951
|
Yavari S, Malakahmad A, Sapari NB, Yavari S. Synthesis optimization of oil palm empty fruit bunch and rice husk biochars for removal of imazapic and imazapyr herbicides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 193:201-210. [PMID: 28226259 DOI: 10.1016/j.jenvman.2017.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Imidazolinones are a family of herbicides that are used to control a broad range of weeds. Their high persistence and leaching potential make them probable risk to the ecosystems. In this study, biochar, the biomass-derived solid material, was produced from oil palm empty fruit bunches (EFB) and rice husk (RH) through pyrolysis process. Feedstock and pyrolysis variables can control biochar sorption capacity. Therefore, the present study attempts to evaluate effects of three pyrolysis variables (temperature, heating rate and retention time) on abilities of biochars for removal of imazapic and imazapyr herbicides from soil. Response surface methodology (RSM) was used for optimizing the variables to achieve maximum sorption performance of the biochars. Experimental data were interpreted accurately by quadratic models. Based on the results, sorption capacities of both biochars raised when temperature decreased to 300 °C, mainly because of increased biochars effective functionality in sorption of polar molecules. Heating rate of 3°C/min provided optimum conditions to maximize the sorption capacities of both biochars. Retention time of about 1 h and 3 h were found to be the best for EFB and RH biochars, respectively. EFB biochar was more efficient in removal of the herbicides, especially imazapyr due to its chemical composition and higher polarity index (0.42) rather than RH biochar (0.39). Besides, higher cation exchange capacity (CEC) values of EFB biochar (83.90 cmolc/kg) in comparison with RH biochar (70.73 cmolc/kg) represented its higher surface polarity effective in sorption of the polar herbicides.
Collapse
Affiliation(s)
- Saba Yavari
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia
| | - Amirhossein Malakahmad
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia.
| | - Nasiman B Sapari
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia
| | - Sara Yavari
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia
| |
Collapse
|
952
|
Comby M, Gacoin M, Robineau M, Rabenoelina F, Ptas S, Dupont J, Profizi C, Baillieul F. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol Res 2017. [PMID: 28647118 DOI: 10.1016/j.micres.2017.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In order to find biological control agents (BCAs) for the management of Fusarium head blight (FHB), a major disease on wheat crops worldwide, 86 microorganisms isolated from inner tissues of wheat plants were discriminated for their ability to inhibit the growth of Fusarium graminearum and Fusarium culmorum by in vitro dual culture assays. A group of 22 strains appeared very effective to inhibit F. graminearum (inhibition of 30-51%) and they were also globally effective in controlling F. culmorum (inhibition of 15-53%). Further evaluation of a subselection of strains by screening on detached spikelets in vitro confirmed three species, namely Phoma glomerata, Aureobasidium proteae and Sarocladium kiliense, that have not yet been reported for their efficacy against Fusarium spp., indicating that looking for BCAs toward FHB among wheat endophytes proved to be promising. The efficacy of some strains turned out different between both in vitro screening approaches, raising the importance of finding the most appropriate screening approach for the search of BCAs. This study pointed out the interest of the test on detached wheat spikelets that provided information about a potential pathogenicity, the growth capacity and efficacy of the endophyte strains on the targeted plant, before testing them on whole plants.
Collapse
Affiliation(s)
- Morgane Comby
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, 75005 Paris, France; Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France; Laboratoire de Stress, Défenses et Reproduction des Plantes - EA 4707, Faculté des Sciences, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Marie Gacoin
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France
| | - Mathilde Robineau
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France
| | - Fanja Rabenoelina
- Laboratoire de Stress, Défenses et Reproduction des Plantes - EA 4707, Faculté des Sciences, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Sébastien Ptas
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France
| | - Joëlle Dupont
- Institut de Systématique, Evolution et Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, 75005 Paris, France
| | - Camille Profizi
- Soufflet Biotechnologies, Quai Sarrail, 10400 Nogent-sur-Seine, France.
| | - Fabienne Baillieul
- Laboratoire de Stress, Défenses et Reproduction des Plantes - EA 4707, Faculté des Sciences, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| |
Collapse
|
953
|
Mekonen S, Ambelu A, Negassa B, Spanoghe P. Exposure to DDT and its metabolites from khat (Catha edulis) chewing: Consumers risk assessment from southwestern Ethiopia. Regul Toxicol Pharmacol 2017; 87:64-70. [PMID: 28483709 DOI: 10.1016/j.yrtph.2017.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/10/2017] [Accepted: 05/04/2017] [Indexed: 11/19/2022]
Abstract
Khat (Catha edulis) is one of the most consumed plant in the horn of African countries. However, it is a stimulant plant that has several side effects on the health of consumers. On top of that, the khat leaves used for human consumption are often contain contaminants such as pesticide residues. The present study aims to investigate the level of DDT residue and its metabolites (p'p-DDE, p'p-DDD, o'p-DDT and p'p-DDT) in khat samples and to undertake exposure assessment to consumers. The khat samples were collected from local markets in southwestern Ethiopia. Consumption survey was undertaken using 24 h recall method for both male and female khat consumers. The finding showed that 80% of the khat samples contained DDT and its metabolites. Some of the residues were above the maximum residue limit (MRL) set by Food and Agricultural Organization (FAO). The concentration of p'p-DDE and p'p-DDT in khat were in the range of 0.033-0.113 and 0.010-0.026 mg/kg, respectively. High concentration of the metabolite (p'p-DDE) compared to the parent compound (p'p-DDT) revealed the historical use of DDT in the study area. Probabilistic exposure analysis indicated that the mean and 97.5 percentile (P97.5), of the estimated daily intake of total DDT were 0.002 and 0.006 mg/kg bw/day, respectively. The study concluded that khat consumers are exposed to the stimulant effect of the plant as well as DDT and its metabolites in Jimma zone.
Collapse
Affiliation(s)
- Seblework Mekonen
- Department of Environmental Health Sciences & Technology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Argaw Ambelu
- Department of Environmental Health Sciences & Technology, College of Health Sciences, Jimma University, Jimma, Ethiopia.
| | - Belay Negassa
- Department of Environmental Health Sciences & Technology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Pieter Spanoghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
954
|
Ahmed A, Shamsi A, Bano B. Oxadiargyl induced conformational transition of cystatin isolated from yellow mustard seeds: Biophysical and biochemical approach. Int J Biol Macromol 2017; 98:802-809. [DOI: 10.1016/j.ijbiomac.2017.02.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 11/27/2022]
|
955
|
Castanheira NL, Dourado AC, Pais I, Semedo J, Scotti-Campos P, Borges N, Carvalho G, Barreto Crespo MT, Fareleira P. Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiol Res 2017; 198:47-55. [DOI: 10.1016/j.micres.2017.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
|
956
|
Chattopadhyay P, Banerjee G, Mukherjee S. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech 2017; 7:60. [PMID: 28444605 DOI: 10.1007/s13205-017-0717-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/31/2017] [Indexed: 10/19/2022] Open
Abstract
Food security and safety are the major concern in ever expanding human population on the planet earth. Each and every year insect pests cause a serious damage in agricultural field that cost billions of dollars annually to farmers. The loss in term of productivity and high cost of chemical pesticides enhance the production cost. Irrespective use of chemical pesticides (such as Benzene hexachloride, Endosulfan, Aldicarb, and Fenobucarb) in agricultural field raised several types of environmental issues. Furthermore, continuous use of chemical pesticides creates a selective pressure which helps in emerging of resistance pest. These excess chemical pesticide residues also contaminate the environment including the soil and water. Therefore, the biological control of insect pest in the agricultural field gains more importance due to food safety and environment friendly nature. In this regard, bacterial insecticides offer better alternative to chemical pesticides. It not only helps to establish food security through fighting against insect pests but also ensure the food safety. In this review, we have categorized insect pests and the corresponding bacterial insecticides, and critically analyzed the importance and mode of action of bacterial pesticides. We also have summarized the use of biopesticides in integrated pest management system. We have tried to focus the future research area in this field for the upcoming scientists.
