1001
|
Wang L, Lee YK, Bundman D, Han Y, Thevananther S, Kim CS, Chua SS, Wei P, Heyman RA, Karin M, Moore DD. Redundant pathways for negative feedback regulation of bile acid production. Dev Cell 2002; 2:721-31. [PMID: 12062085 DOI: 10.1016/s1534-5807(02)00187-9] [Citation(s) in RCA: 381] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The orphan nuclear hormone receptor SHP has been proposed to have a key role in the negative feedback regulation of bile acid production. Consistent with this, mice lacking the SHP gene exhibit mild defects in bile acid homeostasis and fail to repress cholesterol 7-alpha-hydroxylase expression in response to a specific agonist for the bile acid receptor FXR. However, this repression is retained in SHP null mice fed bile acids, demonstrating the existence of compensatory repression pathways of bile acid signaling. We provide evidence for two such pathways, based on activation of the xenobiotic receptor PXR or the c-Jun N-terminal kinase JNK. We conclude that redundant mechanisms regulate this critical aspect of cholesterol homeostasis.
Collapse
Affiliation(s)
- Li Wang
- Department of Molecular and Cellular Biology, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1002
|
Goodwin B, Kliewer SA. Nuclear receptors. I. Nuclear receptors and bile acid homeostasis. Am J Physiol Gastrointest Liver Physiol 2002; 282:G926-31. [PMID: 12016116 DOI: 10.1152/ajpgi.00044.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile acids are required for the absorption of lipids and fat-soluble vitamins. The hepatic biosynthesis of bile acids is a major pathway for the catabolism and removal of cholesterol from the body. Because of their intrinsic toxicity, bile acid synthesis, transport, and metabolism must be tightly regulated. It is now apparent that members of the nuclear receptor family of lipid-activated transcription factors are key regulators of these physiological processes. A greater understanding of these receptors should afford novel opportunities for therapeutic intervention in chronic diseases such as cholestasis and dyslipidemia.
Collapse
Affiliation(s)
- Bryan Goodwin
- Nuclear Receptor Discovery Research, GlaxoSmithKline, Five Moore Drive, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
1003
|
Jung D, Podvinec M, Meyer UA, Mangelsdorf DJ, Fried M, Meier PJ, Kullak-Ublick GA. Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology 2002; 122:1954-66. [PMID: 12055601 DOI: 10.1053/gast.2002.33583] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS OATP8 (gene symbol: SLC21A8) is a multispecific uptake system for organic anions, xenobiotics, and peptides expressed at the basolateral (sinusoidal) membrane of human hepatocytes. We investigated whether OATP8 gene expression is regulated by the nuclear receptors farnesoid X receptor/bile acid receptor (FXR/BAR; NR1H4), pregnane X receptor (PXR), or liver X receptor (LXR). METHODS OATP8 promoter function was studied in reporter assays. OATP8 expression in cells was quantitated by real-time polymerase chain reaction. RESULTS The bile acid chenodeoxycholic acid (CDCA), a ligand of FXR/BAR, but not clotrimazole or 25-hydroxycholesterol, ligands of PXR or LXR, respectively, induced OATP8 promoter activity. An inverted hexanucleotide repeat motif (IR-1 element) in the promoter sequence was shown by electrophoretic mobility shift assays to bind the FXR (9-cis-retinoic acid receptor [RXRalpha]) heterodimer. Targeted mutagenesis of the IR-1 element abolished inducibility of the OATP8 promoter by CDCA, confirming its role as a bile acid response element. CDCA treatment increased OATP8 messenger RNA levels in human hepatoma cells, suggesting a physiologic role for FXR-mediated OATP8 gene regulation. CONCLUSIONS OATP8 gene expression is regulated by bile acids via FXR/BAR. Induction of OATP8 could serve to maintain hepatic extraction of xenobiotics and peptides in conditions of increased intracellular bile acids.
Collapse
Affiliation(s)
- Diana Jung
- Division of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
1004
|
Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science 2002; 296:1313-6. [PMID: 12016314 DOI: 10.1126/science.1070477] [Citation(s) in RCA: 858] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The vitamin D receptor (VDR) mediates the effects of the calcemic hormone 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3]. We show that VDR also functions as a receptor for the secondary bile acid lithocholic acid (LCA), which is hepatotoxic and a potential enteric carcinogen. VDR is an order of magnitude more sensitive to LCA and its metabolites than are other nuclear receptors. Activation of VDR by LCA or vitamin D induced expression in vivo of CYP3A, a cytochrome P450 enzyme that detoxifies LCA in the liver and intestine. These studies offer a mechanism that may explain the proposed protective effects of vitamin D and its receptor against colon cancer.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Hydroxylases
- Binding, Competitive
- COS Cells
- Cell Line
- Colonic Neoplasms/prevention & control
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- DNA-Binding Proteins/metabolism
- Dimerization
- Gene Expression Regulation, Enzymologic
- Histone Acetyltransferases
- Humans
- Intestine, Small/metabolism
- Ligands
- Lithocholic Acid/analogs & derivatives
- Lithocholic Acid/metabolism
- Lithocholic Acid/pharmacology
- Male
- Mice
- Nuclear Receptor Coactivator 1
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Pregnane X Receptor
- Promoter Regions, Genetic
- Rats
- Receptors, Calcitriol/agonists
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/metabolism
- Transcription Factors/metabolism
- Transfection
Collapse
Affiliation(s)
- Makoto Makishima
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA
| | | | | | | | | | | | | | | |
Collapse
|
1005
|
Abstract
Bile salts are the major organic solutes in bile and undergo extensive enterohepatic circulation. Hepatocellular bile salt uptake is mediated predominantly by the Na(+)-taurocholate cotransport proteins Ntcp (rodents) and NTCP (humans) and by the Na(+)-independent organic anion-transporting polypeptides Oatp1, Oatp2, and Oatp4 (rodents) and OATP-C (humans). After diffusion (bound by intracellular bile salt-binding proteins) to the canalicular membrane, monoanionic bile salts are secreted into bile canaliculi by the bile salt export pump Bsep (rodents) or BSEP (humans). Both belong to the ATP-binding cassette (ABC) transporter superfamily. Dianionic conjugated bile salts are secreted into bile by the multidrug-resistance-associated proteins Mrp2/MRP2. In bile ductules, a minor portion of protonated bile acids and monomeric bile salts are reabsorbed by non-ionic diffusion and the apical sodium-dependent bile salt transporter Asbt/ASBT, transported back into the periductular capillary plexus by Mrp3/MRP3 [and/or a truncated form of Asbt (tAsbt)], and subjected to cholehepatic shunting. The major portion of biliary bile salts is aggregated into mixed micelles and transported into the intestine, where they are reabsorbed by apical Oatp3, the apical sodium-dependent bile salt transporter (ASBT), cytosolic intestinal bile acid-binding protein (IBABP), and basolateral Mrp3/MRP3 and tAsbt. Transcriptional and posttranscriptional regulation of these enterohepatic bile salt transporters is closely related to the regulation of lipid and cholesterol homeostasis. Furthermore, defective expression and function of bile salt transporters have been recognized as important causes for various cholestatic liver diseases.
