1051
|
Theurillat JP, Hainfellner J, Maddalena A, Weissenberger J, Aguzzi A. Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:581-90. [PMID: 10027415 PMCID: PMC1849997 DOI: 10.1016/s0002-9440(10)65303-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Angiogenesis is a prerequisite for solid tumor growth. Glioblastoma multiforme, the most common malignant brain tumor, is characterized by extensive vascular proliferation. We previously showed that transgenic mice expressing a GFAP-v-src fusion gene in astrocytes develop low-grade astrocytomas that progressively evolve into hypervascularized glioblastomas. Here, we examined whether tumor progression triggers angiogenetic signals. We found abundant transcription of vascular endothelial growth factor (VEGF) in neoplastic astrocytes at surprisingly early stages of tumorigenesis. VEGF and v-src expression patterns were not identical, suggesting that VEGF activation was not only dependent on v-src. Late-stage gliomas showed perinecrotic VEGF up-regulation similarly to human glioblastoma. Expression patterns of the endothelial angiogenic receptors flt-1, flk-1, tie-1, and tie-2 were similar to those described in human gliomas, but flt-1 was expressed also in neoplastic astrocytes, suggesting an autocrine role in tumor growth. In crossbreeding experiments, hemizygous ablation of the tumor suppressor genes Rb and p53 had no significant effect on the expression of VEGF, flt-1, flk-1, tie-1, and tie-2. Therefore, expression of angiogenic signals is an early event during progression of GFAP-v-src tumors and precedes hypervascularization. Given the close similarities in the progression pattern between GFAP-v-src and human gliomas, the present results suggest that these mice may provide a useful tool for antiangiogenic therapy research.
Collapse
MESH Headings
- Animals
- Artificial Gene Fusion
- Astrocytes/metabolism
- Astrocytes/pathology
- Astrocytoma/genetics
- Astrocytoma/metabolism
- Astrocytoma/pathology
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/pathology
- Breeding
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- Female
- Genes, Retinoblastoma/genetics
- Genes, p53/genetics
- Genes, src/genetics
- Glial Fibrillary Acidic Protein/genetics
- Lymphokines/genetics
- Lymphokines/metabolism
- Male
- Mice
- Mice, Transgenic
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, TIE-1
- Receptor, TIE-2
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Receptors, TIE
- Receptors, Vascular Endothelial Growth Factor
- Signal Transduction
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factor Receptor-1
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- J P Theurillat
- Institute of Neuropathology, Department of Pathology, Universitätsspital Zürich, Switzerland
| | | | | | | | | |
Collapse
|
1052
|
Schwarz M, Lee M, Zhang F, Zhao J, Jin Y, Smith S, Bhuva J, Stern D, Warburton D, Starnes V. EMAP II: a modulator of neovascularization in the developing lung. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L365-75. [PMID: 9950900 DOI: 10.1152/ajplung.1999.276.2.l365] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neovascularization is a key regulatory process in fetal growth and development. Although factors promoting growth and development of the pulmonary vasculature have been investigated, nothing is known regarding the molecular mechanisms that may counteract these stimuli. Endothelial monocyte-activating polypeptide (EMAP) II has recently been identified as an antiangiogenic factor in tumor vascular development. We postulated that EMAP II is a putative negative modulator of lung vascular growth. EMAP II mRNA and protein decrease fivefold (P < 0.01) as the developing lungs in the fetal mouse progress from having poor vascularization (day 14) to having complete vascular development at term (day 18.5). EMAP II protein expression continues to remain low throughout postnatal life and into adulthood, with the exception of a surge that correlates with microvascular maturation. Furthermore, through the use of in situ hybridization and immunohistochemistry, EMAP II is localized throughout the lung, with significant expression in the submyoepithelial area during the early stages of lung development when there is minimal vascular development. In contrast, EMAP II is distributed around the large vessels during the end of vascular development, suggesting that EMAP II modulates the neovascularization process. We speculate that EMAP II is a director of neovascularization in the developing lung.
Collapse
Affiliation(s)
- M Schwarz
- Developmental Biology and Cardiothoracic Surgery Program, Childrens Hospital Research Institute of Los Angeles, Los Angeles, California 90027, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1053
|
Suzuma K, Takagi H, Otani A, Oh H, Honda Y. Expression of thrombospondin-1 in ischemia-induced retinal neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:343-54. [PMID: 10027393 PMCID: PMC1850017 DOI: 10.1016/s0002-9440(10)65281-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/1998] [Indexed: 11/26/2022]
Abstract
Thrombospondin-1 is an extracellular matrix protein that inhibits endothelial cell proliferation, migration, and angiogenesis. This study was performed to investigate the role of thrombospondin-1 in ischemic retinal neovascularization. In a murine model of retinal neovascularization, thrombospondin-1 mRNA was increased from postnatal day 13 (P13), with a threefold peak response observed on P15, corresponding to the time of development of retinal neovascularization. Prominent expression of thrombospondin-1 was observed in neovascular cells, specifically, cells adjacent to the area of nonperfusion. It has been suggested that vascular endothelial growth factor (VEGF) plays a major role in ischemia-induced retinal neovascularization of this model, so we studied the effects of VEGF on thrombospondin-1 expression. In bovine retinal microcapillary endothelial cells, VEGF induced a biphasic response of thrombospondin-1 expression; VEGF decreased thrombospondin-1 mRNA 0.41-fold after 4 hours, whereas it increased, with a threefold peak response, after 24 hours. VEGF-induced endothelial cell proliferation was completely inhibited by exogenous thrombospondin-1 and increased by 37.5% with anti-thrombospondin-1 antibody. The present findings suggest that, in the ischemic retina, retinal neovascular cells increase thrombospondin-1 expression, and VEGF may stimulate endogenous thrombospondin-1 induction, which inhibits endothelial cell growth. VEGF-mediated thrombospondin-1 induction in ischemia-induced angiogenesis may be a negative feedback mechanism.