Collapse
|
957
|
Townsend M, Peck C, Meng W, Heaton M, Robison R, O'Neill K. Evaluation of various glyphosate concentrations on DNA damage in human Raji cells and its impact on cytotoxicity. Regul Toxicol Pharmacol 2017; 85:79-85. [PMID: 28185844 DOI: 10.1016/j.yrtph.2017.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 11/18/2022]
Abstract
Glyphosate is a highly used active compound in agriculturally based pesticides. The literature regarding the toxicity of glyphosate to human cells has been highly inconsistent. We studied the resulting DNA damage and cytotoxicity of various glyphosate concentrations on human cells to evaluate DNA damaging potential. Utilizing human Raji cells, DNA damage was quantified using the comet assay, while cytotoxicity was further analyzed using MTT viability assays. Several glyphosate concentrations were assessed, ranging from 15 mM to 0.1 μM. We found that glyphosate treatment is lethal to Raji cells at concentrations above 10 mM, yet has no cytotoxic effects at concentrations at or below 100 μM. Treatment concentrations of 1 mM and 5 mM induce statistically significant DNA damage to Raji cells following 30-60 min of treatment, however, cells show a slow recovery from initial damage and cell viability is unaffected after 2 h. At these same concentrations, cells treated with additional compound did not recover and maintained high levels of DNA damage. While the cytotoxicity of glyphosate appears to be minimal for physiologically relevant concentrations, the compound has a definitive cytotoxic nature in human cells at high concentrations. Our data also suggests a mammalian metabolic pathway for the degradation of glyphosate may be present.
Collapse
Affiliation(s)
- Michelle Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo 84602, UT, USA
| | - Connor Peck
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo 84602, UT, USA
| | - Wei Meng
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo 84602, UT, USA
| | - Matthew Heaton
- Department of Statistics, Brigham Young University, Provo 84602, UT, USA
| | - Richard Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo 84602, UT, USA
| | - Kim O'Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo 84602, UT, USA.
| |
Collapse
|
958
|
Grewal AS, Singla A, Kamboj P, Dua JS. Pesticide Residues in Food Grains, Vegetables and Fruits: A Hazard to Human Health. ACTA ACUST UNITED AC 2017. [DOI: 10.15436/2575-808x.17.1355] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
959
|
An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors. C — JOURNAL OF CARBON RESEARCH 2017. [DOI: 10.3390/c3010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
960
|
Mghirbi O, LE Grusse P, Fabre J, Mandart E, Bord JP. OptiPhy, a technical-economic optimisation model for improving the management of plant protection practices in agriculture: a decision-support tool for controlling the toxicity risks related to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6951-6972. [PMID: 27164887 DOI: 10.1007/s11356-016-6775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
The health, environmental and socio-economic issues related to the massive use of plant protection products are a concern for all the stakeholders involved in the agricultural sector. These stakeholders, including farmers and territorial actors, have expressed a need for decision-support tools for the management of diffuse pollution related to plant protection practices and their impacts. To meet the needs expressed by the public authorities and the territorial actors for such decision-support tools, we have developed a technical-economic model "OptiPhy" for risk mitigation based on indicators of pesticide toxicity risk to applicator health (IRSA) and to the environment (IRTE), under the constraint of suitable economic outcomes. This technical-economic optimisation model is based on linear programming techniques and offers various scenarios to help the different actors in choosing plant protection products, depending on their different levels of constraints and aspirations. The health and environmental risk indicators can be broken down into sub-indicators so that management can be tailored to the context. This model for technical-economic optimisation and management of plant protection practices can analyse scenarios for the reduction of pesticide-related risks by proposing combinations of substitution PPPs, according to criteria of efficiency, economic performance and vulnerability of the natural environment. The results of the scenarios obtained on real ITKs in different cropping systems show that it is possible to reduce the PPP pressure (TFI) and reduce toxicity risks to applicator health (IRSA) and to the environment (IRTE) by up to approximately 50 %.
Collapse
Affiliation(s)
- Oussama Mghirbi
- CIHEAM-IAMM: Mediterranean Agronomic Institute of Montpellier, 3191 Route de Mende, 34093, Montpellier, Cedex 5, France.
- University of Paul Valéry Montpellier 3 (UPVM), Route de Mende, 34199, Montpellier, Cedex 5, France.
- UMR GRED Gouvernance, Risque, Environnement, Développement (UPVM/IRD), Institute of Research for Development (IRD) of Montpellier-UMR GRED, BP 64501, 34394, Montpellier, Cedex 5, France.
| | - Philippe LE Grusse
- CIHEAM-IAMM: Mediterranean Agronomic Institute of Montpellier, 3191 Route de Mende, 34093, Montpellier, Cedex 5, France
- UMR GRED Gouvernance, Risque, Environnement, Développement (UPVM/IRD), Institute of Research for Development (IRD) of Montpellier-UMR GRED, BP 64501, 34394, Montpellier, Cedex 5, France
| | - Jacques Fabre
- DIATAE, 3191 Route de Mende, 34093, Montpellier, Cedex 5, France
| | - Elisabeth Mandart
- CIHEAM-IAMM: Mediterranean Agronomic Institute of Montpellier, 3191 Route de Mende, 34093, Montpellier, Cedex 5, France
| | - Jean-Paul Bord
- University of Paul Valéry Montpellier 3 (UPVM), Route de Mende, 34199, Montpellier, Cedex 5, France
- UMR GRED Gouvernance, Risque, Environnement, Développement (UPVM/IRD), Institute of Research for Development (IRD) of Montpellier-UMR GRED, BP 64501, 34394, Montpellier, Cedex 5, France
| |
Collapse
|
961
|
Seufert V, Ramankutty N. Many shades of gray-The context-dependent performance of organic agriculture. SCIENCE ADVANCES 2017; 3:e1602638. [PMID: 28345054 PMCID: PMC5362009 DOI: 10.1126/sciadv.1602638] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/01/2017] [Indexed: 05/05/2023]
Abstract
Organic agriculture is often proposed as a more sustainable alternative to current conventional agriculture. We assess the current understanding of the costs and benefits of organic agriculture across multiple production, environmental, producer, and consumer dimensions. Organic agriculture shows many potential benefits (including higher biodiversity and improved soil and water quality per unit area, enhanced profitability, and higher nutritional value) as well as many potential costs including lower yields and higher consumer prices. However, numerous important dimensions have high uncertainty, particularly the environmental performance when controlling for lower organic yields, but also yield stability, soil erosion, water use, and labor conditions. We identify conditions that influence the relative performance of organic systems, highlighting areas for increased research and policy support.
Collapse
Affiliation(s)
- Verena Seufert
- Liu Institute for Global Issues, University of British Columbia, 6476 North West Marine Drive, Vancouver, British Columbia V6T 1Z2, Canada
- Institute for Resources, Environment and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Corresponding author.
| | - Navin Ramankutty
- Liu Institute for Global Issues, University of British Columbia, 6476 North West Marine Drive, Vancouver, British Columbia V6T 1Z2, Canada
- Institute for Resources, Environment and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
962
|
Betancur LA, Naranjo-Gaybor SJ, Vinchira-Villarraga DM, Moreno-Sarmiento NC, Maldonado LA, Suarez-Moreno ZR, Acosta-González A, Padilla-Gonzalez GF, Puyana M, Castellanos L, Ramos FA. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach. PLoS One 2017; 12:e0170148. [PMID: 28225766 PMCID: PMC5321270 DOI: 10.1371/journal.pone.0170148] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022] Open
Abstract
Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.