Collapse
Affiliation(s)
- Peter J Meier
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, Zurich, 8091 Switzerland.
| | | |
Collapse
|
1006
|
Abstract
Further insights into the molecular regulation of bile acid transport and metabolism have provided the basis for a better understanding of the pathogenesis of cholestatic liver diseases. Novel insights into the mechanisms of action of ursodeoxycholic acid should advance our understanding of the treatment of cholestatic liver diseases. Mutations of transporter genes can cause hereditary cholestatic syndromes in both infants and adults as well as cholesterol gallstone disease. Important studies have been published on the pathogenesis, clinical features, and treatment of primary biliary cirrhosis, drug-induced cholestasis, and cholestasis of pregnancy.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl-Franzens University, School of Medicine, Graz, Austria
| | | |
Collapse
|
1007
|
Moore LB, Maglich JM, McKee DD, Wisely B, Willson TM, Kliewer SA, Lambert MH, Moore JT. Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol Endocrinol 2002; 16:977-86. [PMID: 11981033 DOI: 10.1210/mend.16.5.0828] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The NR1I subfamily of nuclear receptors contains a phylogenetically diverse array of receptors related to the mammalian pregnane X receptor (PXR) (NR1I2) and constitutive androstane receptor (CAR) (NR1I3). We have carried out an extensive comparative analysis of this subgroup with representatives from fish, birds, amphibians, and mammals. Four novel receptors were isolated from fish, dog, pig, and monkey for this study and combined with a previously reported set of related receptors including human PXR, rabbit PXR, mouse PXR, chicken CXR, frog benzoate X receptors (BXRalpha, BXRbeta), and human and mouse CAR. A broad range of xenobiotics, steroids, and bile acids were tested for their ability to activate the ligand binding domain of each receptor. Three distinct groups of receptors were identified based on their pharmacological profiles: 1) the PXRs were activated by a broad range of xenobiotics and, along with the mammalian PXRs, included the chicken and fish receptors; 2) the CARs were less promiscuous, had high basal activities, and were generally repressed rather than activated by those compounds that modulated their activity; and 3) the BXRs were selectively activated by a subset of benzoate analogs and are likely to be specialized receptors for this chemical class of ligands. The PXRs are differentiated from the other NR1I receptors by a stretch of amino acids between helices 1 and 3, which we designate the H1-3 insert. This insert was present in the mammalian, chicken, and fish PXRs but absent in the CARs and BXRs. Modeling studies suggest that the H1-3 insert contributes to the promiscuity of the PXRs by facilitating the unwinding of helices-6 and -7, thereby expanding the ligand binding pocket.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bile Acids and Salts/pharmacology
- Binding Sites
- Chickens
- Cloning, Molecular
- Constitutive Androstane Receptor
- Dogs
- Evolution, Molecular
- Haplorhini
- Humans
- Mice
- Models, Molecular
- Molecular Sequence Data
- Molecular Structure
- Phylogeny
- Pregnane X Receptor
- Protein Structure, Secondary
- Rabbits
- Rats
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Steroid/chemistry
- Receptors, Steroid/genetics
- Receptors, Steroid/physiology
- Sequence Alignment
- Steroids/pharmacology
- Swine
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transfection
- Xenobiotics/pharmacology
- Xenopus Proteins
- Xenopus laevis
- Zebrafish
Collapse
Affiliation(s)
- Linda B Moore
- Nuclear Receptor Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
1008
|
Abstract
Cholesterol cholelithiasis is common in Western populations and represents a consequence of altered cholesterol homeostasis. Gallstones form because of a complex and incompletely understood series of metabolic and physicochemical events that promote cholesterol crystallization in bile. In the context of current paradigms, this article reviews recent progress in research on biliary lipid metabolism and the pathogenesis of cholesterol gallstones.
Collapse
Affiliation(s)
- Hideyuki Hyogo
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
1009
|
Abstract
The regulation of hepatic cytochrome P450 (CYP) enzymes is implicated in both drug metabolism and drug-drug interactions. The CYP genes are induced by numerous xenobiotics, yet the inducibility shows clear species specificity. Recently, the rodent nuclear receptor PXR and its human homolog, SXR or hPXR, have been established as species-specific xeno-sensors that regulate CYP3A enzymes. By knocking-out the rodent gene and replacing it with the human receptor, a 'humanized' mouse model has been established. Displaying a human drug-response profile, this mouse represents a unique tool to dissect the drug-induced xenobiotic response and should aid the development of safer drugs.
Collapse
Affiliation(s)
- Wen Xie
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
1010
|
Ripp SL, Fitzpatrick JL, Peters JM, Prough RA. Induction of CYP3A expression by dehydroepiandrosterone: involvement of the pregnane X receptor. Drug Metab Dispos 2002; 30:570-5. [PMID: 11950789 DOI: 10.1124/dmd.30.5.570] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) is a steroid produced by the human adrenal gland. Administration of pharmacological doses of DHEA to rats changes expression of many genes, including the cytochrome P450 family members CYP4A1 and CYP3A23. It is known that induction of CYP4A expression by DHEA requires the peroxisome proliferator-activated receptor alpha (PPAR(alpha)). In the current study, PPAR(alpha)-null mice were used to examine the role of PPAR(alpha) in expression of CYP3A. In wild-type mice, 150 mg/kg DHEA-sulfate induced Cyp4a and Cyp3a11 mRNAs by 5- and 2-fold, respectively. Induction of Cyp4a expression by DHEA-sulfate was not observed in PPAR(alpha)-null mice, whereas induction of Cyp3a11 expression by DHEA-sulfate was similar between genotypes. This suggests that PPAR(alpha) is not involved in induction of Cyp3a11 expression by DHEA. Because expression of CYP3A family members can be induced by activation of another member of the nuclear receptor superfamily, the pregnane X receptor (PXR), we examined the ability of DHEA to activate PXR. In transient transfection assays, DHEA and its metabolites androst-5-ene-3beta,17beta-diol (ADIOL), androst-5-ene-3,17-dione, and androst-4-ene-3,17-dione were activators of PXR. Maximal induction of a PXR-responsive reporter gene of approximately 3-fold was observed at concentrations of 50 to 100 microM, indicating that these steroids are relatively weak activators of PXR. Human and murine PXR exhibited different specificities for DHEA and its metabolites. ADIOL activated reporter gene expression in the presence of murine but not human PXR. Results of these studies suggest that the induction of rodent CYP3A expression upon treatment with high doses of DHEA occurs through activation of PXR.
