1001
|
Abstract
Vascular smooth muscle tone is controlled by a balance between the cellular signaling pathways that mediate the generation of force (contraction) and the release of force (relaxation). The signaling events that activate contraction include Ca(2+)-dependent myosin light chain phosphorylation. The signaling events that mediate relaxation include the removal of a contractile agonist (passive relaxation) and activation of cyclic nucleotide-dependent signaling pathways in the continued presence of a contractile agonist (active relaxation). The major questions that remain in contractile physiology include (1) how is tonic force maintained when intracellular Ca(2+) levels and myosin light chain phosphorylation have returned to basal levels; and (2) what is the mechanism of cyclic nucleotide-dependent relaxation? This review focuses on these specific controversies surrounding the molecular mechanisms of contraction and relaxation of vascular smooth muscle.
Collapse
Affiliation(s)
- D A Woodrum
- Institute for Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, GA, USA
| | | |
Collapse
|
1002
|
Siegel G, Sternfeld L, Gonzalez A, Schulz I, Schmid A. Arachidonic acid modulates the spatiotemporal characteristics of agonist-evoked Ca2+ waves in mouse pancreatic acinar cells. J Biol Chem 2001; 276:16986-16991. [PMID: 11279177 DOI: 10.1074/jbc.m101136200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In pancreatic acinar cells analysis of the propagation speed of secretagogue-evoked Ca2+ waves can be used to examine coupling of hormone receptors to intracellular signal cascades that cause activation of protein kinase C or production of arachidonic acid (AA). In the present study we have investigated the role of cytosolic phospholipase A2 (cPLA2) and AA in acetylcholine (ACh)- and bombesin-induced Ca2+ signaling. Inhibition of cPLA2 caused acceleration of ACh-induced Ca2+ waves, whereas bombesin-evoked Ca2+ waves were unaffected. When enzymatic metabolization of AA was prevented with the cyclooxygenase inhibitor indomethacin or the lipoxygenase inhibitor nordihydroguaiaretic acid, ACh-induced Ca2+ waves were slowed down. Agonist-induced activation of cPLA2 involves mitogen-activated protein kinase (MAPK) activation. An increase in phosphorylation of p38(MAPK) and p42/44(MAPK) within 10 s after stimulation could be demonstrated for ACh but was absent for bombesin. Rapid phosphorylation of p38(MAPK) and p42/44(MAPK) could also be observed in the presence of cholecystokinin (CCK), which also causes activation of cPLA2. ACh-and CCK-induced Ca2+ waves were slowed down when p38(MAPK) was inhibited with SB 203580, whereas inhibition of p42/44(MAPK) with PD 98059 caused acceleration of ACh- and CCK-induced Ca2+ waves. The spreading of bombesin-evoked Ca2+ waves was affected neither by PD 98059 nor by SB 203580. Our data indicate that in mouse pancreatic acinar cells both ACh and CCK receptors couple to the cPLA2 pathway. cPLA2 activation occurs within 1-2 s after hormone application and is promoted by p42/44(MAPK) and inhibited by p38(MAPK). Furthermore, the data demonstrate that secondary (Ca2+-induced) Ca2+ release, which supports Ca2+ wave spreading, is inhibited by AA itself and not by a metabolite of AA.
Collapse
Affiliation(s)
- G Siegel
- Department of Physiology II, University of Saarland, D-66421 Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
1003
|
Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV. Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 2001; 20:1863-74. [PMID: 11296220 PMCID: PMC125431 DOI: 10.1093/emboj/20.8.1863] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have identified three distinct groups of mitochondria in normal living pancreatic acinar cells, located (i) in the peripheral basolateral region close to the plasma membrane, (ii) around the nucleus and (iii) in the periphery of the granular region separating the granules from the basolateral area. Three-dimensional reconstruction of confocal slices showed that the perigranular mitochondria form a barrier surrounding the whole of the granular region. Cytosolic Ca(2+) oscillations initiated in the granular area triggered mitochondrial Ca(2+) uptake mainly in the perigranular area. The most intensive uptake occurred in the mitochondria close to the apical plasma membrane. Store-operated Ca(2+) influx through the basolateral membrane caused preferential Ca(2+) uptake into sub-plasmalemmal mitochondria. The perinuclear mitochondria were activated specifically by local uncaging of Ca(2+) in the nucleus. These mitochondria could isolate nuclear and cytosolic Ca(2+) signalling. Photobleaching experiments indicated that different groups of mitochondria were not luminally connected. The three mitochondrial groups are activated independently by specific spatiotemporal patterns of cytosolic Ca(2+) signals and can therefore participate in the local regulation of Ca(2+) homeostasis and energy supply.
Collapse
Affiliation(s)
- Myoung Kyu Park
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, UK Present address: Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea Corresponding author e-mail:
| | - Michael C. Ashby
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, UK Present address: Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea Corresponding author e-mail:
| | - Gul Erdemli
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, UK Present address: Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea Corresponding author e-mail:
| | - Ole H. Petersen
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, UK Present address: Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea Corresponding author e-mail:
| | - Alexei V. Tepikin
- MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, UK Present address: Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea Corresponding author e-mail:
| |
Collapse
|
1004
|
Bruno M, Maggio A, Paternostro MP, Rosselli S, Arnold NA, Herz W. Sesquiterpene lactones and other constituents of three Cardueae from Cyprus. BIOCHEM SYST ECOL 2001; 29:433-435. [PMID: 11182493 DOI: 10.1016/s0305-1978(00)00063-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M Bruno
- Dipartimento di Chimica Organica "E. Paterno", Universitá di Palermo, Viale delle Science, Parco d'Orleans II, 90128, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
1005
|
Tang DD, Gunst SJ. Depletion of focal adhesion kinase by antisense depresses contractile activation of smooth muscle. Am J Physiol Cell Physiol 2001; 280:C874-83. [PMID: 11245605 DOI: 10.1152/ajpcell.2001.280.4.c874] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Focal adhesion kinase (FAK) undergoes tyrosine phosphorylation in response to the contractile stimulation of tracheal smooth muscle. We hypothesized that FAK may play an important role in signaling pathways that regulate smooth muscle contraction. FAK antisense or FAK sense was introduced into muscle strips by reversible permeabilization, and strips were incubated with antisense or sense for 7 days. Antisense decreased FAK expression compared with that in untreated and sense-treated tissues, but it did not affect the expression of vinculin or myosin light chain kinase. Increases in force, intracellular free Ca2+ and myosin light chain phosphorylation in response to stimulation with ACh or KCl were depressed in FAK-depleted tissues, but FAK depletion did not affect the activation of permeabilized tracheal muscle strips with Ca2+. The tyrosine phosphorylation of paxillin, a substrate for FAK, was also significantly reduced in FAK-depleted strips. We conclude that FAK is a necessary component of the signaling pathways that regulate smooth muscle contraction and that FAK plays a role in regulating intracellular free Ca2+ and myosin light chain phosphorylation.
Collapse
Affiliation(s)
- D D Tang
- Department of Physiology and Biophysics, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | |
Collapse
|
1006
|
Avila G, O'Brien JJ, Dirksen RT. Excitation--contraction uncoupling by a human central core disease mutation in the ryanodine receptor. Proc Natl Acad Sci U S A 2001; 98:4215-20. [PMID: 11274444 PMCID: PMC31205 DOI: 10.1073/pnas.071048198] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2001] [Accepted: 01/30/2001] [Indexed: 11/18/2022] Open
Abstract
Central core disease (CCD) is a human congenital myopathy characterized by fetal hypotonia and proximal muscle weakness that is linked to mutations in the gene encoding the type-1 ryanodine receptor (RyR1). CCD is thought to arise from Ca(2+)-induced damage stemming from mutant RyR1 proteins forming "leaky" sarcoplasmic reticulum (SR) Ca(2+) release channels. A novel mutation in the C-terminal region of RyR1 (I4898T) accounts for an unusually severe and highly penetrant form of CCD in humans [Lynch, P. J., Tong, J., Lehane, M., Mallet, A., Giblin, L., Heffron, J. J., Vaughan, P., Zafra, G., MacLennan, D. H. & McCarthy, T. V. (1999) Proc. Natl. Acad. Sci. USA 96, 4164--4169]. We expressed in skeletal myotubes derived from RyR1-knockout (dyspedic) mice the analogous mutation engineered into a rabbit RyR1 cDNA (I4897T). Here we show that homozygous expression of I4897T in dyspedic myotubes results in a complete uncoupling of sarcolemmal excitation from voltage-gated SR Ca(2+) release without significantly altering resting cytosolic Ca(2+) levels, SR Ca(2+) content, or RyR1-mediated enhancement of dihydropyridine receptor (DHPR) channel activity. Coexpression of both I4897T and wild-type RyR1 resulted in a 60% reduction in voltage-gated SR Ca(2+) release, again without altering resting cytosolic Ca(2+) levels, SR Ca(2+) content, or DHPR channel activity. These findings indicate that muscle weakness suffered by individuals possessing the I4898T mutation involves a functional uncoupling of sarcolemmal excitation from SR Ca(2+) release, rather than the expression of overactive or leaky SR Ca(2+) release channels.
Collapse
Affiliation(s)
- G Avila
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
1007
|
Bakowski D, Parekh AB. Sarcoplasmic/endoplasmic-reticulum-Ca2+-ATPase-mediated Ca2+ reuptake, and not Ins(1,4,5)P3 receptor inactivation, prevents the activation of macroscopic Ca2+ release-activated Ca2+ current in the presence of physiological Ca2+ buffer in rat basophilic leukaemia-1 cells. Biochem J 2001; 353:561-7. [PMID: 11171053 PMCID: PMC1221602 DOI: 10.1042/0264-6021:3530561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Whole-cell patch-clamp experiments were performed to examine the mechanism underlying the inability of intracellular Ins(1,4,5)P(3) to activate the Ca(2+) release-activated Ca(2+) current (I(CRAC)) in rat basophilic leukaemia (RBL)-1 cells under conditions of weak cytoplasmic Ca(2+) buffering. Dialysis with Ins(1,4,5)P(3) in weak Ca(2+) buffer did not activate any macroscopic I(CRAC) even after precautions had been taken to minimize the extent of Ca(2+) entry during the experiment. Following intracellular dialysis with Ins(1,4,5)P(3) for >150 s in weak buffer, external application of the sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase (SERCA) pump blocker thapsigargin activated I(CRAC), and the current developed much more quickly than when thapsigargin was applied in the absence of Ins(1,4,5)P(3). This indicates that the Ins(1,4,5)P(3) receptors had not inactivated much over this timecourse. When external Ca(2+) was replaced by Ba(2+), Ins(1,4,5)P(3) still failed to generate any detectable I(CRAC) even though Ba(2+) permeates CRAC channels and is not taken up into the intracellular Ca(2+) stores. In strong Ca(2+) buffer, I(CRAC) could be activated by muscarinic-receptor stimulation, provided protein kinase C (PKC) was blocked. In weak buffer, however, as with Ins(1,4,5)P(3), stimulation of these receptors with carbachol did not activate I(CRAC) even after inhibition of PKC. The inability of Ins(1,4,5)P(3) to activate macroscopic I(CRAC) in weak Ca(2+) buffer was not altered by inhibition of Ca(2+)-dependent phosphorylation/dephosphorylation reactions. Our results suggest that the inability of Ins(1,4,5)P(3) to activate I(CRAC) under conditions of weak intracellular Ca(2+) buffering is not due to strong inactivation of the Ins(1,4,5)P(3) receptors. Instead, a futile Ca(2+) cycle across the stores seems to be occurring and SERCA pumps resequester sufficient Ca(2+) to ensure that the threshold for activation of macroscopic I(CRAC) has not been exceeded.
