuals in the monitored structure. Experimental results verify a fast and accurate temperature response of the sensor with highly mitigated impact of residual strain. The proposed packaged sensor can be used in application where glue is not allowed nor recommendable to be used.
Collapse
|
65
|
Isotta E, Peng W, Balodhi A, Zevalkink A. Elastic Moduli: a Tool for Understanding Chemical Bonding and Thermal Transport in Thermoelectric Materials. Angew Chem Int Ed Engl 2023; 62:e202213649. [PMID: 36516061 DOI: 10.1002/anie.202213649] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
The elastic behavior of a material can be a powerful tool to decipher thermal transport. In thermoelectrics, measuring the elastic moduli-directly tied to sound velocity-is critical to understand trends in lattice thermal conductivity, as well as study bond anharmonicity and phase transitions, given the sensitivity of elastic moduli to the chemical bonding. In this review, we introduce the basics of elasticity and explain the origin of high-temperature lattice softening from a bonding perspective. We then review elasticity data throughout classes of thermoelectrics, and explore trends in sound velocity, anharmonicity, and thermal conductivity. We reveal how experimental sound velocities can improve the accuracy of common thermal conductivity models and present a critical discussion of Grüneisen parameter estimates from elastic moduli. Readers will be equipped with tools to leverage elasticity measurements or calculations to accurately interpret thermal transport trends.
Collapse
Affiliation(s)
- Eleonora Isotta
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Wanyue Peng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Ashiwini Balodhi
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Alexandra Zevalkink
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
66
|
Ferraz de Arruda G, Petri G, Rodriguez PM, Moreno Y. Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs. Nat Commun 2023; 14:1375. [PMID: 36914645 PMCID: PMC10011415 DOI: 10.1038/s41467-023-37118-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Although ubiquitous, interactions in groups of individuals are not yet thoroughly studied. Frequently, single groups are modeled as critical-mass dynamics, which is a widespread concept used not only by academics but also by politicians and the media. However, less explored questions are how a collection of groups will behave and how their intersection might change the dynamics. Here, we formulate this process as binary-state dynamics on hypergraphs. We showed that our model has a rich behavior beyond discontinuous transitions. Notably, we have multistability and intermittency. We demonstrated that this phenomenology could be associated with community structures, where we might have multistability or intermittency by controlling the number or size of bridges between communities. Furthermore, we provided evidence that the observed transitions are hybrid. Our findings open new paths for research, ranging from physics, on the formal calculation of quantities of interest, to social sciences, where new experiments can be designed.
Collapse
Affiliation(s)
| | | | | | - Yamir Moreno
- CENTAI Institute, Turin, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Theoretical Physics, University of Zaragoza, 50018, Zaragoza, Spain
| |
Collapse
|
67
|
Lu S, Dong J, Li X. Gradual transformation of anionic/zwitterionic wormlike micelles from viscous to elastic domains: Unravelling the effect of anionic surfactant chain length. J Colloid Interface Sci 2023; 641:319-328. [PMID: 36934579 DOI: 10.1016/j.jcis.2023.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
HYPOTHESIS Ultra-long tailed zwitterionic surfactants often form aqueous wormlike elastic micelles, whereas the shorter ones mainly exhibit spherical viscous micelles. Anionic surfactants are widely used to tune the micellar morphology from spherical into wormlike. Systematic investigations in the molecular level are insightful to understand the viscoelasticity regulative mechanism. EXPERIMENTS Anionic/zwitterionic hybrid wormlike micelles are composed of sodium alkylsulfate (SAS) homologues and dodecyl dimethyl amidopropyl hydroxyl sulfobetaine (DHSB). The formation of wormlike micelles was studied by employing rheometer, cryogenic transmission electron microscopy (cryo-TEM) and small angle X-ray scattering (SAXS) techniques. The effects of surfactant concentration, molar ratio, anionic surfactant chain length and temperature were investigated systematically. FINDINGS SAS promoted the formation of SAS/DHSB hybrid wormlike micelles. The increase in both chain length and molar ratio (xSAS) of SAS are advantageous in the enhancement of viscosity. Interestingly, sodium hexadecylsulfate (SHS) endowed elastic wormlike micelles with thermally insensitive viscosity below its Krafft temperature (Tk), which was distinguished from the viscous ones formed by sodium octylsulfate (SOS). SAXS results showed that the size of SAS/DHSB wormlike micelles was primarily determinate by surfactants with longer hydrophobic tails.
Collapse
Affiliation(s)
- Shuo Lu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jinfeng Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Xuefeng Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
68
|
Fano interference between collective modes in cuprate high-T c superconductors. Nat Commun 2023; 14:1343. [PMID: 36906577 PMCID: PMC10008591 DOI: 10.1038/s41467-023-36787-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
Cuprate high-Tc superconductors are known for their intertwined interactions and the coexistence of competing orders. Uncovering experimental signatures of these interactions is often the first step in understanding their complex relations. A typical spectroscopic signature of the interaction between a discrete mode and a continuum of excitations is the Fano resonance/interference, characterized by the asymmetric light-scattering amplitude of the discrete mode as a function of the electromagnetic driving frequency. In this study, we report a new type of Fano resonance manifested by the nonlinear terahertz response of cuprate high-Tc superconductors, where we resolve both the amplitude and phase signatures of the Fano resonance. Our extensive hole-doping and magnetic field dependent investigation suggests that the Fano resonance may arise from an interplay between the superconducting fluctuations and the charge density wave fluctuations, prompting future studies to look more closely into their dynamical interactions.