Collapse
Affiliation(s)
- K Suzuma
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|
1054
|
Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 1999; 13:295-306. [PMID: 9990854 PMCID: PMC316426 DOI: 10.1101/gad.13.3.295] [Citation(s) in RCA: 765] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eph receptor tyrosine kinases and their cell-surface-bound ligands, the ephrins, regulate axon guidance and bundling in the developing brain, control cell migration and adhesion, and help patterning the embryo. Here we report that two ephrinB ligands and three EphB receptors are expressed in and regulate the formation of the vascular network. Mice lacking ephrinB2 and a proportion of double mutants deficient in EphB2 and EphB3 receptor signaling die in utero before embryonic day 11.5 (E11.5) because of defects in the remodeling of the embryonic vascular system. Our phenotypic analysis suggests complex interactions and multiple functions of Eph receptors and ephrins in the embryonic vasculature. Interaction between ephrinB2 on arteries and its EphB receptors on veins suggests a role in defining boundaries between arterial and venous domains. Expression of ephrinB1 by arterial and venous endothelial cells and EphB3 by veins and some arteries indicates that endothelial cell-to-cell interactions between ephrins and Eph receptors are not restricted to the border between arteries and veins. Furthermore, expression of ephrinB2 and EphB2 in mesenchyme adjacent to vessels and vascular defects in ephB2/ephB3 double mutants indicate a requirement for ephrin-Eph signaling between endothelial cells and surrounding mesenchymal cells. Finally, ephrinB ligands induce capillary sprouting in vitro with a similar efficiency as angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF), demonstrating a stimulatory role of ephrins in the remodeling of the developing vascular system.
Collapse
Affiliation(s)
- R H Adams
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1055
|
Wu Y, Patterson C. The human KDR/flk-1 gene contains a functional initiator element that is bound and transactivated by TFII-I. J Biol Chem 1999; 274:3207-14. [PMID: 9915861 DOI: 10.1074/jbc.274.5.3207] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KDR/flk-1, the receptor for vascular endothelial growth factor, is required for normal vascular development. KDR/flk-1 is a TATA-less gene, containing four upstream Sp1 sites and a single transcription start site, although analysis of the start site sequence discloses only weak similarities with the consensus initiator element (Inr) sequence. In vitro transcription assays, however, demonstrate that the region from -10 to +10 relative to the start site contains Inr activity that is orientation- and position-dependent, and mutagenesis of the KDR/flk-1 Inr reduces promoter activity to 28% of the wild-type promoter in transient transfection assays. Gel shift assays confirm that nuclear proteins specifically bind the Inr, and competition experiments demonstrate that TFII-I, a multifunctional Inr-binding nuclear protein, is a component of these DNA-protein complexes. TFII-I transactivates the wild-type KDR/flk-1 promoter, but not a promoter containing a mutated Inr, in transient transfection assays. Immunodepletion of TFII-I from nuclear extracts prior to in vitro transcription assays abolishes transcription from the KDR/flk-1 Inr, an effect that can be rescued by adding back purified TFII-I, reflecting the importance of TFII-I in KDR/flk-1 Inr activity. These experiments demonstrate that the KDR/flk-1 gene contains a functional Inr that is bound by TFII-I and that both the functional Inr and TFII-I activity are essential for transcription.