Collapse
MESH Headings
- Animals
- Barium/metabolism
- Buffers
- Calcium/metabolism
- Calcium Channels
- Calcium-Transporting ATPases/metabolism
- Endoplasmic Reticulum/enzymology
- Inositol 1,4,5-Trisphosphate Receptors
- Leukemia, Basophilic, Acute/enzymology
- Leukemia, Basophilic, Acute/metabolism
- Leukemia, Basophilic, Acute/pathology
- Phosphorylation
- Rats
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Sarcoplasmic Reticulum/enzymology
- Strontium/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D Bakowski
- Laboratory of Molecular and Cellular Signalling, Department of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
1008
|
Braun FJ, Broad LM, Armstrong DL, Putney JW. Stable activation of single Ca2+ release-activated Ca2+ channels in divalent cation-free solutions. J Biol Chem 2001; 276:1063-70. [PMID: 11042187 DOI: 10.1074/jbc.m008348200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The regulation of store-operated, calcium-selective channels in the plasma membrane of rat basophilic leukemia cells (RBL-2H3 m1), an immortalized mucosal mast cell line, was studied at the single-channel level with the patch clamp technique by removing divalent cations from both sides of the membrane. The activity of the single channels in excised patches could be modulated by Ca(2+), Mg(2+), and pH. The maximal activation of these channels by divalent cation-free conditions occurred independently of depletion of intracellular Ca(2+) stores, whether in excised patches or in whole cell mode. Yet, a number of points of evidence establish these single-channel openings as amplified store-operated channel events. Specifically, (i) the single channels are exquisitely sensitive to inhibition by intracellular Ca(2+), and (ii) both the store-operated current and the single-channel openings are completely blocked by the capacitative calcium entry blocker, 2-aminoethoxydiphenyl borane. In addition, in Jurkat T cells single-channel openings with lower open probability have been observed in the whole cell mode with intracellular Mg(2+) present (Kerschbaum, H. H., and Cahalan, M. D. (1999) Science 283, 836-839), and in RBL-2H3 m1 cells a current with similar properties is activated by store depletion.
Collapse
Affiliation(s)
- F J Braun
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | |
Collapse
|
1009
|
Göbel A, Krause E, Feick P, Schulz I. IP(3)and cyclic ADP-ribose induced Ca(2+) release from intracellular stores of pancreatic acinar cells from rat in primary culture. Cell Calcium 2001; 29:29-37. [PMID: 11133353 DOI: 10.1054/ceca.2000.0154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have measured Ca(2+)concentration changes in intracellular Ca(2+)stores ([Ca(2+)](store)) of rat pancreatic acinar cells in primary culture in response to the Ca(2+)mobilizing substances inositol-1,4,5-trisphosphate (IP(3)) and cyclic ADP-ribose (cADPr) using the Ca(2+)-sensitive dye mag Fura-2. We found that in this cell model IP(3)releases Ca(2+)in a quantal manner. Higher Ca(2+)concentration in the stores allowed a response to lower IP(3)concentrations ([IP(3)]) indicating that the sensitivity of IP(3)receptors to IP(3)is regulated by the Ca(2+)concentration in the stores. Cyclic ADPr, that modifies 'Ca(2+)-induced-Ca(2+)-release' (CICR), was also able to release Ca(2+)from intracellular stores of pancreatic acinar cells in primary culture. In comparison to the Ca(2+)ionophore ionomycin, which induced a maximal decrease (100%) in [Ca(2+)](store), a hypermaximal [IP(3)] (10 microM) dropped [Ca(2+)](store)by 87% and cADPr had no further effect. Cyclic ADPr reduced [Ca(2+)](store)by only 56% and subsequent IP(3)addition caused further maximal decrease in [Ca(2+)](store). Furthermore, a maximal [IP(3)] caused the same decrease in [Ca(2+)](store)in all regions of the cell, whereas cADPr dropped the [Ca(2+)](store)between 20 and 80% in different cell regions. From these data we conclude that in primary cultured rat pancreatic acinar cells at least three types of Ca(2+)stores exist. One type possessing both cADPr receptors and IP(3)receptors, a second type possessing only IP(3)receptors, and a third type whose Ca(2+)can be released by ionomycin but neither by IP(3)nor by cADPr.
Collapse
Affiliation(s)
- A Göbel
- Universität des Saarlandes, Physiologisches Institut, Homburg/Saar, Germany
| | | | | | | |
Collapse
|
1010
|
da Silva CP, Guse AH. Intracellular Ca(2+) release mechanisms: multiple pathways having multiple functions within the same cell type? BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:122-33. [PMID: 11108956 DOI: 10.1016/s0167-4889(00)00089-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The elevation of the cytosolic and nuclear Ca(2+) concentration is a fundamental signal transduction mechanism in almost all eukaryotic cells. Interestingly, three Ca(2+)-mobilising second messengers, D-myo-inositol 1,4,5-trisphosphate (InsP(3)), cyclic adenosine diphosphoribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP(+)) were identified in a phylogenetically wide range of different organisms. Moreover, in an as yet very limited number of cell types, sea urchin eggs, mouse pancreatic acinar cells, and human Jurkat T-lymphocytes, all three Ca(2+)-mobilising ligands have been shown to be involved in the generation of Ca(2+) signals. This situation raises the question why during evolution all three messengers have been conserved in the same cell type. From a theoretical point of view the following points may be considered: (i) redundant mechanisms ensuring intact Ca(2+) signalling even if one system does not work, (ii) the need for subcellularly localised Ca(2+) elevations to obtain a certain physiological response of the cell, and (iii) tight control of a physiological response of the cell by a temporal sequence of Ca(2+) signalling events. These theoretical considerations are compared to the current knowledge regarding the three messengers in sea urchin eggs, mouse pancreatic acinar cells, and human Jurkat T lymphocytes.
Collapse
Affiliation(s)
- C P da Silva
- University of Hamburg, University Clinic Hamburg-Eppendorf, Institute for Medical Biochemistry and Molecular Biology, Division of Cellular Signal Transduction, Grindelallee 117, D-20146, Hamburg, Germany
| | | |
Collapse
|
1011
|
González A, Schulz I, Schmid A. Agonist-evoked mitochondrial Ca2+ signals in mouse pancreatic acinar cells. J Biol Chem 2000; 275:38680-38686. [PMID: 10995756 DOI: 10.1074/jbc.m005667200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study we have investigated cytosolic and mitochondrial Ca(2+) signals in isolated mouse pancreatic acinar cells double-loaded with the fluorescent probes fluo-3 and rhod-2. Stimulation of pancreatic acinar cells with 500 nm acetylcholine caused release of Ca(2+) from intracellular stores and produced cytosolic Ca(2+) signals in form of Ca(2+) waves propagating from the luminal to the basal cell pole. The increase in the cytosolic Ca(2+) concentration was followed by Ca(2+) uptake into mitochondria. Between onset of cytosolic and mitochondrial Ca(2+) signals there was a delay of 10.7 +/- 0.4 s. Ca(2+) uptake into mitochondria could be inhibited with Ruthenium Red and carbonyl cyanide m-chlorophenylhydrazone, whereas 2,5-di-tert-butylhydroquinone, which inhibits sarco(endo)plasmic reticulum Ca(2+) ATPases, did not prevent Ca(2+) accumulation in mitochondria. Carbonyl cyanide m-chlorophenylhydrazone-induced Ca(2+) release from mitochondria could only be observed after a preceding stimulation of the cell with a physiological agonist or by treatment with 2, 5-di-tert-butylhydroquinone, indicating that under resting conditions mitochondria do not contain releasable Ca(2+) ions. Analysis of the propagation rate of acetylcholine-induced Ca(2+) waves revealed that inhibition of mitochondrial Ca(2+) uptake did not accelerate spreading of cytosolic Ca(2+) signals. Our experiments indicate that in the early phase of secretagogue-induced Ca(2+) signals, mitochondria behave as passive Ca(2+)-buffering elements and do not actively suppress spreading of Ca(2+) signals in pancreatic acinar cells.
Collapse
Affiliation(s)
- A González
- Department of Physiology, University of the Saarland, D-66421 Homburg/Saar, Germany
| | | | | |
Collapse
|
1012
|
Affiliation(s)
- D M Shin
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | | | | | | | | |
Collapse
|
1013
|
Nozu F, Owyang C, Tsunoda Y. Involvement of phosphoinositide 3-kinase and its association with pp60src in cholecystokinin-stimulated pancreatic acinar cells. Eur J Cell Biol 2000; 79:803-9. [PMID: 11139143 DOI: 10.1078/0171-9335-00108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) is a lipid kinase which phosphorylates the D3 position of the phosphoinositide derivatives and is known to be activated by a host of protein tyrosine kinases. PI3K has been demonstrated to play an important role in mitogenesis and cell transformation in several cell systems. However, the functional roles of PI3K in pancreatic acinar cells remain to be determined. The objective of this study was to identify and characterize the PI3K pathway and its relation to other non-receptor protein tyrosine kinases in mediating signal transduction of pancreatic acinar cells. Intact acini isolated from the rat pancreas were incubated with or without cholecystokinin octapeptide (CCK-8). A Triton X-100-soluble and 10000 rpm supernatant of the cell sonicates was used for immunoprecipitation and Western immunoblotting. When a monoclonal anti-phosphotyrosine antibody (clone 4G10) was used, two major tyrosine-phosphorylated bands were observed at the location of p85 and p60. CCK (10 pM and 10 nM) significantly enhanced the tyrosine phosphorylation of these two bands. Furthermore, when a monoclonal anti-PI3K antibody (clone UB93-3) which recognizes the N-terminal SH2 domain of the p85 regulatory subunit of PI3K was used, CCK (10 pM-10 nM) dose-dependently increased the amount of the immunodetectable PI3K band with a peak occurring at 5 min. The increase in the immunodetectable PI3K band elicited by CCK did not require the presence of extracellular Ca2+. The pp60src inhibitor, herbimycin A (6 microM), and the PI3K inhibitor, wortmannin (6 microM), both decreased intensities of the PI3K band elicited by CCK. Herbimycin A abolished phosphotransferase activities of the Src kinase following stimulation with CCK, whereas wortmannin had no effect, suggesting that Src is an upstream regulator of PI3K. Wortmannin (3-6 microM) abolished CCK-stimulated pancreatic amylase secretion. Immunoprecipitation studies using an anti-Src antibody (clone CD11) or PI3K antibody in conjunction with the anti-phosphotyrosine antibody showed that, in response to CCK, tyrosine phosphorylations of Src and PI3K were enhanced at the location of p60 and p85, respectively. Src was co-immunoprecipitated with PI3K following stimulation with CCK, suggesting that pp60src forms an immunocomplex with PI3K via the N-SH2 domain of the p85 regulatory subunit. Thus PI3K and its association with Src appear to be involved in mediating CCK-stimulated pancreatic exocytosis.
