951
|
Teli T, Xanthaki D, Karalis KP. Regulation of appetite and insulin signaling in inflammatory states. Ann N Y Acad Sci 2007; 1083:319-28. [PMID: 17148747 DOI: 10.1196/annals.1367.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory states are characterized by decreased food intake, hyperglycemia, and insulin resistance. The contribution of cytokines in this phenotype is important and is exerted through activation of SOCS proteins and inhibition of insulin signaling, as well as through direct stimulation of the ob gene. Obesity, a condition that has reached epidemic rates, is characterized by hyperglycemia, hyperlipidemia, insulin resistance and increased food intake, and body weight. In the following article we summarize the current views of the mechanisms underlying insulin resistance in obesity and the other inflammatory states. We also discuss the regulation of appetite in inflammatory states, and we provide evidence on the cytokine-independent induction of anorexia following immune activation in mice. Understanding of the exact mechanisms regulating these processes may provide important insights for the control of this group of diseases that compromise to a great extent the quality of life and are associated with high mortality.
Collapse
Affiliation(s)
- Thalia Teli
- Developmental Biology Section, Foundation for Biomedical Research of the Academy of Athens, Athens, 11527 Greece
| | | | | |
Collapse
|
952
|
Crepaldi T, Bersani F, Scuoppo C, Accornero P, Prunotto C, Taulli R, Forni PE, Leo C, Chiarle R, Griffiths J, Glass DJ, Ponzetto C. Conditional Activation of MET in Differentiated Skeletal Muscle Induces Atrophy. J Biol Chem 2007; 282:6812-22. [PMID: 17194700 DOI: 10.1074/jbc.m610916200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Skeletal muscle atrophy is a common debilitating feature of many systemic diseases, including cancer. Here we examined the effects of inducing expression of an oncogenic version of the Met receptor (Tpr-Met) in terminally differentiated skeletal muscle. A responder mouse containing the Tpr-Met oncogene and GFP (green fluorescent protein) as a reporter was crossed with a transactivator mouse expressing tTA under the control of the muscle creatine kinase promoter. Tpr-Met induction during fetal development and in young adult mice caused severe muscle wasting, with decreased fiber size and loss of myosin heavy chain protein. Concomitantly, in the Tpr-Met-expressing muscle the mRNA of the E3 ubiquitin ligases atrogin-1/MAFbx, MuRF1, and of the lysosomal protease cathepsin L, which are markers of skeletal muscle atrophy, was significantly increased. In the same muscles phosphorylation of the Met downstream effectors Akt, p38 MAPK, and IkappaBalpha was higher than in normal controls. Induction of Tpr-Met in differentiating satellite cells derived from the double transgenics caused aberrant cell fusion, protein loss, and myotube collapse. Increased phosphorylation of Met downstream effectors was also observed in the Tpr-Met-expressing myotubes cultures. Treatment of these cultures with either a proteasomal or a p38 inhibitor prevented Tpr-Met-mediated myotube breakdown, establishing accelerated protein degradation consequent to inappropriate activation of p38 as the major route for the Tpr-Met-induced muscle phenotype.
Collapse
Affiliation(s)
- Tiziana Crepaldi
- Center for Experimental Research and Medical Studies, University of Turin, 10126 Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
953
|
Frost RA, Lang CH. Protein kinase B/Akt: a nexus of growth factor and cytokine signaling in determining muscle mass. J Appl Physiol (1985) 2007; 103:378-87. [PMID: 17332274 DOI: 10.1152/japplphysiol.00089.2007] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although the boundaries of skeletal muscle size are fundamentally determined by genetics, this dynamic tissue also demonstrates great plasticity in response to environmental and hormonal factors. Recent work indicates that contractile activity, nutrients, growth factors, and cytokines all contribute to determining muscle mass. Muscle responds not only to endocrine hormones but also to the autocrine production of growth factors and cytokines. Skeletal muscle synthesizes anabolic growth factors such as insulin-like growth factor (IGF)-I and potentially inhibitory cytokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and myostatin. These self-regulating inputs in turn influence muscle metabolism, including the use of nutrients such as glucose and amino acids. These changes are principally achieved by altering the activity of the protein kinase known as protein kinase B or Akt. Akt plays a central role in integrating anabolic and catabolic responses by transducing growth factor and cytokine signals via changes in the phosphorylation of its numerous substrates. Activation of Akt stimulates muscle hypertrophy and antagonizes the loss of muscle protein. Here we review the many signals that funnel through Akt to alter muscle mass.
Collapse
Affiliation(s)
- Robert A Frost
- Department of Cellular and Molecular Physiology, The Penn State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
954
|
Acharyya S, Guttridge DC. Cancer Cachexia Signaling Pathways Continue to Emerge Yet Much Still Points to the Proteasome: Fig. 1. Clin Cancer Res 2007; 13:1356-61. [PMID: 17332276 DOI: 10.1158/1078-0432.ccr-06-2307] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cachexia is a life-threatening consequence of cancer that diminishes both quality of life and survival. It is a syndrome that is characterized by extreme weight loss resulting mainly from the depletion of skeletal muscle. Research from the past decades investigating the mechanisms of tumor-induced muscle wasting has identified several key cachectic factors that act through the ubiquitin-dependent proteasome system. Signaling pathways that mediate the effects of these cachectic factors have also subsequently emerged. Here, we review some of these pathways specific to myostatin, nuclear factor kappaB, and the newly elucidated dystrophin glycoprotein complex. Although these molecules are likely to employ distinct modes of action, results suggest that they nevertheless maintain a link to the proteasome pathway. Therefore, although the proteasome remains a preferred choice for therapy, the continually emerging upstream signaling molecules serve as additional promising therapeutic targets for the treatment of tumor-induced muscle wasting.
Collapse
Affiliation(s)
- Swarnali Acharyya
- Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, Integrated Biomedical Graduate Program, The Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
955
|
Dogra C, Changotra H, Wedhas N, Qin X, Wergedal JE, Kumar A. TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine. FASEB J 2007; 21:1857-69. [PMID: 17314137 PMCID: PMC4154373 DOI: 10.1096/fj.06-7537com] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TWEAK cytokine has been implicated in several biological responses including inflammation, angiogenesis, and osteoclastogenesis. We have investigated the role of TWEAK in regulating skeletal muscle mass. Addition of soluble TWEAK protein to cultured myotubes reduced the mean myotube diameter and enhanced the degradation of specific muscle proteins such as CK and MyHCf. The effect of TWEAK on degradation of MyHCf was stronger than its structural homologue, TNF-alpha. TWEAK increased the ubiquitination of MyHCf and the transcript levels of atrogin-1 and MuRF1 ubiquitin ligases. TWEAK inhibited phosphorylation of Akt kinase and its downstream targets GSK-3beta, FOXO1, mTOR, and p70S6K. Furthermore, TWEAK increased the activation of NF-kappaB transcription factor in myotubes. Adenoviral-mediated overexpression of IkappaB alpha deltaN (a degradation-resistant mutant of NF-kappaB inhibitory protein IkappaB alpha) in myotubes blocked the TWEAK-induced degradation of MyHCf. Chronic administration of TWEAK in mice resulted in reduced body and skeletal muscle weight with an associated increase in the activity of ubiquitin-proteasome system and NF-kappaB. Finally, muscle-specific transgenic overexpression of TWEAK decreased the body and skeletal muscle weight in mice. Collectively, our data suggest that TWEAK induces skeletal muscle atrophy through inhibition of the PI3K/Akt signaling pathway and activation of the ubiquitin-proteasome and NF-kappaB systems.
Collapse
Affiliation(s)
- Charu Dogra
- Musculoskeletal Disease Center, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA 92357
| | - Harish Changotra
- Musculoskeletal Disease Center, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA 92357
| | - Nia Wedhas
- Musculoskeletal Disease Center, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA 92357
| | - Xuezhong Qin
- Musculoskeletal Disease Center, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA 92357
- Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Jon E. Wergedal
- Musculoskeletal Disease Center, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA 92357
- Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Ashok Kumar
- Musculoskeletal Disease Center, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA 92357
- Laboratory for Skeletal Muscle Physiology and Neurobiology, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA 92357
- Loma Linda University School of Medicine, Loma Linda, CA 92350
- Address Correspondence to: Ashok Kumar, Ph.D. Laboratory for Skeletal Muscle Physiology and Neurobiology, Jerry L. Pettis Memorial Veterans Administration Medical Center, 11201 Benton Street (151), Loma Linda, CA 92357, Phone: (909) 825-7084 (Ext. 1704), Fax: (909) 796-1680,
| |
Collapse
|
956
|
Marinovic AC, Zheng B, Mitch WE, Price SR. Tissue-specific regulation of ubiquitin (UbC) transcription by glucocorticoids: in vivo and in vitro analyses. Am J Physiol Renal Physiol 2007; 292:F660-6. [PMID: 16954342 DOI: 10.1152/ajprenal.00178.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In uremia, muscle wasting involves increased glucocorticoid production and activation of the ubiquitin-proteasome proteolytic pathway, including increased expression of ubiquitin. Previously, we reported that glucocorticoids stimulate ubiquitin transcription by a mechanism involving Sp1 in L6 muscle cells (Marinovic AC, Zheng B, Mitch WE, Price SR. J Biol Chem 277: 16673–16681, 2002). This finding was surprising because Sp1 is a general transcriptional activator. To better understand the mechanism of glucocorticoid-induced ubiquitin ( UbC) gene transcription, we examined whether this response occurs in many organs or uniquely in skeletal muscle. Glucocorticoid-responsive cells of different organs were transfected with a human UbC promoter-luciferase reporter plasmid; dexamethasone stimulated UbC reporter activity 220% ( P < 0.05) in L6 skeletal muscle cells but not in HepG2 hepatocytes, NRK kidney cells, CaCo-2 colon cells, or H9c2 cardiomyocytes. Transactivation of the Sp1-responsive SV40 viral promoter was also increased in muscle but not in other nonmuscle cells. The muscle-specific nature of the UbC response was confirmed in vivo in rats with insulin deficiency, a condition associated with high glucocorticoid production: UbC mRNA was elevated in skeletal muscle but not in liver, kidney, intestine, or heart. Electrophoretic mobility shift assays and in vivo genomic footprinting demonstrated that insulin deficiency increased Sp1 binding to GC-rich elements in the UbC promoter. Thus glucocorticoids increase UbC transcription by a mechanism involving Sp1 that is unique to muscle.
