951
|
Bartneck M, Ritz T, Keul HA, Wambach M, Bornemann J, Gbureck U, Ehling J, Lammers T, Heymann F, Gassler N, Lüdde T, Trautwein C, Groll J, Tacke F. Peptide-functionalized gold nanorods increase liver injury in hepatitis. ACS NANO 2012; 6:8767-77. [PMID: 22994679 DOI: 10.1021/nn302502u] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Targeted nanomedicine holds enormous potential for advanced diagnostics and therapy. Although it is known that nanoparticles accumulate in liver in vivo, the impact of cell-targeting particles on the liver, especially in disease conditions, is largely obscure. We had previously demonstrated that peptide-conjugated nanoparticles differentially impact macrophage activation in vitro. We thus comprehensively studied the distribution of gold nanorods (AuNR) in mice in vivo and assessed their hepatotoxicity and impact on systemic and hepatic immune cells in healthy animals and experimental liver disease models. Gold nanorods were stabilized with either cetyltrimethylammonium bromide or poly(ethylene glycol) and additional bioactive tripeptides RGD or GLF. Gold nanorods mostly accumulated in liver upon systemic injection in mice, as evidenced by inductively coupled plasma mass spectrometry from different organs and by non-invasive microcomputerized tomography whole-body imaging. In liver, AuNR were only found in macrophages by seedless deposition and electron microscopy. In healthy animals, AuNR did not cause significant hepatotoxicity as evidenced by biochemical and histological analyses, even at high AuNR doses. However, flow cytometry and gene expression studies revealed that AuNR polarized hepatic macrophages, even at low doses, dependent on the respective peptide sequence, toward M1 or M2 activation. While peptide-modified AuNR did not influence liver scarring, termed fibrosis, in chronic hepatic injury models, AuNR-induced preactivation of hepatic macrophages significantly exacerbated liver damage and disease activity in experimental immune-mediated hepatitis in mice. Bioactively targeted gold nanoparticles are thus potentially harmful in clinically relevant settings of liver injury, as they can aggravate hepatitis severity.
Collapse
Affiliation(s)
- Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
952
|
Role of resident liver cells in the pathogenesis of schistosomiasis. Trends Parasitol 2012; 28:572-9. [PMID: 23099112 DOI: 10.1016/j.pt.2012.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/14/2012] [Accepted: 09/21/2012] [Indexed: 12/12/2022]
Abstract
Pathology in schistosomiasis occurs as a result of eggs deposited in the liver by the schistosome parasite. A granulomatous reaction occurs, resulting in portal hypertension and hepatic fibrosis. Resident non-parenchymal cells within the liver take part in this process, including hepatic stellate cells, which are responsible for collagen production, and Kupffer cells, the liver macrophages involved in both host protection and in pathology. Other cells such as liver sinusoidal endothelial cells or portal fibroblasts may also be involved in this process. This review discusses the possible role of these resident liver cells in the pathology associated with schistosomiasis and provides information which may assist our understanding of the mechanisms associated with chronic liver disease in general.
Collapse
|
953
|
Schistosoma mansoni hemozoin modulates alternative activation of macrophages via specific suppression of Retnla expression and secretion. Infect Immun 2012; 81:133-42. [PMID: 23090958 DOI: 10.1128/iai.00701-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trematode Schistosoma mansoni is one of the etiological agents of schistosomiasis, a key neglected tropical disease responsible for an estimated annual loss of 70 million disability-adjusted life years. Hematophagy represents the primary nutrient acquisition pathway of this parasite, but digestion of hemoglobin also liberates toxic heme. Schistosomes detoxify heme via crystallization into hemozoin, which is subsequently regurgitated into the host's circulation. Here we demonstrate that during experimental schistosomiasis, hemozoin accumulating in the mouse liver is taken up by phagocytes at a time coincident with the development of the egg-induced T-helper 2 (Th2) granulomatous immune response. Furthermore, the uptake of hemozoin also coincides with the hepatic expression of markers of alternative macrophage activation. Alternatively activated macrophages are a key effector cell population associated with protection against schistosomiasis, making hemozoin well placed to play an important immunomodulatory role in this disease. To systematically explore this hypothesis, S. mansoni hemozoin was purified and added to in vitro bone marrow-derived macrophage cultures concurrently exposed to cytokines chosen to reflect the shifting state of macrophage activation in vivo. Macrophages undergoing interleukin-4 (IL-4)-induced alternative activation in the presence of hemozoin developed a phenotype specifically lacking in Retnla, a characteristic alternatively activated macrophage product associated with regulation of Th2 inflammatory responses. As such, in addition to its important detoxification role during hematophagy, we propose that schistosome hemozoin also provides a potent immunomodulatory function in the coevolved network of host-parasite relationships during schistosomiasis.
Collapse
|
954
|
Enrichment of murine CD68+ CCR2+ and CD68+ CD206+ lung macrophages in acute pancreatitis-associated acute lung injury. PLoS One 2012; 7:e42654. [PMID: 23110041 PMCID: PMC3478261 DOI: 10.1371/journal.pone.0042654] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023] Open
Abstract
Acute lung injury (ALI) is an important cause of mortality in critically ill patients. Acute pancreatitis (AP) is one of the risk factors for developing this syndrome. Among the inflammatory cells, macrophages have a key role in determining the severity of the acute lung injury. In the lungs, macrophages constitute a heterogeneous cell population distributed in different compartments. Changes in not only the macrophage count, but also in their phenotype have been seen during the course of lung injury. A murine ductal ligation model of acute pancreatitis showed substantial morphological changes in the pancreas and lungs. Immunohistochemistry showed neutrophil recruitment into both organs after 9 hours and later on. F4/80(+) cells in the pancreas increased in the ligated animals, though there was not a significant difference in their number in the lungs as compared to sham operated animals. Flow cytometry analysis of lung macrophages demonstrated an enrichment of F4/80(-) CD68(+)CCR2(+) and F4/80(-) CD68(+)CD206(+) lung macrophages in ligated animals (AP) as compared to the sham operated group. The level of interleukin-6 in plasma increased 3 hours after ligation compared to the sham operated group, as a first indicator of a systemic inflammatory response.This study suggests a role for F4/80(-) CD68(+) macrophages in the pathogenesis of acute lung injury in acute pancreatitis. Studying lung macrophages for different phenotypic markers, their polarization, activation and recruitment, in the context of acute lung injury, is a novel area to potentially identify interventions which may improve the outcome of acute lung injury.
Collapse
|
955
|
Zimmermann HW, Trautwein C, Tacke F. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Front Physiol 2012; 3:56. [PMID: 23091461 PMCID: PMC3475871 DOI: 10.3389/fphys.2012.00056] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/27/2012] [Indexed: 12/12/2022] Open
Abstract
Different etiologies such as drug toxicity, acute viral hepatitis B, or acetaminophen poisoning can cause acute liver injury or even acute liver failure (ALF). Excessive cell death of hepatocytes in the liver is known to result in a strong hepatic inflammation. Experimental murine models of liver injury highlighted the importance of hepatic macrophages, so-called Kupffer cells, for initiating and driving this inflammatory response by releasing proinflammatory cytokines and chemokines including tumor necrosis factor (TNF), interleukin-6 (IL-6), IL-1beta, or monocyte-chemoattractant protein-1 (MCP-1, CCL2) as well as activating other non-parenchymal liver cells, e.g., endothelial or hepatic stellate cells. Many of these proinflammatory mediators can trigger hepatocytic cell death pathways, e.g., via caspase activation, but also activate protective signaling pathways, e.g., via nuclear factor kappa B (NF-κB). Recent studies in mice demonstrated that these macrophage actions largely depend on the recruitment of monocytes into the liver, namely of the inflammatory Ly6c+ (Gr1+) monocyte subset as precursors of tissue macrophages. The chemokine receptor CCR2 and its ligand MCP-1/CCL2 promote monocyte subset infiltration upon liver injury. In contrast, the chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1) are important negative regulators of monocyte infiltration by controlling their survival and differentiation into functionally diverse macrophage subsets upon injury. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation, and interactions with other hepatic cell types in the injured liver may therefore represent interesting novel targets for future therapeutic approaches in ALF.
Collapse
|
956
|
Abstract
The innate immune system is a prewired set of cellular and humoral components that has developed to sense perturbations in normal physiology and trigger responses to restore the system back to baseline. It is now understood that many of these components can also sense the physiologic changes that occur with obesity and be activated. While the exact reasons for this chronic immune response to obesity are unclear, there is strong evidence to suggest that innate inflammatory systems link obesity and disease. Based on this, anti-inflammatory therapies for diseases like type 2 diabetes and metabolic syndrome may form the core of future treatment plans. This review will highlight the components involved in the innate immune response and discuss the evidence that they contribute to the pathogenesis of obesity-associated diseases.