Collapse
Affiliation(s)
- Luz A. Betancur
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
- Universidad de Caldas. Departamento de Química. Edificio Orlando Sierra, Bloque B, Sede Palogrande Calle. Manizales, Caldas, Colombia
| | - Sandra J. Naranjo-Gaybor
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
- Universidad de las Fuerzas Armadas, ESPE Carrera de Ingeniería Agropecuaria IASA II Av. General Rumiñahui s/n, Sangolquí- Ecuador
| | - Diana M. Vinchira-Villarraga
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Nubia C. Moreno-Sarmiento
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Luis A. Maldonado
- Universidad Autónoma Metropolitana Rectoría—Secretaría General, Prolongación Canal de Miramontes, Col. Ex-hacienda San Juan de Dios, Tlalpan, México DF
| | - Zulma R. Suarez-Moreno
- Investigación y Desarrollo, Empresa Colombiana de Productos Veterinarios VECOL S.A., Bogotá D.C
| | | | - Gillermo F. Padilla-Gonzalez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do de Sao Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, Ribeirão Preto–SP, Brazil
| | - Mónica Puyana
- Departamento de Ciencias Biológicas y Ambientales, Programa de Biología Marina, Universidad Jorge Tadeo Lozano, Carrera, Modulo, Oficina, Bogotá, Colombia
| | - Leonardo Castellanos
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Freddy A. Ramos
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| |
Collapse
|
963
|
Pandin C, Le Coq D, Canette A, Aymerich S, Briandet R. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microb Biotechnol 2017; 10:719-734. [PMID: 28205337 PMCID: PMC5481536 DOI: 10.1111/1751-7915.12693] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 11/26/2022] Open
Abstract
Almost one‐third of crop yields are lost every year due to microbial alterations and diseases. The main control strategy to limit these losses is the use of an array of chemicals active against spoilage and unwanted pathogenic microorganisms. Their massive use has led to extensive environmental pollution, human poisoning and a variety of diseases. An emerging alternative to this chemical approach is the use of microbial biocontrol agents. Biopesticides have been used with success in several fields, but a better understanding of their mode of action is necessary to better control their activity and increase their use. Very few studies have considered that biofilms are the preferred mode of life of microorganisms in the target agricultural biotopes. Increasing evidence shows that the spatial organization of microbial communities on crop surfaces may drive important bioprotection mechanisms. The aim of this review is to summarize the evidence of biofilm formation by biocontrol agents on crops and discuss how this surface‐associated mode of life may influence their biology and interactions with other microorganisms and the host and, finally, their overall beneficial activity.
Collapse
Affiliation(s)
- Caroline Pandin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Dominique Le Coq
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Micalis Institute, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Alexis Canette
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Stéphane Aymerich
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
964
|
Halim Moss AT, Mostafa Mo S, Ragab Shal A. Toxicity Assessment of Chlorpyrifos, Malachite Green and Tetracyclines by Microtox® Assay: Detoxification by Ultrasonic. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jest.2017.68.79] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
965
|
Regional variation in suicide rates in Sri Lanka between 1955 and 2011: a spatial and temporal analysis. BMC Public Health 2017; 17:193. [PMID: 28196502 PMCID: PMC5310090 DOI: 10.1186/s12889-016-3961-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 12/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Between 1955 and 2011 there were marked fluctuations in suicide rates in Sri Lanka; incidence increased six-fold between 1955 and the 1980s, and halved in the early 21st century. Changes in access to highly toxic pesticides are thought to have influenced this pattern. This study investigates variation in suicide rates across Sri Lanka's 25 districts between 1955 and 2011. We hypothesised that changes in the incidence of suicide would be most marked in rural areas due to the variation in availability of highly toxic pesticides in these locations during this time period. METHODS We mapped district-level suicide rates in 1955, 1972, 1980 and 2011. These periods preceded, included and postdated the rapid rise in Sri Lanka's suicide rates. We investigated the associations between district-level variations in suicide rates and census-derived measures of rurality (population density), unemployment, migration and ethnicity using Spearman's rank correlation and negative binomial models. RESULTS The rise and fall in suicide rates was concentrated in more rural areas. In 1980, when suicide rates were at their highest, population density was inversely associated with area variation in suicide rates (r = -0.65; p < 0.001), i.e. incidence was highest in rural areas. In contrast the association was weakest in 1950, prior to the rise in pesticide suicides (r = -0.10; p = 0.697). There was no strong evidence that levels of migration or ethnicity were associated with area variations in suicide rates. The relative rates of suicide in the most rural compared to the most urban districts before (1955), during (1980) and after (2011) the rise in highly toxic pesticide availability were 1.1 (95% CI 0.5 to 2.4), 3.7 (2.0 to 6.9) and 2.1 (1.6 to 2.7) respectively. CONCLUSIONS The findings provide some support for the hypothesis that changes in access to pesticides contributed to the marked fluctuations in Sri Lanka's suicide rate, but the impact of other factors cannot be ruled out.
Collapse
|
966
|
Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P. Biofertilizers: a potential approach for sustainable agriculture development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3315-3335. [PMID: 27888482 DOI: 10.1007/s11356-016-8104-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.
Collapse
Affiliation(s)
- Trishna Mahanty
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Madhurankhi Goswami
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Purnita Bhattacharyya
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Bannhi Das
- Department of Biotechnology, Mount Carmel College, Bangalore, 560 052, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, 700054, India
| | - Prosun Tribedi
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India.
| |
Collapse
|
967
|
Kim KH, Kabir E, Jahan SA. Exposure to pesticides and the associated human health effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:525-535. [PMID: 27614863 DOI: 10.1016/j.scitotenv.2016.09.009] [Citation(s) in RCA: 783] [Impact Index Per Article: 111.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/21/2016] [Accepted: 09/01/2016] [Indexed: 04/14/2023]
Abstract
Pesticides are used widely to control weeds and insect infestation in agricultural fields and various pests and disease carriers (e.g., mosquitoes, ticks, rats, and mice) in houses, offices, malls, and streets. As the modes of action for pesticides are not species-specific, concerns have been raised about environmental risks associated with their exposure through various routes (e.g., residues in food and drinking water). Although such hazards range from short-term (e.g., skin and eye irritation, headaches, dizziness, and nausea) to chronic impacts (e.g., cancer, asthma, and diabetes), their risks are difficult to elucidate due to the involvement of various factors (e.g., period and level of exposure, type of pesticide (regarding toxicity and persistence), and the environmental characteristics of the affected areas). There are no groups in the human population that are completely unexposed to pesticides while most diseases are multi-causal to add considerable complexity to public health assessments. Hence, development of eco-friendly pesticide alternatives (e.g., EcoSMART) and Integrated Pest Management (IPM) techniques is desirable to reduce the impacts of pesticides. This paper was hence organized to present a comprehensive review on pesticides with respect to their types, environmental distribution, routes of exposure, and health impacts.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ehsanul Kabir
- Dept. of Farm, Power & Machinery, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | | |
Collapse
|
968
|
Munta K, Santosh P, Surath MR. Severe Hypothermia Causing Ventricular Arrhythmia in Organophosphorus Poisoning. Indian J Crit Care Med 2017; 21:99-101. [PMID: 28250607 PMCID: PMC5330063 DOI: 10.4103/ijccm.ijccm_443_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Organophosphorus poisoning cases are routinely treated across all Intensive Care Units adjoining the rural areas where agriculture is the main source of income. We present a unique case of severe hypothermia seen in a case of organophosphorus poisoning, which led to electrocardiogram disturbances and life-threatening arrhythmias.
Collapse
Affiliation(s)
- Kartik Munta
- Department of Critical Care Medicine, Yashoda Hospital, Somajiguda, Hyderabad, Telangana, India
| | - Paiullah Santosh
- Department of Critical Care Medicine, Yashoda Hospital, Somajiguda, Hyderabad, Telangana, India
| | - Manimala Rao Surath
- Department of Critical Care Medicine, Yashoda Hospital, Somajiguda, Hyderabad, Telangana, India
| |
Collapse
|
969
|
Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front Microbiol 2017. [PMID: 29312235 DOI: 10.1016/j.apsoil.2011.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Crawford
- Department of Natural Resources and Mines, Toowoomba, QLD, Australia
| | - Eugenie Singh
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
970
|
Sharma S, Singh PB, Chadha P, Saini HS. Chlorpyrifos pollution: its effect on brain acetylcholinesterase activity in rat and treatment of polluted soil by indigenous Pseudomonas sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:381-387. [PMID: 27722883 DOI: 10.1007/s11356-016-7799-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
The study was aimed to evaluate the levels of chlorpyrifos (CPF) pollution in agricultural soil of Punjab, India, its detrimental effects on acetylcholinesterase (AChE) activity in rat brain and bioremediation of soils polluted with CPF using indigenous and adapted bacterial lab isolate. The analysis revealed that soil samples of Bathinda and Amritsar regions are highly contaminated with chlorpyrifos showing 19 to 175 mg/kg concentrations of CPF. The non-targeted animals may get poisoned with CPF by its indirect dermal absorption, inhalation of toxic fumes and regular consumption of soiled food grains. The study indicated that even the lowermost concentrations of CPF, 19 and 76 mg/kg of soil found in the Amritsar and Bathinda regions respectively can significantly inhibit the AChE activity in rat brain within 24 h of its treatment. This represents the antagonistic effect of CPF on AChE which is a prime neurotransmitter present in all living beings including humans. In light of this, an attempt was made to remediate the polluted soil, a major reservoir of CPF, using Pseudomonas sp. (ChlD), an indigenous bacterial isolate. The culture efficiently degraded 10 to 100 mg/kg chlorpyrifos supplemented in the soil and utilized it as sole source of carbon and energy for its growth. Thus, this study provides a detailed insight regarding the level of CPF pollution in Punjab, its detrimental effects on mammals and bio-based solution to remediate the sites polluted with CPF.