Collapse
|
957
|
Schwarzkopf M, Coletti D, Sassoon D, Marazzi G. Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway. Genes Dev 2007; 20:3440-52. [PMID: 17182869 PMCID: PMC1698450 DOI: 10.1101/gad.412606] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Muscle wasting (cachexia) is an incurable complication associated with chronic infection and cancers that leads to an overall poor prognosis for recovery. Tumor necrosis factor-alpha (TNFalpha) is a key inflammatory cytokine associated with cachexia. TNFalpha inhibits myogenic differentiation and skeletal muscle regeneration through downstream effectors of the p53 cell death pathway including PW1/Peg3, bax, and caspases. We report that p53 is required for the TNFalpha-mediated inhibition of myogenesis in vitro and contributes to muscle wasting in response to tumor load in vivo. We further demonstrate that PW1 and p53 participate in a positive feedback regulatory loop in vitro. Consistent with this observation, we find that the number of PW1-expressing stem cells in skeletal muscle declines significantly in p53 nullizygous mice. Furthermore, gene transfer of a dominant-negative form of PW1 into muscle tissue in vivo blocks myofiber atrophy in response to tumor load. Taken together, these results show a novel role for p53 in mediating muscle stem cell behavior and muscle atrophy, and point to new targets for the therapeutic treatment of muscle wasting.
Collapse
Affiliation(s)
- Martina Schwarzkopf
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai Medical School, New York, New York 10029, USA
| | - Dario Coletti
- Department of Histology and Medical Embryology and Interuniversity Institute of Myology, University of Rome La Sapienza, Rome 00161, Italy
| | - David Sassoon
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai Medical School, New York, New York 10029, USA
- Myology Group, Institut national de la santé et de la recherche médicale (INSERM) U787, Paris 75634, France
- Université Pierre et Marie Curie-Paris6, UMR S 787, 75634 Paris, France
- Corresponding author.E-MAIL ; FAX 33-01-53-60-08-02
| | - Giovanna Marazzi
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai Medical School, New York, New York 10029, USA
- Myology Group, Institut national de la santé et de la recherche médicale (INSERM) U787, Paris 75634, France
- Université Pierre et Marie Curie-Paris6, UMR S 787, 75634 Paris, France
| |
Collapse
|
958
|
Abstract
PURPOSE OF REVIEW Cachexia, the occurrence of involuntary weight loss due to loss of adipose tissue and skeletal muscle mass, is among the most common and devastating symptoms in patients with advanced cancer. It is a significant factor contributing to the poor performance status and high mortality rate of these patients, and is a distressing problem for both patients and their families. Despite extensive research in an attempt to better understand the mechanisms involved, progress in the management of cancer cachexia has been slow. RECENT FINDINGS The pathogenic mechanisms of cachexia and anorexia are multifactorial, but cytokines and tumour-derived factors are known to play a significant role, thereby representing suitable therapeutic targets. Moreover, recent advances in the field of molecular biology have shed light on other mediators involved in the mechanisms leading to muscle wasting, thus increasing potential targets for new therapies. SUMMARY This review will focus on recent findings in relation to the molecular pathways leading to muscle wasting that have improved our current understanding of cachexia and will direct the future management of cachexia in cancer towards targeted therapies.
Collapse
Affiliation(s)
- Manon S A Boddaert
- Department of Medical Oncology, VUMC Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
959
|
Valdés JA, Hidalgo J, Galaz JL, Puentes N, Silva M, Jaimovich E, Carrasco MA. NF-kappaB activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals. Am J Physiol Cell Physiol 2007; 292:C1960-70. [PMID: 17215326 DOI: 10.1152/ajpcell.00320.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depolarization of skeletal muscle cells by either high external K(+) or repetitive extracellular field potential pulses induces calcium release from internal stores. The two components of this release are mediated by either ryanodine receptors or inositol 1,4,5-trisphosphate (IP(3)) receptors and show differences in kinetics, amplitude, and subcellular localization. We have reported that the transcriptional regulators including ERKs, cAMP/Ca(2+)-response element binding protein, c-fos, c-jun, and egr-1 are activated by K(+)-induced depolarization and that their activation requires IP(3)-dependent calcium release. We presently describe the activation of the nuclear transcription factor NF-kappaB in response to depolarization by either high K(+) (chronic) or electrical pulses (fluctuating). Calcium transients of relative short duration activate an NF-kappaB reporter gene to an intermediate level, whereas long-lasting calcium increases obtained by prolonged electrical stimulation protocols of various frequencies induce maximal activation of NF-kappaB. This activation is independent of extracellular calcium, whereas calcium release mediated by either ryanodine or IP(3) receptors contribute in all conditions tested. NF-kappaB activation is mediated by IkappaBalpha degradation and p65 translocation to the nucleus. Partial blockade by N-acetyl-l-cysteine, a general antioxidant, suggests the participation of reactive oxygen species. Calcium-dependent signaling pathways such as those linked to calcineurin and PKC also contribute to NF-kappaB activation by depolarization, as assessed by blockade through pharmacological agents. These results suggest that NF-kappaB activation in skeletal muscle cells is linked to membrane depolarization and depends on the duration of elevated intracellular calcium. It can be regulated by sequential activation of calcium release mediated by the ryanodine and by IP(3) receptors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Animals, Newborn
- Calcineurin/metabolism
- Calcium/metabolism
- Calcium Signaling
- Cell Line
- Electric Stimulation
- I-kappa B Proteins/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kinetics
- Membrane Potentials
- Mice
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myoblasts, Skeletal/metabolism
- NF-KappaB Inhibitor alpha
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Potassium/metabolism
- Promoter Regions, Genetic
- Protein Kinase C/metabolism
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Transcription Factor RelA/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Juan Antonio Valdés
- Centro Fondo Nacional de Investigación en Areas Prioritarias de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
960
|
Abstract
Calpains, particularly conventional dimeric calpains, have claimed to be involved in the cell degeneration processes that characterize numerous disease conditions linked to dysfunctions of cellular Ca2+ homeostasis. The evidence supporting their involvement has traditionally been indirect and circumstantial, but recent work has added more solid evidence supporting the role of ubiquitous dimeric calpains in the process of neurodegeneration. The only disease condition in which a calpain defect has been conclusively involved concerns an atypical monomeric calpain: the muscle specific calpain-3, also known as p94. Inactivating defects in its gene cause a muscular dystrophy termed LGMD-2A. The molecular mechanism by which the absence of the proteolytic activity of calpain-3 causes the dystrophic process is unknown. Another atypical calpain, which has been characterized recently as a Ca2(+)-dependent protease, calpain 10, appears To be involved in the etiology of type 2 diabetes. The involvement has been inferred essentially from genetic evidence. Also in the case of type 2 diabetes the molecular mechanisms that could link the disease to calpain 10 are unknown.
Collapse
Affiliation(s)
- I Bertipaglia
- Department of Biochemistry, University of Padova, Italy
| | | |
Collapse
|
961
|
Dehoux M, Gobier C, Lause P, Bertrand L, Ketelslegers JM, Thissen JP. IGF-I does not prevent myotube atrophy caused by proinflammatory cytokines despite activation of Akt/Foxo and GSK-3beta pathways and inhibition of atrogin-1 mRNA. Am J Physiol Endocrinol Metab 2007; 292:E145-50. [PMID: 16926385 DOI: 10.1152/ajpendo.00085.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myofibrillar protein loss occurring in catabolic situations is considered to be mediated by the release of proinflammatory cytokines and associated with a decrease in circulating and muscle levels of insulin-like growth factor I (IGF-I). In this paper, we investigated whether the C(2)C(12) myotube atrophy caused in vitro by TNF-alpha/IFN-gamma cytokines might be reversed by exogenous IGF-I. Our results showed that, despite the presence of TNF-alpha/IFN-gamma, IGF-I retained its full ability to induce the phosphorylation of Akt, Foxo3a, and GSK-3beta (respectively, 16-fold, 9-fold, and 2-fold) together with a decrease in atrogin-1 mRNA (-39%, P < 0.001). Although this ubiquitin ligase has been reported to accelerate the degradation of MyoD, a myogenic transcription factor driving the transcription of myosin heavy chain (MHC), IGF-I failed to blunt the reduction of MyoD and MHC caused by TNF-alpha/IFN-gamma. Moreover, IGF-I only very slightly attenuated the myotube atrophy induced by TNF-alpha/IFN-gamma (TNF-alpha/IFN-gamma 15.48 mum alone vs. TNF-alpha/IFN-gamma/IGF-I 16.97 mum, P < 0.001). In conclusion, our data show that IGF-I does not reverse the myotube atrophy induced by TNF-alpha/IFN-gamma despite the phosphorylation of Foxo and GSK-3beta and the downregulation of atrogin-1 mRNA. Our study suggests therefore that factors other than IGF-I decrease are responsible for the muscle atrophy caused by proinflammatory cytokines.
Collapse
Affiliation(s)
- Mischaël Dehoux
- Division of Diabetology and Nutrition, Université catholique de Louvain, 54 avenue Hippocrate, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
962
|
Judge AR, Koncarevic A, Hunter RB, Liou HC, Jackman RW, Kandarian SC. Role for IκBα, but not c-Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol 2007; 292:C372-82. [PMID: 16928772 DOI: 10.1152/ajpcell.00293.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Skeletal muscle atrophy is associated with a marked and sustained activation of nuclear factor-κB (NF-κB) activity. Previous work showed that p50 is one of the NF-κB family members required for this activation and for muscle atrophy. In this work, we tested whether another NF-κB family member, c-Rel, is required for atrophy. Because endogenous inhibitory factor κBα (IκBα) was activated (i.e., decreased) at 3 and 7 days of muscle disuse (i.e., hindlimb unloading), we also tested if IκBα, which binds and retains Rel proteins in the cytosol, is required for atrophy and intermediates of the atrophy process. To do this, we electrotransferred a dominant negative IκBα (IκBαΔN) in soleus muscles, which were either unloaded or weight bearing. IκBαΔN expression abolished the unloading-induced increase in both NF-κB activation and total ubiquitinated protein. IκBαΔN inhibited unloading-induced fiber atrophy by 40%. The expression of certain genes known to be upregulated with atrophy were significantly inhibited by IκBαΔN expression during unloading, including MAFbx/atrogin-1, Nedd4, IEX, 4E-BP1, FOXO3a, and cathepsin L, suggesting these genes may be targets of NF-κB transcription factors. In contrast, c-Rel was not required for atrophy because the unloading-induced markers of atrophy were the same in c-rel−/−and wild-type mice. Thus IκBα degradation is required for the unloading-induced decrease in fiber size, the increase in protein ubiquitination, activation of NF-κB signaling, and the expression of specific atrophy genes, but c-Rel is not. These data represent a significant advance in our understanding of the role of NF-κB/IκB family members in skeletal muscle atrophy, and they provide new candidate NF-κB target genes for further study.