Collapse
Affiliation(s)
- Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
957
|
Communication in the heart: the role of the innate immune system in coordinating cellular responses to ischemic injury. J Cardiovasc Transl Res 2012; 5:827-36. [PMID: 23054658 DOI: 10.1007/s12265-012-9410-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/05/2012] [Indexed: 12/14/2022]
Abstract
Ischemic cardiac injury is the leading cause of heart failure and mortality in the USA and is a major expense to health-care systems. Once the heart is injured, a highly dynamic and coordinated immune response is initiated, which is dependent on both resident and recruited leukocytes. The goal of the inflammatory response is to remove ischemic and necrotic material and to promote infarct healing. If this system is perturbed, the myocardium heals poorly, leading to significant left ventricular dysfunction. Understanding how inflammatory cells coordinate and interact with each other is required prior to designing therapeutic interventions that target pathological processes at play and leave untouched those processes that are protective. This review will discuss the intercellular cross talk between cells of the innate immune system following myocardial ischemic injury and how that response is coordinated over time.
Collapse
|
958
|
Abstract
In this issue of Blood, Willenborg and colleagues uncover the timeline of monocyte/macrophage involvement during sequential phases of skin wound healing. The CCR2-mediated recruitment of a vascular endothelial growth factor A(VEGF-A)–expressing inflammatory monocyte subset is critical for early vascular sprouting, while epidermal-derived VEGF-A mediates vascularization in the late wound healing phases (see figure).
Collapse
|
959
|
Schouppe E, De Baetselier P, Van Ginderachter JA, Sarukhan A. Instruction of myeloid cells by the tumor microenvironment: Open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations. Oncoimmunology 2012; 1:1135-1145. [PMID: 23170260 PMCID: PMC3494626 DOI: 10.4161/onci.21566] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The versatility and plasticity of myeloid cell polarization/differentiation has turned out to be crucial in health and disease, and has become the subject of intense investigation during the last years. On one hand, myeloid cells provide a critical contribution to tissue homeostasis and repair. On the other hand, myeloid cells not only play an important role as first line defense against pathogens but also they are involved in a broad array of inflammation-related diseases such as cancer. Recent studies show that macrophages can exist in different activation states within the same tumor, underlining their plasticity and heterogeneity. In this review, we will discuss recent evidence on how the tumor microenvironment, as it evolves, shapes the recruitment, function, polarization and differentiation of the myeloid cell compartment, leading to the selection of myeloid cells with immunosuppressive and angiogenic functions that facilitate tumor progression and dissemination.
Collapse
Affiliation(s)
- Elio Schouppe
- Lab of Cellular and Molecular Immunology; Vrije Universiteit Brussel; Brussels, Belgium
- Myeloid Cell Immunology Lab; VIB; Brussels, Belgium
| | - Patrick De Baetselier
- Lab of Cellular and Molecular Immunology; Vrije Universiteit Brussel; Brussels, Belgium
- Myeloid Cell Immunology Lab; VIB; Brussels, Belgium
| | - Jo A. Van Ginderachter
- Lab of Cellular and Molecular Immunology; Vrije Universiteit Brussel; Brussels, Belgium
- Myeloid Cell Immunology Lab; VIB; Brussels, Belgium
| | - Adelaida Sarukhan
- Lab of Cellular and Molecular Immunology; Vrije Universiteit Brussel; Brussels, Belgium
- Myeloid Cell Immunology Lab; VIB; Brussels, Belgium
- INSERM; Paris, France
| |
Collapse
|
960
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is driven by cardiovascular risk factors that cause the recruitment of circulating immune cells beneath the vascular endothelium. Infiltrated monocytes differentiate into different macrophage subtypes with protective or pathogenic activities in vascular lesions. We discuss current knowledge about the molecular mechanisms that regulate lesional macrophage proliferation and apoptosis, two processes that occur during atherosclerosis development and regulate the number and function of macrophages within the atherosclerotic plaque. RECENT FINDINGS Lesional macrophages in early phases of atherosclerosis limit disease progression by phagocytizing modified lipoproteins, cellular debris and dead cells that accumulate in the plaque. However, macrophages in advanced lesions contribute to a maladaptive, nonresolving inflammatory response that can lead to life-threatening acute thrombotic diseases (myocardial infarction or stroke). Macrophage-specific manipulation of genes involved in cell proliferation and apoptosis modulates lesional macrophage accumulation and atherosclerosis burden in mouse models, and studies are beginning to elucidate the underlying mechanisms. SUMMARY Despite recent advances in our understanding of macrophage proliferation and apoptosis in atherosclerotic plaques, it remains unclear whether manipulating these processes will be beneficial or harmful. Advances in these areas may translate into more efficient therapies for the prevention and treatment of atherothrombosis.
Collapse
Affiliation(s)
- Vicente Andrés
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | |
Collapse
|
961
|
Solhaug A, Vines L, Ivanova L, Spilsberg B, Holme J, Pestka J, Collins A, Eriksen G. Mechanisms involved in alternariol-induced cell cycle arrest. Mutat Res 2012; 738-739:1-11. [PMID: 23031795 DOI: 10.1016/j.mrfmmm.2012.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/31/2012] [Accepted: 09/21/2012] [Indexed: 12/18/2022]
|
962
|
The diverse roles of monocytes in inflammation caused by protozoan parasitic diseases. Trends Parasitol 2012; 28:408-16. [DOI: 10.1016/j.pt.2012.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 12/23/2022]
|
963
|
Abstract
Arteriosclerotic vascular disease is the most common cause of death and a major cause of disability in the developed world. Adverse outcomes of arteriosclerotic vascular disease are related to consequences of tissue ischemia and necrosis affecting the heart, brain, limbs, and other organs. Collateral artery growth or arteriogenesis occurs naturally and can help restore perfusion to ischemic tissues. Understanding the mechanisms of collateral artery growth may provide therapeutic options for patients with ischemic vascular disease. In this review, we examine the evidence for a role of monocytes and macrophages in collateral arteriogenesis.
Collapse
Affiliation(s)
- Erik Fung
- Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical CenterLebanon, NH, USA
| | - Armin Helisch
- Department of Medicine, Heart and Vascular Center, Dartmouth-Hitchcock Medical CenterLebanon, NH, USA
| |
Collapse
|
964
|
Cougoule C, Van Goethem E, Le Cabec V, Lafouresse F, Dupré L, Mehraj V, Mège JL, Lastrucci C, Maridonneau-Parini I. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur J Cell Biol 2012; 91:938-49. [PMID: 22999511 DOI: 10.1016/j.ejcb.2012.07.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 01/10/2023] Open
Abstract
Leukocytes migrate through most tissues in the body, a process which takes place in 3D environments. We have previously shown that macrophages use the amoeboid migration mode in porous matrices such as fibrillar collagen I and the mesenchymal mode involving podosomes and matrix proteolysis in dense matrices such as Matrigel. Whether such a plasticity may apply to other leukocytes and to all subsets of macrophages is unknown. Here, we therefore provide a comparative analysis of the in vitro 3D migration modes adopted by primary human leukocytes. Blood-derived monocytes, neutrophils and T lymphocytes were found to use the amoeboid mode in a porous fibrillar collagen I matrix but were unable to infiltrate dense Matrigel and to form podosomes. M2-polarized macrophages and elicited peritoneal macrophages formed podosome rosettes, degraded the ECM and infiltrated both matrices. In contrast, M1 macrophages were motionless in 2D and 3D environments, whilst resident macrophages, devoid of podosomes, were only able to use the amoeboid mode. Thus, we conclude that whereas all leukocytes use the amoeboid mode to migrate through porous matrices, it is only certain macrophages that can adopt the mesenchymal mode that permits migration through dense matrices. Interestingly, the acquisition of mesenchymal migration capacity by macrophages correlates with the presence of podosomes and with their capacity to organize those as rosettes, which appears to be modulated by their differentiation and polarization states. As a perspective, specific control of the mesenchymal migration would be a potential target for therapeutic approaches aiming at decreasing macrophage tissue infiltration.