Collapse
Affiliation(s)
- Y Wu
- University of Texas Medical Branch, Division of Cardiology and Sealy Center for Molecular Cardiology, Galveston, Texas 77555-1064, USA
| | | |
Collapse
|
1056
|
Affiliation(s)
- N Ferrara
- Department of Cardiovascular Research, Genentech, Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
1057
|
Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 1999; 237:97-132. [PMID: 9893348 DOI: 10.1007/978-3-642-59953-8_6] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This Chapter has reviewed the literature concerning VPF/VEGF as a potent vascular permeabilizing cytokine. In accord with this important role, microvessels have been found to be hyperpermeable to plasma proteins and other circulating macromolecules at sites where VPF/VEGF and its receptors are overexpressed, i.e., in tumors, healing wounds, retinopathies, many important inflammatory conditions and in certain physiological processes, such as ovulation and corpus luteum formation. Moreover, microvascular hyperpermeability to plasma proteins was shown to have an important consequence: the laying down of a fibrin-rich extracellular matrix. This provisional matrix, in turn, favors and supports the ingrowth of fibroblasts and endothelial cells which, together, transform the provisional matrix into the mature stroma characteristic of tumors and healed wounds. Finally, we have considered the pathways by which these and other circulating macromolecules cross the endothelium of normal and VPF/VEGF-permeabilized microvessels. These pathways include VVOs and trans-endothelial openings that have been variously interpreted as inter-endothelial cell gaps or trans-endothelial cell pores. At least some trans-endothelial cell pores may arise from VVOs. In conclusion, these data provide new insights into the mechanisms of angiogenesis and stroma formation, insights which are potentially applicable to a wide variety of disease states and which may lead to identification of new targets for therapeutic intervention.
Collapse
Affiliation(s)
- H F Dvorak
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
1058
|
Shibuya M, Ito N, Claesson-Welsh L. Structure and function of vascular endothelial growth factor receptor-1 and -2. Curr Top Microbiol Immunol 1999; 237:59-83. [PMID: 9893346 DOI: 10.1007/978-3-642-59953-8_4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
MESH Headings
- Capillary Permeability/drug effects
- Cell Movement/drug effects
- Chromosome Mapping
- Endothelial Growth Factors/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/embryology
- Heparin/metabolism
- Humans
- Lymphokines/metabolism
- Macrophages/drug effects
- Monocytes/drug effects
- Neovascularization, Pathologic/therapy
- Promoter Regions, Genetic/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/genetics
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor Protein-Tyrosine Kinases/physiology
- Receptors, Growth Factor/chemistry
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Receptors, Growth Factor/physiology
- Receptors, Vascular Endothelial Growth Factor
- Signal Transduction/physiology
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- M Shibuya
- Dept. of Genetics, University of Tokyo, Japan
| | | | | |
Collapse
|
1059
|
Lelkes PI, Hahn KL, Sukovich DA, Karmiol S, Schmidt DH. On the possible role of reactive oxygen species in angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 454:295-310. [PMID: 9889904 DOI: 10.1007/978-1-4615-4863-8_35] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human microvascular endothelial cells grown on a 3-D reconstituted extracellular matrix (Matrigel) spontaneously and rapidly form a capillary network of tubular structures, thus modeling part of the angiogenic cascade. Exposure of the cells at the time of plating onto Matrigel to a brief episode of hypoxia (40-60) min and subsequent reoxygenation, significantly accelerated (up to 3-fold) the rate of tubular morphogenesis, as determined by computer-aided morphometry. This effect was not dependent on activation of PKC or upregulation/release of angiogenic growth factors. Rather, hypoxia/reoxygenation (H/R), but not hypoxia alone, caused the formation of reactive oxygen species (ROS) and the activation of the nuclear transcription factor NF kappa B, both of which were inhibited by ROS-scavengers, such as pyrollidine dithiocarbamate. Tube formation was inhibited, also under normoxic conditions, by diverse ROS antagonists in a dose-dependent fashion. Our results indicate that angiogenesis is accompanied by and/or requires generation of ROS. We hypothesize that in the clinical setting of hypoxia/reoxygenation during ischemic pre-conditioning, enhanced activation of ROS-dependent intracellular signaling may accelerate the rate of neovascularization also in vivo, thus contributing to the alleviation of certain ischemic lesions.
Collapse
Affiliation(s)
- P I Lelkes
- Laboratory of Cell Biology, University of Wisconsin Medical School, Milwaukee 53201-0342, USA.
| | | | | | | | | |
Collapse
|
1060
|
Korpelainen EI, Kärkkäinen M, Gunji Y, Vikkula M, Alitalo K. Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response. Oncogene 1999; 18:1-8. [PMID: 9926914 DOI: 10.1038/sj.onc.1202288] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endothelial receptor tyrosine kinases (RTKs) and their signaling mechanisms are of interest because they may control tumor angiogenesis and thereby tumor growth. In this report we have examined activation of the signal transducers and activators of transcription (STATs) by the three known vascular endothelial growth factor receptors (VEGFR1-3), as well as by the endothelial Tie-1 and -2 receptors. We also studied signaling by the R849W mutant of Tie-2 (MTie-2), which has been shown to cause venous malformations. When overexpressed in 293T cells, MTie-2 activated STAT1 while the other endothelial RTKs failed to do so. In contrast, the three VEGFRs were strong activators of STAT3 and STAT5, suggesting that they activate only a specific subset of these signal transducers. STAT3 and STAT5 were also activated by Tie-2 and, more so, by MTie-2. Tyrosine phosphorylation and DNA binding of STATs correlated with their ability to activate transcription as judged by luciferase assays. When co-expressed with STAT5, VEGFR-1 as well as both the Tie-2 receptor forms increased expression of the cell cycle inhibitor p21. Interestingly, co-expression of the Tie-2 receptors with STAT1 resulted in appearance of a novel, p21 related transcript. Taken together, these findings identify STAT proteins as novel targets for signal transduction by the endothelial RTKs, suggesting that they may be involved in the regulation of endothelial function.