Collapse
|
69
|
Sun H, Radicchi F, Kurths J, Bianconi G. The dynamic nature of percolation on networks with triadic interactions. Nat Commun 2023; 14:1308. [PMID: 36894591 PMCID: PMC9998640 DOI: 10.1038/s41467-023-37019-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Percolation establishes the connectivity of complex networks and is one of the most fundamental critical phenomena for the study of complex systems. On simple networks, percolation displays a second-order phase transition; on multiplex networks, the percolation transition can become discontinuous. However, little is known about percolation in networks with higher-order interactions. Here, we show that percolation can be turned into a fully fledged dynamical process when higher-order interactions are taken into account. By introducing signed triadic interactions, in which a node can regulate the interactions between two other nodes, we define triadic percolation. We uncover that in this paradigmatic model the connectivity of the network changes in time and that the order parameter undergoes a period doubling and a route to chaos. We provide a general theory for triadic percolation which accurately predicts the full phase diagram on random graphs as confirmed by extensive numerical simulations. We find that triadic percolation on real network topologies reveals a similar phenomenology. These results radically change our understanding of percolation and may be used to study complex systems in which the functional connectivity is changing in time dynamically and in a non-trivial way, such as in neural and climate networks.
Collapse
Affiliation(s)
- Hanlin Sun
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Filippo Radicchi
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Ginestra Bianconi
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, UK.
- The Alan Turing Institute, The British Library, London, NW1 2DB, UK.
| |
Collapse
|
70
|
Bácsi Á, Dóra B. Kibble-Zurek scaling due to environment temperature quench in the transverse field Ising model. Sci Rep 2023; 13:4034. [PMID: 36899093 PMCID: PMC10006093 DOI: 10.1038/s41598-023-30840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
The Kibble-Zurek mechanism describes defect production due to non-adiabatic passage through a critical point. Here we study its variant from ramping the environment temperature to a critical point. We find that the defect density scales as [Formula: see text] or [Formula: see text] for thermal or quantum critical points, respectively, in terms of the usual critical exponents and [Formula: see text] the speed of the drive. Both scalings describe reduced defect density compared to conventional Kibble-Zurek mechanism, which stems from the enhanced relaxation due to bath-system interaction. Ramping to the quantum critical point is investigated by studying the Lindblad equation for the transverse field Ising chain in the presence of thermalizing bath, with couplings to environment obeying detailed balance, confirming the predicted scaling. The von-Neumann or the system-bath entanglement entropy follows the same scaling. Our results are generalized to a large class of dissipative systems with power-law energy dependent bath spectral densities as well.
Collapse
Affiliation(s)
- Ádám Bácsi
- MTA-BME Lendület Topology and Correlation Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary. .,Department of Mathematics and Computational Sciences, Széchenyi István University, Győr, 9026, Hungary. .,Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Balázs Dóra
- MTA-BME Lendület Topology and Correlation Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary.,Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
| |
Collapse
|
71
|
Ishito K, Mao H, Kobayashi K, Kousaka Y, Togawa Y, Kusunose H, Kishine JI, Satoh T. Chiral phonons: circularly polarized Raman spectroscopy and ab initio calculations in a chiral crystal tellurium. Chirality 2023; 35:338-345. [PMID: 36891931 DOI: 10.1002/chir.23544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 03/10/2023]
Abstract
Recently, phonons with chirality (chiral phonons) have attracted significant attention. Chiral phonons exhibit angular and pseudoangular momenta. In circularly polarized Raman spectroscopy, the peak split of the Γ 3 $$ {\Gamma}_3 $$ mode is detectable along the principal axis of the chiral crystal in the backscattering configuration. In addition, peak splitting occurs when the pseudoangular momenta of the incident and scattered circularly polarized light are reversed. Until now, chiral phonons in binary crystals have been observed, whereas those in unary crystals have not been observed. Here, we observe chiral phonons in a chiral unary crystal Te. The pseudoangular momentum of the phonon is obtained in Te by an ab initio calculation. From this calculation, we verified the conservation law of pseudoangular momentum in Raman scattering. From this conservation law, we determined the handedness of the chiral crystals. We also evaluated the true chirality of the phonons using a measure with symmetry similar to that of an electric toroidal monopole.
Collapse
Affiliation(s)
- Kyosuke Ishito
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - Huiling Mao
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - Kaya Kobayashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Yusuke Kousaka
- Department of Physics and Electronics, Osaka Metropolitan University, Osaka, Japan
| | - Yoshihiko Togawa
- Department of Physics and Electronics, Osaka Metropolitan University, Osaka, Japan
| | | | - Jun-Ichiro Kishine
- Division of Natural and Environmental Sciences, The Open University of Japan, Chiba, Japan
| | - Takuya Satoh
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
72
|
Te Vrugt M, Frohoff-Hülsmann T, Heifetz E, Thiele U, Wittkowski R. From a microscopic inertial active matter model to the Schrödinger equation. Nat Commun 2023; 14:1302. [PMID: 36894573 PMCID: PMC9998892 DOI: 10.1038/s41467-022-35635-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/14/2022] [Indexed: 03/11/2023] Open
Abstract
Active field theories, such as the paradigmatic model known as 'active model B+', are simple yet very powerful tools for describing phenomena such as motility-induced phase separation. No comparable theory has been derived yet for the underdamped case. In this work, we introduce active model I+, an extension of active model B+ to particles with inertia. The governing equations of active model I+ are systematically derived from the microscopic Langevin equations. We show that, for underdamped active particles, thermodynamic and mechanical definitions of the velocity field no longer coincide and that the density-dependent swimming speed plays the role of an effective viscosity. Moreover, active model I+ contains an analog of the Schrödinger equation in Madelung form as a limiting case, allowing one to find analoga of the quantum-mechanical tunnel effect and of fuzzy dark matter in active fluids. We investigate the active tunnel effect analytically and via numerical continuation.