Collapse
Affiliation(s)
- Céline Cougoule
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
965
|
Myeloid cell-specific expression of Ship1 regulates IL-12 production and immunity to helminth infection. Mucosal Immunol 2012; 5:535-43. [PMID: 22535180 DOI: 10.1038/mi.2012.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Helminth infection leads to the local proliferation and accumulation of macrophages in tissues. However, the function of macrophages during helminth infection remains unclear. SH2-containing inositol 5'-phosphatase 1 (Ship1, Inpp5d) is a lipid phosphatase that has been shown to play a critical role in macrophage function. Here, we identify a critical role for Ship1 in the negative regulation of interleukin (IL)-12/23p40 production by macrophages during infection with the intestinal helminth parasite Trichuris muris. Mice with myeloid cell-specific deletion of Ship1 (Ship1(ΔLysM) mice) develop a non-protective T-helper type 1 cell response and fail to expel parasites. Ship1-deficient macrophages produce heightened levels of IL-12/23p40 in vitro and in vivo and antibody blockade of IL-12/23p40 renders Ship1(ΔLysM) mice resistant to Trichuris infection. Our results identify a critical role for the negative regulation of IL-12/23p40 production by macrophages in the development of a protective T(H)2 cell response.
Collapse
|
966
|
Maizels RM, Hewitson JP, Murray J, Harcus YM, Dayer B, Filbey KJ, Grainger JR, McSorley HJ, Reynolds LA, Smith KA. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp Parasitol 2012; 132:76-89. [PMID: 21875581 PMCID: PMC6485391 DOI: 10.1016/j.exppara.2011.08.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 01/12/2023]
Abstract
The intestinal nematode parasite Heligmosomoides polygyrus bakeri exerts widespread immunomodulatory effects on both the innate and adaptive immune system of the host. Infected mice adopt an immunoregulated phenotype, with abated allergic and autoimmune reactions. At the cellular level, infection is accompanied by expanded regulatory T cell populations, skewed dendritic cell and macrophage phenotypes, B cell hyperstimulation and multiple localised changes within the intestinal environment. In most mouse strains, these act to block protective Th2 immunity. The molecular basis of parasite interactions with the host immune system centres upon secreted products termed HES (H. polygyrus excretory-secretory antigen), which include a TGF-β-like ligand that induces de novo regulatory T cells, factors that modify innate inflammatory responses, and molecules that block allergy in vivo. Proteomic and transcriptomic definition of parasite proteins, combined with biochemical identification of immunogenic molecules in resistant mice, will provide new candidate immunomodulators and vaccine antigens for future research.
Collapse
Affiliation(s)
- Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
967
|
Cotton S, Donnelly S, Robinson MW, Dalton JP, Thivierge K. Defense peptides secreted by helminth pathogens: antimicrobial and/or immunomodulator molecules? Front Immunol 2012; 3:269. [PMID: 22973271 PMCID: PMC3428582 DOI: 10.3389/fimmu.2012.00269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/07/2012] [Indexed: 01/08/2023] Open
Abstract
Host defense peptides (HDPs) are an evolutionarily conserved component of the innate immune response found in all living species. They possess antimicrobial activities against a broad range of organisms including bacteria, fungi, eukaryotic parasites, and viruses. HDPs also have the ability to enhance immune responses by acting as immunomodulators. We discovered a new family of HDPs derived from pathogenic helminth (worms) that cause enormous disease in animals and humans worldwide. The discovery of these peptides was based on their similar biochemical and functional characteristics to the human defense peptide LL-37. We propose that these new peptides modulate the immune response via molecular mimicry of mammalian HDPs thus providing a mechanism behind the anti-inflammatory properties of helminth infections.
Collapse
Affiliation(s)
- Sophie Cotton
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue QC, Canada
| | | | | | | | | |
Collapse
|
968
|
Broadhurst MJ, Leung JM, Lim KC, Girgis NM, Gundra UM, Fallon PG, Premenko-Lanier M, McKerrow JH, McCune JM, Loke P. Upregulation of retinal dehydrogenase 2 in alternatively activated macrophages during retinoid-dependent type-2 immunity to helminth infection in mice. PLoS Pathog 2012; 8:e1002883. [PMID: 22927819 PMCID: PMC3426520 DOI: 10.1371/journal.ppat.1002883] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/12/2012] [Indexed: 12/18/2022] Open
Abstract
Although the vitamin A metabolite retinoic acid (RA) plays a critical role in immune function, RA synthesis during infection is poorly understood. Here, we show that retinal dehydrogenases (Raldh), required for the synthesis of RA, are induced during a retinoid-dependent type-2 immune response elicited by Schistosoma mansoni infection, but not during a retinoid-independent anti-viral immune response. Vitamin A deficient mice have a selective defect in TH2 responses to S. mansoni, but retained normal LCMV specific TH1 responses. A combination of in situ imaging, intra-vital imaging, and sort purification revealed that alternatively activated macrophages (AAMφ) express high levels of Raldh2 during S. mansoni infection. IL-4 induces Raldh2 expression in bone marrow-derived macrophages in vitro and peritoneal macrophages in vivo. Finally, in vivo derived AAMφ have an enhanced capacity to induce Foxp3 expression in CD4+ cells through an RA dependent mechanism, especially in combination with TGF-β. The regulation of Raldh enzymes during infection is pathogen specific and reflects differential requirements for RA during effector responses. Specifically, AAMφ are an inducible source of RA synthesis during helminth infections and TH2 responses that may be important in regulating immune responses. Vitamin A deficiency, a major global health concern, increases morbidity and death due to infectious diseases. For vitamin A to be utilized by the immune system, it must be metabolized into retinoic acid (RA), its active form. RA is a key determinant of T cell activity. However, its contribution to protective immunity during infection is poorly understood, as is the regulation of its synthesis in this context. We examined RA synthesis by immune cells responding to helminth infection and virus infection. While intestinal T cell responses were vitamin A-dependent during both infections, only T cell responses elicited by helminth infection were vitamin A-dependent in the liver. Consistent with this finding, the enzymes necessary for RA synthesis were expressed by inflammatory cells recruited to the liver during helminth, but not virus, infection. We identified alternatively-activated macrophages as a source of RA synthesis within immune cells responding to helminth infection and find that they can induce regulatory T cells. Our findings provide a better understanding of vitamin A utilization during infection and demonstrate that RA synthesis is an inducible component of protective immunity.
Collapse
Affiliation(s)
- Mara J. Broadhurst
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jacqueline M. Leung
- Division of Medical Parasitology, Department of Microbiology, New York University Langone Medical Center, New York, New York, United States of America
| | - K. C. Lim
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Natasha M. Girgis
- Division of Medical Parasitology, Department of Microbiology, New York University Langone Medical Center, New York, New York, United States of America
| | - Uma Mahesh Gundra
- Division of Medical Parasitology, Department of Microbiology, New York University Langone Medical Center, New York, New York, United States of America
| | - Padraic G. Fallon
- Institute of Molecular Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Mary Premenko-Lanier
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Joseph M. McCune
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - P'ng Loke
- Division of Medical Parasitology, Department of Microbiology, New York University Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
969
|
Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood 2012; 120:3152-62. [PMID: 22919031 DOI: 10.1182/blood-2012-04-422758] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells and macrophages are known to engage in tight and specific interactions that contribute to the modulation of vascular function. Here we show that adult endothelial cells provide critical signals for the selective growth and differentiation of macrophages from several hematopoietic progenitors. The process features the formation of well-organized colonies that exhibit progressive differentiation from the center to the periphery and toward an M2-like phenotype, characterized by enhanced expression of Tie2 and CD206/Mrc1. These colonies are long-lived depending on the contact with the endothelium; removal of the endothelial monolayer results in rapid colony dissolution. We further found that Csf1 produced by the endothelium is critical for the expansion of the macrophage colonies and that blockade of Csf1 receptor impairs colony growth. Functional analyses indicate that these macrophages are capable of accelerating angiogenesis, promoting tumor growth, and effectively engaging in tight associations with endothelial cells in vivo. These findings uncover a critical role of endothelial cells in the induction of macrophage differentiation and their ability to promote further polarization toward a proangiogenic phenotype. This work also highlights some of the molecules underlying the M2-like differentiation, a process that is relevant to the progression of both developmental and pathologic angiogenesis.