Collapse
Affiliation(s)
- F Nozu
- Department of Internal Medicine, University of Michigan, Ann Arbor 48019, USA
| | | | | |
Collapse
|
1014
|
Rosado JA, Graves D, Sage SO. Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton. Biochem J 2000; 351 Pt 2:429-37. [PMID: 11023829 PMCID: PMC1221379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We have recently reported that store-mediated Ca(2+) entry in platelets is likely to be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, a model termed 'secretion-like coupling'. In this model the actin cytoskeleton plays a key regulatory role. Since tyrosine kinases have been shown to be important for Ca(2+) entry in platelets and other cells, we have now investigated the possible involvement of tyrosine kinases in the secretion-like-coupling model. Treatment of platelets with thrombin or thapsigargin induced actin polymerization by a calcium-independent pathway. Methyl 2,5-dihydroxycinnamate, a tyrosine kinase inhibitor, prevented thrombin- or thapsigargin-induced actin polymerization. The effects of tyrosine kinases in store-mediated Ca(2+) entry were found to be entirely dependent on the actin cytoskeleton. PP1, an inhibitor of the Src family of proteins, partially inhibited store-mediated Ca(2+) entry. In addition, depletion of intracellular Ca(2+) stores stimulated cytoskeletal association of the cytoplasmic tyrosine kinase pp60(src), a process that was sensitive to treatment with cytochalasin D and PP1, but not to inhibition of Ras proteins using prenylcysteine analogues. Finally, combined inhibition of both Ras proteins and tyrosine kinases resulted in complete inhibition of Ca(2+) entry, suggesting that these two families of proteins have independent effects in the activation of store-mediated Ca(2+) entry in human platelets.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | |
Collapse
|
1015
|
Shin DM, Zhao XS, Zeng W, Mozhayeva M, Muallem S. The mammalian Sec6/8 complex interacts with Ca(2+) signaling complexes and regulates their activity. J Cell Biol 2000; 150:1101-12. [PMID: 10973998 PMCID: PMC2175249 DOI: 10.1083/jcb.150.5.1101] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The localization of various Ca(2+) transport and signaling proteins in secretory cells is highly restricted, resulting in polarized agonist-stimulated Ca(2+) waves. In the present work, we examined the possible roles of the Sec6/8 complex or the exocyst in polarized Ca(2+) signaling in pancreatic acinar cells. Immunolocalization by confocal microscopy showed that the Sec6/8 complex is excluded from tight junctions and secretory granules in these cells. The Sec6/8 complex was found in at least two cellular compartments, part of the complex showed similar, but not identical, localization with the Golgi apparatus and part of the complex associated with Ca(2+) signaling proteins next to the plasma membrane at the apical pole. Accordingly, immunoprecipitation (IP) of Sec8 did not coimmunoprecipitate betaCOP, Golgi 58K protein, or mannosidase II, all Golgi-resident proteins. By contrast, IP of Sec8 coimmunoprecipitates Sec6, type 3 inositol 1,4,5-trisphosphate receptors (IP(3)R3), and the Gbetagamma subunit of G proteins from pancreatic acinar cell extracts. Furthermore, the anti-Sec8 antibodies coimmunoprecipitate actin, Sec6, the plasma membrane Ca(2+) pump, the G protein subunits Galphaq and Gbetagamma, the beta1 isoform of phospholipase C, and the ER resident IP(3)R1 from brain microsomal extracts. Antibodies against the various signaling and Ca(2+) transport proteins coimmunoprecipitate Sec8 and the other signaling proteins. Dissociation of actin filaments in the immunoprecipitate had no effect on the interaction between Sec6 and Sec8, but released the actin and dissociated the interaction between the Sec6/8 complex and Ca(2+) signaling proteins. Hence, the interaction between the Sec6/8 and Ca(2+) signaling complexes is likely mediated by the actin cytoskeleton. The anti-Sec6 and anti-Sec8 antibodies inhibited Ca(2+) signaling at a step upstream of Ca(2+) release by IP(3). Disruption of the actin cytoskeleton with latrunculin B in intact cells resulted in partial translocation of Sec6 and Sec8 from membranes to the cytosol and interfered with propagation of agonist-evoked Ca(2+) waves. Our results suggest that the Sec6/8 complex has multiple roles in secretory cells including governing the polarized expression of Ca(2+) signaling complexes and regulation of their activity.
Collapse
Affiliation(s)
- Dong Min Shin
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Xiao-Song Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Weizhong Zeng
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Marina Mozhayeva
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Shmuel Muallem
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
1016
|
Abstract
The pancreatic acinar cell is a valuable cell model for understanding how activation of plasma membrane receptors generates signals that propagate, amplify, diversify, and integrate to control cellular function. A primary signaling system involves the activation of heterotrimeric G proteins that stimulate phospholipases, leading to the generation of phospholipid messengers. A major action of the phospholipid messengers is the control of cytoplasmic Ca(2+) levels. The complex mechanisms involved in controlling the initiation, form, and spatial pattern of Ca(2+) release are being revealed in increasing detail and complexity. The connections between the signaling networks and the final events of secretion are beginning to be revealed. Advances have also been made in understanding the processes that underlie the pathologic effects of receptor overactivation.
Collapse
Affiliation(s)
- C D Logsdon
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
1017
|
Kinoshita M, Akaike A, Satoh M, Kaneko S. Positive regulation of capacitative Ca2+ entry by intracellular Ca2+ in Xenopus oocytes expressing rat TRP4. Cell Calcium 2000; 28:151-9. [PMID: 11020377 DOI: 10.1054/ceca.2000.0143] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have investigated the role of intracellular Ca2+ in the opening of capacitative Ca2+ entry (CCE) channels formed with rat TRP4 (rTRP4) using Xenopus oocytes. In rTRP4-expressing oocytes pretreated with thapsigargin, perfusion with A23187, a Ca2+ ionophore, significantly potentiated the delayed phase of the CCE-mediated Cl- current response evoked by extracellular perfusion with Ca2+, without affecting the transient phase of CCE response. In control oocytes, the potentiation of delayed CCE response by A23187 was not significant. Using cut-open recording in combination with artificial intracellular perfusion of oocytes, CCE-mediated Cl- response was recorded at controlled cytosolic Ca2+ concentrations. Intracellular perfusion with a Ca2+ free solution containing 10 mM EGTA abolished most of the CCE responses of both non-injected and rTRP4-expressing oocytes. The native CCE response was not fully recovered by subsequent increases in the intracellular Ca2+ concentration up to 300 nM. However, CCE response of the rTRP4-expressing oocytes was restored at an internal Ca2+ concentration of 110 nM. Blockade of endogenous Cl- channels with anion channel blocker isolated Ca2+ current flowing through CCE channels and clarified the difference in the sensitivity to an internal Ca2+ concentration. These findings indicate that recombinant CCE channels formed with rTRP4 are positively regulated by cytosolic Ca2+ at higher sensitivity compared to oocyte-endogenous CCE channels.
Collapse
Affiliation(s)
- M Kinoshita
- Departments of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | |
Collapse
|
1018
|
Burdakov D, Galione A. Two neuropeptides recruit different messenger pathways to evoke Ca2+ signals in the same cell. Curr Biol 2000; 10:993-6. [PMID: 10985387 DOI: 10.1016/s0960-9822(00)00649-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bombesin and cholecystokinin (CCK) peptides act as signalling molecules in both the central nervous system and gastrointestinal tract [1-4]. It was reported recently that nicotinic acid adenine dinucleotide phosphate (NAADP) releases Ca2+ from mammalian brain microsomes [5] and triggers Ca2+ signals in pancreatic acinar cells, where it is proposed to mediate CCK-evoked Ca2+ signals [6]. Here, for the first time, we have finely resolved bombesin-induced cytosolic Ca2+ oscillations in single pancreatic acinar cells by whole-cell patch-clamp monitoring of Ca2+-dependent ionic currents [6-8]. Picomolar concentrations of bombesin and CCK evoked similar patterns of cytosolic Ca2+ oscillations, but high, desensitising, NAADP concentrations selectively inhibited CCK, but not bombesin-evoked signals. Inhibiting inositol trisphosphate (IP3) receptors with a high concentration of caffeine blocked both types of oscillations. We further tested whether NAADP is involved in Ca2+ signals triggered by activation of the low-affinity CCK receptor sites. Nanomolar concentrations of CCK evoked non-oscillatory Ca2+ signals, which were not affected by desensitising NAADP receptors. Our results suggest that Ca2+-release channels gated by the novel Ca2+-mobilising molecule NAADP are only essential in specific Ca2+-mobilising pathways, whereas the IP3 receptors are generally required for Ca2+ signals. Thus, the same cell may use different combinations of intracellular Ca2+-releasing messengers to encode different external messages.
Collapse
Affiliation(s)
- D Burdakov
- Department of Pharmacology, University of Oxford, UK
| | | |
Collapse
|
1019
|
García-Benito M, San Román JI, López MA, García-Marín LJ, Calvo JJ. Nitric oxide stimulates tyrosine phosphorylation of p125(FAK) and paxillin in rat pancreatic acini. Biochem Biophys Res Commun 2000; 274:635-40. [PMID: 10924330 DOI: 10.1006/bbrc.2000.3192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some of the effects of several oncogenes, integrins, growth factors, and neuropeptides are mediated by tyrosine phosphorylation of the non-receptor tyrosine kinase p125(FAK) and the cytoskeletal protein paxillin. We have demonstrated that different stimuli cause tyrosine phosphorylation of p125(FAK) and paxillin in rat pancreatic acini. The aim of the present study was to determine whether exogenous NO activates this pathway. We demonstrate that in isolated rat pancreatic acini, a NO donor, sodium nitroprusside (SNP) stimulates, in a dose- and time-dependent way, tyrosine phosphorylation of p125(FAK) and paxillin. The same effects could be observed after incubating acini with 8-Br-cGMP. Moreover, the stimulation caused by SNP was completely abolished by two different guanylyl cyclase inhibitors, methylene blue, and LY-83583. These inhibitors also diminished unstimulated phosphorylation of p125(FAK) and paxillin. We conclude that in rat pancreatic acini exogenous NO causes p125(FAK) and paxillin tyrosine phosphorylation that is mediated by a guanylyl cyclase-dependent pathway.