Collapse
Affiliation(s)
- Andrew R Judge
- Department of Health Sciences, Boston University, 635 Commonwealth Avenue, 4th Fl., Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
963
|
Abstract
Activation of transcription factor NF-kappaB, the major regulator of the inflammatory response, depends on the inhibitor of NF-kappaB kinase (IKK) complex, which is composed of 2 catalytic subunits, IKK1 and IKK2 (also known as IKKalpha and IKKbeta), and a regulatory subunit, IKKgamma (also known as NEMO). In this issue of the JCI, Mourkioti et al. show that muscle-specific disruption in mice of the gene encoding IKK2 prevents NF-kappaB activation in response to denervation or toxin-induced injury (see the related article beginning on page 2945). Importantly, this genetic manipulation prevents muscle wasting, thereby providing strong evidence in support of a major pathogenic role for inflammation in a variety of muscular dystrophies characterized by progressive muscle fiber degeneration.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
964
|
Mourkioti F, Kratsios P, Luedde T, Song YH, Delafontaine P, Adami R, Parente V, Bottinelli R, Pasparakis M, Rosenthal N. Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J Clin Invest 2006; 116:2945-54. [PMID: 17080195 PMCID: PMC1626136 DOI: 10.1172/jci28721] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/25/2006] [Indexed: 12/16/2022] Open
Abstract
NF-kappaB is a major pleiotropic transcription factor modulating immune, inflammatory, cell survival, and proliferative responses, yet the relevance of NF-kappaB signaling in muscle physiology and disease is less well documented. Here we show that muscle-restricted NF-kappaB inhibition in mice, through targeted deletion of the activating kinase inhibitor of NF-kappaB kinase 2 (IKK2), shifted muscle fiber distribution and improved muscle force. In response to denervation, IKK2 depletion protected against atrophy, maintaining fiber type, size, and strength, increasing protein synthesis, and decreasing protein degradation. IKK2-depleted mice with a muscle-specific transgene expressing a local Igf-1 isoform (mIgf-1) showed enhanced protection against muscle atrophy. In response to muscle damage, IKK2 depletion facilitated skeletal muscle regeneration through enhanced satellite cell activation and reduced fibrosis. Our results establish IKK2/NF-kappaB signaling as an important modulator of muscle homeostasis and suggest a combined role for IKK inhibitors and growth factors in the therapy of muscle diseases.
Collapse
Affiliation(s)
- Foteini Mourkioti
- European Molecular Biology Laboratory (EMBL) Mouse Biology Unit, Campus "A. Buzzati-Traverso," Monterotondo-Scalo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
965
|
McCarty MF, Block KI. Preadministration of high-dose salicylates, suppressors of NF-kappaB activation, may increase the chemosensitivity of many cancers: an example of proapoptotic signal modulation therapy. Integr Cancer Ther 2006; 5:252-68. [PMID: 16880431 DOI: 10.1177/1534735406291499] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
NF-kappaB activity is elevated in a high proportion of cancers, particularly advanced cancers that have been treated previously. Cytotoxic treatment selects for such up-regulation inasmuch as NF-kappaB promotes transcription of a large number of proteins that inhibit both the intrinsic and extrinsic pathways of apoptosis; NF-kappaB also boosts expression of mdr1, which expels many drugs from cells. Indeed, high NF-kappaB activity appears to be largely responsible for the chemo- and radioresistance of many cancers. Thus, agents that suppress NF-kappaB activity should be useful as adjuvants to cytotoxic cancer therapy. Of the compounds that are known to be NF-kappaB antagonists, the most practical for current use may be the nonsteroidal anti-inflammatory drugs aspirin, salicylic acid, and sulindac, each of which binds to and inhibits Ikappa kinase- beta, a central mediator of NF-kappa activation; the low millimolar plasma concentrations of salicylate required for effective inhibition of this kinase in vivo can be achieved with high-dose regimens traditionally used to manage rheumatic disorders. The gastrointestinal toxicity of such regimens could be minimized by using salsalate or enteric-coated sodium salicy-late or by administering misoprostol in conjunction with aspirin therapy. Presumably, best results would be seen if these agents were administered for several days prior to a course of chemo- or radiotherapy, continuing throughout the course. This concept should first be tested in nude mice bearing xenografts of chemoresistant human tumors known to have elevated NF-kappa activity. Ultimately, more complex adjuvant regimens can be envisioned in which salicylates are used in conjunction with other NF-kappa antagonists and/or agents that target other mediators of down-regulated apoptosis in cancer, such as Stat3; coadministration of salicylate and organic selenium may have intriguing potential in this regard. These strategies may also have potential as adjuvants to metronomic chemotherapy, which seeks to suppress angio-genesis by targeting cycling endothelial cells in tumors.
Collapse
Affiliation(s)
- Mark F McCarty
- Block Center for Integrative Cancer Care, Evanston, Illinois 60201, USA
| | | |
Collapse
|
966
|
Baar K, Nader G, Bodine S. Resistance exercise, muscle loading/unloading and the control of muscle mass. Essays Biochem 2006; 42:61-74. [PMID: 17144880 DOI: 10.1042/bse0420061] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Muscle mass is determined by the difference between the rate of protein synthesis and degradation. If synthesis is greater than degradation, muscle mass will increase (hypertrophy) and when the reverse is true muscle mass will decrease (atrophy). Following resistance exercise/increased loading there is a transient increase in protein synthesis within muscle. This change in protein synthesis correlates with an increase in the activity of protein kinase B/Akt and mTOR (mammalian target of rapamycin). mTOR increases protein synthesis by increasing translation initiation and by inducing ribosomal biogenesis. By contrast, unloading or inactivity results in a decrease in protein synthesis and a significant increase in muscle protein breakdown. The decrease in synthesis is due in part to the inactivation of mTOR and therefore a decrease in translation initiation, but also to a decrease in the rate of translation elongation. The increase in degradation is the result of a co-ordinated response of the calpains, lysosomal proteases and the ATP-dependent ubiquitin-proteosome. Caspase 3 and the calpains act upstream of the ubiquitin–proteosome system to assist in the complete breakdown of the myofibrillar proteins. Two muscle specific E3 ubiquitin ligases, MuRF1 and MAFbx/atrogen-1, have been identified as key regulators of muscle atrophy. In this chapter, these pathways and how the balance between anabolism and catabolism is affected by loading and unloading will be discussed.
Collapse
Affiliation(s)
- Keith Baar
- Division of Molecular Physiology, University of Dundee, Dundee UK.
| | | | | |
Collapse
|
967
|
Sacheck JM, Hyatt JPK, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, Lecker SH, Goldberg AL. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J 2006; 21:140-55. [PMID: 17116744 DOI: 10.1096/fj.06-6604com] [Citation(s) in RCA: 434] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We previously identified a common set of genes, termed atrogenes, whose expression is coordinately induced or suppressed in muscle during systemic wasting states (fasting, cancer cachexia, renal failure, diabetes). To determine whether this transcriptional program also functions during atrophy resulting from loss of contractile activity and whether atrogene expression correlates with the rate of muscle weight loss, we used cDNA microarrays and RT-polymerase chain reaction to analyze changes in mRNA from rat gastrocnemius during disuse atrophy induced by denervation or spinal cord isolation. Three days after Den or SI, the rate of muscle weight loss was greatest, and 78% of the atrogenes identified during systemic catabolic states were induced or repressed. Of particular interest were the large inductions of key ubiquitin ligases, atrogin-1 (35- to 44-fold) and MuRF1 (12- to 22-fold), and the suppression of PGC-1alpha and PGC-1beta coactivators (15-fold). When atrophy slowed (day 14), the expression of 92% of these atrogenes returned toward basal levels. At 28 days, the atrophy-inducing transcription factor, FoxO1, was still induced and may be important in maintaining the "atrophied" state. Thus, 1) the atrophy associated with systemic catabolic states and following disuse involves similar transcriptional adaptations; and 2) disuse atrophy proceeds through multiple phases corresponding to rapidly atrophying and atrophied muscles that involve distinct transcriptional patterns.
Collapse
Affiliation(s)
- Jennifer M Sacheck
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
968
|
Abstract
PURPOSE OF REVIEW This review focuses on recent evidence pointing to the importance of inflammatory factors in the onset and progression of age-related muscle wasting, also known as sarcopenia, and discusses critical areas of uncertainty within the literature that require further development in order to identify novel therapeutics. RECENT FINDINGS The research performed in recent years has only strengthened the evidence that inflammatory factors are important in the progression of a catabolic state in muscle wasting. Interactions among various inflammatory cytokines and anabolic factors have been observed, with the balance skewed in favor of catabolism in sarcopenia. Adiposity appears to play an important role in the inflammatory process and possibly the onset of sarcopenia. Inflammatory factors are likely to play an important role in the increased activity of the ubiquitin proteasome, which we argue should be a primary target for the development of molecular therapeutics. SUMMARY Future research will need to delve into the molecular interactions that link inflammatory factors and the imbalance between muscle anabolism and catabolism that develops with aging. Identification of specific pathways of importance to sarcopenia will have relevance to a wide range of wasting disorders.