Collapse
|
970
|
Comalada M, Lloberas J, Celada A. MKP-1: A critical phosphatase in the biology of macrophages controlling the switch between proliferation and activation. Eur J Immunol 2012; 42:1938-48. [DOI: 10.1002/eji.201242441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mònica Comalada
- Macrophage Biology Group; Institute for Research in Biomedicine (IRB Barcelona); Barcelona; Spain
| | | | | |
Collapse
|
971
|
Induction of IL-4Rα-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo. Blood 2012; 120:2307-16. [PMID: 22855601 DOI: 10.1182/blood-2012-02-408252] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophage (MΦ) activation must be tightly controlled to preclude overzealous responses that cause self-damage. MicroRNAs promote classical MΦ activation by blocking antiinflammatory signals and transcription factors but also can prevent excessive TLR signaling. In contrast, the microRNA profile associated with alternatively activated MΦ and their role in regulating wound healing or antihelminthic responses has not been described. By using an in vivo model of alternative activation in which adult Brugia malayi nematodes are implanted surgically in the peritoneal cavity of mice, we identified differential expression of miR-125b-5p, miR-146a-5p, miR-199b-5p, and miR-378-3p in helminth-induced MΦ. In vitro experiments demonstrated that miR-378-3p was specifically induced by IL-4 and revealed the IL-4-receptor/PI3K/Akt-signaling pathway as a target. Chemical inhibition of this pathway showed that intact Akt signaling is an important enhancement factor for alternative activation in vitro and in vivo and is essential for IL-4-driven MΦ proliferation in vivo. Thus, identification of miR-378-3p as an IL-4Rα-induced microRNA led to the discovery that Akt regulates the newly discovered mechanism of IL-4-driven macrophage proliferation. Together, the data suggest that negative regulation of Akt signaling via microRNAs might play a central role in limiting MΦ expansion and alternative activation during type 2 inflammatory settings.
Collapse
|
972
|
Alber A, Howie SEM, Wallace WAH, Hirani N. The role of macrophages in healing the wounded lung. Int J Exp Pathol 2012; 93:243-51. [PMID: 22774768 PMCID: PMC3444980 DOI: 10.1111/j.1365-2613.2012.00833.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/30/2012] [Indexed: 01/07/2023] Open
Abstract
Acute tissue injury is often considered in the context of a wound. The host response to wounding is an orchestrated series of events, the fundamentals of which are preserved across all multicellular organisms. In the human lung, there are a myriad of causes of injury, but only a limited number of consequences: complete resolution, persistent and/or overwhelming inflammation, a combination of resolution/remodelling with fibrosis or progressive fibrosis. In all cases where complete resolution does not occur, there is the potential for significant ongoing morbidity and ultimately death through respiratory failure. In this review, we consider the elements of injury, resolution and repair as they occur in the lung. We specifically focus on the role of the macrophage, long considered to have a pivotal role in regulating the host response to injury and tissue repair.
Collapse
Affiliation(s)
- Andreas Alber
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburgh, UK
| | - Sarah E M Howie
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburgh, UK
| | - William A H Wallace
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburgh, UK
- Department of Pathology, Royal Infirmary of EdinburghEdinburgh, UK
| | - Nikhil Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of EdinburghEdinburgh, UK
| |
Collapse
|
973
|
Antoniades CG, Quaglia A, Taams LS, Mitry RR, Hussain M, Abeles R, Possamai LA, Bruce M, McPhail M, Starling C, Wagner B, Barnardo A, Pomplun S, Auzinger G, Bernal W, Heaton N, Vergani D, Thursz MR, Wendon J. Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans. Hepatology 2012; 56:735-46. [PMID: 22334567 DOI: 10.1002/hep.25657] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/08/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Acetaminophen-induced acute liver failure (AALF) is associated with innate immunity activation, which contributes to the severity of hepatic injury and clinical outcome. A marked increase in hepatic macrophages (h-mφ) is observed in experimental models of AALF, but controversy exists regarding their role, implicating h-mφ in both aggravation and resolution of liver injury. The role of h-mφ in human AALF is virtually unexplored. We sought to investigate the role of chemokine (C-C motif) ligand 2 (CCL2) in the recruitment of circulating monocytes to the inflamed liver and to determine how the h-mφ infiltrate and liver microenvironment may contribute to tissue repair versus inflammation in AALF. We evaluated circulating monocytes, their chemokine (C-C motif) receptor 2 (CCR2) expression, and serum CCL2 levels in patients with AALF. Cell subsets and numbers of circulation-derived (MAC387+) or resident proliferating (CD68/Ki67+) h-mφ in hepatic immune infiltrates were determined by immunohistochemistry. Inflammatory cytokine levels were determined in whole and laser microdissected liver tissue by proteome array. In AALF, circulating monocytes were depleted, with the lowest levels observed in patients with adverse outcomes. CCL2 levels were high in AALF serum and hepatic tissue, and circulating monocyte subsets expressed CCR2, suggesting CCL2-dependent hepatic monocyte recruitment. Significant numbers of both MAC387+ and CD68+ h-mφ were found in AALF compared with control liver tissue with a high proportion expressing the proliferation marker Ki67. Levels of CCL2, CCL3, interleukin (IL)-6, IL-10, and transforming growth factor-β1 were significantly elevated in AALF liver tissue relative to chronic liver disease controls. CONCLUSION In AALF, the h-mφ population is expanded in areas of necrosis, both through proliferation of resident cells and CCL2-dependent recruitment of circulating monocytes. The presence of h-mφ within an anti-inflammatory/regenerative microenvironment indicates that they are implicated in resolution of inflammation/tissue repair processes during AALF.
Collapse
|
974
|
Gomez Perdiguero E, Schulz C, Geissmann F. Development and homeostasis of "resident" myeloid cells: the case of the microglia. Glia 2012; 61:112-20. [PMID: 22847963 DOI: 10.1002/glia.22393] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/26/2012] [Indexed: 12/12/2022]
Abstract
Microglia, macrophages of the central nervous system, play an important role in brain homeostasis. Their origin has been unclear. Recent fate-mapping experiments have established that microglia mostly originate from Myb-independent, FLT3-independent, but PU.1-dependent precursors that express the CSF1-receptor at E8.5 of embryonic development. These precursors are presumably located in the yolk sac (YS) at this time before invading the embryo between E9.5 and E10.5 and colonizing the fetal liver. Indeed, the E14.5 fetal liver contains a large population of Myb-independent YS-derived myeloid cells. This myeloid lineage is distinct from hematopoietic stem cells (HSCs), which require the transcription factor Myb for their development and maintenance. This "yolky" beginning and the independence from conventional HSCs are not unique to microglia. Indeed, several other populations of F4/80-positive macrophages develop also from YS Myb-independent precursors, such as Kupffer cells in the liver, Langerhans cells in the epidermis, and macrophages in the spleen, kidney, pancreas, and lung. Importantly, microglia and the other Myb-independent macrophages persist, at least in part, in adult mice and likely self-renew within their respective tissues of residence, independently of bone marrow HSCs. This suggests the existence of tissue resident macrophage "stem cells" within tissues such as the brain, and opens a new era for the molecular and cellular understanding of myeloid cells responses during acute and chronic inflammation.
Collapse
Affiliation(s)
- Elisa Gomez Perdiguero
- Centre for Molecular and Cellular Biology of Inflammation, King's College London, Great Maze Pond, London, United Kingdom
| | | | | |
Collapse
|
975
|
Holt DJ, Grainger DW. Senescence and quiescence induced compromised function in cultured macrophages. Biomaterials 2012; 33:7497-507. [PMID: 22809642 DOI: 10.1016/j.biomaterials.2012.06.099] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 06/30/2012] [Indexed: 10/28/2022]
Abstract
Implants are predisposed to infection even years after implantation, despite ostensibly being surrounded by innumerable macrophages as part of the host foreign body response. The local implant environment could adversely influence the implant-associated macrophage phenotype, proliferative capacity, activation states, and ability to neutralize pathogens. This study monitored cultured macrophage proliferative states and phagocytotic competence on tissue culture plastic to address the hypothesis that extended contact with foreign materials alters macrophage phenotype. That such macrophage alterations might also occur around implants has significance to the foreign body response, infection, cancer, autoimmune and other diseases. Specifically, multiple indicators of macrophage proliferation in various culture conditions, including cell confluence, long-term culture (21 days), lipopolysaccharide (LPS) stimulation, passaging, and mitogenic stimulation are reported. Importantly, primary murine macrophages became quiescent at high confluence and senescent during long-term culture. Senescent macrophages significantly reduced their ability to phagocytose particles, while quiescent macrophages did not. Cell senescence and quiescence were not observed with repeated passaging. Primary macrophage stimulation with LPS delayed senescence but did not eliminate it. These results prompt the conclusion that both cell quiescence and senescence are observed under common macrophage culture conditions and could alter macrophage behavior and phenotypes in extended in vitro culture, such as the ability to phagocytose. Such macrophage transitions around foreign bodies in vivo are not documented: quiescence and senescence reported here in macrophage culture could be relevant to macrophage behavior both in vitro in bioassays and in vivo in the foreign body response and implant-centered infection.