Collapse
Affiliation(s)
- Michael Te Vrugt
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Tobias Frohoff-Hülsmann
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Eyal Heifetz
- Porter School of the Environment and Earth Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
73
|
Rehner P, Bauer G, Gross J. FeO s: An Open-Source Framework for Equations of State and Classical Density Functional Theory. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Philipp Rehner
- Energy and Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, Zurich 8092, Switzerland
| | - Gernot Bauer
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| |
Collapse
|
74
|
Kammoun I, Belhouchet M, Ben Ahmed A, Lhoste J, Gargouri M. Investigation of structural, optical and electrical conductivity of a new organic inorganic bromide: [C 12H 17N 2] 2ZnBr 4. RSC Adv 2023; 13:8034-8042. [PMID: 36909760 PMCID: PMC9999369 DOI: 10.1039/d3ra00561e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
A new organic-inorganic hybrid, namely the [C12H17N2]2ZnBr4 compound, has been synthesized and studied by single-crystal X-ray diffraction and optical and complex impedance spectroscopy. It crystallized in the centrosymmetric P21/n space group at room temperature. The asymmetric unit is constituted by [ZnBr4]2- anions, showing slightly distorted tetrahedral geometry, surrounded by four organic (C12H17N2)+ cations. The crystal packing is stabilized by N-H⋯Br and C-H⋯Br hydrogen bonds arranged in a three-dimensional network. The optical absorption measurement confirms the semiconductor nature with a band gap of around 3.94 eV. Additionally, the analysis of Nyquist plots (-Z'' vs. Z') shows that the electrical properties of the material are heavily dependent on frequency and temperature, indicating a relaxation phenomenon and semiconductor-type behavior. Reduction in Z' was observed as a function of temperature and frequency which indicates an increase in ac conductivity and the negative temperature coefficient of resistance. The frequency dependent plots of (-Z'') show that the electrical relaxation is non-Debye in nature. The ac conductivity spectrum obeys Jonscher's universal power law. The Correlated barrier hopping model CBH has been suggested to agree with the conduction mechanism of σ ac for the [C12H17N2]2ZnBr4 compound.
Collapse
Affiliation(s)
- I Kammoun
- University of Sfax, Faculty of Sciences, Laboratory of Spectroscopic Characterization and Optical Materials 3018 Sfax BP1171 Tunisia
| | - M Belhouchet
- Physico-Chemistry of Solid State Laboratory, Department of Chemistry, Faculty of Sciences of Sfax 3000 Sfax BP1171 Tunisia
| | - A Ben Ahmed
- University of Sfax, Faculty of Sciences of Sfax, Department of Physic, Laboratory of Applied Physic B.P. No. 802 3018 Sfax Tunisia
| | - J Lhoste
- Institute for Molecules and Materials Le Mans, University of Maine Avenue Olivier Messiaen 72085 Le Mans Cedex 9 France
| | - M Gargouri
- University of Sfax, Faculty of Sciences, Laboratory of Spectroscopic Characterization and Optical Materials 3018 Sfax BP1171 Tunisia
| |
Collapse
|
75
|
Soltan S, Macke S, Ilse SE, Pennycook T, Zhang ZL, Christiani G, Benckiser E, Schütz G, Goering E. Ferromagnetic order controlled by the magnetic interface of LaNiO 3/La 2/3Ca 1/3MnO 3 superlattices. Sci Rep 2023; 13:3847. [PMID: 36890187 PMCID: PMC9995495 DOI: 10.1038/s41598-023-30814-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Interface engineering in complex oxide superlattices is a growing field, enabling manipulation of the exceptional properties of these materials, and also providing access to new phases and emergent physical phenomena. Here we demonstrate how interfacial interactions can induce a complex charge and spin structure in a bulk paramagnetic material. We investigate a superlattice (SLs) consisting of paramagnetic LaNiO3 (LNO) and highly spin-polarized ferromagnetic La2/3Ca1/3MnO3 (LCMO), grown on SrTiO3 (001) substrate. We observed emerging magnetism in LNO through an exchange bias mechanism at the interfaces in X-ray resonant magnetic reflectivity. We find non-symmetric interface induced magnetization profiles in LNO and LCMO which we relate to a periodic complex charge and spin superstructure. High resolution scanning transmission electron microscopy images reveal that the upper and lower interfaces exhibit no significant structural variations. The different long range magnetic order emerging in LNO layers demonstrates the enormous potential of interfacial reconstruction as a tool for tailored electronic properties.
Collapse
Affiliation(s)
- S Soltan
- Physics Department, Faculty of Science, Helwan University, Helwan, Cairo, 11798, Egypt. .,Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany. .,Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - S Macke
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - S E Ilse
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - T Pennycook
- EMAT, University of Antwerp Campus Groenenborger, 2020, Antwerp, Belgium.,Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Z L Zhang
- Erich-Schmid-Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, 8700, Leoben, Austria
| | - G Christiani
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - E Benckiser
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - G Schütz
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - E Goering
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany.
| |
Collapse
|
76
|
Kharabadze S, Meyers M, Tomassetti CR, Margine ER, Mazin II, Kolmogorov AN. Thermodynamic stability of Li-B-C compounds from first principles. Phys Chem Chem Phys 2023; 25:7344-7353. [PMID: 36825541 DOI: 10.1039/d2cp05500g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Prediction of high-Tc superconductivity in hole-doped LixBC two decades ago has brought about an extensive effort to synthesize new materials with honeycomb B-C layers, but the thermodynamic stability of Li-B-C compounds remains largely unexplored. In this study, we use density functional theory to characterize well-established and recently reported Li-B-C phases. Our calculation of the Li chemical potential in LixBC helps estimate the (T,P) conditions required for delithiation of the LiBC parent material, while examination of B-C phases helps rationalize the observation of metastable BC3 polymorphs with honeycomb and diamond-like morphologies. At the same time, we demonstrate that recently reported BC3, LiBC3, and Li2B2C phases with new crystal structures are both dynamically and thermodynamically unstable. With a combination of evolutionary optimization and rational design, we identify considerably more natural and favorable Li2B2C configurations that, nevertheless, remain above the thermodynamic stability threshold.