Collapse
Affiliation(s)
- E I Korpelainen
- Molecular/Cancer Biology Laboratory, Haartman Institute, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
1061
|
The Vascular Endothelial-Cadherin Promoter Directs Endothelial-Specific Expression in Transgenic Mice. Blood 1999. [DOI: 10.1182/blood.v93.1.184] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractVascular endothelial-cadherin (VE-cadherin) is a calcium-dependent adhesive molecule, exclusively and constitutively expressed in endothelial cells. Analysis of the VE-cadherin promoter fused to a reporter gene in bovine aortic endothelial cells showed three major functional regions. The proximal region alone (−139, +24) promoted nonspecific transcription; the addition of the (−289, −140) and (−2226, −1190) domains abolished transcription in fibroblasts while expression in endothelial cells remained unchanged, suggesting that fragments (−2226, +24) and longer contain the full endogenous promoter activity. To study the transcriptional specificity of the promoter region in vivo, we generated transgenic mice carrying the chimeric construct containing the (−2486, +24) region. The promoter directed reporter expression in all examined organs of adult transgenic mice. During embryonic development, transgene expression was detected at the early steps of vasculogenesis. Later, the expression persisted during development of the vascular system and was restricted to the endothelial layer of the vessels. Together, these data provide evidence for specific regulatory regions within the VE-cadherinpromoter. Furthermore, the identification of DNA sequences restricting gene expression to the endothelium has many potential applications for the development of animal models of cardiovascular or angiogenic diseases or for the delivery of therapeutic molecules.
Collapse
|
1062
|
Therapeutic Coronary Angiogenesis. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1569-2590(08)60169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
1063
|
Affiliation(s)
- S A Stacker
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Australia.
| | | |
Collapse
|
1064
|
Abstract
Vascular endothelial-cadherin (VE-cadherin) is a calcium-dependent adhesive molecule, exclusively and constitutively expressed in endothelial cells. Analysis of the VE-cadherin promoter fused to a reporter gene in bovine aortic endothelial cells showed three major functional regions. The proximal region alone (−139, +24) promoted nonspecific transcription; the addition of the (−289, −140) and (−2226, −1190) domains abolished transcription in fibroblasts while expression in endothelial cells remained unchanged, suggesting that fragments (−2226, +24) and longer contain the full endogenous promoter activity. To study the transcriptional specificity of the promoter region in vivo, we generated transgenic mice carrying the chimeric construct containing the (−2486, +24) region. The promoter directed reporter expression in all examined organs of adult transgenic mice. During embryonic development, transgene expression was detected at the early steps of vasculogenesis. Later, the expression persisted during development of the vascular system and was restricted to the endothelial layer of the vessels. Together, these data provide evidence for specific regulatory regions within the VE-cadherinpromoter. Furthermore, the identification of DNA sequences restricting gene expression to the endothelium has many potential applications for the development of animal models of cardiovascular or angiogenic diseases or for the delivery of therapeutic molecules.
Collapse
|
1065
|
Acarregui MJ, Penisten ST, Goss KL, Ramirez K, Snyder JM. Vascular endothelial growth factor gene expression in human fetal lung in vitro. Am J Respir Cell Mol Biol 1999; 20:14-23. [PMID: 9870913 DOI: 10.1165/ajrcmb.20.1.3251] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal respiratory function depends on the development of a well-formed pulmonary capillary bed. Vascular endothelial growth factor (VEGF) is a potent inducer of endothelial cell growth and angiogenesis. High levels of VEGF protein and messenger RNA (mRNA) have been detected in the developing lung, suggesting that VEGF plays a role in the development of the pulmonary capillary bed. To begin to understand the role of VEGF in human lung development, we explored the regulation of VEGF gene expression and the localization of VEGF protein and mRNA in a model of the developing human lung. VEGF protein and mRNA were detected in midtrimester human fetal lung tissue, and their levels increased with time in explant culture. VEGF protein and mRNA were increased by the maintenance of human fetal lung explants in 2% O2 environments compared with 20% O2 environments. VEGF mRNA levels were found to be increased by cyclic adenosine monophosphate (cAMP) in explants that were incubated in 20% O2, but not in those incubated in 2% O2. Immunostaining for VEGF protein demonstrated localization primarily in airway epithelial cells in midtrimester human fetal lung tissue. Immunostaining for VEGF increased with incubation of human fetal lung explants in 2% and 20% O2. Interestingly, VEGF protein was localized primarily in the basement membrane subjacent to airway epithelial cells after 4 d of incubation in 20% O2. Incubation of tissues in the presence of dibutyryl cAMP resulted in an increase in immunostaining for VEGF, primarily in the basement membranes of prealveolar ducts in 20% O2-treated tissues. In situ hybridization studies indicated that VEGF mRNA was present in both mesenchymal cells and airway epithelial cells. These data suggest that VEGF gene expression is regulated by both oxygen and cAMP in the developing human lung. The detection of VEGF mRNA and protein in distal airway epithelial cells and the detection of VEGF protein in the basement membrane subjacent to the airway epithelial cells suggest that translocation of VEGF protein occurs after its synthesis in the epithelium. Localization of VEGF to the basement membrane of airway epithelial cells may be important for directing capillary development in the human lung.