Collapse
Affiliation(s)
- Dolly J Holt
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112-5820, USA
| | | |
Collapse
|
976
|
Maizels RM, Hewitson JP, Smith KA. Susceptibility and immunity to helminth parasites. Curr Opin Immunol 2012; 24:459-66. [PMID: 22795966 PMCID: PMC3437973 DOI: 10.1016/j.coi.2012.06.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/10/2012] [Accepted: 06/06/2012] [Indexed: 12/31/2022]
Abstract
Parasitic helminth infection remains a global health problem, whilst the ability of worms to manipulate and dampen the host immune system is attracting interest in the fields of allergy and autoimmunity. Much progress has been made in the last two years in determining the cells and cytokines involved in induction of Type 2 immunity, which is generally protective against helminth infection. Innate cells respond to ‘alarmin’ cytokines (IL-25, IL-33, TSLP) by producing IL-4, IL-5 and IL-13, and this sets the stage for a more potent subsequent adaptive Th2 response. CD4+ Th2 cells then drive a suite of type 2 anti-parasite mechanisms, including class-switched antibodies, activated leukocytes and innate defence molecules; the concerted effects of these multiple pathways disable, degrade and dislodge parasites, leading to their destruction or expulsion.
Collapse
Affiliation(s)
- Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| | | | | |
Collapse
|
977
|
Hume DA. Plenary perspective: the complexity of constitutive and inducible gene expression in mononuclear phagocytes. J Leukoc Biol 2012; 92:433-44. [PMID: 22773680 DOI: 10.1189/jlb.0312166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Monocytes and macrophages differentiate from progenitor cells under the influence of colony-stimulating factors. Genome-scale data have enabled the identification of the set of genes that distinguishes macrophages from other cell types and the ways in which thousands of genes are regulated in response to pathogen challenge. Although there has been a focus on a small subset of lineage-enriched transcription factors, such as PU.1, more than one-half of the transcription factors in the genome can be expressed in macrophage lineage cells under some state of activation, and they interact in a complex network. The network architecture is conserved across species, but many of the target genes evolve rapidly and differ between mouse and human. The data and publication deluge related to macrophage biology require the development of new analytical tools and ways of presenting information in an accessible form.
Collapse
Affiliation(s)
- David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
978
|
Clanchy FI, Hamilton JA. HUVEC co-culture and haematopoietic growth factors modulate human proliferative monocyte activity. Cytokine 2012; 59:31-4. [DOI: 10.1016/j.cyto.2012.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/12/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
|
979
|
Goldszmid RS, Caspar P, Rivollier A, White S, Dzutsev A, Hieny S, Kelsall B, Trinchieri G, Sher A. NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 2012; 36:1047-59. [PMID: 22749354 PMCID: PMC3412151 DOI: 10.1016/j.immuni.2012.03.026] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 02/04/2012] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), monocytes, and/or macrophages initiate host-protective immune responses to intracellular pathogens in part through interleukin-12 (IL-12) production, although the relative contribution of tissue resident versus recruited cells has been unclear. Here, we showed that after intraperitoneal infection with Toxoplasma gondii cysts, resident mononuclear phagocytes are replaced by circulating monocytes that differentiate in situ into inflammatory DCs (moDCs) and F4/80(+) macrophages. Importantly, NK cell-derived interferon-γ (IFN-γ) was required for both the loss of resident mononuclear phagocytes and the local differentiation of monocytes into macrophages and moDCs. This newly generated moDC population and not the resident DCs (or macrophages) served as the major source of IL-12 at the site of infection. Thus, NK cell-derived IFN-γ is important in both regulating inflammatory cell dynamics and in driving the local differentiation of monocytes into the cells required for initiating the immune response to an important intracellular pathogen.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Ly/analysis
- Cell Differentiation
- Chemotaxis, Leukocyte
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Dendritic Cells/transplantation
- Genes, Reporter
- Interferon-gamma/physiology
- Interleukin-12 Subunit p40/biosynthesis
- Interleukin-12 Subunit p40/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/transplantation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Monocytes/chemistry
- Monocytes/immunology
- Monocytes/pathology
- Monocytes/transplantation
- Myeloid Differentiation Factor 88/physiology
- Neutrophils/immunology
- Peritonitis/immunology
- Peritonitis/parasitology
- Phagocytes/classification
- Phagocytes/immunology
- Phagocytes/pathology
- Receptors, Interferon/deficiency
- Receptors, Interferon/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Specific Pathogen-Free Organisms
- T-Lymphocyte Subsets/immunology
- Toxoplasmosis, Animal/immunology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Romina S. Goldszmid
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Pat Caspar
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Aymeric Rivollier
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sandy White
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Amiran Dzutsev
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Sara Hieny
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Brian Kelsall
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Giorgio Trinchieri
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
980
|
Karlmark KR, Tacke F, Dunay IR. Monocytes in health and disease - Minireview. Eur J Microbiol Immunol (Bp) 2012; 2:97-102. [PMID: 24672677 DOI: 10.1556/eujmi.2.2012.2.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/18/2022] Open
Abstract
Monocytes are important cell types of the innate immune system. Recent scientific evidence suggests that monocytes not only play a crucial role in our innate immune system by defending the host from intruding microbial pathogens but they also contribute to the pathogenesis and progression of diseases such as liver fibrosis, atherosclerosis, multiple sclerosis, and tumor metastasis. In addition, monocytes and monocyte-derived macrophages play a crucial beneficial role in the liver fibrosis regression, muscle regeneration, and the clearance of the β-amyloid plaques in Alzheimer's disease. Here, we summarize the origin, plasticity, and pathogenic potential of monocytes and monocyte-derived macrophages, as well as their positive role in the regression of some common diseases. Elucidating the comprehensive immunological role of monocytes will provide therapeutic advantages in either controlling disease progression or favoring the regression of the disease state.
Collapse
|
981
|
Tacke F. Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. FIBROGENESIS & TISSUE REPAIR 2012; 5:S27. [PMID: 23259611 PMCID: PMC3368797 DOI: 10.1186/1755-1536-5-s1-s27] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sustained inflammation upon chronic liver injury induces the development of liver fibrosis in mice and men. Experimental models of liver fibrosis highlight the importance of hepatic macrophages, so-called Kupffer cells, for perpetuating inflammation by releasing proinflammatory cytokines and chemokines as well as activating hepatic stellate cells (HSC). Recent studies in mice demonstrate that these actions are only partially conducted by liver-resident macrophages, classically termed Kupffer cells, but largely depend on recruitment of monocytes into the liver. Monocytes are circulating precursors of tissue macrophages and dendritic cells (DC), which comprise two major subsets in blood, characterized by the differential expression of chemokine receptors, adhesion molecules and distinct markers, such as Ly6C/Gr1 in mice or CD14 and CD16 in humans. Upon organ injury, chemokine receptor CCR2 and its ligand MCP-1 (CCL2) as well as CCR8 and CCL1 promote monocyte subset accumulation in the liver, namely of the inflammatory Ly6C(+) (Gr1(+)) monocyte subset as precursors of tissue macrophages. The infiltration of proinflammatory monocytes into injured murine liver can be specifically blocked by novel anti-MCP-1 directed agents. In contrast, chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1) are important negative regulators of monocyte infiltration in hepatic inflammation by controlling their survival and differentiation into functionally diverse macrophage subsets. In patients with liver cirrhosis, 'non-classical' CD14(+)CD16(+) monocytes are found activated in blood as well as liver and promote pro-inflammatory along with pro-fibrogenic actions by the release of distinct cytokines and direct interactions with HSC, indicating that the findings from murine models can be translated into pathogenesis of human liver fibrosis. Moreover, experimental animal models indicate that monocytes/macrophages and DCs are not only critical for fibrosis progression, but also for fibrosis regression, because macrophages can also degrade extracellular matrix proteins and exert anti-inflammatory actions. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation and interactions with other hepatic cell types in injured liver may therefore represent interesting novel targets for future therapeutic approaches in liver fibrosis.