Collapse
Affiliation(s)
- Sharon L Ripp
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | |
Collapse
|
1011
|
Kocarek TA, Shenoy SD, Mercer-Haines NA, Runge-Morris M. Use of dominant negative nuclear receptors to study xenobiotic-inducible gene expression in primary cultured hepatocytes. J Pharmacol Toxicol Methods 2002; 47:177-87. [PMID: 12628309 DOI: 10.1016/s1056-8719(03)00002-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION To determine the feasibility of using dominant negative nuclear receptors to dissect the regulation of inducible gene expression in primary cultured hepatocytes, a series of dominant negative nuclear receptor expression plasmids were designed with truncated AF-2 subdomains. METHODS Plasmids expressing dominant negative or wild-type constitutive androstane receptor (CAR), pregnane X receptor (PXR), farnesoid X receptor (FXR), liver X receptor (LXR), or peroxisome proliferator-activated receptor alpha (PPARalpha) were transiently cotransfected into primary cultured rat hepatocytes, together with an appropriate reporter plasmid. RESULTS Treatment with prototypic inducers, 10(-4) M phenobarbital (CAR activator), 10(-5) M pregnenolone 16alpha-carbonitrile (PXR activator), 3x10(-5) M chenodeoxycholate (FXR activator), or 10(-4) M ciprofibrate (PPARalpha activator), significantly activated expression from the corresponding reporter plasmid. Treatment with 22(R)-hydroxycholesterol (LXR activator) only weakly activated the LXR-responsive reporter, while pregnenolone 16alpha-carbonitrile treatment significantly activated this reporter. Cotransfection with wild-type LXRalpha strongly enhanced 22(R)-hydroxycholesterol-inducible expression from the LXR-responsive reporter. Cotransfection of hepatocyte cultures with each of the dominant negative nuclear receptor plasmids significantly inhibited inducible expression of the corresponding reporter while, with one exception (LXRalpha), cotransfection with the wild-type receptor moderately enhanced or had little effect on reporter expression. When each dominant negative nuclear receptor was cross-examined against all inducer-reporter pairs, effects on multiple inducer-reporter pairs were frequently observed. However, in general, only cotransfection with the appropriate dominant negative inhibited inducible reporter expression to a greater extent than did cotransfection with the corresponding wild-type receptor. DISCUSSION We suggest that the application of dominant negative nuclear receptors has utility in transient transfection studies aimed at discerning the regulatory role of individual nuclear receptor transcription factors in inducible hepatic gene expression, provided that appropriate controls are employed.
Collapse
Affiliation(s)
- Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, Room 4000, 2727 Second Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
1012
|
Beigneux AP, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. Reduction in cytochrome P-450 enzyme expression is associated with repression of CAR (constitutive androstane receptor) and PXR (pregnane X receptor) in mouse liver during the acute phase response. Biochem Biophys Res Commun 2002; 293:145-9. [PMID: 12054576 DOI: 10.1016/s0006-291x(02)00196-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expression of P-450 (Cyp) enzymes is reduced in liver during the acute phase response, contributing to the decrease in bile acid levels and drug metabolism during infection. Nuclear hormone receptors CAR and PXR are key transactivators of Cyp2b and Cyp3a genes, respectively. Injection of bacterial lipopolysaccharide (LPS) induced the expected reduction in Cyp2b10 and Cyp3a mRNA levels in mouse liver. These decreases were associated with a marked reduction in CAR and PXR mRNA levels within 4 h following treatment. LPS-induced CAR and PXR repression were dose-dependent and sustained for at least 16 h. LPS treatment also reversed the up-regulation of Cyp3a in mice pre-treated with PXR ligand RU486. In addition, we observed a concomitant decrease in RXR (retinoid X receptor) mRNA levels, the obligatory partner of both CAR and PXR for high affinity binding to DNA. These findings represent one possible molecular mechanism underlying sepsis-induced repression of Cyp enzymes.
Collapse
Affiliation(s)
- Anne P Beigneux
- Department of Medicine, University of California San Francisco, Metabolism Section, Medical Service, Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|
1013
|
Abstract
The pregnane X receptor (PXR) is a promiscuous nuclear receptor that has evolved to protect the body from toxic chemicals. PXR is activated by a structurally diverse collection of xenobiotics, including several widely used prescription drugs. Various lipophilic compounds produced by the body, such as bile acids and steroids, also activate PXR. PXR stimulates the transcription of cytochrome P450 3A monooxygenases and other genes involved in the detoxification and elimination of these potentially harmful chemicals. Assays that detect PXR activation have important implications for the design of future drugs in two respects. On the one hand, PXR activation assays can be used to determine whether candidate drugs are likely to induce CYP3A gene expression and interact with other medicines. On the other hand, PXR agonists may prove useful in the treatment of diseases in which toxic metabolites accumulate, such as cholestatic liver disease.