Collapse
Affiliation(s)
- Shelly Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Partap Bir Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143 005, India.
| | | |
Collapse
|
971
|
Gómez-Canela C, Prats E, Piña B, Tauler R. Assessment of chlorpyrifos toxic effects in zebrafish (Danio rerio) metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1231-1243. [PMID: 27839997 DOI: 10.1016/j.envpol.2016.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/26/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
In this work the effect of chlorpyrifos exposure on metabolic profiles of zebrafish muscle was evaluated by liquid chromatography coupled to high resolution mass spectrometry. Different chemometric tools based on the selection of Regions of Interest and on Multivariate Curve-Resolution-Alternating Least Squares are proposed for the analysis of the complex data sets generated in the different exposure experiments. Analysis of Variance Simultaneous Component Analysis of changes on metabolite peak profile areas showed significant chlorpyrifos concentration and exposure time-dependent changes, clearly differentiating between exposed and non-exposed samples and between short (2 h) and long exposure times (6 h or 24 h). The changes observed in the concentrations of 50 muscle metabolites are indicative of induction of oxidative stress, of a general disruption of neurotransmitter metabolism, and of muscle exhaustion. These three effects are intimately related to the toxicity of chlorpyrifos.
Collapse
Affiliation(s)
- Cristian Gómez-Canela
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain.
| | - Eva Prats
- Centre d'Investigació I Desenvolupament, CID-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Benjamí Piña
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|
972
|
Upadhyay LSB, Dutt A. Microbial Detoxification of Residual Organophosphate Pesticides in Agricultural Practices. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
973
|
Molecular Encapsulation of Herbicide Terbuthylazine in Native and Modifiedβ-Cyclodextrin. J CHEM-NY 2017. [DOI: 10.1155/2017/8120367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The herbicide terbuthylazine (TBA) is widely used for preemergence or postemergence control of many grass and broadleaf weeds and has, besides other issues, a poor aqueous solubility profile that results in reduced bioavailability. Cyclodextrins and modified cyclodextrins were considered, among other substances, appropriate agents for improving pesticide water solubility. Therefore, the inclusion complex formation of terbuthylazine withβ-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) was studied to attain its aqueous solubility enhancement. Their characterization was accomplished with different analytical techniques, namely, by UV-Vis, DSC, FTIR, and1H NMR. From the analysis of the complexation performance of the herbicide it was concluded that the interaction of terbuthylazine with CDs leads to the formation of inclusion complexes with a stoichiometry of 1 : 1. The association constants of the TBA/β-CD and TBA/HP-β-CD complexes were determined by UV. The mean values obtained for the stability constants are 460.4 ± 26.5 and 532.1 ± 27.6 to TBA/β-CD and TBA/HP-β-CD, respectively.1H NMR data corroborate the formation of the TBA/β-CD and TBA/HP-β-CD complexes synthesized by the kneading method. A formulation incorporating TBA cyclodextrin complexes might lead to an improvement in terbuthylazine bioavailability. The development of TBA-CD formulations may be interesting since it would enable, through their inclusion into the hydrophobic cavity of CDs, enhancement of solubility, bioavailability, and stability of the herbicide.
Collapse
|
974
|
Dash NP, Kumar A, Kaushik MS, Abraham G, Singh PK. Agrochemicals influencing nitrogenase, biomass of N2-fixing cyanobacteria and yield of rice in wetland cultivation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
975
|
Exploratory review on safety of edible raw fish per the hazard factors and their detection methods. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
976
|
Vaidya A, Gyenwali D, Tiwari S, Pande BR, Jørs E. Changes in Perceptions and Practices of Farmers and Pesticide Retailers on Safer Pesticide Use and Alternatives: Impacts of a Community Intervention in Chitwan, Nepal. ENVIRONMENTAL HEALTH INSIGHTS 2017; 11:1178630217719270. [PMID: 35173441 PMCID: PMC8842388 DOI: 10.1177/1178630217719270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/15/2017] [Indexed: 05/11/2023]
Abstract
Unsafe use of hazardous pesticides is a neglected public health problem in developing countries. This survey evaluates the effects of a training program to increase awareness on harmful effects of pesticides and to enhance capacity for safe handling involving 57 trained farmers, 98 neighboring farmers, 94 control farmers, and 23 pesticide retailers from villages in Chitwan, Nepal. Knowledge and attitude-related variables improved in all 3 farmer groups, with a significant trend of better knowledge and attitude from trained to neighboring to control farmers (in 14/16 [87.5%] variables). In practice, there were significant differences among the groups with a trend from trained to neighboring to control farmers (in 10/26 [38.5%] variables).The pesticide retailers also improved on knowledge and practice. In conclusion, training farmers and pesticide retailers improved their knowledge and practice, with possible positive effect on neighboring farmers and control villages as well. An improved extension service to farmers is recommended.
Collapse
Affiliation(s)
- Abhinav Vaidya
- Department of Community Medicine, Kathmandu Medical College, Kathmandu, Nepal
- Abhinav Vaidya, Department of Community Medicine, Kathmandu Medical College, Sinamangal, Kathmandu, Nepal.
| | - Deepak Gyenwali
- Farming, Health and Environment Nepal Project, Nepal Public Health Foundation, Kathmandu, Nepal
| | - Sundar Tiwari
- Department of Entomology, Agriculture and Forestry University, Rampur, Nepal
| | | | - Erik Jørs
- Clinic of Occupational Medicine, Odense University Hospital, Odense, Denmark
- NGO Dialogos, Copenhagen, Denmark
| |
Collapse
|
977
|
Xiang L, Tang J. QD-aptamer as a donor for a FRET-based chemosensor and evaluation of affinity between acetamiprid and its aptamer. RSC Adv 2017. [DOI: 10.1039/c6ra26118c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The sensitive and convenient detection of pesticides has become an important issue in food safety and environmental pollution.
Collapse
Affiliation(s)
- Li Xiang
- Department of Environment and Energy Engineering
- Anhui Jianzhu University
- Hefei
- People's Republic of China
| | - Jianshe Tang
- Department of Environment and Energy Engineering
- Anhui Jianzhu University
- Hefei
- People's Republic of China
- Key Laboratory of Water Pollution Control and Waste Water Resources in Anhui Province
| |
Collapse
|
978
|
Kim AY, Kwon DH, Jeong IH, Phan TA, Ngan TV, Lee SH, Koh YH. Establishment of Chlorantraniliprole-Resistant Drosophila Strains and Identification of Their Resistant Characteristics. ACTA ACUST UNITED AC 2016. [DOI: 10.5656/ksae.2016.10.0.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
979
|
Poeydebat C, Carval D, de Lapeyre de Bellaire L, Tixier P. Balancing competition for resources with multiple pest regulation in diversified agroecosystems: a process-based approach to reconcile diversification and productivity. Ecol Evol 2016; 6:8607-8616. [PMID: 28031811 PMCID: PMC5167016 DOI: 10.1002/ece3.2453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 11/08/2022] Open
Abstract
Agroecosystem plant diversification can enhance pest biological regulation and is a promising alternative to pesticide application. However, the costs of competition for resources between plants may exceed the benefits gained by pest regulation. To disentangle the interactions between pest regulation and competition, we developed a generic process‐based approach that accounts for the effects of an associated plant and leaf and root pests on biomass production. We considered three crop–plant associations that differ in competition profiles, and we simulated biomass production under wide ranges of both pest regulation rates and resources’ availability. We analyzed outputs to quantify the pest regulation service level that would be required to attain monoculture yield and other production goals. Results showed that pest regulation requirements were highly dependent on the profile of resource interception of the associated plant and on resources’ availability. Pest regulation and the magnitude of competition between plants interacted in determining the balance between nitrogen and radiation uptake by the crop. Our findings suggest that productivity of diversified agroecosystems relative to monoculture should be optimized by assembling plants whose characteristics balance crops’ resource acquisition. The theoretical insights from our study draw generic rules for vegetation assemblage to optimize trade‐offs between pest regulation and production. Our findings and approach may have implications in understanding, theorizing and implementing agroecosystem diversification. By its generic and adaptable structure, our approach should be useful for studying the effects of diversification in many agroecosystems.