Collapse
Affiliation(s)
- Frank Tacke
- Dept of Medicine III, University Hospital Aachen, Germany
| |
Collapse
|
982
|
Alternatively activated dendritic cells regulate CD4+ T-cell polarization in vitro and in vivo. Proc Natl Acad Sci U S A 2012; 109:9977-82. [PMID: 22660926 DOI: 10.1073/pnas.1121231109] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interleukin-4 is a cytokine widely known for its role in CD4(+) T cell polarization and its ability to alternatively activate macrophage populations. In contrast, the impact of IL-4 on the activation and function of dendritic cells (DCs) is poorly understood. We report here that DCs respond to IL-4 both in vitro and in vivo by expression of multiple alternative activation markers with a different expression pattern to that of macrophages. We further demonstrate a central role for DC IL-4Rα expression in the optimal induction of IFNγ responses in vivo in both Th1 and Th2 settings, through a feedback loop in which IL-4 promotes DC secretion of IL-12. Finally, we reveal a central role for RELMα during T-cell priming, establishing that its expression by DCs is critical for optimal IL-10 and IL-13 promotion in vitro and in vivo. Together, these data highlight the significant impact that IL-4 and RELMα can have on DC activation and function in the context of either bacterial or helminth pathogens.
Collapse
|
983
|
Osborn O, Oh DY, McNelis J, Sanchez-Alavez M, Talukdar S, Lu M, Li P, Thiede L, Morinaga H, Kim JJ, Heinrichsdorff J, Nalbandian S, Ofrecio JM, Scadeng M, Schenk S, Hadcock J, Bartfai T, Olefsky JM. G protein-coupled receptor 21 deletion improves insulin sensitivity in diet-induced obese mice. J Clin Invest 2012; 122:2444-53. [PMID: 22653059 DOI: 10.1172/jci61953] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
Obesity-induced inflammation is a key component of systemic insulin resistance, which is a hallmark of type 2 diabetes. A major driver of this inflammation/insulin resistance syndrome is the accumulation of proinflammatory macrophages in adipose tissue and liver. We found that the orphan GPCR Gpr21 was highly expressed in the hypothalamus and macrophages of mice and that whole-body KO of this receptor led to a robust improvement in glucose tolerance and systemic insulin sensitivity and a modest lean phenotype. The improvement in insulin sensitivity in the high-fat diet-fed (HFD-fed) Gpr21 KO mouse was traced to a marked reduction in tissue inflammation caused by decreased chemotaxis of Gpr21 KO macrophages into adipose tissue and liver. Furthermore, mice lacking macrophage expression of Gpr21 were protected from HFD-induced inflammation and displayed improved insulin sensitivity. Results of in vitro chemotaxis studies in human monocytes suggested that the defect in chemotaxis observed ex vivo and in vivo in mice is also translatable to humans. Cumulatively, our data indicate that GPR21 has a critical function in coordinating macrophage proinflammatory activity in the context of obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Olivia Osborn
- Division of Endocrinology and Metabolism, Department of Medicine, UCSD, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
984
|
Kaminski WE, Beham AW, Kzhyshkowska J, Gratchev A, Puellmann K. On the horizon: flexible immune recognition outside lymphocytes. Immunobiology 2012; 218:418-26. [PMID: 22749215 DOI: 10.1016/j.imbio.2012.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/25/2012] [Accepted: 05/27/2012] [Indexed: 01/13/2023]
Abstract
Since decades there is consensus among immunologists that in jawless and jawed vertebrates flexible immune recognition is strictly confined to the lymphoid lineage. In jawed vertebrates the adaptive immune system is represented by two lineages of lymphocytes, B cells and T cells that express recombinatorial antigen receptors of enormous diversity known as immunoglobulins and the T cell receptor (TCR). The recent identification of recombined immune receptors that are structurally based on the TCR in subpopulations of neutrophils and eosinophils (referred to here as TCR-like immunoreceptors, "TCRL") provides unexpected evidence for the existence of flexible host defense mechanisms beyond the realm of lymphocytes. Consistent with this, subpopulations of monocytes and macrophages from humans and mice now have also been shown to constitutively express recombined TCR-like immunoreceptors. Available in vitro evidence suggests that the TCRL in macrophages may exert functions as facilitators of phagocytosis and self-recruitment. More importantly, our recent findings that the macrophage-TCRL is implicated in granuloma formation in tuberculosis and the neutrophil-TCRL is associated with autoimmune hemolytic anemia establish for the first time a link between myeloid recombinatorial immune receptors and clinical disease. The discovery of recombined TCR-like immune receptors in granulocytes and macrophages extends the principle of combinatorial immune recognition to phagocytic cells. Conceptually, this unifies the two hitherto disparate cardinal features of innate and adaptive immunity, phagocytic capacity and recombinatorial immune recognition on a common cellular platform. Moreover, it strongly suggests that flexible host defense in vertebrates may operate on a broader cellular basis than currently thought.
Collapse
Affiliation(s)
- Wolfgang E Kaminski
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
985
|
Targeting metabotropic glutamate receptors in neuroimmune communication. Neuropharmacology 2012; 63:501-6. [PMID: 22640632 DOI: 10.1016/j.neuropharm.2012.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 01/13/2023]
Abstract
L-Glutamate (L-Glu) is the principal excitatory neurotransmitter in the Central Nervous System (CNS), where it regulates cellular and synaptic activity, neuronal plasticity, cell survival and other relevant functions. Glutamatergic neurotransmission is complex and involves both ionotropic (ligand-gated ion channels; iGluRs) and metabotropic receptors (G-protein coupled receptors). Recent evidence suggests that glutamatergic receptors are also expressed by immune cells, regulating the degree of cell activation. In this review we primarily focus on mGluRs and their role in the crosstalk between the central nervous and immune systems during neuroinflammation.
Collapse
|
986
|
Wagner M, Bjerkvig R, Wiig H, Melero-Martin JM, Lin RZ, Klagsbrun M, Dudley AC. Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis. Angiogenesis 2012; 15:481-95. [PMID: 22614697 DOI: 10.1007/s10456-012-9276-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 04/25/2012] [Indexed: 02/07/2023]
Abstract
Tumor-associated stroma is typified by a persistent, non-resolving inflammatory response that enhances tumor angiogenesis, growth and metastasis. Inflammation in tumors is instigated by heterotypic interactions between malignant tumor cells, vascular endothelium, fibroblasts, immune and inflammatory cells. We found that tumor-associated adipocytes also contribute to inflammation. We have analyzed peritumoral adipose tissue in a syngeneic mouse melanoma model. Compared to control adipose tissue, adipose tissue juxtaposed to implanted tumors exhibited reduced adipocyte size, extensive fibrosis, increased angiogenesis and a dense macrophage infiltrate. A mouse cytokine protein array revealed up-regulation of inflammatory mediators including IL-6, CXCL1, MCP-1, MIP-2 and TIMP-1 in peritumoral versus counterpart adipose tissues. CD11b(+) macrophages contributed strongly to the inflammatory activity. These macrophages were isolated from peritumoral adipose tissue and found to over-express ARG1, NOS2, CD301, CD163, MCP-1 and VEGF, which are indicative of both M1 and M2 polarization. Tumors implanted at a site distant from subcutaneous, anterior adipose tissue were strongly growth-delayed, had fewer blood vessels and were less populated by CD11b(+) macrophages. In contrast to normal adipose tissue, micro-dissected peritumoral adipose tissue explants launched numerous vascular sprouts when cultured in an ex vivo model. Thus, inflamed tumor-associated adipose tissue fuels the growth of malignant cells by acting as a proximate source for vascular endothelium and activated pro-inflammatory cells, in particular macrophages.
Collapse
Affiliation(s)
- Marek Wagner
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
987
|
Abstract
Macrophages play pleiotropic, niche-specific roles in all tissues and organs. As immune sentinels, tissue macrophages regulate immune activation and inflammation; in turn, their function is modulated by inflammatory mediators deriving from such activation. Recent papers have established unanticipated roles for interleukin 4 and the alternative activation of tissue macrophages in the organismal response to diverse environmental stressors.
Collapse
Affiliation(s)
- Christopher L Karp
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
988
|
Jung S, Schwartz M. Non-identical twins - microglia and monocyte-derived macrophages in acute injury and autoimmune inflammation. Front Immunol 2012; 3:89. [PMID: 22566968 PMCID: PMC3345364 DOI: 10.3389/fimmu.2012.00089] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/06/2012] [Indexed: 01/01/2023] Open
Abstract
The brain has been commonly regarded as a “tissue behind walls.” Appearance of immune cells in the brain has been taken as a sign of pathology. Moreover, since infiltrating monocyte-derived macrophages and activated resident microglia were indistinguishable by conventional means, both populations were considered together as inflammatory cells that should be mitigated. Yet, because the microglia permanently reside in the brain, attributing to them negative properties evoked an ongoing debate; why cells that are supposed to be the brain guardians acquire only destructive potential? Studies over the last two decades in the immune arena in general, and in the context of central nervous system pathology in particular, have resulted in a paradigm shift toward a more balanced appreciation of the contributions of immune cells in the context of brain maintenance and repair, and toward the recognition of distinct roles of resident microglia and infiltrating monocyte-derived macrophages.