Collapse
Affiliation(s)
- Bryan Goodwin
- Nuclear Receptor Systems Research, GlaxoSmithKline Research and Development, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
1014
|
Guo GL, Staudinger J, Ogura K, Klaassen CD. Induction of rat organic anion transporting polypeptide 2 by pregnenolone-16alpha-carbonitrile is via interaction with pregnane X receptor. Mol Pharmacol 2002; 61:832-9. [PMID: 11901222 DOI: 10.1124/mol.61.4.832] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rat organic anion transporting polypeptide 2 (oatp2; Slc21a5) is a liver transporter that mediates the uptake of a variety of structurally diverse compounds, and has a high affinity for cardiac glycosides. Treatment of rats with pregnenolone-16alpha-carbonitrile (PCN), a ligand for the rodent pregnane X receptor (PXR), significantly enhances the rat oatp2 gene expression. To understand the molecular mechanism of oatp2 induction by PCN, rat oatp2 gene was cloned. The rat oatp2 gene consists of 16 exons; alternative splicing of the second noncoding exon gives rise to the two published rat oatp2 cDNAs. Approximately 8700 base pairs (bp) of the 5'-flanking region of the rat oatp2 gene were linked to the luciferase reporter gene and used in transient transfection assays in H4IIE cells. Treatment of PCN induced the expression of the reporter gene in a dose-dependent manner. Four potential PXR response elements (PXREs) were identified in the 5'-flanking region of the rat oatp2 gene. One element (DR3-1) is located approximately -5000 bp with three more (DR3-2, DR3-3, and DR3-4) clustered at about -8000 bp. Results from electrophoretic mobility shift assays showed that the PXR-retinoid X receptor alpha heterodimer binds to the DR3-2 with the highest affinity, to the DR3-4 and DR3-1 with a lower affinity, and weakly or not at all to the DR3-3. Furthermore, a series of partial deletions of the 5'-flanking region illustrated that both the proximal and distal clusters of PXREs are required for maximal induction of rat oatp2 by PCN. In conclusion, these data elucidate the molecular mechanism by which PCN treatment induces rat oatp2 gene expression. In addition, this study identifies rat oatp2 as a direct PXR-targeted gene and further supports the hypothesis that activation of PXR affects a network of genes that is involved in either metabolism or transport of drugs, steroids, and bile acids.
Collapse
Affiliation(s)
- Grace L Guo
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66045-7417, USA
| | | | | | | |
Collapse
|
1015
|
Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, Fruchart JC, Dallongeville J, Hum DW, Kuipers F, Staels B. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest 2002; 109:961-71. [PMID: 11927623 PMCID: PMC150929 DOI: 10.1172/jci14505] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Serum levels of HDL are inversely correlated with the risk of coronary heart disease. The anti-atherogenic effect of HDL is partially mediated by its major protein constituent apoA-I. In this study, we identify bile acids that are activators of the nuclear receptor farnesoid X receptor (FXR) as negative regulators of human apoA-I expression. Intrahepatocellular accumulation of bile acids, as seen in patients with progressive familial intrahepatic cholestasis and biliary atresia, was associated with diminished apoA-I serum levels. In human apoA-I transgenic mice, treatment with the FXR agonist taurocholic acid strongly decreased serum concentrations and liver mRNA levels of human apoA-I, which was associated with reduced serum HDL levels. Incubation of human primary hepatocytes and hepatoblastoma HepG2 cells with bile acids resulted in a dose-dependent downregulation of apoA-I expression. Promoter mutation analysis and gel-shift experiments in HepG2 cells demonstrated that bile acid-activated FXR decreases human apoA-I promoter activity by a negative FXR response element mapped to the C site. FXR bound this site and repressed transcription in a manner independent of retinoid X receptor. The nonsteroidal synthetic FXR agonist GW4064 likewise decreased apoA-I mRNA levels and promoter activity in HepG2 cells.
Collapse
Affiliation(s)
- Thierry Claudel
- Unité de Recherche 545, Institut National de la Santé et de la Recherche Médicale, Département d'Athérosclérose, Institut Pasteur de Lille, and the Faculté de Pharmacie, Université de Lille II, Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1016
|
Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, Fruchart JC, Dallongeville J, Hum DW, Kuipers F, Staels B. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest 2002. [DOI: 10.1172/jci0214505] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
1017
|
Abstract
Mechanisms that protect the body from a diverse array of harmful chemicals are also involved in drug metabolism, and can cause adverse drug-drug interactions. Two closely related orphan nuclear hormone receptors--the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR)--have recently emerged as transcriptional regulators of cytochrome P450 expression that couple xenobiotic exposure to oxidative metabolism. In this review, we provide an examination of the roles of PXR and CAR as xenobiotic sensors, and discuss the application of this knowledge to toxicological screening in drug discovery.
Collapse
Affiliation(s)
- Timothy M Willson
- GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
1018
|
Abstract
Bile formation, the exocrine function of the liver, represents a process that is unique to the hepatocyte as a polarized epithelial cell. The generation of bile flow is an osmotic process and largely depends on solute secretion by primary active transporters in the apical membrane of the hepatocyte. In recent years an impressive progress has been made in the discovery of these proteins, most of which belong to the family of ABC transporters. The number of identified ABC transporter genes has been exponentially increasing and the mammalian subfamily now counts at least 52. This development has been of crucial importance for the elucidation of the mechanism of bile formation, and it is therefore not surprising that the development in this field has run in parallel with the discovery of the ABC genes. With the identification of these transporter genes, the background of a number of inherited diseases, which are caused by mutations in these solute pumps, has now been elucidated. We now know that at least six primary active transporters are involved in canalicular secretion of biliary components (MDR1, MDR3, BSEP, MRP2, BCRP and FIC1). Four of these transporter genes are associated with inherited diseases. In this minireview we will shortly describe our present understanding of bile formation and the associated inherited defects.
Collapse
Affiliation(s)
- Ronald Oude Elferink
- Laboratory for Experimental Hepatology, Academic Medical Center Amsterdam F0-116, Meibergdreef 9, 1105 AZ, Netherlands.