Collapse
Affiliation(s)
- Saba Kharabadze
- Department of Physics, Applied Physics and Astronomy, Binghamton University, State University of New York, PO Box 6000, Binghamton, New York 13902-6000, USA.
| | - Maxwell Meyers
- Department of Physics, Applied Physics and Astronomy, Binghamton University, State University of New York, PO Box 6000, Binghamton, New York 13902-6000, USA.
| | - Charlsey R Tomassetti
- Department of Physics, Applied Physics and Astronomy, Binghamton University, State University of New York, PO Box 6000, Binghamton, New York 13902-6000, USA.
| | - Elena R Margine
- Department of Physics, Applied Physics and Astronomy, Binghamton University, State University of New York, PO Box 6000, Binghamton, New York 13902-6000, USA.
| | - Igor I Mazin
- Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA.,Quantum Science and Engineering Center, George Mason University, Fairfax, Virginia 22030, USA
| | - Aleksey N Kolmogorov
- Department of Physics, Applied Physics and Astronomy, Binghamton University, State University of New York, PO Box 6000, Binghamton, New York 13902-6000, USA.
| |
Collapse
|
77
|
Huysecom AS, Glorieux C, Thoen J, Thielemans W, Fustin CA, Moldenaers P, Cardinaels R. Phase behavior of medium-length hydrophobically associating PEO-PPO multiblock copolymers in aqueous media. J Colloid Interface Sci 2023; 641:521-538. [PMID: 36948106 DOI: 10.1016/j.jcis.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
HYPOTHESIS The micellization of block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) is driven by the dehydration of PPO at elevated temperatures. At low concentrations, a viscous solution of isolated micelles is obtained, whereas at higher concentrations, crowding of micelles results in an elastic gel. Alternating PEO-PPO multiblock copolymers are expected to exhibit different phase behavior, with altered phase boundaries and thermodynamics, as compared to PEO-PPO-PEO triblock copolymers (Pluronics®) with equal hydrophobicity, thereby proving the pivotal role of copolymer architecture and molecular weight. EXPERIMENTS Multiple characterization techniques were used to map the phase behavior as a function of temperature and concentration of PEO-PPO multiblock copolymers (ExpertGel®) in aqueous solution. These techniques include shear rheology, differential and adiabatic scanning calorimetry, isothermal titration calorimetry and light transmittance. The micellar size and topology were studied by dynamic light scattering. FINDINGS Multiblocks have lower transition temperatures and higher thermodynamic driving forces for micellization as compared to triblocks due to the presence of more than one PPO block per chain. With increasing concentration, the multiblock copolymers in solution gradually evolve into a viscoelastic network formed by soluble bridges in between micellar nodes, whereas hairy triblock micelles jam into liquid crystalline phases resembling an elastic colloidal crystal.
Collapse
Affiliation(s)
- An-Sofie Huysecom
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium.
| | - Christ Glorieux
- Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.
| | - Jan Thoen
- Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| | - Charles-André Fustin
- Bio and Soft Matter, Institute of Condensed Matter and Nanosciences, UC Louvain, Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
| | - Paula Moldenaers
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium.
| | - Ruth Cardinaels
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium; Processing and Performance of Materials, Department of Mechanical Engineering, TU Eindhoven, Box 513, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
78
|
Hohl T, Kremer RK, Ebbinghaus SG, Khan SA, Minár J, Hoch C. Influence of Disorder on the Bad Metal Behavior in Polar Amalgams. Inorg Chem 2023; 62:3965-3975. [PMID: 36821862 DOI: 10.1021/acs.inorgchem.2c04430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The two new ternary amalgams K1-xRbxHg11 [x = 0.472(7)] and Cs3-xCaxHg20 [x = 0.20(3)] represent two different examples of how to create ternary compounds from binaries by statistical atom substitution. K1-xRbxHg11 is a Vegard-type mixed crystal of the isostructural binaries KHg11 and RbHg11 [cubic, BaHg11 structure type, space group Pm3̅m, a = 9.69143(3) Å, Rietveld refinement], whereas Cs3-xCaxHg20 is a substitution variant of the Rb3Hg20 structure type [cubic, space group Pm3̅n, a = 10.89553(14) Å, Rietveld refinement] for which a fully substituted isostructural binary Ca phase is unknown. In K1-xRbxHg11, the valence electron concentration (VEC) is not changed by the substitution, whereas in Cs3-xCaxHg20, the VEC increases with the Ca content. Amalgams of electropositive metals form polar metal bonds and show "bad metal" properties. By thermal analysis, magnetic susceptibility and resistivity measurements, and density functional theory calculations of the electronic structures, we investigate the effect of the structural disorder introduced by creating mixed-atom occupation on the physical properties of the two new polar amalgam systems.
Collapse
Affiliation(s)
- Timotheus Hohl
- Department Chemie, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Reinhard K Kremer
- Max-Planck-Institut für Festkörperforschung Stuttgart, 70569 Stuttgart, Germany
| | - Stefan G Ebbinghaus
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Saleem A Khan
- New Technologies Research Center, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Ján Minár
- New Technologies Research Center, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Constantin Hoch
- Department Chemie, Ludwig-Maximilians-Universität München, 81377 München, Germany
| |
Collapse
|
79
|
Zhou Y, Chen L, Wang Y, Zhu J, Guo Z, Liu C, Guo Z, Wang C, Zhang H, Wang Y, Liao K, Song Y, Wang JO, Chen D, Ma J, Hu J, Wang G. ANi 5Bi 5.6+δ (A = K, Rb, and Cs): Quasi-One-Dimensional Metals Featuring [Ni 5Bi 5.6+δ] - Double-Walled Column with Strong Diamagnetism. Inorg Chem 2023; 62:3788-3798. [PMID: 36814133 DOI: 10.1021/acs.inorgchem.2c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A new series of compounds, ANi5Bi5.6+δ (where A = K, Rb, and Cs) are discovered with a quasi-one-dimensional (Q1D) [Ni5Bi5.6+δ]- double-walled column and a coaxial inner one-dimensional Bi atomic chain. The columns are linked to each other by intercolumn Bi-Bi bonds and separated by an A+ cation. Typical metallic behaviors with strong correlation of itinerant electrons and the Sommerfeld coefficient enhanced with the increasing cationic radius were experimentally observed and supported by first-principles calculations. Compared to AMn6Bi5 (where A = K, Rb, and Cs), the enhanced intercolumn distances and the substitution of Ni for Mn give rise to strong diamagnetic susceptibilities in ANi5Bi5.6+δ. First-principles calculations reveal possible uncharged Ni atoms with even number of electrons in ANi5Bi5.6+δ, which may explain the emergence of diamagnetism. ANi5Bi5.6+δ, as Q1D diamagnetic metals with strong electron correlation, provide a unique platform to understand exotic magnetism and explore novel quantum effects.