Collapse
Affiliation(s)
| | | | | | - Philippe Tixier
- UPR 26 GECO CIRAD Montpellier Cedex 5 France; Departamento de Agricultura y Agroforesteria CATIE Cartago Turrialba Costa Rica
| |
Collapse
|
980
|
Chang GR, Chen HS, Lin FY. Analysis of banned veterinary drugs and herbicide residues in shellfish by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatography-tandem mass spectrometry (GC/MS/MS). MARINE POLLUTION BULLETIN 2016; 113:579-584. [PMID: 27612928 DOI: 10.1016/j.marpolbul.2016.08.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 05/12/2023]
Abstract
Seafood safety is a crucial public health concern for consumers. In this study, we applied a validated method to analyze the residue of banned veterinary drugs in shellfish, namely chloramphenicol, malachite green, leucomalachite green, and nitrofuran metabolites; additionally, the QuEChERS method was employed to detect 76 herbicides by LC/MS/MS and GC/MS/MS. In total, 42 shellfish samples, which included hard clams, freshwater clams, and oysters, were collected from aquafarms and production areas in Taiwan during 2012. Our results revealed 3.8ng/g of chloramphenicol in one hard clam, 19.9-32.1ng/g of ametryn in two hard clams, 16.1-60.1ng/g of pendimethalin in four hard clams, and 17.0ng/g of mefenacet in one oyster, indicating that 19.1% of the samples contained residues from banned veterinary drugs and pesticides. These data can be used to monitor the residue of veterinary drugs and pesticides in aquatic organisms and as a reference for food safety.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Division of Residual Control, Agricultural Chemicals and Toxic Substance Research Institute, Council of Agriculture, 11 Guangming Road, Wufeng, Taichung 41358, Taiwan, ROC; Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan, ROC.
| | - Hui-Shan Chen
- Division of Residual Control, Agricultural Chemicals and Toxic Substance Research Institute, Council of Agriculture, 11 Guangming Road, Wufeng, Taichung 41358, Taiwan, ROC
| | - Feng-Yi Lin
- Division of Residual Control, Agricultural Chemicals and Toxic Substance Research Institute, Council of Agriculture, 11 Guangming Road, Wufeng, Taichung 41358, Taiwan, ROC
| |
Collapse
|
981
|
Farha W, Abd El-Aty AM, Rahman MM, Shin HC, Shim JH. An overview on common aspects influencing the dissipation pattern of pesticides: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:693. [PMID: 27888425 DOI: 10.1007/s10661-016-5709-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/18/2016] [Indexed: 05/14/2023]
Abstract
The common aspects and processes influencing dissipation kinetics of pesticides are determinants of their fate in the environment. Nowadays, with increasing population, the demand for food and fodder crops has also increased. With the development in science and technology, the methods of controlling pests may improve, but the major role played by the environment cannot be altered, i.e. the environmental factors, climatic conditions, and geology of areas under cultivation. Plants play a crucial role in the dissipation kinetics, as they may vary in species and characteristics. Differences in physico-chemical properties, such as formulation, bioavailability, and efficacy of the pesticide, may result in variable dissipation patterns even under the same environmental conditions. While modelling the dissipation kinetics for any specific pesticide applied to any specific crop, each factor must be considered. This review focusses on the variability observed across common factors, i.e. environmental aspects, plant-associated facts, and observed characteristics of chemical substances, influencing pesticide dissipation.
Collapse
Affiliation(s)
- Waziha Farha
- Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University, 300 Youngbong-dong, Buk-gu, Gwangju, 500-757, Republic of Korea
| | - A M Abd El-Aty
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul, 143-701, Republic of Korea.
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Md Musfiqur Rahman
- Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University, 300 Youngbong-dong, Buk-gu, Gwangju, 500-757, Republic of Korea
| | - Ho-Chul Shin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jae-Han Shim
- Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University, 300 Youngbong-dong, Buk-gu, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
982
|
Rougon-Cardoso A, Flores-Ponce M, Ramos-Aboites HE, Martínez-Guerrero CE, Hao YJ, Cunha L, Rodríguez-Martínez JA, Ovando-Vázquez C, Bermúdez-Barrientos JR, Abreu-Goodger C, Chavarría-Hernández N, Simões N, Montiel R. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle. Sci Rep 2016; 6:37536. [PMID: 27876851 PMCID: PMC5120318 DOI: 10.1038/srep37536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode’s genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.24 Mb. To improve annotation, we sequenced both short and long RNA and conducted shotgun proteomic analyses. S. carpocapsae shares orthologous genes with other parasitic nematodes that are absent in the free-living nematode C. elegans, it has ncRNA families that are enriched in parasites, and expresses proteins putatively associated with parasitism and pathogenesis, suggesting an active role for the nematode during the pathogenic process. Host and parasites might engage in a co-evolutionary arms-race dynamic with genes participating in their interaction showing signatures of positive selection. Our analyses indicate that the consequence of this arms race is better characterized by positive selection altering specific functions instead of just increasing the number of positively selected genes, adding a new perspective to these co-evolutionary theories. We identified a protein, ATAD-3, that suggests a relevant role for mitochondrial function in the evolution and mechanisms of nematode parasitism.
Collapse
Affiliation(s)
- Alejandra Rougon-Cardoso
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico.,Laboratory of Agrogenomic Sciences, Universidad Nacional Autónoma de México (UNAM), ENES-León, 37684, León, Guanajuato, Mexico
| | - Mitzi Flores-Ponce
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Hilda Eréndira Ramos-Aboites
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Christian Eduardo Martínez-Guerrero
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - You-Jin Hao
- College of Life Science, ChongQing Normal University, ChongQing 401331, China
| | - Luis Cunha
- Cardiff School of Biosciences, Cardiff University, Park Place, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3US, UK
| | | | - Cesaré Ovando-Vázquez
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - José Roberto Bermúdez-Barrientos
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo. Av. Universidad Km 1, Rancho Universitario, Tulancingo de Bravo, Hidalgo, C.P. 43600, Mexico
| | - Nelson Simões
- CIRN/Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus, 13. 9500-321 Ponta Delgada. S. Miguel-Açores, Portugal
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Km 9.6 Libramiento Norte Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, Mexico
| |
Collapse
|
983
|
Ebadollahi A. Chemical composition, acaricidal and insecticidal effects of essential oil fromAchillea filipendulinaagainst two arthropod pests;Oryzaephilus surinamensisandTetranychus urticae. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1250101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Asgar Ebadollahi
- Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
984
|
Bapat G, Labade C, Chaudhari A, Zinjarde S. Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Adv Colloid Interface Sci 2016; 237:1-14. [PMID: 27780560 DOI: 10.1016/j.cis.2016.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/07/2022]
Abstract
Silica nanoparticles (SiNPs) find applications in the fields of drug delivery, catalysis, immobilization and sensing. Their synthesis can be mediated in a facile manner and they display broad range compatibility and stability. Their existence in the form of spheres, wires and sheets renders them suitable for varied purposes. This review summarizes the use of silica nanostructures in developing techniques for extraction, detection and degradation of pesticides. Silica nanostructures on account of their sorbent properties, porous nature and increased surface area allow effective extraction of pesticides. They can be modified (with ionic liquids, silanes or amines), coated with molecularly imprinted polymers or magnetized to improve the extraction of pesticides. Moreover, they can be altered to increase their sensitivity and stability. In addition to the analysis of pesticides by sophisticated techniques such as High Performance Liquid Chromatography or Gas chromatography, silica nanoparticles related simple detection methods are also proving to be effective. Electrochemical and optical detection based on enzymes (acetylcholinesterase and organophosphate hydrolase) or antibodies have been developed. Pesticide sensors dependent on fluorescence, chemiluminescence or Surface Enhanced Raman Spectroscopic responses are also SiNP based. Moreover, degradative enzymes (organophosphate hydrolases, carboxyesterases and laccases) and bacterial cells that produce recombinant enzymes have been immobilized on SiNPs for mediating pesticide degradation. After immobilization, these systems show increased stability and improved degradation. SiNP are significant in developing systems for effective extraction, detection and degradation of pesticides. SiNPs on account of their chemically inert nature and amenability to surface modifications makes them popular tools for fabricating devices for 'on-site' applications.