Collapse
Affiliation(s)
- M García-Benito
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
1020
|
Mehta D, Tang DD, Wu MF, Atkinson S, Gunst SJ. Role of Rho in Ca(2+)-insensitive contraction and paxillin tyrosine phosphorylation in smooth muscle. Am J Physiol Cell Physiol 2000; 279:C308-18. [PMID: 10912996 DOI: 10.1152/ajpcell.2000.279.2.c308] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether Rho activation is required for Ca(2+)-insensitive paxillin phosphorylation, myosin light chain (MLC) phosphorylation, and contraction in tracheal muscle. Tyrosine-phosphorylated proteins have been implicated in the Ca(2+)-insensitive contractile activation of smooth muscle tissues. The contractile activation of tracheal smooth muscle increases tyrosine phosphorylation of the cytoskeletal proteins paxillin and focal adhesion kinase. Paxillin is implicated in integrin-mediated signal transduction pathways that regulate cytoskeletal organization and cell motility. In fibroblasts and other nonmuscle cells, paxillin tyrosine phosphorylation depends on the activation of Rho and is inhibited by cytochalasin, an inhibitor of actin polymerization. In permeabilized muscle strips, we found that ACh induced Ca(2+)-insensitive contraction, MLC phosphorylation, and paxillin tyrosine phosphorylation. Ca(2+)-insensitive contraction and MLC phosphorylation induced by ACh were inhibited by C3 transferase, an inhibitor of Rho activation; however, C3 transferase did not inhibit paxillin tyrosine phosphorylation. Ca(2+)-insensitive paxillin tyrosine phosphorylation was also not inhibited by the Rho kinase inhibitor Y-27632, by cytochalasin D, or by the inhibition of MLC phosphorylation. We conclude that, in tracheal smooth muscle, Rho mediates Ca(2+)-insensitive contraction and MLC phosphorylation but that Rho is not required for Ca(2+)-insensitive paxillin tyrosine phosphorylation. Paxillin phosphorylation also does not require actomyosin activation, nor is it inhibited by the actin filament capping agent cytochalasin D.
Collapse
Affiliation(s)
- D Mehta
- Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46202-5120, USA
| | | | | | | | | |
Collapse
|
1021
|
Abstract
Alpha4 integrins (alpha4beta1 and alpha4beta7) have a restricted distribution pattern and are critical for the development and diseases of the cardiovascular system. alpha4 integrins support unique biological properties such as promoting cell migration and inhibiting cell spreading and focal adhesion formation. We have found that the alpha4 integrin subunit directly and tightly binds to a signaling adapter molecule, paxillin, and disruption of the alpha4-paxillin interaction interferes with many of alpha4-dependent biological functions. Consequently, the interaction of alpha4 integrins with paxillin may play an important role in regulating alpha4-mediated functions. This review focuses on what we have known about the alpha4-paxillin interaction and discusses the possible mechanism of regulation for this interaction.
Collapse
Affiliation(s)
- S Liu
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
1022
|
Camello-Almaraz C, Pariente JA, Salido G, Camello PJ. Differential involvement of vacuolar H(+)-ATPase in the refilling of thapsigargin- and agonist-mobilized Ca(2+) stores. Biochem Biophys Res Commun 2000; 271:311-7. [PMID: 10799293 DOI: 10.1006/bbrc.2000.2633] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to evaluate the role of vacuolar H(+)-ATPase and proton gradients in the refilling of Ca(2+) stores in fura-2-loaded pancreatic acinar cells. Once depleted with a high level of ACh, the Ca(2+) stores were replenished with a Ca(2+)-containing solution. The degree of refilling was estimated with a second release in response to either ACh (ACh-releasable store) or thapsigargin (thapsigargin-releasable store), a specific inhibitor of the endoplasmic reticulum Ca(2+) pumps. Both the protonophore nigericin and folimycin, a specific inhibitor of the vacuolar H(+)-ATPase, reduced reuptake into the ACh-mobilized stores but not into the thapsigargin-releasable pools. These treatments effectively dissipated the subcellular pH gradients (revealed by confocal observation of the distribution of a marker for acidic compartments), and did not impair the [Ca(2+)](i) response to ACh in control cells. Our results indicate that thapsigargin and ACh release heterogeneous Ca(2+) stores which are differently operated by vacuolar proton ATPase.
Collapse
Affiliation(s)
- C Camello-Almaraz
- Department of Physiology, University of Extremadura, Cáceres, 10071, Spain
| | | | | | | |
Collapse
|
1023
|
Rosado JA, Salido GM, García LJ. Activation of m3 muscarinic receptors induces rapid tyrosine phosphorylation of p125(FAK), p130(cas), and paxillin in rat pancreatic acini. Arch Biochem Biophys 2000; 377:85-94. [PMID: 10775445 DOI: 10.1006/abbi.2000.1761] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tyrosine phosphorylation plays a key role in transmembrane and cytoplasmic signal transduction mechanisms stimulated by oncogenes, integrins, growth factors, neuropeptides, and bioactive lipids. Moreover, recent studies show that stimulation of odd-numbered muscarinic receptors increases the tyrosine phosphorylation of several proteins in different cellular types. The present study was aimed at examining whether activation of m3 muscarinic receptors in rat pancreatic acini evokes tyrosine phosphorylation of p125(FAK), and its substrates, p130(cas) and paxillin. Results show that stimulation of pancreatic acini with carbachol resulted in a rapid and transient increase in tyrosine phosphorylation of p125(FAK), p130(cas), and paxillin. Tyrosine phosphorylation of these proteins occurred in a time- and concentration-dependent manner. Simultaneous blockage of both PKC activation and increases in [Ca(2+)](i) partially decreased p125(FAK), p130(cas), and paxillin tyrosine phosphorylation stimulated by carbachol. Pretreatment of pancreatic acini with Clostridium botulinum C3 transferase, which specifically inactivates p21(rho), partially inhibited carbachol-induced p125(FAK), p130(cas), and paxillin tyrosine phosphorylation. In contrast, this treatment had no effect on amylase release stimulated by carbachol. Cytochalasin D, which disrupts actin microfilaments network, completely inhibited carbachol stimulated tyrosine phosphorylation of these proteins without having significant effects in carbachol-stimulated amylase secretion. These results dissociate tyrosine phosphorylation of p125(FAK), p130(cas), and paxillin from amylase secretion after m3 muscarinic receptors occupation in rat pancreatic acini. Taken together, these data suggest that (a) activation of m3 muscarinic receptors in rat pancreatic acini increases tyrosine phosphorylation of p125(FAK) and its substrates, p130(cas) and paxillin by diacylglycerol-activated PKC- and calcium- dependent, and independent pathways, (b) these responses require activation of p21(rho) and an intact actin cytoskeleton, and (c) p125(FAK), p130(cas), and paxillin are unlikely related to secretion in rat pancreatic acinar cells.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Extremadura, Cáceres, 10080-, Spain
| | | | | |
Collapse
|
1024
|
Rosado JA, Salido GM, García LJ. A role for phosphoinositides in tyrosine phosphorylation of p125 focal adhesion kinase in rat pancreatic acini. Cell Signal 2000; 12:173-82. [PMID: 10704824 DOI: 10.1016/s0898-6568(99)00083-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous studies have shown that different agonists increase tyrosine phosphorylation of the focal adhesion related proteins p125(FAK), p130(Cas), and paxillin in different cell types and that tyrosine phosphorylation depends on the integrity of the actin cytoskeleton. Because phosphoinositides are important for the maintenance of the cytoskeleton, the role of phosphoinositides in the tyrosine phosphorylation of these proteins in response to occupancy of m3 muscarinic and CCK(A) receptors has been investigated in pancreatic acini. Addition of carbachol or CCK-8 to pancreatic acini resulted in rapid increases in the tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin. Pretreatment of pancreatic acini with LY294002 or wortmannin resulted in a concentration-dependent inhibition of tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin stimulated by carbachol or CCK-8. Carbachol- or CCK-8-stimulated tyrosine phosphorylation of these proteins was not inhibited by rapamycin, PD 98059 or SB 203580, and thus it was dissociated from the activation of p70 S6 or MAP kinases. These results indicate that m3 muscarinic and CCK(A) receptor-mediated increase in p125(FAK), p130(Cas), and paxillin tyrosine phosphorylation in pancreatic acini depends on the ability of these cells to synthesise phosphoinositides.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Extremadura, 10080-, Cáceres, Spain.
| | | | | |
Collapse
|
1025
|
Leser J, Beil MF, Musa OA, Adler G, Lutz MP. Regulation of adherens junction protein p120(ctn) by 10 nM CCK precedes actin breakdown in rat pancreatic acini. Am J Physiol Gastrointest Liver Physiol 2000; 278:G486-91. [PMID: 10712269 DOI: 10.1152/ajpgi.2000.278.3.g486] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The initial pathophysiological events that characterize CCK-hyperstimulation pancreatitis include the breakdown of the actin filament system and disruption of cadherin-catenin protein complexes. Cadherins and catenins are part of adherens junctions, which may act as anchor for the cellular actin filament system. We examined the composition and regulation of adherens junctions during CCK-induced acinar cell damage. Freshly isolated CCK-stimulated rat pancreatic acini were examined for actin filaments and functional adherens junctions by immunocytology and laser confocal scanning microscopy or by coprecipitation and immunoblotting for E-cadherin, beta- and alpha-catenin, p120(ctn), and phosphotyrosine. In addition to E-cadherin and beta-catenin, acinar cells express the cadherin-regulatory protein p120(ctn) and the attachment protein alpha-catenin. Both colocalize and coimmunoprecipitate with E-cadherin in one complex, and all colocalize with the terminal actin web. Supramaximal secretory CCK concentrations (10 nM) initiated tyrosine phosphorylation of p120(ctn) but not of beta-catenin within 2 min, preceding the breakdown of the terminal actin web by several minutes. Under these conditions, the cadherin-catenin association within the adherens junction complex remained intact. We describe for the first time supramaximal CCK-dependent tyrosine phosphorylation of the adherens junction protein p120(ctn) and demonstrate the presence of an intact adherens junction protein complex in acinar cells. p120(ctn) may participate in the actin filament breakdown during experimental conditions mimicking pancreatitis.
Collapse
Affiliation(s)
- J Leser
- Department of Internal Medicine I, University of Ulm, 89070 Ulm, Germany
| | | | | | | | | |
Collapse
|
1026
|
Camello C, Pariente JA, Salido GM, Camello PJ. Role of proton gradients and vacuola H(+)-ATPases in the refilling of intracellular calcium stores in exocrine cells. Curr Biol 2000; 10:161-4. [PMID: 10679325 DOI: 10.1016/s0960-9822(00)00313-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Numerous hormones and neurotransmitters activate cells by increasing cytosolic calcium concentration ([Ca(2+)](i)), a key regulatory factor for many cellular processes. A pivotal feature of these Ca(2+) signals is the release of Ca(2+) from intracellular stores, which is followed by activation of extracellular calcium influx, allowing refilling of the stores by SERCA pumps associated with the endoplasmic reticulum. Although the mechanisms of calcium release and calcium influx have been extensively studied, the biology of the Ca(2+) stores is poorly understood. The presence of heterogeneous calcium pools in cells has been previously reported [1] [2] [3]. Although recent technical improvements have confirmed this heterogeneity [4], knowledge about the mechanisms underlying Ca(2+) transport within the stores is very scarce and rather speculative. A recent study in polarized exocrine cells [5] has revealed the existence of Ca(2+) tunneling from basolateral stores to luminal pools, where Ca(2+) is initially released upon cell activation. Here, we present evidence that, during stimulation, Ca(2+) transported into basolateral stores by SERCA pumps is conveyed toward the luminal pools driven by proton gradients generated by vacuolar H(+)-ATPases. This finding unveils a new aspect of the machinery of Ca(2+) stores.