Collapse
Affiliation(s)
- Steffen Jung
- Department of Immunology, Weizmann Institute of Science Rehovot, Israel
| | | |
Collapse
|
989
|
Nieuwenhuizen NE, Kirstein F, Jayakumar J, Emedi B, Hurdayal R, Horsnell WGC, Lopata AL, Brombacher F. Allergic airway disease is unaffected by the absence of IL-4Rα-dependent alternatively activated macrophages. J Allergy Clin Immunol 2012; 130:743-750.e8. [PMID: 22552110 DOI: 10.1016/j.jaci.2012.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 02/14/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Markers of alternatively activated macrophages (AAMs) are upregulated in the lungs of asthmatic patients and in mice with allergic airway disease. AAMs are thought to contribute to the pathogenesis of allergic airway disease by virtue of their decreased NO production and increased production of proline and polyamines, which are important in the synthesis of connective tissues such as collagen. OBJECTIVE We aimed to define the role of AAMs in the pathogenesis of allergic airway disease. METHODS The IL-4 receptor alpha (IL-4Rα) gene is genetically abrogated in macrophages in LysM(cre)IL-4Rα(-/lox) mice, which therefore have impaired IL-4/IL-13 activation of AAMs through IL-4R types 1 and 2. Responses of LysM(cre)IL-4Rα(-/lox) mice and IL-4Rα(-/lox) littermate controls were examined in ovalbumin- and house dust mite-induced allergic airway disease. RESULTS IL-4Rα expression was shown to be efficiently depleted from alveolar macrophages, interstitial macrophages, and CD11b(+)MHCII(+) inflammatory macrophages. Although the expression of markers of AAMs such as Ym-1, arginase and found in inflammatory zone 1 was decreased in macrophages of LysM(cre)IL-4Rα(-/lox) mice in chronic ovalbumin-induced allergic airway disease, airway hyperreactivity, T(H)2 responses, mucus hypersecretion, eosinophil infiltration, and collagen deposition were not significantly reduced. LysM(cre)IL-4Rα(-/lox) mice and littermate controls also developed similar responses in acute ovalbumin- and house dust mite-induced allergic airway disease. CONCLUSION Our results suggest that the presence of AAMs in allergic airway disease may be only an association, as a result of the increased T(H)2 responses present during disease, and that IL-4Rα-dependent AAMs do not play an important role in the pathology of disease.
Collapse
|
990
|
Williams HJ, Fisher EA, Greaves DR. Macrophage differentiation and function in atherosclerosis: opportunities for therapeutic intervention? J Innate Immun 2012; 4:498-508. [PMID: 22572544 DOI: 10.1159/000336618] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/16/2012] [Indexed: 12/20/2022] Open
Abstract
The macrophage is exquisitely sensitive to its microenvironment, as demonstrated primarily through in vitro study. Changes in macrophage phenotype and function within the atherosclerotic plaque have profound consequences for plaque biology, including rupture and arterial thrombosis leading to clinical events such as myocardial infarction. We review the evidence for dynamic changes in macrophage numbers and macrophage differentiation within the atherosclerotic plaque microenvironment and discuss potential approaches to target macrophage differentiation for therapeutic benefit in cardiovascular disease.
Collapse
Affiliation(s)
- Howell J Williams
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
991
|
Mock DJ, Hollenbaugh JA, Daddacha W, Overstreet MG, Lazarski CA, Fowell DJ, Kim B. Leishmania induces survival, proliferation and elevated cellular dNTP levels in human monocytes promoting acceleration of HIV co-infection. PLoS Pathog 2012; 8:e1002635. [PMID: 22496656 PMCID: PMC3320607 DOI: 10.1371/journal.ppat.1002635] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/24/2012] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis is a parasitic disease that is widely prevalent in many tropical and sub-tropical regions of the world. Infection with Leishmania has been recognized to induce a striking acceleration of Human Immunodeficiency Virus Type 1 (HIV-1) infection in coinfected individuals through as yet incompletely understood mechanisms. Cells of the monocyte/macrophage lineage are the predominant cell types coinfected by both pathogens. Monocytes and macrophages contain extremely low levels of deoxynucleoside triphosphates (dNTPs) due to their lack of cell cycling and S phase, where dNTP biosynthesis is specifically activated. Lentiviruses, such as HIV-1, are unique among retroviruses in their ability to replicate in these non-dividing cells due, at least in part, to their highly efficient reverse transcriptase (RT). Nonetheless, viral replication progresses more efficiently in the setting of higher intracellular dNTP concentrations related to enhanced enzyme kinetics of the viral RT. In the present study, in vitro infection of CD14+ peripheral blood-derived human monocytes with Leishmania major was found to induce differentiation, marked elevation of cellular p53R2 ribonucleotide reductase subunit and R2 subunit expression. The R2 subunit is restricted to the S phase of the cell cycle. Our dNTP assay demonstrated significant elevation of intracellular monocyte-derived macrophages (MDMs) dNTP concentrations in Leishmania-infected cell populations as compared to control cells. Infection of Leishmania-maturated MDMs with a pseudotyped GFP expressing HIV-1 resulted in increased numbers of GFP+ cells in the Leishmania-maturated MDMs as compared to control cells. Interestingly, a sub-population of Leishmania-maturated MDMs was found to have re-entered the cell cycle, as demonstrated by BrdU labeling. In conclusion, Leishmania infection of primary human monocytes promotes the induction of an S phase environment and elevated dNTP levels with notable elevation of HIV-1 expression in the setting of coinfection. Leishmaniasis is a parasitic disease that infects several human host immune cells, including neutrophils, monocytes, and macrophages. Moreover, while HIV-1 infects monocytes and macrophages, only the infected macrophages productively release viral progenies. Importantly, patients coinfected with both pathogens progress more rapidly to AIDS. In this study, we examine how Leishmania major changes the cellular environment of monocytes in vitro. We found that Leishmania-infected monocytes actively mature into macrophages in the absence of GM-CSF, and that these cells up-regulate the expression of ribonucleotide reductase, an enzyme that catalyzes the formation of deoxynucleoside triphosphates (dNTPs). We confirmed the elevation of dNTP concentrations using a very sensitive dNTP assay for monocytes and monocyte-maturated macrophages. Collectively, these data support a model in which infection of monocytes with Leishmania elevates the intracellular dNTP pools, which is one of the natural anti-viral blocks to HIV-1 infection in monocytes and macrophages in patients.
Collapse
Affiliation(s)
- David J. Mock
- Department of Biomolecular Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (DJM); (BK)
| | - Joseph A. Hollenbaugh
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Waaqo Daddacha
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael G. Overstreet
- Center of Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | | | - Deborah J. Fowell
- Center of Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Baek Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (DJM); (BK)
| |
Collapse
|
992
|
Kuijk LM, Klaver EJ, Kooij G, van der Pol SMA, Heijnen P, Bruijns SCM, Kringel H, Pinelli E, Kraal G, de Vries HE, Dijkstra CD, Bouma G, van Die I. Soluble helminth products suppress clinical signs in murine experimental autoimmune encephalomyelitis and differentially modulate human dendritic cell activation. Mol Immunol 2012; 51:210-8. [PMID: 22482518 DOI: 10.1016/j.molimm.2012.03.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/09/2012] [Accepted: 03/06/2012] [Indexed: 12/26/2022]
Abstract
The increased incidence of auto-inflammatory and autoimmune diseases in the developed countries seems to be caused by an imbalance of the immune system due to the lack of proper regulation. Helminth parasites are well known modulators of the immune system and as such are of great interest for the treatment of these disorders. Clinical studies showed that administration of eggs of the pig nematode Trichuris suis to patients with inflammatory bowel disease reduces the disease severity. Here we demonstrate that treatment with soluble products from the nematodes T. suis and Trichinella spiralis induces significant suppression of symptoms in murine experimental autoimmune encephalomyelitis, a validated animal model for multiple sclerosis. These data show that infection with live nematodes is not a prerequisite for suppression of inflammation. To translate these results to the human system, the effects of soluble products of T. suis, T. spiralis and Schistosoma mansoni on the phenotype and function of human dendritic cells (DCs) were compared. Our data show that soluble products of T. suis, S. mansoni and T. spiralis suppress TNF-α and IL-12 secretion by TLR-activated human DCs, and that T. suis and S. mansoni, but not T. spiralis, strongly enhance expression of OX40L. Furthermore, helminth-primed human DCs differentially suppress the development of Th1 and/or Th17 cells. In conclusion, our data demonstrate that soluble helminth products have strong immunomodulatory capacities, but might exert their effects through different mechanisms. The suppressed secretion of pro-inflammatory cytokines together with an upregulation of OX40L expression on human DCs might contribute to achieve this modulation.