Collapse
|
985
|
RaheliNamin B, Mortazavi S, Salmanmahiny A. Optimizing cultivation of agricultural products using socio-economic and environmental scenarios. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:627. [PMID: 27761852 DOI: 10.1007/s10661-016-5599-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
The combination of degrading natural conditions and resources, climate change, growing population, urban development, and competition in a global market complicate optimization of land for agricultural products. The use of pesticides and fertilizers for crop production in the agricultural fields has become excessive in the recent years and Golestan Province of Iran is no exception in this regard. For this, effective management with an efficient and cost-effective practice should be undertaken, maintaining public service at a high level and preserving the environment. Improving the production efficiency of agriculture, efficient use of water resources, decreasing the use of pesticides and fertilizers, improving farmer revenue, and conservation of natural resources are the main objectives of the allocation, ranking, and optimization of agricultural products. The goal of this paper is to use an optimization procedure to lower the negative effects of agriculture while maintaining a high production rate, which is currently a gap in the study area. We collected information about fertilizer and pesticide consumption and other data in croplands of eastern Golestan Province through face-to-face interviews with farmers to optimize cultivation of the agricultural products. The toxicity of pesticides according to LD50 was also included in the optimization model. A decision-support software system called multiple criteria analysis tool was used to simultaneously minimize consumption of water, chemical fertilizers, and pesticides and maximize socio-economic returns. Three scenarios for optimization of agricultural products were generated that alternatively emphasized on environmental and socio-economic goals. Comparing socio-economic and environmental performance of the optimized agricultural products under the three scenarios illustrated the conflict between social, economic, and environmental objectives. Of the six crops studied (wheat, barley, rice, soybeans, oilseed rape, and maize), rice ranked second in the social and fifth in the economic scenarios. Soybeans had the lowest rank for economic and social scenarios and its cultivation in the study area, in terms of economic and social goals, was rejected by the model. However, cultivation of soybeans continues in the area as a responsibility to cater for the major need of the country. Because of subsidized prices of water, fertilizers, and pesticides, the use of these items are far from optimized in the current agricultural practices in the area.
Collapse
Affiliation(s)
- Behnaz RaheliNamin
- Department of Environment, Faculty of Natural Resources & Environment, Malayer University, Malayer, Hamedan, Iran.
| | - Samar Mortazavi
- Department of Environment, Faculty of Natural Resources & Environment, Malayer University, Malayer, Hamedan, Iran
| | - Abdolrassoul Salmanmahiny
- Department of Environment, Gorgan University of Agricultural Sci. & Natural Resources, Gorgan, Golestan, Iran
| |
Collapse
|
986
|
Siddiqui AA, Khaki PSS, Bano B. Interaction of almond cystatin with pesticides: Structural and functional analysis. J Mol Recognit 2016; 30. [DOI: 10.1002/jmr.2586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Azad Alam Siddiqui
- Department of Biochemistry, Faculty of life Sciences; Aligarh Muslim University; Aligarh India
| | | | - Bilqees Bano
- Department of Biochemistry, Faculty of life Sciences; Aligarh Muslim University; Aligarh India
| |
Collapse
|
987
|
Balendres MA, Nichols DS, Tegg RS, Wilson CR. Metabolomes of Potato Root Exudates: Compounds That Stimulate Resting Spore Germination of the Soil-Borne Pathogen Spongospora subterranea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7466-7474. [PMID: 27640528 DOI: 10.1021/acs.jafc.6b03904] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Root exudation has importance in soil chemical ecology influencing rhizosphere microbiota. Prior studies reported root exudates from host and nonhost plants stimulated resting spore germination of Spongospora subterranea, the powdery scab pathogen of potato, but the identities of stimulatory compounds were unknown. This study showed that potato root exudates stimulated S. subterranea resting spore germination, releasing more zoospores at an earlier time than the control. We detected 24 low molecular weight organic compounds within potato root exudates and identified specific amino acids, sugars, organic acids, and other compounds that were stimulatory to S. subterranea resting spore germination. Given that several stimulatory compounds are commonly found in exudates of diverse plant species, we support observations of nonhost-specific stimulation. We provide knowledge of S. subterranea resting spore biology and chemical ecology that may be useful in formulating new disease management strategies.
Collapse
Affiliation(s)
- Mark A Balendres
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania , 13 St. Johns Avenue, New Town, Tasmania 7008, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania , Private Bag 74, Hobart, Tasmania 7001, Australia
| | - Robert S Tegg
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania , 13 St. Johns Avenue, New Town, Tasmania 7008, Australia
| | - Calum R Wilson
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania , 13 St. Johns Avenue, New Town, Tasmania 7008, Australia
| |
Collapse
|
988
|
Qureshi IZ, Bibi A, Shahid S, Ghazanfar M. Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L.). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:103-114. [PMID: 27595653 DOI: 10.1016/j.aquatox.2016.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Use of pesticides or insecticides can be highly toxic to aquatic life forms due to leaching and agricultural runoff, rains or flood. Fipronil (FP) is a GABA receptor inhibitor, while buprofezin (BPFN) is an insect growth regulator. Presently, we exposed groups of aquaria acclimated carp fish (Cyprinus carpio) for 96h to sub-lethal concentrations of fipronil (400μgL(-1); 9.15×10(-7)molL(-1)) and buprofezin (BPFN, 100mgL(-1); 1.072×10(-6)molL(-1)) singly or in combination. The extent of damage was assessed at biochemical, hematological, molecular biological and histopathological level. Results obtained in treated fish were compared statistically with those of control non-treated fish and also among treatment groups. Significance level was p<0.05. Compared to control, serum total protein and globulin concentrations decreased significantly (p<0.0001) in fish treated with FP; while albumin concentration remained unaltered with all treatments. Glucose concentration decreased significantly (p<0.002) in fish treated with FP. In contrast, combined FP+BPFN treatment and BPFN treatment caused insignificant elevation of glucose concentration. Hematological assessment demonstrated significant decrease in red blood cell and thrombocyte counts, hemoglobin concentration and hematocrit percent; while white blood cell count showed an increase in all treatment groups (p<0.0001). Blood smears from pesticide treated fish revealed aberrant erythrocyte morphologies which included necrosis, micronuclear formation and hyperchromatosis. DNA laddering assay carried out on whole blood demonstrated excessive smear formation in combined FP+BPFN and BPFN treatment groups but no smear formation was noticeable in FP treated fish. Compared to control, whole blood DNA content increased significantly in the combined FP+BPFN and BPFN treatment groups (p<0.001 and p<0.009). With all treatments histopathological changes observed in the gills were: epithelial uplifting and necrosis of lamellae, lamellar atrophy, disruption of cartilaginous core, fusion and disorganization of lamellae and telangiectasia. In liver these were: karyorrhexis, hepatocellular hypertrophy, nuclear hypertrophy, melanomacrophage aggregates and central vein contraction, while in the kidney: deterioration of glomerulus and dilatation of Bowman's space, dilatation of renal tubules, thyroidisation, altered tubular lumen, nuclear hypertrophy, cellular atrophy, and cellular necrosis were the outcome. Our study revealed that FP and BPFN produce highly toxic effects on fish when given in combination or singly. To our knowledge, this is the first report on toxicity caused by FP and BPFN in single and combined state.