| | | |
Collapse
|
1019
|
Li Y, Bolten C, Bhat BG, Woodring-Dietz J, Li S, Prayaga SK, Xia C, Lala DS. Induction of human liver X receptor alpha gene expression via an autoregulatory loop mechanism. Mol Endocrinol 2002; 16:506-14. [PMID: 11875109 DOI: 10.1210/mend.16.3.0789] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The liver X receptors (LXRs), members of the nuclear receptor superfamily, play an important role in controlling lipid homeostasis by activating several genes involved in reverse cholesterol transport. These include members of the ATP binding cassette (ABC) superfamily of transporter proteins ABCA1 and ABCG1, surface constituents of plasma lipoproteins like apolipoprotein E, and cholesterol ester transport protein. They also play an important role in fatty acid metabolism by activating the sterol regulatory element-binding protein 1c gene. Here, we identify human LXRalpha (hLXRalpha) as an autoinducible gene. Induction in response to LXR ligands is observed in multiple human cell types including macrophages and occurs within 2--4 h. Analysis of the hLXRalpha promoter revealed three LXR response elements (LXREs); one exhibits strong affinity for both LXRalpha:RXR and LXRbeta:RXR (a type I LXRE), and deletion and mutational studies indicate it plays a critical role in LXR-mediated induction. The other two LXREs are identical to each other, exist within highly conserved Alu repeats, and exhibit selective binding to LXRalpha:RXR (type II LXREs). In transfections, the type I LXRE acts as a strong mediator of both LXRalpha and LXRbeta activity, whereas the type II LXRE acts as a weaker and selective mediator of LXRalpha activity. Our data suggest a model in which LXR ligands trigger an autoregulatory loop leading to selective induction of hLXRalpha gene expression. This would lead to increased hLXRalpha levels and transcription of its downstream target genes such as ABCA1, providing a simple yet exquisite mechanism for cells to respond to LXR ligands and cholesterol loading.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP-Binding Cassette Transporters/genetics
- Animals
- Anticholesteremic Agents/pharmacology
- Base Sequence
- Cell Line
- Cholesterol/metabolism
- Conserved Sequence
- DNA Mutational Analysis
- DNA-Binding Proteins
- Fibroblasts/metabolism
- Gene Deletion
- Gene Expression Regulation/drug effects
- Humans
- Hydrocarbons, Fluorinated
- Ligands
- Liver/drug effects
- Liver/metabolism
- Liver X Receptors
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Mutagenesis, Site-Directed
- Orphan Nuclear Receptors
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Receptors, Cytoplasmic and Nuclear
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/agonists
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Response Elements
- Skin
- Sulfonamides
- Transfection
Collapse
Affiliation(s)
- Yu Li
- Department of Biotechnology, Mail Zone AA305E, Pharmacia Corp., St. Louis, Missouri 63198, USA
| | | | | | | | | | | | | | | |
Collapse
|
1020
|
Kullak-Ublick GA, Jung D, Hagenbuch B, Meier PJ. Organic anion transporting polypeptides, cholestasis, and nuclear receptors. Hepatology 2002; 35:732-4. [PMID: 11870396 DOI: 10.1053/jhep.2002.32027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
1021
|
Kliewer SA, Willson TM. Regulation of xenobiotic and bile acid metabolism by the nuclear pregnane X receptor. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30141-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
1022
|
Kauffmann HM, Pfannschmidt S, Zöller H, Benz A, Vorderstemann B, Webster JI, Schrenk D. Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology 2002; 171:137-46. [PMID: 11836020 DOI: 10.1016/s0300-483x(01)00570-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study, we investigated the inducibility of the drug conjugate transporter genes MRP1 and MRP2 by redox-active compounds such as tertiary butylated hydroquinone (tBHQ) and quercetin and by chemicals known to activate the pregnane X receptor (PXR) such as rifampicin and clotrimazol and by the metalloid compound arsenite. The human MRP2 gene was found to be inducible in HepG2 cells by rifampicin, clotrimazol, arsenite and tBHQ. As MRP1 expression is extremely low in HepG2 cells, its inducibility was studied in MCF-7 cells. However, only tBHQ and quercetin acted as inducers, but not the other compounds investigated. Reporter gene assays demonstrated that proximal promoter regions of the genes contribute to the induction by tBHQ, quercetin (MRP1) and clotrimazol (MRP2). However, the deletion of binding sites supposed to mediate the induction process (a PXR-binding element-like sequence for the clotrimazol effect and an ARE (antioxidative response element) for the tBHQ/quercetin effect) did not result in a significant decrease in the induction factor indicating that other parts of the promoter are probably involved in the induction process. In summary, expression of both genes can be up-regulated by redox-active compounds, while the other compounds tested induced only MRP2 but not MRP1 expression.
Collapse
Affiliation(s)
- Hans Martin Kauffmann
- Food Chemistry & Environmental Toxicology, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663, Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
1023
|
Ourlin JC, Handschin C, Kaufmann M, Meyer UA. A Link between cholesterol levels and phenobarbital induction of cytochromes P450. Biochem Biophys Res Commun 2002; 291:378-84. [PMID: 11846416 DOI: 10.1006/bbrc.2002.6464] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Squalestatin1 (SQ1), a potent inhibitor of squalene synthase produced a dose-dependent induction of cytochromes P450 CYP2H1 and CYP3A37 mRNAs in chicken hepatoma cells. The effect of SQ1 was completely reversed by 25-hydroxycholesterol. Bile acids elicited an induction of CYP3A37 and CYP2H1 mRNA. Bile acids also reduced the phenobarbital induction of CYP2H1 but not of CYP3A37 mRNA. The effects of SQ1 and its reversal by 25-hydroxycholesterol and the effects of bile acids were reproduced in reporter gene assays with a phenobarbital-responsive enhancer unit of CYP2H1. These data suggest that an endogenous molecule related to cholesterol homeostasis regulates induction of drug-inducible CYPs.
Collapse
Affiliation(s)
- Jean-Claude Ourlin
- Division of Pharmacology/Neurobiology, Biozentrum of the University of Basel, Klingelbergstrasse 50-70, Basel, Switzerland
| | | | | | | |
Collapse
|
1024
|
|
1025
|
Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, Kliewer S, Willson TM, Edwards PA. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 2002; 277:2908-15. [PMID: 11706036 DOI: 10.1074/jbc.m109326200] [Citation(s) in RCA: 663] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The multidrug resistance-associated protein 2 (MRP2, ABCC2), mediates the efflux of several conjugated compounds across the apical membrane of the hepatocyte into the bile canaliculi. We identified MRP2 in a screen designed to isolate genes that are regulated by the farnesoid X-activated receptor (FXR, NR1H4). MRP2 mRNA levels were induced following treatment of human or rat hepatocytes with either naturally occurring (chenodeoxycholic acid) or synthetic (GW4064) FXR ligands. In addition, we have shown that MRP2 expression is regulated by the pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3). Thus, treatment of rodent hepatocytes with PXR or CAR agonists results in a robust induction of MRP2 mRNA levels. The dexamethasone- and pregnenolone 16alpha-carbonitrile-dependent induction of MRP2 expression was not evident in hepatocytes derived from PXR null mice. In contrast, induction of MRP2 by phenobarbital, an activator of CAR, was comparable in wild-type and PXR null mice. An unusual 26-bp sequence was identified 440 bp upstream of the MRP2 transcription initiation site that contains an everted repeat of the AGTTCA hexad separated by 8 nucleotides (ER-8). PXR, CAR, and FXR bound with high affinity to this element as heterodimers with the retinoid X receptor alpha (RXRalpha, NR2B1). Luciferase reporter gene constructs containing 1 kb of the rat MRP2 promoter were prepared and transiently transfected into HepG2 cells. Luciferase activity was induced in a PXR-, CAR-, or FXR-dependent manner. Furthermore, the isolated ER-8 element was capable of conferring PXR, CAR, and FXR responsiveness on a heterologous thymidine kinase promoter. Mutation of the ER-8 element abolished the nuclear receptor response. These studies demonstrate that MRP2 is regulated by three distinct nuclear receptor signaling pathways that converge on a common response element in the 5'-flanking region of this gene.