Collapse
Affiliation(s)
- Ying Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Zhu
- Key Laboratory of Artificial Structures and Quantum Control, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chen Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Guo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - ChinWei Wang
- Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2232, Australia
| | - Han Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Liao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youting Song
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jia-Ou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ma
- Key Laboratory of Artificial Structures and Quantum Control, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangping Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Gang Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
80
|
Sumathi RR, Gybin A, Gradwohl K, Palleti PC, Pietsch M, Irmscher K, Dropka N, Juda U. Development of Large‐Diameter and Very High Purity Ge Crystal Growth Technology for Devices. CRYSTAL RESEARCH AND TECHNOLOGY 2023. [DOI: 10.1002/crat.202200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
| | - Alexander Gybin
- Volume Crystals Department Leibniz‐Institut für Kristallzüchtung (IKZ) Max‐Born‐Str. 2 12489 Berlin Germany
| | - Kevin‐P. Gradwohl
- Volume Crystals Department Leibniz‐Institut für Kristallzüchtung (IKZ) Max‐Born‐Str. 2 12489 Berlin Germany
| | - Pradeep Chandra Palleti
- Volume Crystals Department Leibniz‐Institut für Kristallzüchtung (IKZ) Max‐Born‐Str. 2 12489 Berlin Germany
| | - Mike Pietsch
- Volume Crystals Department Leibniz‐Institut für Kristallzüchtung (IKZ) Max‐Born‐Str. 2 12489 Berlin Germany
| | - Klaus Irmscher
- Volume Crystals Department Leibniz‐Institut für Kristallzüchtung (IKZ) Max‐Born‐Str. 2 12489 Berlin Germany
| | - Natasha Dropka
- Volume Crystals Department Leibniz‐Institut für Kristallzüchtung (IKZ) Max‐Born‐Str. 2 12489 Berlin Germany
| | - Uta Juda
- Volume Crystals Department Leibniz‐Institut für Kristallzüchtung (IKZ) Max‐Born‐Str. 2 12489 Berlin Germany
| |
Collapse
|
81
|
Wang Z, Pei K, Yang L, Yang C, Chen G, Zhao X, Wang C, Liu Z, Li Y, Che R, Zhu J. Topological spin texture in the pseudogap phase of a high-T c superconductor. Nature 2023; 615:405-410. [PMID: 36813970 DOI: 10.1038/s41586-023-05731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023]
Abstract
An outstanding challenge in condensed-matter-physics research over the past three decades has been to understand the pseudogap (PG) phenomenon of the high-transition-temperature (high-Tc) copper oxides. A variety of experiments have indicated a symmetry-broken state below the characteristic temperature T* (refs. 1-8). Among them, although the optical study5 indicated the mesoscopic domains to be small, all these experiments lack nanometre-scale spatial resolution, and the microscopic order parameter has so far remained elusive. Here we report, to our knowledge, the first direct observation of topological spin texture in an underdoped cuprate, YBa2Cu3O6.5, in the PG state, using Lorentz transmission electron microscopy (LTEM). The spin texture features vortex-like magnetization density in the CuO2 sheets, with a relatively large length scale of about 100 nm. We identify the phase-diagram region in which the topological spin texture exists and demonstrate the ortho-II oxygen order and suitable sample thickness to be crucial for its observation by our technique. We also discuss an intriguing interplay observed among the topological spin texture, PG state, charge order and superconductivity.
Collapse
Affiliation(s)
- Zechao Wang
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, People's Republic of China
- Ji Hua Laboratory, Foshan, People's Republic of China
| | - Ke Pei
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
| | - Liting Yang
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
| | - Chendi Yang
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
| | - Guanyu Chen
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
| | - Xuebing Zhao
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
- Zhejiang Laboratory, Hangzhou, People's Republic of China
| | - Chao Wang
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
- Zhejiang Laboratory, Hangzhou, People's Republic of China
| | - Zhengwang Liu
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
| | - Yuan Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China.
- Collaborative Innovation Center of Quantum Matter, Beijing, People's Republic of China.
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China.
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, People's Republic of China.
- Ji Hua Laboratory, Foshan, People's Republic of China.
| |
Collapse
|
82
|
Ayscough SE, Clifton LA, Skoda MWA, Titmuss S. Suspended phospholipid bilayers: A new biological membrane mimetic. J Colloid Interface Sci 2023; 633:1002-1011. [PMID: 36516676 DOI: 10.1016/j.jcis.2022.11.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
HYPOTHESIS The attractive interaction between a cationic surfactant monolayer at the air-water interface and vesicles, incorporating anionic lipids, is sufficient to drive the adsorption and deformation of the vesicles. Osmotic rupture of the vesicles produces a continuous lipid bilayer beneath the monolayer. EXPERIMENTAL Specular neutron reflectivity has been measured from the surface of a purpose-built laminar flow trough, which allows for rapid adsorption of vesicles, the changes in salt concentration required for osmotic rupture of the adsorbed vesicles into a bilayer, and for neutron contrast variation of the sub-phase without disturbing the monolayer. FINDINGS The neutron reflectivity profiles measured after vesicle addition are consistent with the adsorption and flattening of the vesicles beneath the monolayer. An increase in the buffer salt concentration results in further flattening and fusion of the adsorbed vesicles, which are ruptured by a subsequent decrease in the salt concentration. This process results in a continuous, high coverage, bilayer suspended 11 Åbeneath the monolayer. As the bilayer is not constrained by a solid substrate, this new mimetic is well-suited to studying the structure of lipid bilayers that include transmembrane proteins.