Collapse
Affiliation(s)
- C Camello
- Department of Physiology, University of Extremadura, Faculty of Veterinary Science, P.O. Box 643, Cáceres, 10071, Spain
| | | | | | | |
Collapse
|
1027
|
Han B, Logsdon CD. CCK stimulates mob-1 expression and NF-kappaB activation via protein kinase C and intracellular Ca(2+). Am J Physiol Cell Physiol 2000; 278:C344-51. [PMID: 10666030 DOI: 10.1152/ajpcell.2000.278.2.c344] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supraphysiological concentrations of cholecystokinin (CCK) induce chemokine expression in rat pancreatic acini through the activation of the transcription factor NF-kappaB. In the current study, the intracellular signals involved in these pathophysiological effects of CCK were investigated. CCK induction of mob-1 expression in isolated rat pancreatic acini was blocked by the protein kinase C (PKC) inhibitors GF-109203X and Ro-32-0432 and by the intracellular Ca(2+) chelator BAPTA. CCK induced NF-kappaB nuclear translocation, and DNA binding was also blocked by GF-109203X and BAPTA. Direct activation of PKC with TPA induced mob-1 chemokine expression and activated NF-kappaB DNA binding to a similar extent as did CCK. Increasing intracellular Ca(2+) using ionomycin had no effect on mob-1 mRNA levels or NF-kappaB activity. Both CCK and TPA treatments decreased inhibitory kappaB-alpha (IkappaB-alpha) levels, whereas ionomycin had no effect. However, the effects of TPA on IkappaB-alpha degradation were less complete than for CCK. In combination, TPA and ionomycin degraded IkappaB-alpha to a similar extent as CCK. Therefore, activation of NF-kappaB and mob-1 expression by supraphysiological CCK is likely mediated by both PKC activation and elevated intracellular Ca(2+).
Collapse
Affiliation(s)
- B Han
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | |
Collapse
|
1028
|
Lajas AI, Pozo MJ, Camello PJ, Salido GM, Singh J, Pariente JA. Effect of dephostatin on intracellular free calcium concentration and amylase secretion in isolated rat pancreatic acinar cells. Mol Cell Biochem 2000; 205:163-9. [PMID: 10821434 DOI: 10.1023/a:1007086401390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigates the effects of dephostatin, a new tyrosine phosphatase inhibitor, on intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. Dephostatin evoked a sustained elevation in [Ca2+]i by mobilizing calcium from intracellular calcium stores in either the absence of extracellular calcium or the presence of lanthanium chloride (LaCl3). Pretreatment of acinar cells with dephostatin prevented cholecystokinin-octapeptide (CCK-8)-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF4), whereas co-incubation with CCK-8 enhances the plateau phase of calcium response to CCK-8 without modifying the transient calcium spike. The effects of dephostatin on calcium mobilization were reversed by the presence of the sulfhydryl reducing agent, dithiothreitol. Stimulation of acinar cells with thapsigargin in the absence of extracellular Ca2+ resulted in a transient rise in [Ca2+]i. Application of dephostatin in the continuous presence of thapsigargin caused a small but sustained elevation in [Ca2+]i. These results suggest that dephostatin can mobilize Ca2+ from both a thapsigargin-sensitive and thapsigargin-insensitive intracellular stores in pancreatic acinar cells. In addition, dephostatin can stimulate the release of amylase from pancreatic acinar cells and moreover, reduce the secretory response to CCK-8. The results indicate that dephostatin can release calcium from intracellular calcium pools and consequently induces amylase secretion in pancreatic acinar cells. These effects are likely due to the oxidizing effects of this compound.
Collapse
Affiliation(s)
- A I Lajas
- Department of Physiology, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain
| | | | | | | | | | | |
Collapse
|
1029
|
Arregui CO, Balsamo J, Lilien J. Regulation of signaling by protein-tyrosine phosphatases: potential roles in the nervous system. Neurochem Res 2000; 25:95-105. [PMID: 10685609 DOI: 10.1023/a:1007595617447] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During neuronal development, cells respond to a variety of environmental cues through cell surface receptors that are coupled to a signaling transduction machinery based on protein tyrosine phosphorylation and dephosphorylation. Receptor and non-receptor tyrosine kinases have received a great deal of attention; however, in the last few years, receptor (plasma membrane associated) and non-receptor protein-tyrosine phosphatases (PTPs) have also been shown to play important roles in development of the nervous system. In many cases PTPs have provocative distribution patterns or have been shown to be associated with specific cell adhesion and growth factor receptors. Additionally, altering PTP expression levels or activity impairs neuronal behavior. In this review we outline what is currently known about the role of PTPs in development, differentiation and neuronal physiology.
Collapse
Affiliation(s)
- C O Arregui
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
1030
|
Zhong H, Minneman KP. Activation of tyrosine kinases by alpha1A-adrenergic and growth factor receptors in transfected PC12 cells. Biochem J 1999; 344 Pt 3:889-94. [PMID: 10585878 PMCID: PMC1220713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
We compared the role of tyrosine kinases in alpha(1A)-adrenergic receptor (AR) and growth factor receptor stimulation of mitogen-activated protein kinase pathways in PC12 cells. Norepinephrine (NE) (noradrenaline), epidermal growth factor (EGF) and nerve growth factor (NGF) caused different patterns of tyrosine phosphorylation in PC12 cells stably expressing alpha(1A)-ARs. NE increased tyrosine phosphorylation of focal adhesion-related kinase Pyk2 and a 70 kDa protein, probably paxillin, whereas EGF strongly stimulated tyrosine phosphorylation of the EGF receptor and cytokine-activated kinase Jak2. The EGF receptor inhibitor AG1478 inhibited activation of extracellular signal-regulated kinases (ERKs) by EGF but not by NE. EGF and NGF strongly activated tyrosine phosphorylation of Shc and caused association of Src-homology collagen (Shc) with growth-factor-receptor-bound protein 2 (Grb2); however, neither NE nor UTP caused substantial activation of the Shc/Grb2 pathway. NE, UTP, EGF and NGF all increased tyrosine phosphorylation of Src, and this was inhibited by the Src inhibitor PP2. However, PP2 inhibited ERK activation in response to NE and UTP, but not in response to EGF or NGF. PP2 also completely blocked NE-induced PC12 cell differentiation, but had no measurable effect on NGF-induced differentiation. These studies show that activation of mitogen-activated protein kinase pathways by G-protein-coupled receptors and tyrosine kinase receptors proceed through distinct molecular pathways in PC12 cells, and support an obligatory role for Src activation in mitogenic responses to alpha(1A)-ARs in these cells.
Collapse
Affiliation(s)
- H Zhong
- Department of Pharmacology, Emory University Medical School, Atlanta, GA 30322, USA
| | | |
Collapse
|
1031
|
Abstract
Engagement of integrins and other adhesion receptors can induce tyrosine phosphorylation of focal adhesion kinase (FAK), a tyrosine kinase present in focal adhesions. Furthermore, in addition to adhesion receptors, a surprising variety of stimuli, acting either on specific surface receptors or on intracellular molecules, such as PKC or Rho, can induce also tyrosine phosphorylation of FAK. I suggest that a potential mechanism by which such distinct factors may modulate the tyrosine phosphorylation of FAK is the promotion of integrin or other adhesion receptor clustering at focal adhesions.
Collapse
Affiliation(s)
- J L Rodríguez-Fernández
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
1032
|
Tapia JA, Ferris HA, Jensen RT, García LJ. Cholecystokinin activates PYK2/CAKbeta by a phospholipase C-dependent mechanism and its association with the mitogen-activated protein kinase signaling pathway in pancreatic acinar cells. J Biol Chem 1999; 274:31261-31271. [PMID: 10531323 DOI: 10.1074/jbc.274.44.31261] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PYK2/CAKbeta is a recently described cytoplasmic tyrosine kinase related to p125 focal adhesion kinase (p125(FAK)) that can be activated by a number of stimuli including growth factors, lipids, and some G protein-coupled receptors. Studies suggest PYK2/CAKbeta may be important for coupling various G protein-coupled receptors to the mitogen-activated protein kinase (MAPK) cascade. The hormone neurotransmitter cholecystokinin (CCK) is known to activate both phospholipase C-dependent cascades and MAPK signaling pathways; however, the relationship between these remain unclear. In rat pancreatic acini, CCK-8 (10 nM) rapidly stimulated tyrosine phosphorylation and activation of PYK2/CAKbeta by both activation of high affinity and low affinity CCK(A) receptor states. Blockage of CCK-stimulated increases in protein kinase C activity or CCK-stimulated increases in [Ca(2+)](i), inhibited by 40-50% PYK2/CAKbeta but not p125(FAK) tyrosine phosphorylation. Simultaneous blockage of both phospholipase C cascades inhibited PYK2/CAKbeta tyrosine phosphorylation completely and p125(FAK) tyrosine phosphorylation by 50%. CCK-8 stimulated a rapid increase in PYK2/CAKbeta kinase activity assessed by both an in vitro kinase assay and autophosphorylation. Total PYK2/CAKbeta under basal conditions was largely localized (77 +/- 7%) in the membrane fraction, whereas total p125(FAK) was largely localized (86 +/- 3%) in the cytosolic fraction. With CCK stimulation, both p125(FAK) and PYK2/CAKbeta translocated to the plasma membrane. Moreover CCK stimulation causes a rapid formation of both PYK2/CAKbeta-Grb2 and PYK2/CAKbeta-Crk complexes. These results demonstrate that PYK2/CAKbeta and p125(FAK) are regulated differently by CCK(A) receptor stimulation and that PYK2/CAKbeta is probably an important mediator of downstream signals by CCK-8, especially in its ability to activate the MAPK signaling pathway, which possibly mediates CCK growth effects in normal and neoplastic tissues.
Collapse
Affiliation(s)
- J A Tapia
- Departamento de Fisiología, Universidad de Extremadura, Cáceres 10071, Spain
| | | | | | | |
Collapse
|
1033
|
Parfenova H, Haffner J, Leffler CW. Phosphorylation-dependent stimulation of prostanoid synthesis by nigericin in cerebral endothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C728-38. [PMID: 10516103 DOI: 10.1152/ajpcell.1999.277.4.c728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nigericin decreases intracellular pH (pH(i)) and stimulates prostanoid (PG) synthesis in endothelial cells from cerebral microvessels of newborn pigs. Nigericin-induced PG production was abolished by protein tyrosine kinase (PTK) inhibitors and amplified by phorbol 12-myristate 13-acetate (PMA) or protein tyrosine phosphatase (PTP) inhibitors. Nigericin-induced PG production in PMA-primed cells was potentiated by PTP inhibitors and abrogated by PTK inhibitors. Phospholipase A(2) (PLA(2)) activity was stimulated by nigericin in a phosphorylation-dependent manner. Nigericin's effects on PG production and PLA(2) activity were reproduced by ionomycin, which activates cytosolic PLA(2) (cPLA(2)). cPLA(2) was immunodetected in endothelial cell lysates. We found no evidence that nigericin's effects are mediated via mitogen-activated protein (MAP) kinase [extracellularly regulated kinase 1 (ERK1) and ERK2] activation: although nigericin stimulated detergent-soluble MAP kinase, its effects were not amplified by PMA or PTP inhibitors. Phosphorylation-dependent stimulation of PG synthesis was also observed when pH(i) was decreased by sodium propionate or a high level of CO(2). Altogether, our data indicate that nigericin and decreased pH(i) stimulate PG synthesis by a protein phosphorylation-dependent mechanism involving cross talk between pathways mediated by PTK and PTP and by protein kinase C; cPLA(2) appears to be a key enzyme affected by nigericin and decreased pH(i).