Collapse
MESH Headings
- Animals
- Base Sequence
- Bile Acids and Salts/metabolism
- Blotting, Northern
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- Constitutive Androstane Receptor
- DNA-Binding Proteins/metabolism
- Drug Resistance, Multiple
- Genes, Reporter
- Hepatocytes/metabolism
- Humans
- Isoxazoles/pharmacology
- Ligands
- Liver/metabolism
- Membrane Transport Proteins
- Mice
- Models, Biological
- Molecular Sequence Data
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/biosynthesis
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Nucleic Acid Hybridization
- Phenobarbital/pharmacology
- Pregnane X Receptor
- Promoter Regions, Genetic
- Protein Binding
- Protein Transport
- RNA, Messenger/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/metabolism
- Signal Transduction
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- Heidi R Kast
- Department of Biological Chemistry and Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1026
|
Toell A, Kröncke KD, Kleinert H, Carlberg C. Orphan nuclear receptor binding site in the human inducible nitric oxide synthase promoter mediates responsiveness to steroid and xenobiotic ligands. J Cell Biochem 2002. [DOI: 10.1002/jcb.10104] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
1027
|
Abstract
The pregnane X receptor (PXR) is involved in transcriptional regulation of multiple cytochromes P450 and multidrug resistance-associated protein (MDR1), which encodes for the drug transporter P-glycoprotein. Crystal structure analyses suggest that the ligand binding domain is highly hydrophobic and flexible, allowing molecules of differing sizes to bind in multiple orientations. Using literature data for EC(50) (half-maximal inhibitory concentration) values for PXR activation derived for 12 human PXR ligands, a pharmacophore was developed. This pharmacophore supports the hydrophobic nature of the ligand binding domain recently deduced from the X-ray crystal structure because it contains four hydrophobic regions and one hydrogen bond acceptor. These features are consistent with at least one of the three experimentally determined orientations in which SR12813 binds to PXR, as determined by overlay studies. SR12813 fulfills all of the five pharmacophore features, as does the potent ligand hyperforin. The pharmacophore was also used to predict the binding affinity for 28 molecules not in the model but known to be PXR ligands of differing potencies. The pharmacophore distinguished the most potent activators of PXR (that display >5-fold activation/deactivation), like ecteinascidin, troglitazone, nifedipine, and dexamethasone-t-butylacetate, from poor activators, such as scopoletin and kaempferol. The model could be useful in drug development, potentially acting as a high-throughput filter for identifying compounds that may bind to PXR before in vitro determination. Ultimately, this will aid in the selection of molecules with a lesser capacity to be potent PXR ligands and thus avoid induction of numerous drug-metabolizing enzymes and MDR1.
Collapse
Affiliation(s)
- Sean Ekins
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Drop Code 0730, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
1028
|
Guo GL, Choudhuri S, Klaassen CD. Induction profile of rat organic anion transporting polypeptide 2 (oatp2) by prototypical drug-metabolizing enzyme inducers that activate gene expression through ligand-activated transcription factor pathways. J Pharmacol Exp Ther 2002; 300:206-12. [PMID: 11752118 DOI: 10.1124/jpet.300.1.206] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Knowledge of regulation of transporters would aid in predicting pharmacokinetics and drug-drug interactions. Treatment of rats with pregnenolone-16alpha-carbonitrile (PCN) and phenobarbital increases hepatic uptake of cardiac glycosides. Rat organic anion transporting polypeptide 2 (oatp2; Slc21a5) transports cardiac glycosides with high affinity. Levels of rat hepatic oatp2 protein and mRNA are regulated by PCN and phenobarbital treatment; however, the effects of other microsomal enzyme inducers on oatp2 have not been investigated. Therefore, the purpose of this study was to further determine whether oatp2 is regulated by a broader scale of drug-metabolizing enzyme inducers that are ligands or activators for the aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor (PPAR), and antioxidant/electrophile response element (ARE/EpRE). Oatp2 protein levels determined by Western blot were decreased 56 to 72% by the AhR ligands, increased 84 to 132% by the CAR ligands, and increased 230 to 360% by PXR ligands. The PPAR ligands and ARE/EpRE activators generally had minimal effects on oatp2 protein levels. Oatp2 mRNA levels, determined by the bDNA technique, generally did not show a correlation with the altered oatp2 protein levels, e.g., among PXR ligands, only PCN increased oatp2 mRNA levels, but spironolactone and dexamethasone did not. Furthermore, only PCN, but not spironolactone and dexamethasone, increased the transcription of the oatp2 gene as the amount of hnRNA was increased when determined by reverse transcription-polymerase chain reaction. In conclusion, some drug-metabolizing enzyme inducers regulate oatp2 protein levels, especially the CYP3A inducers. However, there is no correlation between their ability to increase levels of oatp2 protein and mRNA, suggesting that regulation of oatp2 by drug-metabolizing enzyme inducers occurs at both the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Grace L Guo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160-7417, USA
| | | | | |
Collapse
|
1029
|
|
1030
|
Willson TM, Jones SA, Moore JT, Kliewer SA. Chemical genomics: functional analysis of orphan nuclear receptors in the regulation of bile acid metabolism. Med Res Rev 2001; 21:513-22. [PMID: 11607932 DOI: 10.1002/med.1023] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemical genomics is the name we have given to the analysis of gene function through use of small molecule chemical tools. Orphan nuclear receptors are ideally suited to this technique of functional analysis, since their activity as transcription factors is regulated by small hydrophobic ligands. GW4064 is a potent and selective nonsteroidal ligand for the nuclear bile acid receptor FXR (NR1H4). Using GW4064 as a chemical tool, we have identified genes regulated by FXR in the liver, including those involved in bile acid synthesis and transport. We have also discovered that PXR (NR1I2) is a lithocholic acid receptor that controls the biosynthesis and metabolism of bile acids. Together FXR and PXR cooperate to control biliary and urinary bile acid excretion. These functions suggest that potent PXR and FXR ligands may offer a new approach to the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- T M Willson
- Nuclear Receptor Discovery Research, GlaxoSmithKline, Research Triangle Park, Raleigh, North Carolina 27709, USA.