Collapse
Affiliation(s)
- Sophie E Ayscough
- School of Physics & Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Luke A Clifton
- ISIS Neutron & Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0XX, UK
| | - Maximilian W A Skoda
- ISIS Neutron & Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0XX, UK
| | - Simon Titmuss
- School of Physics & Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| |
Collapse
|
83
|
Sekine Y, Nakamura R, Akiyoshi R, Hayami S. Ä-Coupling Dielectric Functionality with Magnetic Properties in Coordination Metal Complexes. Chempluschem 2023:e202200463. [PMID: 36859753 DOI: 10.1002/cplu.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Significant research has been conducted on molecular ferroelectric materials, including pure organic and inorganic compounds; however, studies on ferroelectric materials based on coordination metal complexes are scarce. Ferroelectric materials based on coordination metal complexes have tunable structures and designs, with coexistence or synergy between the ferroelectric behavior and magnetic properties. Compared to inorganic compounds, few coordination metal complexes exhibit coupling between the magnetic and dielectric properties. Coordination metal complexes with strong coupling between the magnetic and dielectric properties exhibit dielectric permittivity variations under external magnetic fields. Therefore, they have attracted substantial interest for their potential use in magnetoelectric devices. In this review, we discuss recent advances in coordination metal complexes, that exhibit coupled magnetic functionalities and ferroelectricity or dielectric properties, including single-molecule magnets, electron delocalization systems, and external stimuli responsive compounds.
Collapse
Affiliation(s)
- Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Rikuto Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Ryohei Akiyoshi
- Department of Chemistry, School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
84
|
Sobhanan J, Anas A, Biju V. Nanomaterials for Fluorescence and Multimodal Bioimaging. CHEM REC 2023; 23:e202200253. [PMID: 36789795 DOI: 10.1002/tcr.202200253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Bioconjugated nanomaterials replace molecular probes in bioanalysis and bioimaging in vitro and in vivo. Nanoparticles of silica, metals, semiconductors, polymers, and supramolecular systems, conjugated with contrast agents and drugs for image-guided (MRI, fluorescence, PET, Raman, SPECT, photodynamic, photothermal, and photoacoustic) therapy infiltrate into preclinical and clinical settings. Small bioactive molecules like peptides, proteins, or DNA conjugated to the surfaces of drugs or probes help us to interface them with cells and tissues. Nevertheless, the toxicity and pharmacokinetics of nanodrugs, nanoprobes, and their components become the clinical barriers, underscoring the significance of developing biocompatible next-generation drugs and contrast agents. This account provides state-of-the-art advancements in the preparation and biological applications of bioconjugated nanomaterials and their molecular, cell, and in vivo applications. It focuses on the preparation, bioimaging, and bioanalytical applications of monomodal and multimodal nanoprobes composed of quantum dots, quantum clusters, iron oxide nanoparticles, and a few rare earth metal ion complexes.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala, 682 018, India
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido, 060-0810, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan
| |
Collapse
|
85
|
Spherulite-like microstructure observed for spin-cast P(VDF-TrFE) thin films and their ferroelectric characteristics. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
86
|
Nikolov A, Lee J, Wasan D. DLVO surface forces in liquid films and statistical mechanics of colloidal oscillatory structural forces in dispersion stability. Adv Colloid Interface Sci 2023; 313:102847. [PMID: 36738628 DOI: 10.1016/j.cis.2023.102847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
This paper focuses on the theory of the dispersion stability considering two models. In the classical DLVO model of surface forces, the interactions between two particles consist of two terms: the London-van der Waals attractive interaction and the electrostatic repulsive interaction in the frame of the Debye-Hückel theory. The solvent, the aqueous solution of the electrolyte, was considered the continuous phase. The film stability criteria are Pγ > Π and dPγ/dh > 0. Henderson and Lozada-Cassou (HC) applied the statistical mechanics approach to calculate the film free energy to predict the dispersion stability by considering two large hard spheres as colloidal particles immersed in a fluid of dispersed small particles (the solvent). HC applied the radial distribution function g(r) to calculate the free oscillatory structural energy using W(r) = - kT ln g(r). HC's theoretical approach was also applied to the particle collective interactions in the film and explains the stability of film formed from complex fluids (e.g., micellar and colloidal dispersions). The differences between the solvation oscillatory layering forces and colloidal oscillatory structural forces are discussed. The application of the DLVO model to the dispersion stability is critically reviewed. The role of nanobubbles in the dispersion stability is discussed.
Collapse
Affiliation(s)
- Alex Nikolov
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, United States.
| | - Jongju Lee
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, United States.
| | - Darsh Wasan
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, United States.
| |
Collapse
|
87
|
George VK, Gupta A, Silva GA. Identifying Steady State in the Network Dynamics of Spiking Neural Networks. Heliyon 2023; 9:e13913. [PMID: 36967881 PMCID: PMC10036509 DOI: 10.1016/j.heliyon.2023.e13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Analysis of the dynamics of complex networks can provide valuable information. For example, the dynamics can be used to characterize and differentiate between different network inputs and configurations. However, without quantitatively delineating the network's dynamic regimes, analysis of the network's dynamics is based on heuristics and qualitative signatures of transient or steady-state regimes. This is not ideal because interesting phenomena can occur during the transient regime, steady-state regime, or at the transition between the two dynamic regimes. Moreover, for simulated and observed systems, precise knowledge of the network's dynamical regime is imperative when considering metrics on minimal mathematical descriptions of the dynamics, otherwise either too much or too little data is analyzed. Here, we develop quantitative methods to ascertain the starting point and period of steady-state network activity. Using the precise knowledge of the network's dynamic regimes, we build minimal representations of the network dynamics that form the basis for future work. We show applications of our techniques on idealized signals and on the dynamics of a biologically inspired spiking neural network.