Collapse
Affiliation(s)
- H Parfenova
- Laboratory for Research in Neonatal Physiology, Department of Physiology, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
1034
|
Lajas AI, Pozo MJ, Camello PJ, Salido GM, Pariente JA. Phenylarsine oxide evokes intracellular calcium increases and amylase secretion in isolated rat pancreatic acinar cells. Cell Signal 1999; 11:727-34. [PMID: 10574327 DOI: 10.1016/s0898-6568(99)00044-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of the thiol reagent, phenylarsine oxide (PAO, 10(-5)-10(-3) M ), a membrane-permeable trivalent arsenical compound that specifically complexes vicinal sulfhydryl groups of proteins to form stable ring structures, were studied by monitoring intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. PAO increased [Ca2+]i by mobilizing calcium from intracellular stores, since this increase was observed in the absence of extracellular calcium. PAO also prevented the CCK-8-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF-4). In addition to the effects of PAO on calcium mobilization, it caused a significant increase in amylase secretion and reduced the secretory response to either CCK-8 or AlF-4. The effects of PAO on both [Ca2+]i and amylase release were reversed by the sulfhydryl reducing agent, dithiothreitol (2 mM). Pretreatment of acinar cells with high concentration of ryanodine (50 microM) reduced the PAO-evoked calcium release. However, PAO was still able to release a small fraction of Ca2+ from acinar cells in which agonist-releasable Ca2+ pools had been previously depleted by thapsigargin (0.5 microM) and ryanodine receptors were blocked by 50 microM ryanodine. We conclude that, in pancreatic acinar cells, PAO mainly releases Ca2+ from the ryanodine-sensitive calcium pool and consequently induces amylase secretion. These effects are likely to be due to the oxidizing effects of this compound.
Collapse
Affiliation(s)
- A I Lajas
- Department of Physiology, Faculty of Veterinary Science, University of Extremadura, Cáceres, Spain
| | | | | | | | | |
Collapse
|
1035
|
Abstract
The intracellular mechanisms regulating pancreatic acinar cell function are more complex than previously realized. This is probably due in part to the need to match the biosynthetic and secretory functions of the cells. Much information is available on how secretagogue receptors acutely couple through heterotrimeric G proteins to increase intracellular messengers, particularly cytoplasmic free Ca(2+), although details are still being worked out. Less is known about how Ca(2+) signals to induce fusion of zymogen granules with the apical plasma membrane. Investigation has focused on the proteins of the zymogen granule membrane, and several novel proteins have recently been identified. In addition, understanding of the three MAP kinase cascades, the mTOR-p70S6 kinase pathway, and the focal adhesion kinase pathway in acinar cells is increasing. The functions of these pathways in acini have been linked to mitogenesis, protein synthesis, and regulation of the cytoskeleton.
Collapse
Affiliation(s)
- J A Williams
- Departments of Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
1036
|
Shimoni Y. Hormonal control of cardiac ion channels and transporters. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:67-108. [PMID: 10446502 DOI: 10.1016/s0079-6107(99)00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Y Shimoni
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Alta., Canada.
| |
Collapse
|
1037
|
González A, Schmid A, Sternfeld L, Krause E, Salido GM, Schulz I. Cholecystokinin-evoked Ca(2+) waves in isolated mouse pancreatic acinar cells are modulated by activation of cytosolic phospholipase A(2), phospholipase D, and protein kinase C. Biochem Biophys Res Commun 1999; 261:726-733. [PMID: 10441493 DOI: 10.1006/bbrc.1999.1106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We employed confocal laser-scanning microscopy to monitor cholecystokinin (CCK)-evoked Ca(2+) signals in fluo-3-loaded mouse pancreatic acinar cells. CCK-8-induced Ca(2+) signals start at the luminal cell pole and subsequently spread toward the basolateral membrane. Ca(2+) waves elicited by stimulation of high-affinity CCK receptors (h.a.CCK-R) with 20 pM CCK-8 spread with a slower rate than those induced by activation of low-affinity CCK receptors (l.a. CCK-R) with 10 nM CCK-8. However, the magnitude of the initial Ca(2+) release was the same at both CCK-8 concentrations, suggesting that the secondary Ca(2+) release from intracellular stores is modulated by activation of different intracellular pathways in response to low and high CCK-8 concentrations. Our experiments suggest that the propagation of Ca(2+) waves is modulated by protein kinase C (PKC) and arachidonic acid (AA). The data indicate that h.a. CCK-R are linked to phospholipase C (PLC) and phospholipase A(2) (PLA(2)) cascades, whereas l.a.CCK-R are coupled to PLC and phospholipase D (PLD) cascades. The products of PLA(2) and PLD activation, AA and diacylglycerol (DAG), cause inhibition of Ca(2+) wave propagation by yet unknown mechanisms.
Collapse
Affiliation(s)
- A González
- Faculty of Medicine, University of Saarland, Homburg/Saar, D-66421, Germany
| | | | | | | | | | | |
Collapse
|
1038
|
Pariente JA, Lajas AI, Pozo MJ, Camello PJ, Salido GM. Oxidizing effects of vanadate on calcium mobilization and amylase release in rat pancreatic acinar cells. Biochem Pharmacol 1999; 58:77-84. [PMID: 10403521 DOI: 10.1016/s0006-2952(99)00050-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of vanadate were examined by monitoring intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase-dispersed rat pancreatic acinar cells. Vanadate increased [Ca2+]i by mobilizing calcium from agonist-releasable intracellular calcium stores, since this increase was observed in the absence of extracellular calcium and vanadate failed to increase [Ca2+]i after treatment with thapsigargin in calcium-free medium. Moreover, pretreatment of acinar cells with vanadate prevented the cholecystokinin octapeptide (CCK-8)-induced signal of [Ca2+]i, whereas co-incubation with CCK-8 potentiated the plateau phase of calcium response to CCK-8 without modifying the transient calcium spike. The effects of vanadate on calcium mobilization were reversed by the presence of the sulfhydryl reducing agent dithiothreitol. Vanadate also activated the calcium influx, since an additional enhancement of calcium influx induced by thapsigargin-evoked intracellular store depletion was observed and vanadate reversed the inhibitory effect of lanthanum (an inhibitor of calcium entry) into acinar cells. In addition, vanadate evoked a concentration-dependent release of amylase from pancreatic acinar cells and moreover, reduced the secretory response to CCK-8. We conclude that, in pancreatic acinar cells, vanadate releases calcium from the agonist-releasable intracellular calcium pool and consequently induces amylase secretion. These effects are likely due to the oxidizing effects of this compound.
Collapse
Affiliation(s)
- J A Pariente
- Department of Physiology, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain.
| | | | | | | | | |
Collapse
|
1039
|
Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:435-78. [PMID: 10354709 DOI: 10.1016/s0079-6107(98)00052-2] [Citation(s) in RCA: 902] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integrin receptor binding to extracellular matrix proteins generates intracellular signals via enhanced tyrosine phosphorylation events that are important for cell growth, survival, and migration. This review will focus on the functions of the focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) and its role in linking integrin receptors to intracellular signaling pathways. FAK associates with several different signaling proteins such as Src-family PTKs, p130Cas, Shc, Grb2, PI 3-kinase, and paxillin. This enables FAK to function within a network of integrin-stimulated signaling pathways leading to the activation of targets such as the ERK and JNK/mitogen-activated protein kinase pathways. Focus will be placed on the structural domains and sites of FAK tyrosine phosphorylation important for FAK-mediated signaling events and how these sites are conserved in the FAK-related PTK, Pyk2. We will review what is known about FAK activation by integrin receptor-mediated events and also non-integrin stimuli. In addition, we discuss the emergence of a consensus FAK substrate phosphorylation sequence. Emphasis will also be placed on the role of FAK in generating cell survival signals and the cleavage of FAK during caspase-mediated apoptosis. An in-depth discussion will be presented of integrin-stimulated signaling events occurring in the FAK knockout fibroblasts (FAK-) and how these cells exhibit deficits in cell migration. FAK re-expression in the FAK- cells confirms the role of this PTK in the regulation of cell morphology and in promoting cell migration events. In addition, these results reinforce the potential role for FAK in promoting an invasive phenotype in human tumors.
Collapse
Affiliation(s)
- D D Schlaepfer
- Scripps Research Institute, Department of Immunology, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
1040
|
Sweiry JH, Shibuya I, Asada N, Niwa K, Doolabh K, Habara Y, Kanno T, Mann GE. Acute oxidative stress modulates secretion and repetitive Ca2+ spiking in rat exocrine pancreas. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1454:19-30. [PMID: 10354511 DOI: 10.1016/s0925-4439(99)00021-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effects of the oxidant tert-butylhydroperoxide (t-buOOH) on carbachol-stimulated pancreatic secretion in the vascularly perfused rat pancreas have been studied in parallel with [Ca2+]i signalling and amylase output in perifused rat pancreatic acinar cells. Perfusion of the pancreas with t-buOOH (0.1-1 mM) caused a rapid and irreversible inhibition of carbachol-stimulated (3x10-7 M) amylase and fluid secretion. Pre-perfusion of the pancreas with vitamin C and dithiothreitol or a cocktail of GSH and GSH-precursor amino acids provided only marginal protection against the deleterious effects of t-buOOH, even though GSH levels were elevated significantly. In perifused pancreatic acini, repetitive [Ca2+]i spikes evoked by carbachol (3x10-7 M) were sustained for 40 min. t-buOOH (1 mM) acutely increased the amplitude and duration of Ca2+ spikes, then attenuated Ca2+ spiking and subsequently caused a marked and sustained rise in [Ca2+]i. t-buOOH-induced alterations in carbachol-stimulated [Ca2+]i signalling and amylase release in perifused pancreatic acini were prevented by vitamin C. Although vitamin C restored impaired Ca2+ signalling and maintained amylase output in pancreatic acini, it seems likely that oxidative stress inhibits fluid secretion irreversibly in the intact pancreas, resulting in a loss of amylase output. Thus, perturbations in [Ca2+]i signalling may not fully explain the secretory block caused by oxidative stress in acute pancreatitis.