Collapse
Affiliation(s)
- M J Acarregui
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
1066
|
Vascular Endothelial Growth Factor Molecular and Biological Aspects. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1569-2590(08)60162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
1067
|
Wellner M, Maasch C, Kupprion C, Lindschau C, Luft FC, Haller H. The proliferative effect of vascular endothelial growth factor requires protein kinase C-alpha and protein kinase C-zeta. Arterioscler Thromb Vasc Biol 1999; 19:178-85. [PMID: 9888881 DOI: 10.1161/01.atv.19.1.178] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heparin-binding protein vascular endothelial growth factor (VEGF) is a highly specific growth factor for endothelial cells. VEGF binds to specific tyrosine kinase receptors, which mediate intracellular signaling. We investigated 2 hypotheses: (1) VEGF affects intracellular calcium [Ca2+]i regulation and [Ca2+]i-dependent messenger systems; and (2) these mechanisms are important for VEGF's proliferative effects. [Ca2+]i was measured in human umbilical vein endothelial cells using fura-2 and fluo-3. Protein kinase C (PKC) activity was measured by histone-like pseudosubstrate phosphorylation. PKC isoform distribution was observed with confocal microscopy and Western blot. Inhibition of PKC isoforms was assessed by specific antisense oligonucleotides (ODN) for the PKC isoforms. VEGF (10 ng/mL) induced a transient increase in [Ca2+]i followed by a sustained elevation. The sustained [Ca2+]i plateau was abolished by EGTA. Pertussis toxin also abolished the plateau phase, whereas the initial peak was not affected. The PKC isoforms alpha, delta, epsilon, and zeta were identified in endothelial cells. VEGF induced a translocation of PKC-alpha and PKC-zeta toward the nucleus and the perinuclear area, whereas cellular distribution of PKC-delta and PKC-epsilon was not influenced. Cell exposure to TPA led to a down-regulation of PKC-alpha and reduced the proliferative effect of VEGF. VEGF-induced endothelial cell proliferation also was reduced by the PKC inhibitors staurosporine and calphostin C. Specific down-regulation of PKC-alpha and PKC-zeta with antisense ODN reduced the proliferative effect of VEGF significantly. Our data show that VEGF induces initial and sustained Ca2+ influx. VEGF leads to the translocation of the [Ca2+]i-sensitive PKC isoform alpha and the atypical PKC isoform zeta. Antisense ODN for these PKC isoforms block VEGF-induced proliferation. These findings suggest that PKC isoforms alpha and zeta are important for VEGF's angiogenic effects.
Collapse
Affiliation(s)
- M Wellner
- Franz Volhard Clinic and Max Delbrück Center, Virchow Klinikum, Humboldt University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
1068
|
Ryan AM, Eppler DB, Hagler KE, Bruner RH, Thomford PJ, Hall RL, Shopp GM, O'Neill CA. Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody. Toxicol Pathol 1999; 27:78-86. [PMID: 10367678 DOI: 10.1177/019262339902700115] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombinant humanized antivascular endothelial growth factor (rhuMAbVEGF) is a monoclonal IgG1 antibody that is being developed as an antiangiogenic agent for use in treating a variety of solid tumors. Preclinical safety studies included an immunohistochemical tissue cross-reactivity study, in vitro hemolytic potential and blood compatibility studies, and multiple dose toxicity studies. Toxicity studies were conducted in cynomolgus monkey because rhuMAbVEGF is pharmacologically active in this species and does not bind rat or mouse vascular endothelial growth factor (VEGF). Following twice weekly administration of rhuMAbVEGF for 4 or 13 wk, young adult cynomolgus monkeys exhibited physeal dysplasia characterized by a dose-related increase in hypertrophied chondrocytes, subchondral bony plate formation, and inhibition of vascular invasion of the growth plate. In addition, decreased ovarian and uterine weights and an absence of corpora lutea were observed in females receiving 10 and 50 mg/kg/dose in the 13-wk study. Both the physeal and ovarian changes were reversible with cessation of treatment. No other treatment-related effects were observed following rhuMAbVEGF administration at doses up to 50 mg/kg. These findings indicate that VEGF is required for longitudinal bone growth and corpora lutea formation and that rhuMAbVEGF can reversibly inhibit physiologic neovascularization at these sites.