Collapse
Affiliation(s)
- Stephen M Roth
- Department of Kinesiology, University of Maryland, College Park, Maryland, USA
| | | | | | | |
Collapse
|
969
|
Butz DE, Li G, Cook ME. t10,c12 conjugated linoleic acid induces compensatory growth after immune challenge. J Nutr Biochem 2006; 17:735-41. [PMID: 16517148 DOI: 10.1016/j.jnutbio.2005.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 12/01/2022]
Abstract
Previous work demonstrated that feeding commercial preparations of conjugated linoleic acid (CLA) [a 50:50 mixture of c9,t11 and t10,c12 CLA (cCLA)] partially overcame lipopolysaccharide (LPS)-induced growth depression. The objective of this study was to determine which CLA isomer was responsible for the reduction of LPS-induced growth depression. Dietary cCLA supplementation for 3 weeks protected mice from LPS-induced weight loss 24 h after injection compared to mice fed isocaloric and isonitrogenous control diets supplemented with either corn oil (CO) or a mixture of CO and olive oil. Dietary c9,t11 or t10,c12 CLA led to body weight loss intermediate to controls and cCLA. After LPS-induced weight loss, the t10,c12 CLA fed mice regained weight faster than the control or c9,t11 CLA fed mice. Dietary t10,c12 CLA and cCLA reduced plasma tumor necrosis factor 2 h after LPS stimulation. While neither c9,t11 nor t10,c12 CLA isomers alone protected from immune-induced weight loss, the t10,c12 CLA isomer induced compensatory gain.
Collapse
Affiliation(s)
- Daniel E Butz
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
970
|
Abstract
PURPOSE OF REVIEW Recent clinical and mechanistic studies have shown that increased proteolysis is a major determinant of muscle wasting in numerous catabolic states and of alterations in myopathies or dystrophies. The implications of these observations for improving muscle mass and function are discussed. RECENT FINDINGS Several proteolytic systems (i.e. the ubiquitin-proteasome system, the lysosomal, the Ca-dependent, and the caspase systems) are responsible for muscle wasting. The Ca-dependent and caspase systems may initiate myofibrillar proteolysis. The ubiquitin-proteasome system is believed to degrade actin and myosin heavy chain and, consequently, plays a major role in muscle wasting. Multiple steps in the ubiquitin-proteasome system (ubiquitination, deubiquitination, proteasome activities) are upregulated in muscle wasting diseases. Few key components of the ubiquitin-proteasome system that are strictly necessary for muscle wasting have been so far characterized. Recent studies have led to the elucidation of various signaling pathways of the ubiquitin-proteasome system that are activated in muscle wasting conditions. SUMMARY Although the precise role of the different muscle proteolytic machineries is still largely unknown, current studies are leading to new pharmacologic approaches that can be useful in blocking or partially preventing muscle wasting or improving muscle function in human patients.
Collapse
Affiliation(s)
- Sophie Ventadour
- National Institute for Agricultural Research and Human Nutrition Research Centre of Clermont-Ferrand, Human Nutrition Unit, UMR 1019, Ceyrat, France
| | | |
Collapse
|
971
|
Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A. Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 2006; 25:6781-99. [PMID: 17072328 DOI: 10.1038/sj.onc.1209944] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nuclear factor-kappaB (NF-kappaB) signalling pathway serves a crucial role in regulating the transcriptional responses of physiological processes that include cell division, cell survival, differentiation, immunity and inflammation. Here we outline studies using mouse models in which the core components of the NF-kappaB pathway, namely the IkappaB kinase subunits (IKKalpha, IKKbeta and NEMO), the IkappaB proteins (IkappaBalpha, IkappaBbeta, IkappaBvarepsilon and Bcl-3) and the five NF-kappaB transcription factors (NF-kappaB1, NF-kappaB2, c-Rel, RelA and RelB), have been genetically manipulated using transgenic and knockout technology.
Collapse
Affiliation(s)
- S Gerondakis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
972
|
Abstract
As previously suggested, it may be feasible to impede tumorevoked angiogenesis with a nutraceutical program composed of glycine, fish oil, epigallocatechin-3-gallate, selenium, and silymarin, complemented by a low-fat vegan diet, exercise training, and, if feasible, a salicylate and the drug tetrathiomolybdate. It is now proposed that the scope of this program be expanded to address additional common needs of cancer patients: blocking the process of metastasis; boosting the cytotoxic capacity of innate immune defenses (natural killer [NK] cells); preventing cachexia, thromboembolism, and tumor-induced osteolysis; and maintaining optimal micronutrient status. Modified citrus pectin, a galectin-3 antagonist, has impressive antimetastatic potential. Mushroombeta-glucans and probiotic lactobacilli can amplify NK activity via stimulatory effects on macrophages. Selenium, beta-carotene, and glutamine can also increase the number and/or cytotoxic activity of NK cells. Cachectic loss of muscle mass can be opposed by fish oil, glutamine, and beta-hydroxy-beta-methylbutyrate. Fish oil, policosanol, and vitamin D may have potential for control of osteolysis. High-dose aspirin or salicylates, by preventing NF-B activation, can be expected to aid prevention of metastasis and cachexia while down-regulating osteolysis, but their impacts on innate immune defenses will not be entirely favorable. A nutritional insurance formula crafted for the special needs of cancer patients can be included in this regimen. To minimize patient inconvenience, this complex core nutraceutical program could be configured as an oil product, a powder, and a capsule product, with the nutritional insurance formula provided in tablets. It would be of interest to test this program in nude mouse xenograft models.
Collapse
Affiliation(s)
- Mark F McCarty
- Block Center for Integrative Cancer Care, Evanston, IL 60201, USA.
| | | |
Collapse
|
973
|
Durham WJ, Arbogast S, Gerken E, Li YP, Reid MB. Progressive nuclear factor-kappaB activation resistant to inhibition by contraction and curcumin in mdx mice. Muscle Nerve 2006; 34:298-303. [PMID: 16718687 DOI: 10.1002/mus.20579] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle of patients with Duchenne-type muscular dystrophy and mdx mice exhibits elevated activity of the transcription factor NF-kappaB (nuclear factor-kappaB), which may play a role in muscle catabolism. We measured skeletal muscle NF-kappaB activity in mdx mice at three ages (10 days, 4 weeks, and 8 weeks) to test the hypothesis that NF-kappaB activity is elevated in an age-dependent manner in these mice. In addition, we tested the hypothesis that NF-kappaB activity could be reduced in mdx skeletal muscle by dietary supplementation with curcumin (1% w/v) or by fatiguing muscle contractions. We found that NF-kappaB activity was elevated at 4 and 8 weeks of age but not at 10 days, and was resistant to inhibition by either fatiguing contractions or dietary curcumin. We conclude that NF-kappaB activity is elevated in dystrophic skeletal muscle in an age-related manner and is resistant to inhibition by physiological and pharmacological means. These findings are consistent with a role for NF-kappaB activation in dystrophic muscle wasting but suggest that predicted interventions such as exercise or inhibitors of the early steps in the NF-kappa activation pathway may not be effective and that targeted research is needed to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- William J Durham
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
974
|
Skipworth RJE, Stewart GD, Ross JA, Guttridge DC, Fearon KCH. The molecular mechanisms of skeletal muscle wasting: Implications for therapy. Surgeon 2006; 4:273-83. [PMID: 17009546 DOI: 10.1016/s1479-666x(06)80004-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle wasting is an important systemic manifestation of a wide range of diseases, including trauma, sepsis and cancer. The clinical consequences of muscle wasting undoubtedly include significant patient morbidity and worsened survival. Recently, there has been important progress in our understanding of the molecular mechanisms behind muscle wasting. In this review, the common systemic mediators, intracellular signalling pathways and effector mechanisms of skeletal muscle wasting are discussed with particular reference to different models of wasting and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- R J E Skipworth
- Clinical and Surgical Sciences (Surgery), School of Clinical Sciences and Community Health, The University of Edinburgh, Scotland, UK
| | | | | | | | | |
Collapse
|
975
|
Abstract
Over a hundred years ago, high doses of salicylates were shown to lower glucose levels in diabetic patients. This should have been an important clue to link inflammation to the pathogenesis of type 2 diabetes (T2D), but the antihyperglycemic and antiinflammatory effects of salicylates were not connected to the pathogenesis of insulin resistance until recently. Together with the discovery of an important role for tissue macrophages, these new findings are helping to reshape thinking about how obesity increases the risk for developing T2D and the metabolic syndrome. The evolving concept of insulin resistance and T2D as having immunological components and an improving picture of how inflammation modulates metabolism provide new opportunities for using antiinflammatory strategies to correct the metabolic consequences of excess adiposity.
Collapse
Affiliation(s)
- Steven E Shoelson
- Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
976
|
Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B. Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech Ageing Dev 2006; 127:794-801. [PMID: 16949134 DOI: 10.1016/j.mad.2006.07.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/07/2006] [Accepted: 07/17/2006] [Indexed: 01/17/2023]
Abstract
A phenotypic feature of aging is skeletal muscle wasting. It is characterized by a loss of muscle mass and strength. Age-related loss of muscle mass occurs through a reduction in the rate of protein synthesis, an increase in protein degradation or a combination of both. However, the underlying mechanism is still poorly understood. To test the hypothesis that the ubiquitin-proteasome pathway contributes to this phenomenon, we studied MuRF1 and atrogin-1 expression in Tibialis Anterior muscle of aged rats. These two E3 ligases are considered as sensitive markers of muscle protein degradation by the ubiquitin-proteasome system. Our results revealed that, in skeletal muscle of aged rats, the decline in muscle mass is accompanied by an increase in the level of oxidized proteins and ubiquitin conjugates (90%) whereas the functionality of the proteasome remains constant compared to young rats. Furthermore, the level of both MuRF1 and atrogin-1 mRNA is markedly up-regulated in aged muscle (respectively x2 and x2.5). Taken together these data argue for the involvement of the ubiquitin-proteasome pathway in sarcopenia of fast-twitch muscle, in particular through increased expression of MuRF1 and atrogin-1. Moreover, we observed a decrease in the IGF-1/Akt signalling pathways and elevated level of TNFalpha mRNA in aged rat muscle. Therefore, IGF-1/Akt and TNFalpha represent potential mediators implicated in the regulation of MuRF1 and atrogin-1 genes during aging.