Collapse
|
88
|
Heimburg T. The excitable fluid mosaic. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184104. [PMID: 36642342 DOI: 10.1016/j.bbamem.2022.184104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
The Fluid Mosaic Model by Singer & Nicolson proposes that biological membranes consist of a fluid lipid layer into which integral proteins are embedded. The lipid membrane acts as a two-dimensional liquid in which the proteins can diffuse and interact. Until today, this view seems very reasonable and is the predominant picture in the literature. However, there exist broad melting transitions in biomembranes some 10-20 degrees below physiological temperatures that reach up to body temperature. Since they are found below body temperature, Singer & Nicolson did not pay any further attention to the melting process. But this is a valid view only as long as nothing happens. The transition temperature can be influenced by membrane tension, pH, ionic strength and other variables. Therefore, it is not generally correct that the physiological temperature is above this transition. The control over the membrane state by changing the intensive variables renders the membrane as a whole excitable. One expects phase behavior and domain formation that leads to protein sorting and changes in membrane function. Thus, the lipids become an active ingredient of the biological membrane. The melting transition affects the elastic constants of the membrane. This allows for the generation of propagating pulses in nerves and the formation of ion-channel-like pores in the lipid membranes. Here we show that on top of the fluid mosaic concept there exists a wealth of excitable phenomena that go beyond the original picture of Singer & Nicolson.1.
Collapse
Affiliation(s)
- Thomas Heimburg
- Membrane Biophysics Group, Niels Bohr Institute, University of Copenhagen, Denmark.
| |
Collapse
|
89
|
Choi GPT, Liu L, Mahadevan L. Explosive rigidity percolation in kirigami. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Controlling the connectivity and rigidity of kirigami, i.e. the process of cutting paper to deploy it into an articulated system, is critical in the manifestations of kirigami in art, science and technology, as it provides the resulting metamaterial with a range of mechanical and geometric properties. Here, we combine deterministic and stochastic approaches for the control of rigidity in kirigami using the power of
k
choices, an approach borrowed from the statistical mechanics of explosive percolation transitions. We show that several methods for rigidifying a kirigami system by incrementally changing either the connectivity or the rigidity of individual components allow us to control the nature of the explosive transition by a choice of selection rules. Our results suggest simple lessons for the design of mechanical metamaterials.
Collapse
|
90
|
Bagheri H, Jayanetti V, Burch HR, Brenner CE, Bethke BR, Marvi H. Mechanics of bipedal and quadrupedal locomotion on dry and wet granular media. J FIELD ROBOT 2023. [DOI: 10.1002/rob.22121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hosain Bagheri
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| | - Vidu Jayanetti
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| | - Hailey R. Burch
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| | - Clayton E. Brenner
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| | - Benjamin R. Bethke
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| | - Hamidreza Marvi
- School for Engineering of Matter, Transport and Energy Arizona State University Tempe Arizona USA
| |
Collapse
|
91
|
Li Y, Corkery RW, Carretero-Palacios S, Berland K, Esteso V, Fiedler J, Milton KA, Brevik I, Boström M. Origin of anomalously stabilizing ice layers on methane gas hydrates near rock surface. Phys Chem Chem Phys 2023; 25:6636-6652. [PMID: 36790196 DOI: 10.1039/d2cp04883c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Gas hydrates (GHs) in water close to freezing temperatures can be stabilised via the formation of ice layers. In a recent work [Boström et al., Astron. Astrophys., A54, 650, 2021], it was found that a surface region with partial gas dilution could be essential for obtaining nano- to micron-sized anomalously stabilizing ice layers. In this paper, it is demonstrated that the Casimir-Lifshitz free energy in multi-layer systems could induce thinner, but more stable, ice layers in cavities than those found for gas hydrates in a large reservoir of cold water. The thickness and stability of such ice layers in a pore filled with cold water could influence the leakage of gas molecules. Additional contributions, e.g. from salt-induced stresses, can also be of importance, and are briefly discussed.
Collapse
Affiliation(s)
- Yang Li
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China. .,Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China
| | - Robert W Corkery
- Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden.,Applied Mathematics Department, Research School of Physics and Engineering, The Australian National University, Acton ACT 2610, Australia
| | - Sol Carretero-Palacios
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Kristian Berland
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Victoria Esteso
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, Sesto F.no 50019, Italy.,Departamento de Física de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, Apdo. 1065, 41080, Sevilla, Spain
| | - Johannes Fiedler
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Kimball A Milton
- Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Mathias Boström
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway. .,Centre of Excellence ENSEMBLE3 Sp. z o. o., Wolczynska Str. 133, 01-919, Warsaw, Poland
| |
Collapse
|
92
|
Uchida N, Yanagi M, Hamada H. Dispersion of Manganese Dioxide Particles Using Anionic Technol PG and Sodium Cholate in the Preparation for Application as Films on Substrates. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231163386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Manganese dioxide (MnO2) is widely used in cosmetics and self-cleaning materials because of the high refractive index and photocatalytic activity of this compound. In the present work, the surfaces of MnO2 particles were coated with a commercially available anionic phospholipid mixture, Technol PG, and sodium cholate(SC). These coated particles were readily dispersed in water and subsequently applied as films onto glass substrates by drop-casting.
Collapse
Affiliation(s)
| | - Masayoshi Yanagi
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Hiroki Hamada
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
- Mysterbio, Okayama, Japan
| |
Collapse
|
93
|
Saisopa T, Jitapunkul K, Bunpheng A, Nakajima H, Supruangnet R, Busayaporn W, Sukprom T, Hirunpinyopas W, Seubsai A, Songsiriritthigul P, Iamprasertkun P. The Structure Analysis and Chemical Properties Probing During Recycling Processes of Transition Metal Dichalcogenides Exfoliation. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
94
|
Zhang S, Yi X, Hu G, Chen M, Shen H, Li B, Yang L, Dai W, Zou J, Luo S. Configuration regulation of active sites by accurate doping inducing self-adapting defect for enhanced photocatalytic applications: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
95
|
Kumar Tiwari C, Roy S, Tubul-Sterin T, Baranov M, Leffler N, Li M, Yin P, Neyman A, Weinstock IA. Emergence of Visible-Light Water Oxidation Upon Hexaniobate-Ligand Entrapment of Quantum-Confined Copper-Oxide Cores. Angew Chem Int Ed Engl 2023; 62:e202213762. [PMID: 36580402 DOI: 10.1002/anie.202213762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
The formation of small 1 to 3 nm organic-ligand free metal-oxide nanocrystals (NCs) is essential to utilization of their attractive size-dependent properties in electronic devices and catalysis. We now report that hexaniobate cluster-anions, [Nb6 O19 ]8- , can arrest the growth of metal-oxide NCs and stabilize them as water-soluble complexes. This is exemplified by formation of hexaniobate-complexed 2.4-nm monoclinic-phase CuO NCs (1), whose ca. 350 Cu-atom cores feature quantum-confinement effects that impart an unprecedented ability to catalyze visible-light water oxidation with no added photosensitizers or applied potentials, and at rates exceeding those of hematite NCs. The findings point to polyoxoniobate-ligand entrapment as a potentially general method for harnessing the size-dependent properties of very small semiconductor NCs as the cores of versatile, entirely-inorganic complexes.