Collapse
Affiliation(s)
- J H Sweiry
- Division of Physiology, GKT School of Biomedical Sciences, King's College London, Campden Hill Road, London W8 7AH, UK
| | | | | | | | | | | | | | | |
Collapse
|
1041
|
Wojcikiewicz RJ, Ernst SA, Yule DI. Secretagogues cause ubiquitination and down-regulation of inositol 1, 4,5-trisphosphate receptors in rat pancreatic acinar cells. Gastroenterology 1999; 116:1194-201. [PMID: 10220512 DOI: 10.1016/s0016-5085(99)70023-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The action of several exocrine pancreas secretagogues depends on the second messenger inositol 1,4, 5-trisphosphate (IP3), which, via endoplasmic reticulum-located IP3 receptors, mobilizes intracellular Ca2+ stores. Signaling pathways like this one are regulated at multiple loci. To determine whether IP3 receptors are one of these loci, we measured IP3 receptor concentration, distribution, and modification in secretagogue-stimulated rat pancreatic acinar cells. METHODS Isolated rat pancreatic acinar cells were exposed to cholecystokinin and other secretagogues, or rats were injected intraperitoneally with cerulein. Then samples of cells or pancreata were probed for IP3 receptor content and distribution as well as for ubiquitin association with IP3 receptors. RESULTS Secretagogues rapidly down-regulated acinar cell IP3 receptors both in vitro and in vivo. They also elicited receptor redistribution and caused receptors to become ubiquitinated, indicating that the ubiquitin/proteasome proteolytic pathway contributes to the down-regulation. Surprisingly, however, proteasome inhibitors did not block IP3 receptor down-regulation, and phospholipase Cbeta1 and protein kinase C also were down-regulated. Thus, secretagogues simultaneously activate an additional proteolytic pathway. CONCLUSIONS Secretagogues rapidly down-regulate IP3 receptors and other proteins involved in intracellular signaling by a mechanism that involves, but is not limited to, the ubiquitin/proteasome pathway. Loss of these proteins may account for the disruption of Ca2+ mobilization that occurs in models of acute pancreatitis, and may contribute to cell adaptation under physiological conditions.
Collapse
Affiliation(s)
- R J Wojcikiewicz
- Department of Pharmacology, State University of New York Health Science Center at Syracuse, Syracuse, New York, USA.
| | | | | |
Collapse
|
1042
|
Camello C, Pariente JA, Salido GM, Camello PJ. Sequential activation of different Ca2+ entry pathways upon cholinergic stimulation in mouse pancreatic acinar cells. J Physiol 1999; 516 ( Pt 2):399-408. [PMID: 10087340 PMCID: PMC2269261 DOI: 10.1111/j.1469-7793.1999.0399v.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1998] [Accepted: 01/13/1999] [Indexed: 11/30/2022] Open
Abstract
1. We have studied capacitative calcium entry (CCE) under different experimental conditions in fura-2-loaded mouse pancreatic acinar cells by digital microscopic fluorimetry. CCE was investigated during [Ca2+]i decay after cell stimulation with a supramaximal concentration of ACh (10 microM) or during Ca2+ readmission in Ca2+-depleted cells (pretreated with thapsigargin or ACh). 2. La3+ and Zn2+ (100 microM) inhibited CCE during Ca2+ readmission but had negligible effects during ACh decay. In contrast flufenamic acid (100 microM), an inhibitor of non-selective cation channels, genistein (10 microM), a broad-range tyrosine kinase inhibitor, and piceatannol (10 microM), an inhibitor specific for non-receptor Syk tyrosine kinase, inhibited CCE during ACh decay but not during Ca2+ reintroduction. 3. Simultaneous detection of Mn2+ entry and [Ca2+]i measurement showed that, in the presence of extracellular calcium, application of 100 microM Mn2+ during ACh decay resulted in manganese influx without alteration of calcium influx, whilst when applied during Ca2+ readmission, Mn2+ entry was significantly smaller and induced a clear inhibition of CCE. 4. Application of the specific protein kinase C inhibitor GF109293X (3 microM) reduced CCE in Ca2+-depleted cells, whereas the activator phorbol 12-myristate, 13-acetate (3 microM) increased Ca2+ entry. 5. Based on these results we propose that cholinergic stimulation of mouse pancreatic acinar cells induces Ca2+ influx with an initial phase operated by a non-specific cation channel, sensitive to flufenamic acid and tyrosine kinase inhibitors but insensitive to lanthanum and divalent cations, followed by a moderately Ca2+-selective conductance inhibited by lanthanum and divalent cations.
Collapse
Affiliation(s)
- C Camello
- University of Extremadura, Department of Physiology, Faculty of Veterinary Science, 10071 Cáceres, Spain.
| | | | | | | |
Collapse
|
1043
|
Rosfjord EC, Maemura M, Johnson MD, Torri JA, Akiyama SK, Woods VL, Dickson RB. Activation of protein kinase C by phorbol esters modulates alpha2beta1 integrin on MCF-7 breast cancer cells. Exp Cell Res 1999; 248:260-71. [PMID: 10094832 DOI: 10.1006/excr.1998.4390] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular adhesions to other cells and to the extracellular matrix play crucial roles in the malignant progression of cancer. In this study, we investigated the role of protein kinase C (PKC) in the regulation of cell-substratum adhesion by the breast adenocarcinoma cell line MCF-7. A PKC activator, 12-O-tetradecanoylphorbol-l, 3-acetate (TPA), stimulated cell adhesion to laminin and collagen I in a dose-dependent manner over a 1- to 4-h interval. This enhanced adhesion was mediated by alpha2beta1 integrin, since both anti-alpha2 and anti-beta1 blocking antibodies each completely abrogated the TPA-induced adhesion. FACS analysis determined that TPA treatment does not change the cell surface expression of alpha2beta1 integrin over a 4-h time interval. However, alpha2beta1 levels were increased after 24 h of TPA treatment. Thus, the enhanced avidity of alpha2beta1-dependent cellular adhesion preceded the induction of alpha2beta1 cell surface expression. Northern blot analysis revealed that mRNA levels of both alpha2 and beta1 subunits were increased after exposure to TPA for 4 h, indicating that the induction of alpha2beta1 mRNA preceded that of its cell surface expression. This further suggested that the TPA-induced avidity of alpha2beta1 was independent of increased expression of alpha2beta1. Pretreatment of cells with the PKC inhibitor calphostin C partially antagonized the TPA-induced increase in expression of alpha2beta1 integrin expression and of alpha2beta1-mediated cellular adhesion. To identify a possible mechanism by which TPA could be acting to promote the rapid induction of alpha2beta1 adhesion, we treated the cells with the Rho-GTPase inhibitor Clostridium botulinumexotoxin C3. C3 inhibited TPA-induced adhesion to laminin and collagen I in a dose-dependant manner, suggesting a likely role for Rho in TPA-induced adhesion. Together, these results suggest that PKC can modulate the alpha2beta1-dependent adhesion of MCF-7 cells by two distinct mechanisms: altering the gene expression of integrins alpha2 and beta1 and altering the avidity of the alpha2beta1 integrin by a Rho-dependant mechanism.
Collapse
Affiliation(s)
- E C Rosfjord
- Lombardi Cancer Research Center, Georgetown University, Washington, DC, 20007, USA
| | | | | | | | | | | | | |
Collapse
|
1044
|
Nozu F, Tsunoda Y, Ibitayo AI, Bitar KN, Owyang C. Involvement of RhoA and its interaction with protein kinase C and Src in CCK-stimulated pancreatic acini. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G915-23. [PMID: 10198335 DOI: 10.1152/ajpgi.1999.276.4.g915] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We evaluated intracellular pathways responsible for the activation of the small GTP-binding protein Rho p21 in rat pancreatic acini. Intact acini were incubated with or without CCK and carbachol, and Triton X-100-soluble and crude microsomes were used for Western immunoblotting. When a RhoA-specific antibody was used, a single band at the location of 21 kDa was detected. CCK (10 pM-10 nM) and carbachol (0.1-100 microM) dose dependently increased the amount of immunodetectable RhoA with a peak increase occurring at 3 min. High-affinity CCK-A-receptor agonists JMV-180 and CCK-OPE (1-1,000 nM) did not increase the intensities of the RhoA band, suggesting that stimulation of RhoA is mediated by the low-affinity CCK-A receptor. Although an increase in RhoA did not require the presence of extracellular Ca2+, the intracellular Ca2+ chelator 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM abolished the appearance of the RhoA band in response to CCK and carbachol. The Gq protein inhibitor G protein antagonist-2A (10 microM) and the phospholipase C (PLC) inhibitor U-73122 (10 microM) markedly reduced RhoA bands in response to CCK. The protein kinase C (PKC) activator phorbol ester (10-1,000 nM) dose dependently increased the intensities of the RhoA band, which were inhibited by the PKC inhibitor K-252a (1 microM). The pp60(c-src) inhibitor herbimycin A (6 microM) inhibited the RhoA band in response to CCK, whereas the calmodulin inhibitor W-7 (100 microM) and the phosphoinositide 3-kinase inhibitor wortmannin (6 microM) had no effect. RhoA was immunoprecipitated with Src, suggesting association of RhoA with Src. Increases in mass of this complex were observed with CCK stimulation. In permeabilized acini, the Rho inhibitor Clostridium botulinum C3 exoenzyme dose dependently inhibited amylase secretion evoked by a Ca2+ concentration with an IC50 of C3 exoenzyme at 1 ng/ml. We concluded that the small GTP-binding protein RhoA p21 exists in pancreatic acini and appears to be involved in the mediation of pancreatic enzyme secretion evoked by CCK and carbachol. RhoA pathways are involved in the activation of PKC and Src cascades via Gq protein and PLC.
Collapse
Affiliation(s)
- F Nozu
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
1045
|
Ferris HA, Tapia JA, García LJ, Jensen RT. CCKA receptor activation stimulates p130(Cas) tyrosine phosphorylation, translocation, and association with Crk in rat pancreatic acinar cells. Biochemistry 1999; 38:1497-1508. [PMID: 9931015 DOI: 10.1021/bi981903w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p130(Cas) (Crk-associated substrate), because of its structure as an adapter protein, can interact when tyrosine-phosphorylated with a large number of cellular proteins and therefore be an important modulator of downstream signals. A number of growth factors, lipids, and a few G protein-coupled receptors can stimulate p130(Cas) tyrosine phosphorylation. Recent studies show that tyrosine phosohorylation of intracellular proteins by the hormone/neurotransmitter cholecystokinin (CCK) in rat pancreatic acinar cells may be an important signaling cascade. In this study, we show in rat dispersed pancreatic acini CCK-8 rapidly stimulates tyrosine phosphorylation of p130(Cas), reaching a maximum (6.6 +/- 1. 4)-fold increase with a half-maximal effect at 0.3 nM. Activation of protein kinase C by TPA or increases in [Ca2+]i by the calcium ionophore A23187 stimulated p130(Cas) phosphorylation. Blockade of CCK increases in [Ca2+]i or PKC activity did not alter CCK-8-stimulated p130(Cas) phosphorylation; however, simultaneous blockage of both cascades caused a 50% inhibition. Partial inactivation by C. botulinum toxin of the small GTP-binding protein Rho caused a 41 +/- 12% decrease in the CCK-stimulated p130(Cas) phosphorylation. Disruption of the actin cytoskeleton with cytochalasin D, but not the microtubule network with colchicine, completely inhibited CCK-8-stimulated p130(Cas) phosphorylation. Total p130(Cas) under basal conditions was largely localized (70 +/- 2%) in the membrane fraction, and stimulation with CCK-8 induced total p130(Cas) translocation from the cytosolic fraction. CCK stimulation also caused a (5 +/- 1)-fold increase in p130(Cas) tyrosine phosphorylated in the plasma membrane. Treatment with tyrphostin B44 inhibited CCK-8-stimulated p130(Cas) phosphorylation, but it had no effect on p130(Cas) translocation. CCK-8 caused rapid formation of a p130(Cas)-Crk complex. In conclusion, our results demonstrate CCKA receptor activation causes rapid tyrosine phosphorylation of p130(Cas) through PLC-dependent and -independent mechanisms that require the participation of the small GTP-binding protein Rho and the integrity of the actin cytoskeleton, but not the microtubule network. Moreover, CCKA receptor activation causes translocation of p130(Cas) to the membrane and an increase in membrane tyrosine-phosphorylated p130(Cas). The translocation to the membrane does not require antecedent tyrosine phosphorylation. CCKA activation promotes the rapid formation of a p130(Cas)-Crk complex. These results suggest that p130(Cas) is likely an important modulator of downstream signals activated by CCK-8, possibly involved in regulating numerous cellular effects, such as effects on cell growth or cell shape.