| | | | | | | |
Collapse
|
1031
|
Patel J, Mitra AK. Strategies to overcome simultaneous P-glycoprotein mediated efflux and CYP3A4 mediated metabolism of drugs. Pharmacogenomics 2001; 2:401-15. [PMID: 11722289 DOI: 10.1517/14622416.2.4.401] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4), abundant in both the liver and upper intestinal enterocytes, limits the systemic bioavailability of xenobiotics. P-glycoprotein (P-gp), the MDR1 gene product, is also known to reduce the oral bioavailability of the drug molecules. High cellular expression of P-gp and CYP3A4 in mature intestinal enterocytes and their similar substrate specificity suggest that the function of these proteins may be complementary and may form a co-ordinated intestinal barrier. Various ongoing preclinical and clinical studies have demonstrated that the oral bioavailability of various P-gp and/or CYP3A4 substrates can be increased by simultaneous administration of P-gp and/or CYP3A4 inactivators. The current review describes the background and summarises several proposed hypotheses in modifying oral bioavailability by various drug-inhibitor interactions.
Collapse
Affiliation(s)
- J Patel
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, MO 64110, USA
| | | |
Collapse
|
1032
|
Schuetz EG, Strom S, Yasuda K, Lecureur V, Assem M, Brimer C, Lamba J, Kim RB, Ramachandran V, Komoroski BJ, Venkataramanan R, Cai H, Sinal CJ, Gonzalez FJ, Schuetz JD. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem 2001; 276:39411-8. [PMID: 11509573 DOI: 10.1074/jbc.m106340200] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sister of P-glycoprotein (SPGP) is the major hepatic bile salt export pump (BSEP). BSEP/SPGP expression varies dramatically among human livers. The potency and hierarchy of bile acids as ligands for the farnesyl/bile acid receptor (FXR/BAR) paralleled their ability to induce BSEP in human hepatocyte cultures. FXR:RXR heterodimers bound to IR1 elements and enhanced bile acid transcriptional activation of the mouse and human BSEP/SPGP promoters. In FXR/BAR nullizygous mice, which have dramatically reduced BSEP/SPGP levels, hepatic CYP3A11 and CYP2B10 were strongly but unexpectedly induced. Notably, the rank order of bile acids as CYP3A4 inducers and activators of pregnane X receptor/steroid and xenobiotic receptor (PXR/SXR) closely paralleled each other but was markedly different from their hierarchy and potency as inducers of BSEP in human hepatocytes. Moreover, the hepatoprotective bile acid ursodeoxycholic acid, which reverses hydrophobic bile acid hepatotoxicity, activates PXR and efficaciously induces CYP3A4 (a bile-metabolizing enzyme) in primary human hepatocytes thus providing one mechanism for its hepatoprotection. Because serum and urinary bile acids increased in FXR/BAR -/- mice, we evaluated hepatic transporters for compensatory changes that might circumvent the profound decrease in BSEP/SPGP. We found weak MRP3 up-regulation. In contrast, MRP4 was substantially increased in the FXR/BAR nullizygous mice and was further elevated by cholic acid. Thus, enhanced hepatocellular concentrations of bile acids, due to the down-regulation of BSEP/SPGP-mediated efflux in FXR nullizygous mice, result in an alternate but apparent compensatory up-regulation of CYP3A, CYP2B, and some ABC transporters that is consistent with activation of PXR/SXR by bile acids.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 11
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Bile Acids and Salts/metabolism
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/chemistry
- Cytochrome P-450 Enzyme System/metabolism
- Dimerization
- Dose-Response Relationship, Drug
- Down-Regulation
- Genes, Reporter
- Hepatocytes/metabolism
- Humans
- Immunoblotting
- Ligands
- Liver/metabolism
- Luciferases/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Mixed Function Oxygenases/metabolism
- Molecular Sequence Data
- Multidrug Resistance-Associated Proteins/metabolism
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomal Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Transfection
- Up-Regulation
- Ursodeoxycholic Acid/pharmacology
Collapse
Affiliation(s)
- E G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1033
|
Affiliation(s)
- W Xie
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
1034
|
Zhang J, Kuehl P, Green ED, Touchman JW, Watkins PB, Daly A, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Wrighton SA, Hancock M, Kim RB, Strom S, Thummel K, Russell CG, Hudson JR, Schuetz EG, Boguski MS. The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants. PHARMACOGENETICS 2001; 11:555-72. [PMID: 11668216 DOI: 10.1097/00008571-200110000-00003] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pregnane X receptor (PXR)/steroid and xenobiotic receptor (SXR) transcriptionally activates cytochrome P4503A4 (CYP3A4) when ligand activated by endobiotics and xenobiotics. We cloned the human PXR gene and analysed the sequence in DNAs of individuals whose CYP3A phenotype was known. The PXR gene spans 35 kb, contains nine exons, and mapped to chromosome 13q11-13. Thirty-eight single nucleotide polymorphisms (SNPs) were identified including six SNPs in the coding region. Three of the coding SNPs are non-synonymous creating new PXR alleles [PXR*2, P27S (79C to T); PXR*3, G36R (106G to A); and PXR*4, R122Q (4321G to A)]. The frequency of PXR*2 was 0.20 in African Americans and was never found in Caucasians. Hepatic expression of CYP3A4 protein was not significantly different between African Americans homozygous for PXR*1 compared to those with one PXR*2 allele. PXR*4 was a rare variant found in only one Caucasian person. Homology modelling suggested that R122Q, (PXR*4) is a direct DNA contact site variation in the third alpha-helix in the DNA binding domain. Compared with PXR*1, and variants PXR*2 and PXR*3, only the variant PXR*4 protein had significantly decreased affinity for the PXR binding sequence in electromobility shift assays and attenuated ligand activation of the CYP3A4 reporter plasmids in transient transfection assays. However, the person heterozygous for PXR*4 is normal for CYP3A4 metabolism phenotype. The relevance of each of the 38 PXR SNPs identified in DNA of individuals whose CYP3A basal and rifampin-inducible CYP3A4 expression was determined in vivo and/or in vitro was demonstrated by univariate statistical analysis. Because ligand activation of PXR and upregulation of a system of drug detoxification genes are major determinants of drug interactions, it will now be useful to extend this work to determine the association of these common PXR SNPs to human variation in induction of other drug detoxification gene targets.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Aryl Hydrocarbon Hydroxylases
- Chromosome Mapping/methods
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Humans
- Models, Molecular
- Molecular Sequence Data
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Polymorphism, Single Nucleotide/genetics
- Pregnane X Receptor
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Steroid/chemistry
- Receptors, Steroid/genetics
- Receptors, Steroid/physiology
- Sequence Homology, Amino Acid
- Transcriptional Activation/physiology
- Xenobiotics/metabolism
Collapse
Affiliation(s)
- J Zhang
- National Center for Biotechnology Information, National Institute of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1035
|
Arrese M, Karpen SJ. New horizons in the regulation of bile acid and lipid homeostasis: critical role of the nuclear receptor FXR as an intracellular bile acid sensor. Gut 2001; 49:465-6. [PMID: 11559640 PMCID: PMC1728466 DOI: 10.1136/gut.49.4.465] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- M Arrese
- Department of Gastroenterology, Catholic University of Chile School of Medicine, Santiago, Chile.