Collapse
Affiliation(s)
- Loes M Kuijk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
993
|
Kanellakis P, Ditiatkovski M, Kostolias G, Bobik A. A pro-fibrotic role for interleukin-4 in cardiac pressure overload. Cardiovasc Res 2012; 95:77-85. [DOI: 10.1093/cvr/cvs142] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
994
|
Al Gadban MM, German J, Truman JP, Soodavar F, Riemer EC, Twal WO, Smith KJ, Heller D, Hofbauer AF, Oates JC, Hammad SM. Lack of nitric oxide synthases increases lipoprotein immune complex deposition in the aorta and elevates plasma sphingolipid levels in lupus. Cell Immunol 2012; 276:42-51. [PMID: 22560558 DOI: 10.1016/j.cellimm.2012.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/01/2012] [Accepted: 03/29/2012] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) patients display impaired endothelial nitric oxide synthase (eNOS) function required for normal vasodilatation. SLE patients express increased compensatory activity of inducible nitric oxide synthase (iNOS) generating excess nitric oxide that may result in inflammation. We examined the effects of genetic deletion of NOS2 and NOS3, encoding iNOS and eNOS respectively, on accelerated vascular disease in MRL/lpr lupus mouse model. NOS2 and NOS3 knockout (KO) MRL/lpr mice had higher plasma levels of triglycerides (23% and 35%, respectively), ceramide (45% and 21%, respectively), and sphingosine 1-phosphate (S1P) (21%) compared to counterpart MRL/lpr controls. Plasma levels of the anti-inflammatory cytokine interleukin 10 (IL-10) in NOS2 and NOS3 KO MRL/lpr mice were lower (53% and 80%, respectively) than counterpart controls. Nodule-like lesions in the adventitia were detected in aortas from both NOS2 and NOS3 KO MRL/lpr mice. Immunohistochemical evaluation of the lesions revealed activated endothelial cells and lipid-laden macrophages (foam cells), elevated sphingosine kinase 1 expression, and oxidized low-density lipoprotein immune complexes (oxLDL-IC). The findings suggest that advanced vascular disease in NOS2 and NOS3 KO MRL/lpr mice maybe mediated by increased plasma triglycerides, ceramide and S1P; decreased plasma IL-10; and accumulation of oxLDL-IC in the vessel wall. The results expose possible new targets to mitigate lupus-associated complications.
Collapse
Affiliation(s)
- Mohammed M Al Gadban
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
995
|
Popi AF, Osugui L, Perez KR, Longo-Maugéri IM, Mariano M. Could a B-1 cell derived phagocyte "be one" of the peritoneal macrophages during LPS-driven inflammation? PLoS One 2012; 7:e34570. [PMID: 22479646 PMCID: PMC3316698 DOI: 10.1371/journal.pone.0034570] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 03/07/2012] [Indexed: 12/12/2022] Open
Abstract
The inflammatory response is driven by signals that recruit and elicit immune cells to areas of tissue damage or infection. The concept of a mononuclear phagocyte system postulates that monocytes circulating in the bloodstream are recruited to inflamed tissues where they give rise to macrophages. A recent publication demonstrated that the large increase in the macrophages observed during infection was the result of the multiplication of these cells rather than the recruitment of blood monocytes. We demonstrated previously that B-1 cells undergo differentiation to acquire a mononuclear phagocyte phenotype in vitro (B-1CDP), and we propose that B-1 cells could be an alternative origin for peritoneal macrophages. A number of recent studies that describe the phagocytic and microbicidal activity of B-1 cells in vitro and in vivo support this hypothesis. Based on these findings, we further investigated the differentiation of B-1 cells into phagocytes in vivo in response to LPS-induced inflammation. Therefore, we investigated the role of B-1 cells in the composition of the peritoneal macrophage population after LPS stimulation using osteopetrotic mice, BALB/Xid mice and the depletion of monocytes/macrophages by clodronate treatment. We show that peritoneal macrophages appear in op/op((-/-)) mice after LPS stimulation and exhibit the same Ig gene rearrangement (VH11) that is often found in B-1 cells. These results strongly suggest that op/op((-/-)) peritoneal "macrophages" are B-1CDP. Similarly, the LPS-induced increase in the macrophage population was observed even following monocyte/macrophage depletion by clodronate. After monocyte/macrophage depletion by clodronate, LPS-elicited macrophages were observed in BALB/Xid mice only following the transfer of B-1 cells. Based on these data, we confirmed that B-1 cell differentiation into phagocytes also occurs in vivo. In conclusion, the results strongly suggest that B-1 cell derived phagocytes are a component of the LPS-elicited peritoneal macrophage population.
Collapse
Affiliation(s)
- Ana Flavia Popi
- Discipline of Immunology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
996
|
De Palma M. Partners in crime: VEGF and IL-4 conscript tumour-promoting macrophages. J Pathol 2012; 227:4-7. [DOI: 10.1002/path.4008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 12/15/2022]
|
997
|
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SEW, Pollard JW, Frampton J, Liu KJ, Geissmann F. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012; 336:86-90. [PMID: 22442384 DOI: 10.1126/science.1219179] [Citation(s) in RCA: 1873] [Impact Index Per Article: 156.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11b(high) monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80(bright) macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia--cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.
Collapse
Affiliation(s)
- Christian Schulz
- Centre for Molecular and Cellular Biology of Inflammation, New Hunt's House, King's College London, Great Maze Pond, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
998
|
Dasgupta P, Keegan AD. Contribution of alternatively activated macrophages to allergic lung inflammation: a tale of mice and men. J Innate Immun 2012; 4:478-88. [PMID: 22440980 DOI: 10.1159/000336025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/22/2011] [Indexed: 11/19/2022] Open
Abstract
The concept that macrophages play an active role in inflammatory responses began its development in the late 1800s with the now iconic studies by Elie Metchnikoff using starfish larvae and Daphnia [reviewed in Kaufmann SHE: Nat Immunol 2008;9:705-712 and Cavaillon JM: J Leukoc Biol 2011;90:413-424]. Based on his observation of the phagocyte response to a foreign body (rose thorn) and yeast, he proposed that phagocytes acted in host defense and were active participants in the inflammatory process. Flash forward more than 100 years and we find that these basic tenets hold true. However, it is now appreciated that macrophages come in many different flavors and can adopt a variety of nuanced phenotypes depending on the tissue environment in which the macrophage is found. In this brief review, we discuss the role of one type of macrophage termed the alternatively activated macrophage (AAM), also known as the M2 type of macrophage, in regulating allergic lung inflammation and asthma. Recent studies using mouse models of allergic lung inflammation and samples from human asthma patients contribute to the emerging concept that AAMs are not just bystanders of the interleukin (IL)-4- and IL-13-rich environment found in allergic asthma but are also active players in orchestrating allergic lung disease.
Collapse
Affiliation(s)
- Preeta Dasgupta
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
999
|
Cortez-Retamozo V, Etzrodt M, Pittet MJ. Regulation of macrophage and dendritic cell responses by their lineage precursors. J Innate Immun 2012; 4:411-23. [PMID: 22433183 DOI: 10.1159/000335733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/13/2011] [Indexed: 12/18/2022] Open
Abstract
Tissue macrophages (Mø) and dendritic cells (DC) are thought to derive from hematopoietic stem cells, which exist in the bone marrow and generate intermediate precursor populations with increasingly restricted lineage potentials. There exists several precursors committed to the Mø and DC lineages; these cells exhibit distinct tropism and function and respond differentially in pathophysiologic conditions. In this review, we consider experimental contexts in which Mø and DC responses in tissue are not only dictated by the local environment, but also by the quantity and quality of newly recruited lineage precursor cells. Consequently, we discuss whether therapeutic control of Mø and DC responses in tissue may be achieved through manipulation of their lineage precursors.
Collapse
Affiliation(s)
- Virna Cortez-Retamozo
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
1000
|
Raes G, De Baetselier P, Van Ginderachter JA. Clinical and fundamental aspects of monocyte, macrophage and dendritic cell plasticity. Eur J Immunol 2012; 42:13-6. [PMID: 22213043 DOI: 10.1002/eji.201190081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Geert Raes
- Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium.
| | | | | |
Collapse
|