Collapse
Affiliation(s)
- Irfan Zia Qureshi
- Laboratory of Animal and Human Physiology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Asia Bibi
- Laboratory of Animal and Human Physiology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sana Shahid
- Laboratory of Animal and Human Physiology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Madiha Ghazanfar
- Laboratory of Animal and Human Physiology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
989
|
Orozco RA, Molnár I, Bode H, Stock SP. Bioprospecting for secondary metabolites in the entomopathogenic bacterium Photorhabdus luminescens subsp. sonorensis. J Invertebr Pathol 2016; 141:45-52. [PMID: 27702563 DOI: 10.1016/j.jip.2016.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
Crude extracts of in vitro and in vivo cultures of two strains of Photorhabdus l. sonorensis (Enterobacteriaceae) were analyzed by TLC, HPLC-UV and LC-MS. Nine unique compounds with mass/charge ratios (m/z) ranging from 331.3 to 713.5 were found in MS analyses. Bioactivity of extracts was assessed on a selection of plant pathogens/pests and non-target species. Caborca strain extracts showed the highest activity against Helicoverpa zea (Lepidoptera: Noctuidae) neonates at all concentrations tested. Mortality ranged from 11% (at 10μg/ml) to 37% (at 40μg/ml). Strain CH35 extracts showed the highest nematicidal activity on Meloidogyne incognita (Tylenchida: Meloidogynidae) at 40μg/ml. Low to no nematicidal activity was observed against the non-target species Steinernema carpocapsae (Rhabditida: Steinernematidae) and Caenorhabditis elegans (Rhabditida: Rhabditidae). Caborca extracts exhibited a strong antibiotic effect on Pseudomonas syringae (Pseudomonadales: Pseudomonadacedae) at 40μg/ml, while both Caborca and CH35 extracts inhibited the growth of Bacillus subitillis (Bacillales: Bacillaceae) at 40μg/ml. All extracts strongly inhibited the growth of the fungus Fusarium oxysporum (Hypocreales: Nectriceae) but not that of Alternaria alternata (Pleosporales: Pleosporaceae). Contrastingly, a moderate to high inhibitory effect was denoted on the non-target biocontrol fungus Beauveria bassiana (Hypocreales: Clavivipitaceae).
Collapse
Affiliation(s)
- Rousel A Orozco
- Department of Entomology, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721-0036, United States
| | - István Molnár
- Natural Products Center, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706, United States
| | - Helge Bode
- Institut für Molekulare Biowissenschaften, Goethe Universität, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - S Patricia Stock
- Department of Entomology, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721-0036, United States.
| |
Collapse
|
990
|
Stara A, Zuskova E, Kouba A, Velisek J. Effects of terbuthylazine-desethyl, a terbuthylazine degradation product, on red swamp crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:733-740. [PMID: 27239716 DOI: 10.1016/j.scitotenv.2016.05.113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
Terbuthylazine is a widely used triazine pesticide. This, together with one of its degradation products, terbuthylazine-desethyl (TD), are frequently found in quantities exceeding the EU limit of 0.1μg/L in aquatic ecosystems where they might constitute a serious risk to non-target organisms. The sub-chronic effects of TD at 2.9μg/L (real environmental concentration) and at 580μg/L were investigated in a non-target aquatic species, the red swamp crayfish (Procambarus clarkii). Gill and hepatopancreas histopathology, alterations in biochemical parameters of haemolymph, oxidative damage to hepatopancreas, and changes in antioxidant biomarkers in muscle and hepatopancreas were recorded at both tested concentrations after 14days exposure. A 14day recovery period in TD-free water was not sufficient for restoration of normal parameters. Chronic terbuthylazine-desethyl exposure affected biochemical profile, and the antioxidant system, caused oxidative stress and histopathological changes in hepatopancreas of red swamp crayfish.
Collapse
Affiliation(s)
- Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Eliska Zuskova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Antonin Kouba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| |
Collapse
|
991
|
Arora D, Siddiqui MH, Sharma PK, Singh SP, Tripathi A, Mandal P, Singh US, Singh PK, Shukla Y. Evaluation and physiological correlation of plasma proteomic fingerprints for deltamethrin-induced hepatotoxicity in Wistar rats. Life Sci 2016; 160:72-83. [DOI: 10.1016/j.lfs.2016.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/26/2022]
|
992
|
State of the art on public risk assessment of combined human exposure to multiple chemical contaminants. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
993
|
Pristed MJS, Bundschuh M, Rasmussen JJ. Multiple exposure routes of a pesticide exacerbate effects on a grazing mayfly. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:190-196. [PMID: 27517499 DOI: 10.1016/j.aquatox.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
Hydrophobic pesticides such as pyrethroid insecticides tend to occur in their soluble form mainly as transient pulses in streams. In addition, they are regularly detected in significant quantities adsorbed to stream sediments and other organic in-stream structures. Consequently, stream biota is likely subjected to pesticide exposure via multiple routes. In this study we aimed at investigating the influence of exposure routes for the pyrethroid insecticide lambda-cyhalothrin on the grazing mayfly Heptagenia sulphurea. Therefore, H. sulphurea was exposed to lambda-cyhalothrin via single- (water or biofilm) or biphasic exposure (water and biofilm) at environmentally realistic concentrations (0, 0.1, 1μgL(-1)) and exposure duration (2h) in a full factorial design (n=5). Mortality, moulting frequency, and biofilm accrual (proxy for feeding rate) were recorded subsequent to a 7 d post exposure period. Mortality significantly increased and moulting frequency significantly decreased with increasing concentrations of lambda-cyhalothrin in the water phase whereas exposure via biofilm prompted no significant effects on these endpoints (α=0.05). Effect predictions systematically underestimated and overestimated effects for mortality and moulting frequency, respectively. Similarly, mayfly feeding rate was significantly reduced by water phase exposure whereas pre-exposed biofilm did not significantly affect this variable. However, we found a significant but non-systematic interaction between water phase and biofilm exposure on mayfly feeding rate. Our results show that exposure to the same pesticide via multiple exposure routes may increase the magnitude of effects beyond the level predicted from single phase exposures which has clear implications for the aquatic risk assessment of hydrophobic pesticides. However, our results additionally reveal that interactions between pesticide exposure routes may vary between selected dependent variables. We emphasize that unravelling the underlying mechanisms causing these discrepancies in interactive effects between exposure routes is a major aspect that should receive further attention in future research.
Collapse
Affiliation(s)
| | - Mirco Bundschuh
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, 75007 Uppsala, Sweden; Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829 Landau, Germany
| | - Jes Jessen Rasmussen
- Aarhus University, Department of Bioscience, Vejlsøvej 25, 8600 Silkeborg, Denmark.