Collapse
Affiliation(s)
- A M Ryan
- Department of Pathology, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1069
|
Lei J, Jiang A, Pei D. Identification and characterization of a new splicing variant of vascular endothelial growth factor: VEGF183. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1443:400-6. [PMID: 9878851 DOI: 10.1016/s0167-4781(98)00240-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report the discovery of a new splicing variant of vascular endothelial growth factor named VEGF183. It is six amino acids shorter than its closest relative, VEGF189, due to the utilization of a conserved alternate splicing donor site within exon 6a. Highly expressed in heart tissue, VEGF183 is detected in transiently transfected COS cells as 28-32-kDa monomers under reduced condition, and 46-kDa dimers under non-reduced condition - the functional unit for all VEGF isoforms.
Collapse
Affiliation(s)
- J Lei
- Department of Pharmacology, University of Minnesota, 3-249 Millard Hall, 435 Delaware St. S.E., Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
1070
|
Marti HH, Risau W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci U S A 1998; 95:15809-14. [PMID: 9861052 PMCID: PMC28126 DOI: 10.1073/pnas.95.26.15809] [Citation(s) in RCA: 307] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.
Collapse
Affiliation(s)
- H H Marti
- Max Planck Institute for Physiological and Clinical Research, Department of Molecular Cell Biology, Parkstrasse 1, 61231 Bad Nauheim, Germany.
| | | |
Collapse
|
1071
|
Eichmann A, Corbel C, Le Douarin NM. Segregation of the embryonic vascular and hemopoietic systems. Biochem Cell Biol 1998. [DOI: 10.1139/o98-106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The origin of endothelial cells and their subsequent assembly into the primary vascular system have been mostly analyzed in the avian embryo. Following the discovery of specific growth factors and their cognate receptors, the molecular mechanisms underlying these processes have been unraveled in both birds and mammals. In particular, experimental studies of the angiogenic vascular endothelial growth factor (VEGF) and its receptors, carried out in both vertebrate classes, have provided significant insight into the developmental biology of endothelial cells. The VEGF receptor VEGFR2 is the earliest marker known to be expressed by endothelial precursor cells of avian and mouse embryos. Based on the localization of VEGFR2+ cells in the avian embryo and on clonal culture experiments, two types of endothelial precursor cells can be distinguished from gastrulation stages onward: posterior mesodermal VEGFR2+ hemangioblasts, which have the capacity to differentiate into endothelial and hemopoietic cells, and anterior VEGFR2+ angioblasts, which can only give rise to endothelial cells.Key words: hemangioblast, endothelial cell, hemopoietic cell, embryo.
Collapse
|
1072
|
Wynendaele W, van Oosterom AT, Pawinski A, de Bruijn EA, Maes RA. Angiogenesis: possibilities for therapeutic interventions. PHARMACY WORLD & SCIENCE : PWS 1998; 20:225-35. [PMID: 9972522 DOI: 10.1023/a:1008600603059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vascular proliferation normally occurs only during embryonic development, the female reproductive cycle and wound healing. Various pathological conditions such as diabetic retinopathy are characterized by persistent, uncontrolled angiogenesis. At the other hand, impaired development of new blood vessels has been found to be related with myocardial infarction. A series of anti-angiogenic drugs are currently included in experimental cancer treatment, whereas the failure of ulcers to heal may be limited by increased angiogenesis upon administration of growth factors. In the present review control mechanisms of the vasculature are summarized and therapeutic approaches discussed.
Collapse
Affiliation(s)
- W Wynendaele
- Laboratory of Experimental Oncology (LEO), Leuven, Belgium
| | | | | | | | | |
Collapse
|
1073
|
André T, Chastre E, Kotelevets L, Vaillant JC, Louvet C, Balosso J, Le Gall E, Prévot S, Gespach C. [Tumoral angiogenesis: physiopathology, prognostic value and therapeutic perspectives]. Rev Med Interne 1998; 19:904-13. [PMID: 9887458 DOI: 10.1016/s0248-8663(99)80063-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Angiogenesis activation plays a crucial role in tumoral growth and metastases dissemination. This review summarizes and analyzes current knowledge on molecular mechanisms related to angiogenesis and the prognostic value of its effectors. It also focuses on the therapeutical relevance of various drugs that might inhibit angiogenesic processes. CURRENT KNOWLEDGE AND KEY POINTS Tumor angiogenesis involves complex interactions between tumoral, stromal, endothelial cells, fibroblasts and the extracellular matrix. Normal and malignant angiogenesis depends on the balance of proangiogenic and antiangiogenic factors. Endothelial cells are activated by growth factors, such as Vascular Endothelial Growth Factor (VEGF), and proliferate; they release proteases able to induce degradation of the basement membrane and extracellular matrix, and undergo migration and tubulogenesis. Angiostatin and endostatin are two powerful inhibitors of angiogenesis in experimental models. Assessment of intratumoral microvessel density and quantification of angiogenic factors, including VEGF, are of prognostic value in most cancers, particularly in breast cancer. However, the use of these prognosis markers in clinical practice is still controversial due to the lack of prospective studies and to technical limits inherent to the scoring and standardization of immunohistochemical methods. FUTURE PROSPECTS AND PROJECTS Better understanding of the molecular basis of angiogenesis allows the development of new therapeutical strategies. Biochemical targets of antiangiogenic therapy are: the interaction between angiogenic factors and their receptors; the interaction of endothelial cells with the extracellular matrix; and intracellular signaling pathways. Angiogenesis inhibitors may not cause tumor regression, but inhibit cellular growth and produce "disease dormancy". Extensive phase I to III clinical trials involving antiangiogenesis therapy are in progress.