Collapse
Affiliation(s)
- Stephan Clavel
- Laboratoire de Physiologie Cellulaire et Moléculaire, CNRS UMR 6548, Faculté des Sciences, Université de Nice Sophia Antipolis, 28 Avenue Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
977
|
Ogimoto K, Harris MK, Wisse BE. MyD88 is a key mediator of anorexia, but not weight loss, induced by lipopolysaccharide and interleukin-1 beta. Endocrinology 2006; 147:4445-53. [PMID: 16777969 DOI: 10.1210/en.2006-0465] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic inflammatory signals can disrupt the physiological regulation of energy balance, causing anorexia and weight loss. In the current studies, we investigated whether MyD88, the primary, but not exclusive, intracellular signal transduction pathway for Toll-like receptor 4 and IL-1 receptor I, is necessary for anorexia and weight loss to occur in response to stimuli that activate these key innate immune receptors. Our findings demonstrate that the absence of MyD88 signaling confers complete protection against anorexia induced by either lipopolysaccharide (LPS) (20 h food intake in MyD88-/- mice 5.4 +/- 0.3 vs. 3.3 +/- 0.4 g in MyD88+/+ control mice, P < 0.001) or IL-1 beta (20 h food intake in MyD88-/- mice 4.9 +/- 0.5 vs. 4.0 +/- 0.3 g in MyD88+/+ control mice, P < 0.001). However, absent MyD88 signaling does not prevent these inflammatory mediators from causing weight loss (LPS, -0.4 +/- 0.1 g; IL1 beta, -0.1 +/- 0.1 g, both P < 0.01 vs. vehicle-injected MyD88-/- mice, +0.4 +/- 0.2 g). Furthermore, LPS-induced weight loss occurs in the absence of adipsia, fever, or hypothalamus-pituitary-adrenal axis activation in MyD88-deficient mice. In addition, the peripheral inflammatory response to LPS is surprisingly intact in mice lacking MyD88. Together, these observations indicate that LPS reduces food intake via a mechanism that is dissociated from its effect on peripheral cytokine production, and whereas the presence of circulating proinflammatory cytokines per se is insufficient to cause anorexia in the absence of MyD88 signaling, it may contribute to LPS-induced weight loss.
Collapse
Affiliation(s)
- Kayoko Ogimoto
- Division of Metabolism, Endocrinology, and Nutrition, Harborview Medical Center, 325 Ninth Avenue, Box 359757, Seattle, Washington 98104-2499, USA
| | | | | |
Collapse
|
978
|
Costelli P, Muscaritoli M, Bossola M, Penna F, Reffo P, Bonetto A, Busquets S, Bonelli G, Lopez-Soriano FJ, Doglietto GB, Argilés JM, Baccino FM, Rossi Fanelli F. IGF-1 is downregulated in experimental cancer cachexia. Am J Physiol Regul Integr Comp Physiol 2006; 291:R674-83. [PMID: 16614058 DOI: 10.1152/ajpregu.00104.2006] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer cachexia is characterized by skeletal muscle wasting that is mainly supported by hypercatabolism. Muscle atrophy has been suggested to depend on impaired IGF-1 signal transduction pathway. The present study has been aimed at investigating the IGF-1 system in rats bearing the AH-130 hepatoma, a well-characterized model of cachexia. IGF-1 mRNA expression in the gastrocnemius of tumor hosts progressively decreases to ∼50% of controls. By contrast, both IGF-1 receptor and insulin receptor mRNA levels increase in day 7 AH-130 hosts. IGF-1 and insulin circulating levels, as well as IGF-1 expression in the liver, are reduced. Muscle wasting in the AH-130 bearers is associated with hyperactivation of the ubiquitin-proteasome system. Consistently, the mRNA levels of ubiquitin and of the ubiquitin ligases atrogin-1 and MuRF1 are significantly increased in the gastrocnemius of day 7 AH-130 hosts. Exogenous IGF-1 administered to tumor bearers does not prevent cachexia. IGF-1 mRNA levels also have been evaluated in the gastrocnemius of AH-130 hosts treated with pentoxifylline, an inhibitor of TNF-α synthesis, alone or combined with formoterol, a β2-adrenergic agonist. Both treatments partially correct muscle atrophy without modifying IGF-1 and atrogin-1 mRNA levels, whereas MuRF1 hyperexpression is reduced by the combination of pentoxifylline with formoterol. These results demonstrate for the first time that the IGF-1 system is downregulated in cancer cachexia, although the underlying mechanism remains unknown. Moreover, no simple relation linking IGF-1 and/or atrogin-1 mRNA levels and muscle atrophy could be observed in these experimental conditions. Further studies are thus needed to clarify both issues.
Collapse
Affiliation(s)
- Paola Costelli
- Dipartimento di Medicina e Oncologia Sperimentale, Università di Torino, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
979
|
Woo CH, Massett MP, Shishido T, Itoh S, Ding B, McClain C, Che W, Vulapalli SR, Yan C, Abe JI. ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor delta (PPARdelta) stimulation. J Biol Chem 2006; 281:32164-74. [PMID: 16943204 DOI: 10.1074/jbc.m602369200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR) decrease the production of cytokine and inducible nitric-oxide synthase (iNOS) expression, which are associated with aging-related inflammation and insulin resistance. Recently, the involvement of the induction of heme oxygenase-1 (HO-1) in regulating inflammation has been suggested, but the exact mechanisms for reducing inflammation by HO-1 remains unclear. We found that overexpression of HO-1 and [Ru(CO)(3)Cl(2)](2), a carbon monoxide (CO)-releasing compound, increased not only ERK5 kinase activity, but also its transcriptional activity measured by luciferase assay with the transfection of the Gal4-ERK5 reporter gene. This transcriptional activity is required for coactivation of PPARdelta by ERK5 in C2C12 cells. [Ru(CO)(3)Cl(2)](2) activated PPARdelta transcriptional activity via the MEK5/ERK5 signaling pathway. The inhibition of NF-kappaB activity by ERK5 activation was reversed by a dominant negative form of PPARdelta suggesting that ERK5/PPARdelta activation is required for the anti-inflammatory effects of CO and HO-1. Based on these data, we propose a new mechanism by which CO and HO-1 mediate anti-inflammatory effects via activating ERK5/PPARdelta, and ERK5 mediates CO and HO-1-induced PPARdelta activation via its interaction with PPARdelta.
Collapse
Affiliation(s)
- Chang-Hoon Woo
- Cardiovascular Research Institute, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
980
|
Pasparakis M, Luedde T, Schmidt-Supprian M. Dissection of the NF-kappaB signalling cascade in transgenic and knockout mice. Cell Death Differ 2006; 13:861-72. [PMID: 16470223 DOI: 10.1038/sj.cdd.4401870] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Studies in transgenic and knockout mice have made a major contribution to our current understanding of the physiological functions of the NF-kappaB signalling cascade. The generation and analysis of mice with targeted modifications of individual components of the NF-kappaB pathway tremendously advanced our knowledge of the roles of the NF-kappaB proteins themselves, and also of the many activators and negative regulators of NF-kappaB. These studies have highlighted the complexity of the NF-kappaB system, by revealing the multiple interactions, redundancies, but also diverse functions, performed by the different molecules participating in the regulation of NF-kappaB signalling. Furthermore, inhibition or enforced activation of NF-kappaB in transgenic mice has uncovered the critical roles that NF-kappaB plays in the pathogenesis of various diseases such as liver failure, diabetes and cancer.
Collapse
Affiliation(s)
- M Pasparakis
- European Molecular Biology Laboratory, Mouse Biology Unit, Via Ramarini 32, Monterotondo-Scalo, Rome 00016, Italy.
| | | | | |
Collapse
|
981
|
Spangenburg EE, Brown DA, Johnson MS, Moore RL. Exercise increases SOCS-3 expression in rat skeletal muscle: potential relationship to IL-6 expression. J Physiol 2006; 572:839-48. [PMID: 16484300 PMCID: PMC1780003 DOI: 10.1113/jphysiol.2005.104315] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Suppressor of cytokine signalling-3 (SOCS-3) has been implicated in the onset of insulin resistance in non-muscle tissue. Thus, we examined the effects of exercise training on SOCS-3 expression and the potential role of SOCS-3 in muscle. Female Sprague-Dawley rats (5-8 months) were treadmill trained for 12 weeks and the muscles were removed 24 h after the last bout of exercise. Exercise training increased SOCS-3 mRNA expression by 80% and 154% in the plantaris and soleus muscle, respectively. To mimic the effects of increased SOCS-3 expression, SOCS-3 cDNA was cotransfected with a NF-kappa B (NF-kappaB) luciferase construct into cultured C2C12 myotubes. SOCS-3 overexpression increased NF-kappaB transcriptional activity by 27-fold. The proximal region of the IL-6 gene promoter contains a NF-kappaB consensus site, which contributes to increased IL-6 expression in various tissues. SOCS-3 cDNA was cotransfected into cultured C2C12 myotubes with either the IL-6 luciferase construct or a mutated NF-kappaB IL-6 luciferase construct. SOCS-3 overexpression increased IL-6 transcriptional activity by 15-fold, however, when the NF-kappaB site was mutated SOCS-3 failed to increase IL-6 transcriptional activity. We subsequently found that IL-6 mRNA expression was elevated in the plantaris and soleus muscles of the trained animals compared to the sedentary animals. Finally, exercise induced a significant reduction in IkappaBalpha and increased phosphorylation of Ikappakappa suggesting that NF-kappaB activation was elevated after exercise training. These data suggest that training-induced elevations in SOCS-3 expression in skeletal muscle may contribute to the exercise-induced increase in IL-6 expression through alterations in the mechanisms that mediate NF-kappaB activity.