| |
Collapse
|
994
|
Resende GC, Alvarenga ES, de Araújo TA, Campos JN, Pincanço MC. Toxicity to Diaphania hyalinata, selectivity to non-target species and phytotoxicity of furanones and phthalide analogues. PEST MANAGEMENT SCIENCE 2016; 72:1772-1777. [PMID: 26679429 DOI: 10.1002/ps.4210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Despite being of great importance to crop protection, the disadvantages of intensive and inappropriate use of pesticides have stimulated the search for more selective and less harmful agrochemicals. Thus, we have evaluated the effectiveness of 16 synthetic molecules (phthalides and precursors) to control the melonworm Diaphania hyalinata, a key pest in cucurbit crops of economic importance in Brazil. The selectivity to beneficial organisms Solenopsis saevissima and Tetragonisca angustula and the phytotoxicity to Cucumis sativus of the promising insecticides were also assessed. RESULTS In the screening assay, compounds 1 and 6 provided 91 and 88% mortality of the melonworm. Compound 1 presented higher toxicity (median lethal dose LD50 = 15.99 µmol g(-1) ) and higher speed on pest control (median survival time LT50 = 420 min) than compound 6 (LD50 = 44.51 µmol g(-1) and LT50 = 840 min). Both compounds inhibited less than 11% of host-plant growth and caused ≤36 and ≥93% mortality of predator and pollinator respectively. CONCLUSION Among the tested compounds, only compounds 1 and 6 were effective in melonworm control. Both compounds presented no considerable phytotoxicity and were selective to predator but non-selective to pollinator, which enables their application for pest control if the exposure of the bees is minimised. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gabriela C Resende
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elson S Alvarenga
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Tamíris A de Araújo
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Júlia Nd Campos
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo C Pincanço
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
995
|
Saini R, Raghunath CV, Pandey P, Kumar P. Optimization of Fenton oxidation for the removal of methyl parathion in aqueous solution. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.pisc.2016.06.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
996
|
Hayat S, Cheng Z, Ahmad H, Ali M, Chen X, Wang M. Garlic, from Remedy to Stimulant: Evaluation of Antifungal Potential Reveals Diversity in Phytoalexin Allicin Content among Garlic Cultivars; Allicin Containing Aqueous Garlic Extracts Trigger Antioxidants in Cucumber. FRONTIERS IN PLANT SCIENCE 2016; 7:1235. [PMID: 27610111 PMCID: PMC4996993 DOI: 10.3389/fpls.2016.01235] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/03/2016] [Indexed: 05/27/2023]
Abstract
Garlic has the charisma of a potent remedy and holds its repute of a therapeutic panacea since the dawn of civilization. An integrated approach was adopted to evaluate the genetic diversity among Chinese garlic cultivars for their antifungal potency as well as allicin content distribution and, furthermore; a bioassay was performed to study the bio-stimulation mechanism of aqueous garlic extracts (AGE) in the growth and physiology of cucumber (Cucumis sativus). Initially, 28 garlic cultivars were evaluated against four kinds of phytopathogenic fungi; Fusarium oxysporum, Botrytis cinerea, Verticillium dahliae and Phytophthora capsici, respectively. A capricious antifungal potential among the selected garlic cultivars was observed. HPLC fingerprinting and quantification confirmed diversity in allicin abundance among the selected cultivars. Cultivar G025, G064, and G074 had the highest allicin content of 3.98, 3.7, and 3.66 mg g(-1), respectively, whereas G110 was found to have lowest allicin content of 0.66 mg g(-1). Cluster analysis revealed three groups on the basis of antifungal activity and allicin content among the garlic cultivars. Cultivar G025, G2011-4, and G110 were further evaluated to authenticate the findings through different solvents and shelf life duration and G025 had the strongest antifungal activity in all conditions. minimum inhibitory concentration and minimum fungicidal concentration of Allicin aqueous standard (AAS) and AGE showed significant role of allicin as primary antifungal substance of AGE. Leaf disk bioassay against P. capsici and V. dahliae to comparatively study direct action of AGE and AAS during infection process employing eggplant and pepper leaves showed a significant reduction in infection percentage. To study the bioactivity of AGE, a bioassay was performed using cucumber seedlings and results revealed that AGE is biologically active inside cucumber seedlings and alters the defense mechanism of the plant probably activating reactive oxygen species at mild concentrations. However, at higher concentrations, it might cause lipid peroxidation and membrane damage which temper the growth of cucumber seedlings. At the outcome of the study, an argument is advanced that current research findings provide bases for cultivar selection in antifungal effectivity as well as genetic variability of the cultivars. Allicin containing AGE can be used in specialized horticultural situations such as plastic tunnel and organic farming as a bio-stimulant to enhance cucumber growth and attenuate fungal degradation of agricultural produce.
Collapse
Affiliation(s)
- Sikandar Hayat
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, YanglingChina
| | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, YanglingChina
| | - Husain Ahmad
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, YanglingChina
| | - Muhammad Ali
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, YanglingChina
| | - Xuejin Chen
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, XinxiangChina
| | - Mengyi Wang
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, YanglingChina
| |
Collapse
|
997
|
Straub L, Villamar-Bouza L, Bruckner S, Chantawannakul P, Gauthier L, Khongphinitbunjong K, Retschnig G, Troxler A, Vidondo B, Neumann P, Williams GR. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc Biol Sci 2016; 283:20160506. [PMID: 27466446 PMCID: PMC4971197 DOI: 10.1098/rspb.2016.0506] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/29/2016] [Indexed: 01/14/2023] Open
Abstract
There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Laura Villamar-Bouza
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland Environmental Science Department, University of Koblenz-Landau, Landau, Germany
| | - Selina Bruckner
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Panuwan Chantawannakul
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kitiphong Khongphinitbunjong
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Gina Retschnig
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Aline Troxler
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Beatriz Vidondo
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand Agroscope, Swiss Bee Research Centre, Bern, Switzerland Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Geoffrey R Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| |
Collapse
|
998
|
Abd El Halim HM, Alshukri BMH, Ahmad MS, Nakasu EYT, Awwad MH, Salama EM, Gatehouse AMR, Edwards MG. RNAi-mediated knockdown of the voltage gated sodium ion channel TcNav causes mortality in Tribolium castaneum. Sci Rep 2016; 6:29301. [PMID: 27411529 PMCID: PMC4944135 DOI: 10.1038/srep29301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/24/2016] [Indexed: 01/26/2023] Open
Abstract
The voltage-gated sodium ion channel (VGSC) belongs to the largest superfamily of ion channels. Since VGSCs play key roles in physiological processes they are major targets for effective insecticides. RNA interference (RNAi) is widely used to analyse gene function, but recently, it has shown potential to contribute to novel strategies for selectively controlling agricultural insect pests. The current study evaluates the delivery of dsRNA targeted to the sodium ion channel paralytic A (TcNav) gene in Tribolium castaneum as a viable means of controlling this insect pest. Delivery of TcNav dsRNA caused severe developmental arrest with larval mortalities up to 73% post injection of dsRNA. Injected larvae showed significant (p < 0.05) knockdown in gene expression between 30-60%. Expression was also significantly (p < 0.05) reduced in pupae following injection causing 30% and 42% knockdown for early and late pupal stages, respectively. Oral delivery of dsRNA caused dose-dependant mortalities of between 19 and 51.34%; this was accompanied by significant (p < 0.05) knockdown in gene expression following 3 days of continuous feeding. The majority of larvae injected with, or fed, dsRNA died during the final larval stage prior to pupation. This work provides evidence of a viable RNAi-based strategy for insect control.
Collapse
Affiliation(s)
- Hesham M. Abd El Halim
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Entomology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Baida M. H. Alshukri
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Munawar S. Ahmad
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Department of Zoology, University of, Swabi, KPK, Pakistan
| | - Erich Y. T. Nakasu
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Mohammed H. Awwad
- Zoology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Elham M. Salama
- Entomology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Angharad M. R. Gatehouse
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Martin G. Edwards
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| |
Collapse
|
999
|
Delayed mortality effects cut the malaria transmission potential of insecticide-resistant mosquitoes. Proc Natl Acad Sci U S A 2016; 113:8975-80. [PMID: 27402740 DOI: 10.1073/pnas.1603431113] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria transmission has been substantially reduced across Africa through the distribution of long-lasting insecticidal nets (LLINs). However, the emergence of insecticide resistance within mosquito vectors risks jeopardizing the future efficacy of this control strategy. The severity of this threat is uncertain because the consequences of resistance for mosquito fitness are poorly understood: while resistant mosquitoes are no longer immediately killed upon contact with LLINs, their transmission potential may be curtailed because of longer-term fitness costs that persist beyond the first 24 h after exposure. Here, we used a Bayesian state-space model to quantify the immediate (within 24 h of exposure) and delayed (>24 h after exposure) impact of insecticides on daily survival and malaria transmission potential of moderately and highly resistant laboratory populations of the major African malaria vector Anopheles gambiae Contact with LLINs reduced the immediate survival of moderately and highly resistant An. gambiae strains by 60-100% and 3-61%, respectively, and delayed mortality impacts occurring beyond the first 24 h after exposure further reduced their overall life spans by nearly one-half. In total, insecticide exposure was predicted to reduce the lifetime malaria transmission potential of insecticide-resistant vectors by two-thirds, with delayed effects accounting for at least one-half of this reduction. The existence of substantial, previously unreported, delayed mortality effects within highly resistant malaria vectors following exposure to insecticides does not diminish the threat of growing resistance, but posits an explanation for the apparent paradox of continued LLIN effectiveness in the presence of high insecticide resistance.
Collapse
|
1000
|
Lima MAP, Martins GF, Oliveira EE, Guedes RNC. Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:733-47. [DOI: 10.1007/s00359-016-1110-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/23/2016] [Accepted: 07/03/2016] [Indexed: 01/01/2023]
|