| | | |
Collapse
|
1036
|
Dussault I, Lin M, Hollister K, Wang EH, Synold TW, Forman BM. Peptide mimetic HIV protease inhibitors are ligands for the orphan receptor SXR. J Biol Chem 2001; 276:33309-12. [PMID: 11466304 DOI: 10.1074/jbc.c100375200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The orphan nuclear receptor SXR coordinately regulates drug clearance in response to a wide variety of xenobiotic compounds. This signaling system protects the body from exposure to toxic compounds; however, it can also pose a severe barrier to drug therapy. We now demonstrate that the human immunodeficiency virus (HIV) protease inhibitor ritonavir binds SXR and activates its target genes. This represents an example of a commonly used therapeutic agent that effectively activates SXR. We also show that other protease inhibitors are weaker (saquinavir) or unable to activate SXR (nelfinavir, indinavir) thus defining analogs that fail to induce SXR-regulated clearance pathways. Interestingly, HIV protease inhibitors are distinct from previously known SXR ligands in that they are peptide mimetic compounds. This expands the ligand specificity of SXR to include this unique chemical class whose pharmaceutical significance is expanding. Finally, we show that SXR ligands activate expression of multiple resistance protein 2, a critical regulator of bile flow and biliary drug excretion. These findings have important implications for the role of SXR in regulating drug clearance and hepatic disorders associated with impaired bile flow.
Collapse
Affiliation(s)
- I Dussault
- Division of Molecular Medicine, The Gonda Diabetes and Genetic Research Center, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
1037
|
Rodrigues CM, Steer CJ. The therapeutic effects of ursodeoxycholic acid as an anti-apoptotic agent. Expert Opin Investig Drugs 2001; 10:1243-53. [PMID: 11772248 DOI: 10.1517/13543784.10.7.1243] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The dihydroxy bile acid, ursodeoxycholic acid (UDCA), has been in widespread clinical use in the Western world since the mid 1980s, when it was initially used for gallstone dissolution [1,2] and subsequently for the treatment of chronic cholestatic liver diseases [3,4]. Many clinical trials of UDCA in a variety of cholestatic disorders established biochemical and clinical improvements, and most importantly showed a significant prolongation of transplant-free survival after four years of treatment with UDCA in patients with primary biliary cirrhosis [5]. Despite its clinical efficacy, the precise mechanism(s) by which UDCA improves liver function during cholestasis is still a matter of debate [6]. It was initially considered that the choleretic effect of UDCA, coupled with its ability to cause a marked shift in the composition of the bile acid pool towards hydrophilicity, accounted for its mechanism of action. In recent years, however, it has become evident that UDCA and its conjugated derivatives are capable of exerting direct effects at the cellular, subcellular, and molecular levels by stabilising cell membranes, affecting signal transduction pathways, and regulating immune responses. In addition, we have shown that UDCA plays a unique role in modulating the apoptotic threshold in both hepatic and non-hepatic cells [7-10]. The purpose of this article is to examine the mechanism(s) by which UDCA prevents apoptotic cell death associated with cholestasis. In addition, we will also review a potentially novel and, heretofore, unrecognised role of UDCA as a therapeutic agent in the treatment of non-liver diseases associated with increased levels of apoptosis as a pathogenesis of the disorder.
Collapse
Affiliation(s)
- C M Rodrigues
- Centro de Patogénese Molecular, Faculdade de Farmácia, University of Lisbon, Av. Forças Armadas, 1600-083 Lisbon, Portugal.
| | | |
Collapse
|
1038
|
|
1039
|
Synold TW, Dussault I, Forman BM. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 2001; 7:584-90. [PMID: 11329060 DOI: 10.1038/87912] [Citation(s) in RCA: 615] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 3A4 is an important mediator of drug catabolism that can be regulated by the steroid and xenobiotic receptor (SXR). We show here that SXR also regulates drug efflux by activating expression of the gene MDR1, which encodes the protein P-glycoprotein (ABCB1). Paclitaxel (Taxol), a commonly used chemotherapeutic agent, activated SXR and enhanced P-glycoprotein-mediated drug clearance. In contrast, docetaxel (Taxotere), a closely related antineoplastic agent, did not activate SXR and displayed superior pharmacokinetic properties. Docetaxel's silent properties reflect its inability to displace transcriptional corepressors from SXR. We also found that ET-743, a potent antineoplastic agent, suppressed MDR1 transcription by acting as an inhibitor of SXR. These findings demonstrate how the molecular activities of SXR can be manipulated to control drug clearance.
Collapse
Affiliation(s)
- T W Synold
- Department of Medical Oncology and Therapeutics Research, The Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | | | | |
Collapse
|