Collapse
Affiliation(s)
- Espen E Spangenburg
- Section of Neurobiology, Physiology, and Behaviour, College of Biological Sciences, University of California Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
982
|
Kramerova I, Beckmann JS, Spencer MJ. Molecular and cellular basis of calpainopathy (limb girdle muscular dystrophy type 2A). Biochim Biophys Acta Mol Basis Dis 2006; 1772:128-44. [PMID: 16934440 DOI: 10.1016/j.bbadis.2006.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/07/2006] [Accepted: 07/13/2006] [Indexed: 11/28/2022]
Abstract
Limb girdle muscular dystrophy type 2A results from mutations in the gene encoding the calpain 3 protease. Mutations in this disease are inherited in an autosomal recessive fashion and result in progressive proximal skeletal muscle wasting but no cardiac abnormalities. Calpain 3 has been shown to proteolytically cleave a wide variety of cytoskeletal and myofibrillar proteins and to act upstream of the ubiquitin-proteasome pathway. In this review, we summarize the known biochemical and physiological features of calpain 3 and hypothesize why mutations result in disease.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology and Pediatrics and UCLA Duchenne Muscular Dystrophy Research Center, University of California, Los Angeles, Neuroscience Research Building, 635 Young Dr. South, Los Angeles, CA 90095-7334, USA
| | | | | |
Collapse
|
983
|
Duan X, Berthiaume F, Yarmush D, Yarmush M. Proteomic analysis of altered protein expression in skeletal muscle of rats in a hypermetabolic state induced by burn sepsis. Biochem J 2006; 397:149-58. [PMID: 16483253 PMCID: PMC1479762 DOI: 10.1042/bj20051710] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
mRNA profiling has been extensively used to study muscle wasting. mRNA level changes may not reflect that of proteins, especially in catabolic muscle where there is decreased synthesis and increased degradation. As sepsis is often associated with burn injury, and burn superimposed by sepsis has been shown to result in significant loss of lean tissues, we characterized changes in the skeletal-muscle proteome of rats subjected to a cutaneous burn covering 20% of the total body surface area, followed 2 days later by sepsis induced by CLP (caecal ligation and puncture). EDL (extensor digitorum longus) muscles were dissected from Burn-CLP animals (n=4) and controls (sham-burned and sham-CLP-treated, n=4). Burn-CLP injury resulted in a rapid loss of EDL weight, increased ubiquitin-conjugated proteins and increased protein carbonyl groups. EDL protein profiles were obtained by two-dimensional gel electrophoresis using two immobilized pH gradient strips with overlapping pH range covering a pH 3-8 range. Seventeen spots were significantly altered in the Burn-CLP compared with the control group, representing 15 different proteins identified by peptide mass fingerprinting. The identities of three proteins including transferrin were further confirmed by liquid chromatography-tandem MS. The significant changes in transferrin and HSP27 (heat-shock protein 27) were verified by Western-blot analysis. HSP60, HSP27 and HSPbeta6 were down-regulated, along with HSP70, as detected by Western blotting. Six metabolic enzymes related to energy production were also down-regulated. A simultaneous decrease in chaperone proteins and metabolic enzymes could decrease protein synthesis. Furthermore, decreased HSPs could increase oxidative damage, thus accelerating protein degradation. Using cultured C2C12 myotubes, we showed that H2O2-induced protein degradation in vitro could be partially attenuated by prior heat-shock treatment, consistent with a protective role of HSP70 and/or other HSPs against proteolysis.
Collapse
Affiliation(s)
- Xunbao Duan
- The Surgical Services/Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA 02114, U.S.A
| | - François Berthiaume
- The Surgical Services/Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA 02114, U.S.A
| | - David Yarmush
- The Surgical Services/Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA 02114, U.S.A
| | - Martin L. Yarmush
- The Surgical Services/Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA 02114, U.S.A
- To whom correspondence should be addressed, at Shriners Hospitals for Children, 51 Blossom Street, Boston, MA 02114, U.S.A. (email )
| |
Collapse
|
984
|
Langen RCJ, Schols AMWJ, Kelders MCJM, van der Velden JLJ, Wouters EFM, Janssen-Heininger YMW. Muscle wasting and impaired muscle regeneration in a murine model of chronic pulmonary inflammation. Am J Respir Cell Mol Biol 2006; 35:689-96. [PMID: 16794259 DOI: 10.1165/rcmb.2006-0103oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Muscle wasting and increased circulating levels of inflammatory cytokines, including TNF-alpha, are common features of chronic obstructive pulmonary disease. To investigate whether inflammation of the lung is responsible for systemic inflammation and muscle wasting, we adopted a mouse model of pulmonary inflammation resulting from directed overexpression of a TNF-alpha transgene controlled by the surfactant protein C (SP-C) promoter. Compared with wild-type mice, SP-C/TNF-alpha mice exhibited increased levels of TNF-alpha in the circulation and increased endogenous TNF-alpha expression in skeletal muscle, potentially reflecting an amplificatory response to circulating TNF-alpha. Decreased muscle and body weights observed in SP-C/TNF-alpha mice were indicative of muscle wasting. Further evaluation of the SP-C/TNF-alpha mouse musculature revealed a decreased muscle regenerative capacity, shown by attenuated myoblast proliferation and differentiation in response to reloading of disuse-atrophied muscle, which may contribute to skeletal muscle wasting. Importantly, incubation of cultured myoblasts with TNF-alpha also resulted in elevated TNF-alpha mRNA levels and inhibition of myoblast differentiation. Collectively, our results demonstrate that chronic pulmonary inflammation results in muscle wasting and impaired muscle regeneration in SP-C/TNF-alpha mice, possibly as a consequence of an amplificatory TNF-alpha expression circuit extending from the lung to skeletal muscle.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Line
- Cell Proliferation/drug effects
- Chronic Disease
- Disease Models, Animal
- Histones/genetics
- Histones/metabolism
- Lung/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Atrophy/etiology
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/physiopathology
- Myoblasts, Skeletal/drug effects
- Myoblasts, Skeletal/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Organ Size
- Pneumonia/complications
- Pneumonia/metabolism
- Pneumonia/pathology
- Pneumonia/physiopathology
- Promoter Regions, Genetic
- Pulmonary Surfactant-Associated Protein C/genetics
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type II/blood
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Regeneration
- Tumor Necrosis Factor-alpha/blood
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Ramon C J Langen
- Department of Respiratory Medicine, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
985
|
Demoule A, Divangahi M, Yahiaoui L, Danialou G, Gvozdic D, Labbe K, Bao W, Petrof BJ. Endotoxin triggers nuclear factor-kappaB-dependent up-regulation of multiple proinflammatory genes in the diaphragm. Am J Respir Crit Care Med 2006; 174:646-53. [PMID: 16778157 DOI: 10.1164/rccm.200509-1511oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sepsis-induced diaphragmatic force loss and failure are associated with an increased exposure of the muscle to proinflammatory mediators. OBJECTIVES Our objectives were to test the hypothesis that force-inhibiting mediators may arise in large part from the diaphragm itself and to evaluate the roles of mechanical stress, free radicals, and the nuclear factor (NF)-kappaB transcription factor pathway in endotoxin (LPS)-induced proinflammatory responses of the diaphragm. METHODS Murine diaphragm and limb muscle cells were exposed to LPS in vitro and in vivo. Proinflammatory gene expression was measured using RNase protection assays (tumor necrosis factor [TNF]-alpha, TNF-alpha receptor p55, interleukin [IL]-1alpha, IL-1beta, IL-6, macrophage inflammatory peptide-2, intercellular adhesion molecule-1, Fas ligand, and inducible nitric oxide synthase) and ELISAs (TNF-alpha, IL-6, and macrophage inflammatory peptide-2). Cyclical muscle cell stretch and free-radical scavengers (N-acetylcysteine and catalase) were used to alter mechanical and oxidative stress levels, respectively. Pharmacologic (pyrrolidinedithiocarbamate) and dominant-negative transfection strategies were used to inhibit the NF-kappaB pathway. RESULTS In primary diaphragm muscle cell cultures, modulation of mechanical stress levels or free-radical exposure did not alter responses to LPS stimulation. However, pharmacologic blockade of the NF-kappaB pathway and dominant-negative molecular inhibition of IKB kinase-beta strongly suppressed LPS-induced proinflammatory gene expression. In vivo, acute endotoxemia induced significantly greater mRNA and protein levels for proinflammatory mediators in the diaphragm as compared with limb muscle. Basal expression levels of proinflammatory genes were significantly higher in the diaphragm. CONCLUSIONS Constitutive and LPS-induced proinflammatory gene expression are exaggerated in the diaphragm compared with limb muscles and are critically dependent on the NF-kappaB pathway. We suggest the diaphragm may be relatively predisposed to proinflammatory responses.
Collapse
Affiliation(s)
- Alexandre Demoule
- Meakins-Christie Laboratories, McGill University; and Respiratory Division, McGill University Health Center, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
986
|
Bar-Shai M, Reznick AZ. Reactive nitrogen species induce nuclear factor-kappaB-mediated protein degradation in skeletal muscle cells. Free Radic Biol Med 2006; 40:2112-25. [PMID: 16785025 DOI: 10.1016/j.freeradbiomed.2006.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 01/20/2006] [Accepted: 02/12/2006] [Indexed: 11/26/2022]
Abstract
Recently, a role for NF-kappaB in upregulation of proteolytic systems and protein degradation has emerged. Reactive nitrogen species (RNS) have been demonstrated to induce NF-kappaB activation. The aim of this study was to investigate whether RNS caused increased proteolysis in skeletal muscle cells, and whether this process was mediated through the activation of NF-kappaB. Fully differentiated L6 myotubes were treated with NO donor SNAP, peroxynitrite donor SIN-1, and authentic peroxynitrite, in a time-dependent manner. NF-kappaB activation, the activation of the ubiquitin-proteasome pathway and matrix metalloproteinases, and the levels of muscle-specific proteins (myosin heavy chain and telethonin) were investigated under the conditions of nitrosative stress. RNS donors caused NF-kappaB activation and increased activation of proteolytic systems, as well as the degradation of muscle-specific proteins. Antioxidant treatment, tyrosine nitration inhibition, and NF-kappaB molecular inhibition were proven effective in downregulation of NF-kappaB activation and slowing down the degradation of muscle-specific proteins. Peroxynitrite, but not NO, causes proteolytic system activation and the degradation of muscle-specific proteins in cultured myotubes, mediated through NF-kappaB. NF-kappaB inhibition by antioxidants, tyrosine nitration, and molecular inhibitors may be beneficial for decreasing the extent of muscle damage induced by RNS.
Collapse
Affiliation(s)
- Marina Bar-Shai
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel
| | | |
Collapse
|
987
|
Abstract
Skeletal muscle is comprised of heterogeneous muscle fibers that differ in their physiological and metabolic parameters. It is this diversity that enables different muscle groups to provide a variety of functional properties. In response to environmental demands, skeletal muscle remodels by activating signaling pathways to reprogram gene expression to sustain muscle performance. Studies have been performed using exercise, electrical stimulation, transgenic animal models, disease states, and microgravity to show genetic alterations and transitions of muscle fibers in response to functional demands. Various components of calcium-dependent signaling pathways and multiple transcription factors, coactivators and corepressors have been shown to be involved in skeletal muscle remodeling. Understanding the mechanisms involved in modulating skeletal muscle phenotypes can potentiate the development of new therapeutic measures to ameliorate muscular diseases.