Collapse
Affiliation(s)
- H A Ferris
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
1046
|
Leser J, Lührs H, Beil MF, Adler G, Lutz MP. Cholecystokinin-induced redistribution of paxillin in rat pancreatic acinar cells. Biochem Biophys Res Commun 1999; 254:400-5. [PMID: 9918850 DOI: 10.1006/bbrc.1998.9413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) dose-dependently stimulates enzyme secretion or loss of cell integrity in the exocrine pancreas. Signaling mechanims include tyrosine phosphorylation of p125(FAK) and paxillin. Here, we examine their potential function. Maximum phosphorylation of both proteins was observed after stimulation of freshly isolated rat pancreatic acini with 10 nM CCK, a concentration known to initiate breakdown of the terminal actin web and cell damage. Under these conditions, CCK initiated transient redistribution of paxillin from the apical cytosol to the apical and lateral plasma membrane within 2 min, where it colocalized with the terminal actin web. Relocation of paxillin was confirmed in subcellular fractions by western blotting and coincided with maximum phosphorylation of membrane-bound p125(FAK) and paxillin. Subsequently, paxillin was redistributed to the basolateral cytosol and was degraded. p125(FAK) remained membrane-bound. We conclude that phosphorylation and redistribution of paxillin and phosphorylation of p125(FAK) may participate in the CCK-induced disassembly of acinar cell actin.
Collapse
Affiliation(s)
- J Leser
- Department of Internal Medicine I, University of Ulm, Ulm, 89070, Germany
| | | | | | | | | |
Collapse
|
1047
|
Tapia JA, Camello C, Jensen RT, García LJ. EGF stimulates tyrosine phosphorylation of focal adhesion kinase (p125FAK) and paxillin in rat pancreatic acini by a phospholipase C-independent process that depends on phosphatidylinositol 3-kinase, the small GTP-binding protein, p21rho, and the integrity of the actin cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1448:486-499. [PMID: 9990300 DOI: 10.1016/s0167-4889(98)00157-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Epidermal growth factor (EGF) is a potent mitogen in many cell types including pancreatic cells. Recent studies show that the effects of some growth factors on growth and cell migration are mediated by tyrosine phosphorylation of the cytosolic tyrosine kinase p125 focal adhesion kinase (p125FAK) and the cytoskeletal protein, paxillin. The aim of the present study was to determine whether EGF activates this pathway in rat pancreatic acini and causes tyrosine phosphorylation of each of these proteins, and to examine the intracellular pathways involved. Treatment of pancreatic acini with EGF induced a rapid, concentration-dependent increase in p125FAK and paxillin tyrosine phosphorylation. Depletion of the intracellular calcium pool or inhibition of PKC activation had no effect on the response to EGF. However, inhibition of the phosphatidylinositol 3-kinase (PI3-kinase) or inactivation of p21rho inhibited EGF-stimulated phosphorylation of p125FAK and paxillin by more than 70%. Finally, cytochalasin D, a selective disrupter of the actin filament network, completely inhibited EGF-stimulated tyrosine phosphorylation of both proteins. All these treatments did not modify EGF receptor autophosphorylation in response to EGF. These results identify p125FAK and paxillin as components of the intracellular pathways stimulated after EGF receptor occupation in rat pancreatic acini. Activation of this cascade requires activation of PI3-kinase and participation of p21rho, but not PKC activation and calcium mobilization.
Collapse
Affiliation(s)
- J A Tapia
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | | | | |
Collapse
|
1048
|
Rosado JA, Salido GM, Jensen RT, Garcia LJ. Are tyrosine phosphorylation of p125(FAK) and paxillin or the small GTP binding protein, rho, needed for CCK-stimulated pancreatic amylase secretion? BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:412-426. [PMID: 9739170 DOI: 10.1016/s0167-4889(98)00072-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studies of a possible role of tyrosine phosphorylation in the secretory process in rat pancreatic acinar cells provide conflicting conclusions. Recent studies show that tyrosine phosphorylation of the focal adhesion kinase, p125FAK and the cytoskeletal protein, paxillin, may mediate a number of cellular changes and this phosphorylation is dependent on the activation of the small GTP binding protein, p21Rho (Rho). In this work we have investigated the role of tyrosine phosphorylation of each of these proteins and of the activation of Rho in pancreatic enzyme secretion. Pretreatment with genistein, a tyrosine kinase inhibitor, decreased CCK-8-stimulated tyrosine phosphorylation of p125FAK and paxillin and CCK-8-stimulated amylase secretion by more than 60%, raising the possibility that tyrosine phosphorylation of these two proteins could be important in the ability of CCK-8 to stimulate amylase release. However, genistein did not alter the amylase release stimulated by TPA but inhibited TPA-stimulated p125FAK and paxillin tyrosine phosphorylation by 70%. Pretreatment with C3 transferase, which specifically inactivates Rho, causes a decrease in CCK-8-induced maximal amylase release by 33%. Moreover, C3 transferase pretreatment causes a 48% and a 38% decrease in the tyrosine phosphorylation of p125FAK and paxillin by CCK-8, respectively. Pretreatment with different concentrations of cytochalasin D, an actin cytoskeleton assembly inhibitor, completely inhibited CCK-8-stimulated tyrosine phosphorylation of p125FAK and paxillin without having any effect on either the potency or efficacy of CCK-8 at stimulating amylase release. Furthermore, cytochalasin D completely inhibited TPA-stimulated tyrosine phosphorylation of both proteins without affecting TPA-stimulated amylase release. These results show that tyrosine phosphorylation of p125FAK and paxillin is not required for CCK-8 stimulation of enzyme secretion. However, our results suggest Rho is involved in the CCK-8 stimulation of amylase release by a parallel pathway to its involvement in the CCK-8-stimulated tyrosine phosphorylation of p125FAK and paxillin.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Extremadura, 10071 Cáceres, Spain
| | | | | | | |
Collapse
|
1049
|
González A, Pfeiffer F, Schmid A, Schulz I. Effect of intracellular pH on acetylcholine-induced Ca2+ waves in mouse pancreatic acinar cells. Am J Physiol Cell Physiol 1998; 275:C810-C817. [PMID: 9730965 DOI: 10.1152/ajpcell.1998.275.3.c810] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used fluo 3-loaded mouse pancreatic acinar cells to investigate the relationship between Ca2+ mobilization and intracellular pH (pHi). The Ca2+-mobilizing agonist ACh (500 nM) induced a Ca2+ release in the luminal cell pole followed by spreading of the Ca2+ signal toward the basolateral side with a mean speed of 16.1 +/- 0.3 micron/s. In the presence of an acidic pHi, achieved by blockade of the Na+/H+ exchanger or by incubation of the cells in a Na+-free buffer, a slower spreading of ACh-evoked Ca2+ waves was observed (7.2 +/- 0.6 micron/s and 7.5 +/- 0.3 micron/s, respectively). The effects of cytosolic acidification on the propagation rate of ACh-evoked Ca2+ waves were largely reversible and were not dependent on the presence of extracellular Ca2+. A reduction in the spreading speed of Ca2+ waves could also be observed by inhibition of the vacuolar H+-ATPase with bafilomycin A1 (11.1 +/- 0.6 micron/s), which did not lead to cytosolic acidification. In contrast, inhibition of the endoplasmic reticulum Ca2+-ATPase by 2,5-di-tert-butylhydroquinone led to faster spreading of the ACh-evoked Ca2+ signals (25.6 +/- 1.8 micron/s), which was also reduced by cytosolic acidification or treatment of the cells with bafilomycin A1. Cytosolic alkalinization had no effect on the spreading speed of the Ca2+ signals. The data suggest that the propagation rate of ACh-induced Ca2+ waves is decreased by inhibition of Ca2+ release from intracellular stores due to cytosolic acidification or to Ca2+ pool alkalinization and/or to a decrease in the proton gradient directed from the inositol 1,4, 5-trisphosphate-sensitive Ca2+ pool to the cytosol.
Collapse
Affiliation(s)
- A González
- Department of Physiology II, University of Saarland, D-66421 Homburg/Saar, Germany
| | | | | | | |
Collapse
|
1050
|
Feick P, Gilhaus S, Schulz I. Pervanadate stimulates amylase release and protein tyrosine phosphorylation of paxillin and p125(FAK) in differentiated AR4-2J pancreatic acinar cells. J Biol Chem 1998; 273:16366-73. [PMID: 9632700 DOI: 10.1074/jbc.273.26.16366] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have studied the role of protein tyrosine phosphorylation in amylase secretion from differentiated AR4-2J cells. The secretagogue bombesin, the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), and the protein-tyrosine phosphatase inhibitor pervanadate induced tyrosine phosphorylation of different proteins, including paxillin and p125(FAK), which was reduced or blocked by the tyrosine kinase inhibitors genistein and tyrphostin B56, respectively. Both PMA and pervanadate continuously increased amylase secretion with a similar time course, reaching the level of bombesin-induced amylase release after 60 min. Their effects were not additive and could be inhibited by preincubation of AR4-2J cells with genistein or tyrphostin B56, respectively. Inhibition of protein kinase C with Ro 31-8220 nearly abolished the effects of PMA, but had no effect on either pervanadate-induced protein tyrosine phosphorylation or amylase secretion. An increase in cytosolic free Ca2+ concentration by thapsigargin or A23187 caused a rapid increase in amylase release within the initial 5 min. In the presence of PMA or pervanadate, amylase secretion was further stimulated to levels comparable to those induced by bombesin after 30 min of stimulation. Inhibition of PMA-induced amylase secretion by Ro 31-8220 was less at elevated cytosolic free Ca2+ concentrations than without Ca2+. Furthermore, an increase in cytosolic free Ca2+ concentration had no effect on protein tyrosine phosphorylation in either the absence or presence of PMA or pervanadate. We therefore conclude that in the cascade of events that lead to bombesin-induced protein secretion from AR4-2J cells, protein tyrosine phosphorylation occurs downstream of protein kinase C activation. A further step in secretion that is Ca2+-dependent occurs distal to protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- P Feick
- Institute of Physiology II, University of the Saarland, 66421 Homburg/Saar, Germany
| | | | | |
Collapse
|