Collapse
Affiliation(s)
- T André
- Inserm U482, hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
1074
|
Clark DE, Smith SK, He Y, Day KA, Licence DR, Corps AN, Lammoglia R, Charnock-Jones DS. A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol Reprod 1998; 59:1540-8. [PMID: 9828203 DOI: 10.1095/biolreprod59.6.1540] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent secreted factor that promotes angiogenesis and maintains the integrity of the endothelium. Levels of VEGF are increased in many tumors and are elevated in women with pre-eclampsia, a serious disease of pregnancy. Here we show by in situ hybridization that the trophoblast contains the mRNA encoding a soluble version of the VEGF receptor known as Flt-1 (sFlt-1: initially described by Kendall and Thomas, PNAS 90:10705-10709). Binding assays and Western blotting of villus-conditioned media confirmed the production of sFlt-1. Serum from pregnant women was found to contain a VEGF-binding protein that was not present in serum from men or nonpregnant women. As determined by heparin affinity, column fractionation, and cross-linking, this protein was identical to sFlt-1. Taken together, these results show that the placenta secretes sFlt-1, which would be expected to be a VEGF antagonist. This is the first report of production of the sFlt-1 receptor in vivo, and it reveals a new mechanism for naturally regulating this potent angiogenic agent. The presence of such an antagonist suggests that regulation of VEGF action is essential to successful pregnancy. This has important implications for the activity of VEGF locally and systemically in other conditions.
Collapse
Affiliation(s)
- D E Clark
- a Reproductive Molecular Research Group, Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, CB2 2SW, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
1075
|
Maniwa Y, Okada M, Ishii N, Kiyooka K. Vascular endothelial growth factor increased by pulmonary surgery accelerates the growth of micrometastases in metastatic lung cancer. Chest 1998; 114:1668-75. [PMID: 9872204 DOI: 10.1378/chest.114.6.1668] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The use of surgery for metastatic lung cancer has been established recently and the indications have been extended to multiple and bilateral lung metastases. However, in some patients, secondary lung metastasis appears soon after the first pulmonary surgery, making curative treatment very difficult. Postoperative weakness of tumor angiogenesis suppression mechanisms seems to play an important role in the recurrence of lung metastases. To verify this hypothesis, we performed a clinical and an experimental study. RESULTS AND CONCLUSION The clinical study revealed that serum vascular endothelial growth factor (VEGF), also known as vascular permeability factor, increased after pulmonary surgery. The experimental study showed that VEGF played an important role in the rapid growth of dormant micrometastases of the lung. These results suggested that the postoperative increase of VEGF disrupted angiogenesis suppression and induced the growth of dormant micrometastases early in the postoperative period. It was also demonstrated that this effect of VEGF on micrometastases was abolished by AGM-1470, an angiogenesis inhibitor. In conclusion, postoperative treatment with AGM-1470 might inhibit the early recurrence of malignant tumors.
Collapse
Affiliation(s)
- Y Maniwa
- Department of Surgery Division II, Kobe University School of Medicine, Japan.
| | | | | | | |
Collapse
|
1076
|
Ogawa S, Oku A, Sawano A, Yamaguchi S, Yazaki Y, Shibuya M. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 1998; 273:31273-82. [PMID: 9813035 DOI: 10.1074/jbc.273.47.31273] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) mediates endothelial cell proliferation, angiogenesis, and vascular permeability via the endothelial cell receptors, KDR/Flk-1 and Flt-1. Recently, a gene encoding a polypeptide with about 25% amino acid identity to mammalian VEGF was identified in the genome of Orf virus (OV), a parapoxvirus that affects sheep and goats and occasionally, humans, to generate lesions with angiogenesis. In this study, we examined the biological activities and receptor of OV-derived NZ-7 VEGF (VEGF-E). VEGF-E was found to be a dimer of about 20 kDa with no basic domain nor affinity for heparin column, similar to VEGF121 subtype. VEGF121 has 10-100-fold less endothelial cell mitotic activity than VEGF165 due to lack of a heparin-binding basic region. Interestingly, however, VEGF-E showed almost equal levels of mitotic activity on primary endothelial cells and vascular permeability activity as VEGF165. Furthermore, VEGF-E bound KDR/Flk-1 (VEGFR-2) and induced its autophosphorylation to almost the same extent as VEGF165, but did not bind Flt-1 (VEGFR-1) nor induce autophosphorylation of Flt-1. These results indicate that VEGF-E is a novel type of endothelial growth factor, utilizing only one of the VEGF receptors, and carrying a potent mitogenic activity without affinity to heparin.