Collapse
Affiliation(s)
- Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148.
| | | |
Collapse
|
988
|
Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006; 17:1807-19. [PMID: 16738015 DOI: 10.1681/asn.2006010083] [Citation(s) in RCA: 903] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Stewart H Lecker
- Nephrology Division, Beth Isreal Deaconess, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
989
|
Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 2006; 290:L622-L645. [PMID: 16531564 DOI: 10.1152/ajplung.00477.2005] [Citation(s) in RCA: 575] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathophysiology of sepsis and septic shock involves complex cytokine and inflammatory mediator networks. NF-kappaB activation is a central event leading to the activation of these networks. The role of NF-kappaB in septic pathophysiology and the signal transduction pathways leading to NF-kappaB activation during sepsis have been an area of intensive investigation. NF-kappaB is activated by a variety of pathogens known to cause septic shock syndrome. NF-kappaB activity is markedly increased in every organ studied, both in animal models of septic shock and in human subjects with sepsis. Greater levels of NF-kappaB activity are associated with a higher rate of mortality and worse clinical outcome. NF-kappaB mediates the transcription of exceptional large number of genes, the products of which are known to play important roles in septic pathophysiology. Mice deficient in those NF-kappaB-dependent genes are resistant to the development of septic shock and to septic lethality. More importantly, blockade of NF-kappaB pathway corrects septic abnormalities. Inhibition of NF-kappaB activation restores systemic hypotension, ameliorates septic myocardial dysfunction and vascular derangement, inhibits multiple proinflammatory gene expression, diminishes intravascular coagulation, reduces tissue neutrophil influx, and prevents microvascular endothelial leakage. Inhibition of NF-kappaB activation prevents multiple organ injury and improves survival in rodent models of septic shock. Thus NF-kappaB activation plays a central role in the pathophysiology of septic shock.
Collapse
Affiliation(s)
- Shu Fang Liu
- Div. of Pulmonary and Critical Care Medicine, Long Island Jewish Medical Center, RM B371, New Hyde Park, NY 11040, USA.
| | | |
Collapse
|
990
|
Graves E, Ramsay E, McCarthy DO. Inhibitors of COX activity preserve muscle mass in mice bearing the Lewis lung carcinoma, but not the B16 melanoma. Res Nurs Health 2006; 29:87-97. [PMID: 16532483 DOI: 10.1002/nur.20114] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor-induced skeletal muscle wasting (SMW) contributes to the fatigue and weakness experienced by persons with cancer cachexia. Tumor necrosis factor-alpha (TNFa) and cyclooxygenase (COX) activity have been implicated in SMW in some animal models of cancer cachexia. We report that indomethacin, a nonspecific inhibitor of COX, and NS398, a specific inhibitor of COX2, preserved muscle mass and reduced type 1 TNF receptors in muscles of mice bearing the Lewis lung carcinoma, but not in mice bearing the B16 melanoma. These data suggest that tumor-induced SMW can occur via a COX2-independent pathway. The COX2-dependent pathway may involve reducing the catabolic effects of TNFa in muscle. Further study is needed to understand the relationship between COX and SMW, and whether patients with cancer cachexia might benefit from COX inhibitors.
Collapse
Affiliation(s)
- Erin Graves
- Laboratory of Symptom Management, National Institute of Nursing Research, Bethesda, MD, USA
| | | | | |
Collapse
|
991
|
Wagatsuma A. Upregulation of gene encoding adipogenic transcriptional factors C/EBPalpha and PPARgamma2 in denervated muscle. Exp Physiol 2006; 91:747-53. [PMID: 16675498 DOI: 10.1113/expphysiol.2006.033662] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Muscle denervation induces fatty degeneration in skeletal muscle. However, the possible mechanism(s) remains to be elucidated. To gain insight into the regulation of this process, this study was designed to characterize the expression pattern of genes encoding transcriptional factors that regulate adipogenesis and the terminal differentiation marker of adipocytes in denervated muscle. Female mice underwent surgery to transect the sciatic nerve, and then the gastrocnemius muscles were harvested 5, 10, 20 or 30 days after surgery. The extent of fatty degeneration was assessed as lipid accumulation by Oil Red O staining. The cellular localization of CCCAT/enhancer-binding protein alpha (C/EBPalpha) and peroxisome proliferator-activated receptor gamma2 (PPARgamma2), which play an important role in the regulation of adipocyte differentiation, was assessed by immunohistochemistry. The mRNA levels were analysed using a real-time polymerase chain reaction. After muscle denervation, most muscle fibres atrophied pathologically, and lipid accumulation was observed in the superficial region of the gastrocnemius muscle, suggesting that fatty degeneration occurs in this model. Both C/EBPalpha and PPARgamma2 proteins were observed in the interstitial space of denervated muscle but detected in small amounts in normal muscle. The expression levels of C/EBPalpha and PPARgamma2 were significantly upregulated 30 days after muscle denervation. The expression levels of fatty acid binding protein 4 (FABP4), which reflects fatty acid metabolism, were decreased slightly at 5 and 10 days and then returned to control levels 30 days after muscle denervation. These findings suggest that muscle denervation-induced fatty degeneration may be mediated through C/EBPalpha and PPARgamma2.
Collapse
Affiliation(s)
- A Wagatsuma
- Department of Biochemical Sciences, National Institute of Fitness and Sports, 1 Shiromizu, Kanoya, Kagoshima 891-2393, Japan.
| |
Collapse
|
992
|
Abstract
PURPOSE OF REVIEW Muscle wasting as it typically occurs in old age and in certain diseases is poorly understood. This review summarizes recent findings suggesting a role for redox-sensitive signaling cascades in catabolic processes. RECENT FINDINGS The redox-sensitive transcription factors nuclear factor kappaB and activator protein 1 facilitate ubiquitin-proteasome-dependent proteolysis. Nuclear factor kappaB also plays a role in induced expression of tumor necrosis factor alpha and other inflammatory cytokines that have been implicated in catabolic processes. The activities of nuclear factor kappaB and activator protein 1 are stimulated not only by hydrogen peroxide, which is produced in tissues by regulated enzymatic processes, but also by an oxidative shift in thiol-disulfide redox status. The oxidative shift that is typically seen in old age and certain catabolic conditions may thus play a causative role in catabolic processes. Another prominent case in point is insulin-independent 'basal' insulin receptor kinase activity, which is strongly enhanced by hydrogen peroxide or by an oxidative shift in redox status. The insulin receptor signaling cascade induces anabolic and anticatabolic effects, but its abnormal upregulation under starving conditions potentially compromises glucose and amino acid homeostasis. In genetic animal studies, impairment of insulin receptor signaling was shown to increase life span. SUMMARY These findings may provide a rationale for cysteine supplementation in catabolic conditions.
Collapse
Affiliation(s)
- Wulf Dröge
- Immunotec Research Ltd, Vaudreuil-Dorion, Québec, Canada.
| |
Collapse
|
993
|
Abstract
A variety of conditions lead to skeletal muscle atrophy including muscle inactivity or disuse, multiple disease states (i.e., cachexia), fasting, and age-associated atrophy (sarcopenia). Given the impact on mobility in the latter conditions, inactivity could contribute in a secondary manner to muscle atrophy. Because different events initiate atrophy in these different conditions, it seems that the regulation of protein loss may be unique in each case. In fact differences exist between the regulation of the various atrophy conditions, especially sarcopenia, as evidenced in part by comparisons of transcriptional profiles as well as by the unique triggering molecules found in each case. By contrast, recent studies have shown that many of the intracellular signaling molecules and target genes are similar, particularly among the atrophies related to inactivity and cachexia. This review focuses on the most recent findings related to intracellular signaling during muscle atrophy. Key findings are discussed that relate to signaling involving muscle ubiquitin ligases, the IGF/PI3K/Akt pathway, FOXO activity, caspase-3 activity, and NF-kappaB signaling, and an attempt is made to construct a unifying picture of how these data can be connected to better understand atrophy. Once more detailed cellular mechanisms of the atrophy process are understood, more specific interventions can be designed for the attenuation of protein loss.
Collapse
Affiliation(s)
- Susan C Kandarian
- Department of Health Sciences, Boston University, 635 Commonwealth Avenue, Massachusetts 02215, USA.
| | | |
Collapse
|
994
|
Sriwijitkamol A, Christ-Roberts C, Berria R, Eagan P, Pratipanawatr T, DeFronzo RA, Mandarino LJ, Musi N. Reduced skeletal muscle inhibitor of kappaB beta content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes 2006; 55:760-7. [PMID: 16505240 DOI: 10.2337/diabetes.55.03.06.db05-0677] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Skeletal muscle insulin resistance plays a key role in the pathogenesis of type 2 diabetes. It recently has been hypothesized that excessive activity of the inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB) inflammatory pathway is a mechanism underlying skeletal muscle insulin resistance. However, it is not known whether IkappaB/NFkappaB signaling in muscle from subjects with type 2 diabetes is abnormal. We studied IkappaB/NFkappaB signaling in vastus lateralis muscle from six subjects with type 2 diabetes and eight matched control subjects. Muscle from type 2 diabetic subjects was characterized by a 60% decrease in IkappaB beta protein abundance, an indicator of increased activation of the IkappaB/NFkappaB pathway. IkappaB beta abundance directly correlated with insulin-mediated glucose disposal (Rd) during a hyperinsulinemic (40 mU x m(-2) x min(-1))-euglycemic clamp (r = 0.63, P = 0.01), indicating that increased IkappaB/NFkappaB pathway activity is associated with muscle insulin resistance. We also investigated whether reversal of this abnormality could be a mechanism by which training improves insulin sensitivity. In control subjects, 8 weeks of aerobic exercise training caused a 50% increase in both IkappaB alpha and IkappaB beta protein. In subjects with type 2 diabetes, training increased IkappaB alpha and IkappaB beta protein to levels comparable with that of control subjects, and these increments were accompanied by a 40% decrease in tumor necrosis factor alpha muscle content and a 37% increase in insulin-stimulated glucose disposal. In summary, subjects with type 2 diabetes have reduced IkappaB protein abundance in muscle, suggesting excessive activity of the IkappaB/NFkappaB pathway. Moreover, this abnormality is reversed by exercise training.