Collapse
Affiliation(s)
- Chandan Kumar Tiwari
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Shubasis Roy
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Tal Tubul-Sterin
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Mark Baranov
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Nitai Leffler
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Alevtina Neyman
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ira A Weinstock
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| |
Collapse
|
96
|
The structure of biological complexity: Comment on "Networks behind the morphology and structural design of living systems" by Gosak et al. Phys Life Rev 2023; 44:73-76. [PMID: 36543074 DOI: 10.1016/j.plrev.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
|
97
|
Fodouop FK, Tsokeng AT, Nganyo PN, Tchoffo M, Fai L. A metamagnetoelectric view of the linarite PbCuSO 4(OH)2 cuprate spin chain. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
98
|
Zhang X, Xin L, Zhang M, Zhai J. Study on the Intrinsic Correlation between Sintering Method, Ion Diffusion, and Dielectric Properties of Ba
0.5
Sr
0.5
TiO
3
‐ZnAl
2
O
4
Composite Ceramics. CRYSTAL RESEARCH AND TECHNOLOGY 2023. [DOI: 10.1002/crat.202200235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Xianxin Zhang
- School of Materials Science and Engineering Shandong University of Technology 266 West Xincun Road Zibo Shandong 255049 P. R. China
| | - Le Xin
- Department of Mathematics Zibo Normal College 99 Tangjun‐ouling Road Zibo Shandong 255130 P. R. China
| | - Mingwei Zhang
- School of Materials Science and Engineering Shandong University of Technology 266 West Xincun Road Zibo Shandong 255049 P. R. China
| | - Jiwei Zhai
- School of Materials Science and Engineering Tongji University 4800 Caoan Road Shanghai Shanghai 201804 P. R. China
| |
Collapse
|
99
|
Asadi B, Fard KR, Ansari NN, Marco Á, Calvo S, Herrero P. The Effect of dry Needling in Chronic Stroke with a complex Network Approach: A Case Study. Clin EEG Neurosci 2023; 54:179-188. [PMID: 35957591 DOI: 10.1177/15500594221120136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Dry Needling (DN) has been demonstrated to be effective in improving sensorimotor function and spasticity in patients with chronic stroke. Electroencephalogram (EEG) has been used to analyze if DN has effects on the central nervous system of patients with stroke. There are no studies on how DN works in patients with chronic stroke based on EEG analysis using complex networks. Objective: The aim of this study was to assess how DN works when it is applied in a patient with stroke, using the graph theory. Methods: One session of DN was applied to the spastic brachialis muscle of a 62-year-old man with right hemiplegia after stroke. EEG was used to analyze the effects of DN following metrics that measure the topological configuration: 1) network density, 2) clustering coefficient, 3) average shortest path length, 4) betweenness centrality, and 5) small-worldness. Measurements were taken before and during DN. Results: An improvement of the brain activity was observed in this patient with stroke after the application of DN, which led to variations of local parameters of the brain network in the delta, theta and alpha bands, and inclined towards those of the healthy control bands. Conclusions: This case study showed the positive effects of DN on brain network of a patient with chronic stroke.
Collapse
Affiliation(s)
- Borhan Asadi
- Department of Computer Engineering and Information Technology, 185151University of Qom, Qom, Iran
| | - Kheirollah Rahsepar Fard
- Department of Computer Engineering and Information Technology, 185151University of Qom, Qom, Iran
| | - Noureddin Nakhostin Ansari
- Department of Physiotherapy, School of Rehabilitation, 48439Tehran University of Medical Sciences, Tehran, Iran.,Research Center for War-affected People, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Álvaro Marco
- Department of Electronic Engineering and Communications, Aragon Institute of Engineering Research, 16765University of Zaragoza, Zaragoza, Spain
| | - Sandra Calvo
- Department of Physiatry and Nursing, Faculty of Health Sciences, IIS Aragon, 16765University of Zaragoza, Zaragoza, Spain
| | - Pablo Herrero
- Department of Physiatry and Nursing, Faculty of Health Sciences, IIS Aragon, 16765University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
100
|
Wu H, Li S, Liu W, Lv B. Multiple-Intercalation Stages and Universal Tc Enhancement through Polar Organic Species in Electron-Doped 1T-SnSe 2. Inorg Chem 2023; 62:3525-3531. [PMID: 36791412 DOI: 10.1021/acs.inorgchem.2c03902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In this work, we report multiple-intercalation stages and universal Tc enhancement of superconductivity in 1T-SnSe2 through Li and organic molecule co-intercalation. We observe significantly increased lattice parameters of up to 40 Å and a dramatically enlarged interlayer distance of up to ∼11 Å in Li and N,N-dimethylformamide (DMF) co-intercalated SnSe2. Well-separated co-intercalation stages with different stacking patterns have been discovered by carefully controlled reaction times and concentrations of solutions. These co-intercalation stages are superconductors showing different superconducting signals. In addition, Li and various organic species such as acetone, dimethyl sulfoxide (DMSO), and tetrahydrofuran (THF) have been co-intercalated into SnSe2 crystals; all of which show an enhanced superconducting Tc compared to solely Li-intercalated SnSe2. Our findings may provide more insight into effectively tuning the electronic structure of the lamellar structure through organic molecule co-regulation and open a new strategy to engineer the physical properties of these layered materials by controlling their different intercalation stages.
Collapse
Affiliation(s)
- Hanlin Wu
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sheng Li
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Wenhao Liu
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Bing Lv
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|