Collapse
|
995
|
Gregorio CC, Perry CN, McElhinny AS. Functional properties of the titin/connectin-associated proteins, the muscle-specific RING finger proteins (MURFs), in striated muscle. J Muscle Res Cell Motil 2006; 26:389-400. [PMID: 16477476 DOI: 10.1007/s10974-005-9021-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The efficient functioning of striated muscle is dependent upon the proper alignment and coordinated activities of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, the exact molecular mechanisms dictating their cooperation and contributions during muscle differentiation and maintenance remain unknown. Recently, the muscle specific RING finger (MURF) family members have established themselves as excellent candidates for linking myofibril components (including the giant, multi-functional protein, titin/connectin), with microtubules, intermediate filaments, and nuclear factors. MURF-1, the only family member expressed throughout development, has been implicated in several studies as an ubiquitin ligase that is upregulated in response to multiple stimuli during muscle atrophy. Cell culture studies suggest that MURF-1 specifically has a role in maintaining titin M-line integrity and yeast two-hybrid studies point toward its participation in muscle stress response pathways and gene expression. MURF-2 is developmentally down-regulated and is assembled at the M-line region of the sarcomere and with microtubules. Functionally, its expression is critical for maintenance of the sarcomeric M-line region, specific populations of stable microtubules, desmin and vimentin intermediate filaments, as well as for myoblast fusion and differentiation. A recent study also links MURF-2 to a titin kinase-based protein complex that is reportedly activated upon mechanical signaling. Finally, MURF-3 is developmentally upregulated, associates with microtubules, the sarcomeric M-line (this report) and Z-line, and is required for microtubule stability and myogenesis. Here, we focus on the biochemical and functional properties of this intriguing family of muscle proteins, and discuss how they may tie together titin-mediated myofibril signaling pathways (perhaps involving the titin kinase domain), biomechanical signaling, the muscle stress response, and gene expression.
Collapse
Affiliation(s)
- Carol C Gregorio
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
996
|
Nagashima K, Sasseville VG, Wen D, Bielecki A, Yang H, Simpson C, Grant E, Hepperle M, Harriman G, Jaffee B, Ocain T, Xu Y, Fraser CC. Rapid TNFR1-dependent lymphocyte depletion in vivo with a selective chemical inhibitor of IKKbeta. Blood 2006; 107:4266-73. [PMID: 16439676 DOI: 10.1182/blood-2005-09-3852] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transcription factor NF-kappaB plays a central role in regulating inflammation and apoptosis, making it a compelling target for drug development. We identified a small molecule inhibitor (ML120B) that specifically inhibits IKKbeta, an Ikappa-B kinase that regulates NF-kappaB. IKKbeta and NF-kappaB are required in vivo for prevention of TNFalpha-mediated apoptosis. ML120B sensitized mouse bone marrow progenitors and granulocytes, but not mature B cells to TNFalpha killing in vitro, and induced apoptosis in vivo in the bone marrow and spleen within 6 hours of a single oral dose. In vivo inhibition of IKKbeta with ML120B resulted in depletion of thymocytes and B cells in all stages of development in the bone marrow but did not deplete granulocytes. TNF receptor-deficient mouse thymocytes and B cells were resistant to ML120B-induced depletion in vivo. Surprisingly, surviving bone marrow granulocytes expressed TNFR1 and TNFR2 after dosing in vivo with ML120B. Our results show that inhibition of IKKbeta with a small molecule in vivo leads to rapid TNF-dependent depletion of T and B cells. This observation has several implications for potential use of IKKbeta inhibitors for the treatment of inflammatory disease and cancer.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- B-Lymphocytes/drug effects
- Bone Marrow Cells/drug effects
- Enzyme Inhibitors/pharmacology
- Granulocytes/drug effects
- Granulocytes/metabolism
- Hematopoietic Stem Cells/drug effects
- I-kappa B Kinase/antagonists & inhibitors
- Lymphocyte Depletion/methods
- Mice
- Mice, Knockout
- Receptors, Tumor Necrosis Factor
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Tumor Necrosis Factor Decoy Receptors
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Kumiko Nagashima
- Millennium Pharmaceuticals Inc, 35 Landsdowne St, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
997
|
Argilés JM, Busquets S, García-Martínez C, López-Soriano FJ. Mediators involved in the cancer anorexia-cachexia syndrome: past, present, and future. Nutrition 2006; 21:977-85. [PMID: 16043325 DOI: 10.1016/j.nut.2005.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 02/01/2005] [Indexed: 11/22/2022]
Abstract
The cachectic syndrome, characterized by a marked weight loss, anorexia, asthenia, and anemia is invariably associated with the presence and growth of the tumor and leads to a malnutrition status due to the induction of anorexia or decreased food intake. In addition, the competition for nutrients between the tumor and the host leads to an accelerated starvation state, which promotes severe metabolic disturbances in the host, including hypermetabolism, which leads to an increased energetic inefficiency. Although the search for the cachectic factor(s) started a long time ago, and although many scientific and economic efforts have been devoted to its discovery, we are still a long way from knowing the whole truth. Present investigation is devoted to revealing the different signaling pathways, in particular transcriptional factors involved in muscle wasting. The main aim of the present review is to summarize and evaluate the different molecular mechanisms and catabolic mediators (both humoral and tumoral) involved in cancer cachexia since they may represent targets for future promising clinical investigations.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
998
|
Hishiya A, Iemura SI, Natsume T, Takayama S, Ikeda K, Watanabe K. A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy. EMBO J 2006; 25:554-64. [PMID: 16424905 PMCID: PMC1383529 DOI: 10.1038/sj.emboj.7600945] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 12/14/2005] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is critical for specific degradation of cellular proteins and plays a pivotal role on protein breakdown in muscle atrophy. Here, we show that ZNF216 directly binds polyubiquitin chains through its N-terminal A20-type zinc-finger domain and associates with the 26S proteasome. ZNF216 was colocalized with the aggresome, which contains ubiquitinylated proteins and other UPS components. Expression of Znf216 was increased in both denervation- and fasting-induced muscle atrophy and upregulated by expression of constitutively active FOXO, a master regulator of muscle atrophy. Mice deficient in Znf216 exhibited resistance to denervation-induced atrophy, and ubiquitinylated proteins markedly accumulated in neurectomized muscle compared to wild-type mice. These data suggest that ZNF216 functions in protein degradation via the UPS and plays a crucial role in muscle atrophy.
Collapse
Affiliation(s)
- Akinori Hishiya
- Department of Bone & Joint Disease, National Center for Geriatrics & Gerontology (NCGG), Obu, Aichi, Japan
- Program of Molecular Chaperone Biology, Department of Radiology, Medical College of Georgia, Augusta, GA, USA
| | - Shun-ichiro Iemura
- Japan Biological Information Research Center (JBIRC), National Institute of Advanced Industrial Science & Technology (AIST), Tokyo, Japan
| | - Tohru Natsume
- Japan Biological Information Research Center (JBIRC), National Institute of Advanced Industrial Science & Technology (AIST), Tokyo, Japan
| | - Shinichi Takayama
- Program of Molecular Chaperone Biology, Department of Radiology, Medical College of Georgia, Augusta, GA, USA
| | - Kyoji Ikeda
- Department of Bone & Joint Disease, National Center for Geriatrics & Gerontology (NCGG), Obu, Aichi, Japan
| | - Ken Watanabe
- Department of Bone & Joint Disease, National Center for Geriatrics & Gerontology (NCGG), Obu, Aichi, Japan
- Department of Bone & Joint Disease, National Center for Geriatrics & Gerontology (NCGG), Obu, Aichi 474-8522, Japan. Tel.: +81 562 46 2311; Fax: +81 562 44 6595; E-mail:
| |
Collapse
|
999
|
Moore-Carrasco R, García-Martínez C, Busquets S, Ametller E, Barreiro E, López-Soriano FJ, Argilés JM. The AP-1/CJUN signaling cascade is involved in muscle differentiation: Implications in muscle wasting during cancer cachexia. FEBS Lett 2006; 580:691-6. [PMID: 16412434 DOI: 10.1016/j.febslet.2005.12.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/13/2005] [Accepted: 12/30/2005] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to investigate a possible role of the AP-1 signaling cascade in the process of wasting associated with cancer cachexia at the level of skeletal muscle. The injection of virus containing the TAM67 protein (a blocker of the AP-1 protein) to the gastrocnemius muscle of tumour-bearing rats resulted in a significant recovery of the muscle mass (which is dramatically reduced as a result of tumour burden), therefore suggesting that AP-1 is certainly involved in the signaling associated with muscle protein accretion. In conclusion, the gene therapy approach presented here clearly suggests an important role for AP-1 in muscle signaling during catabolic states.
Collapse
Affiliation(s)
- Rodrigo Moore-Carrasco
- Departament de Bioquímica i Biologia Molecular, Cancer Research Group, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
1000
|
Bajotto G, Shimomura Y. Determinants of Disuse-Induced Skeletal Muscle Atrophy: Exercise and Nutrition Countermeasures to Prevent Protein Loss. J Nutr Sci Vitaminol (Tokyo) 2006; 52:233-47. [PMID: 17087049 DOI: 10.3177/jnsv.52.233] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Muscle atrophy results from a variety of conditions such as disease states, neuromuscular injuries, disuse, and aging. Absence of gravitational loading during spaceflight or long-term bed rest predisposes humans to undergo substantial loss of muscle mass and, consequently, become unfit and/or unhealthy. Disuse- or inactivity-induced skeletal muscle protein loss takes place by differential modulation of proteolytic and synthetic systems. Transcriptional, translational, and posttranslational events are involved in the regulation of protein synthesis and degradation in myofibers, and these regulatory events are known to be responsive to contractile activity. However, regardless of the numerous studies which have been performed, the intracellular signals that mediate skeletal muscle wasting due to muscular disuse are not completely comprehended. Understanding the triggers of atrophy and the mechanisms that regulate protein loss in unloaded muscles may lead to the development of effective countermeasures such as exercise and dietary intervention. The objective of the present review is to provide a window into the molecular processes that underlie skeletal muscle remodeling and to examine what we know about exercise and nutrition countermeasures designed to minimize muscle atrophy.
Collapse
Affiliation(s)
- Gustavo Bajotto
- Department of Materials Science and Engineering, Shikumi College, Nagoya Institute of' Technology, Gokiso-cho, Showa-ku, Nagoya 466-8 555, Japan
| | | |
Collapse
|