Collapse
Affiliation(s)
- S Ogawa
- Department of Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 Japan
| | | | | | | | | | | |
Collapse
|
1077
|
Shinkai A, Ito M, Anazawa H, Yamaguchi S, Shitara K, Shibuya M. Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. J Biol Chem 1998; 273:31283-8. [PMID: 9813036 DOI: 10.1074/jbc.273.47.31283] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The kinase insert domain-containing receptor (KDR) for vascular endothelial growth factor (VEGF) has been shown to be involved in vasculogenesis and angiogenesis. This receptor is characterized by seven immunoglobulin (Ig)-like domains within its extracellular region. To identify the domains involved in VEGF binding, we constructed various deletion mutants of the extracellular region fused with the crystallizable fragment portion of an IgG and then examined the binding affinity with VEGF by means of the BIAcore biosensor assay. Deletion of the COOH-terminal two or three Ig-like domains out of a total of seven affected ligand dissociation rather than association. Further deletion of the fourth domain caused a drastic decrease in the association rate. Binding ability was abolished completely with removal of the third domain. The mutant KDR proteins lacking the NH2-terminal Ig-like domain exhibited a slightly higher association rate compared with those of the mutants having this domain. Deletion of the first two NH2-terminal Ig-like domains caused a drastic reduction in the association rate, but affinity to VEGF was retained. These results suggest that the third Ig-like domain is critical for ligand binding, the second and fourth domains are important for ligand association, and the fifth and sixth domains are required for retention of the ligand bound to the receptor molecule. The first Ig-like domain may regulate the ligand binding.
Collapse
Affiliation(s)
- A Shinkai
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., 3-6-6, Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | | | | | | | | | | |
Collapse
|
1078
|
Inoue M, Itoh H, Ueda M, Naruko T, Kojima A, Komatsu R, Doi K, Ogawa Y, Tamura N, Takaya K, Igaki T, Yamashita J, Chun TH, Masatsugu K, Becker AE, Nakao K. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 1998; 98:2108-16. [PMID: 9815864 DOI: 10.1161/01.cir.98.20.2108] [Citation(s) in RCA: 314] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is an important angiogenic factor reported to induce migration and proliferation of endothelial cells, enhance vascular permeability, and modulate thrombogenicity. VEGF expression in cultured cells (smooth muscle cells, macrophages, endothelial cells) is controlled by growth factors and cytokines. Hence, the question arises of whether VEGF could play a role in atherogenesis. METHODS AND RESULTS Frozen sections from 38 coronary artery segments were studied. The specimens were characterized as normal with diffuse intimal thickening, early atherosclerosis with hypercellularity, and advanced atherosclerosis (atheromatous plaques, fibrous plaques, and totally occlusive lesions). VEGF expression as well as the expression of 2 VEGF receptors, flt-1 and Flk-1, were studied with immunohistochemical techniques in these samples at the different stages of human coronary atherosclerosis progression. The expression of VEGF mRNA was also studied with reverse transcription-polymerase chain reaction. Normal arterial segments showed no substantial VEGF expression. Hypercellular and atheromatous lesions showed distinct VEGF positivity of activated endothelial cells, macrophages, and partially differentiated smooth muscle cells. VEGF positivity was also detected in endothelial cells of intraplaque microvessels within advanced lesions. In totally occlusive lesions with extensive neovascularization, intense immunostaining for VEGF was observed in accumulated macrophages and endothelial cells of the microvessels. Furthermore, VEGF mRNA expression was detected in atherosclerotic coronary segments but not in normal coronary segments. The immunostainings for flt-1 and Flk-1 were detected in aggregating macrophages in atherosclerotic lesions and also in endothelial cells of the microvessels in totally occlusive lesions. CONCLUSIONS These results demonstrate distinct expression of VEGF and its receptors (flt-1 and Flk-1) in atherosclerotic lesions in human coronary arteries. Considering the multipotent actions of VEGF documented experimentally in vivo and in vitro, our findings suggest that VEGF may have some role in the progression of human coronary atherosclerosis, as well as in recanalization processes in obstructive coronary diseases.
Collapse
Affiliation(s)
- M Inoue
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1079
|
Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lièvre F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 1998; 125:4575-83. [PMID: 9778515 DOI: 10.1242/dev.125.22.4575] [Citation(s) in RCA: 368] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have investigated the developmental relationship of the hemopoietic and endothelial lineages in the floor of the chicken aorta, a site of hemopoietic progenitor emergence in the embryo proper. We show that, prior to the onset of hemopoiesis, the aortic endothelium uniformly expresses the endothelium-specific membrane receptor VEGF-R2. The onset of hemopoiesis can be determined by detecting the common leukocyte antigen CD45. VEGF-R2 and CD45 are expressed in complementary fashion, namely the hemopoietic cluster-bearing floor of the aorta is CD45(+)/VEGF-R2(−), while the rest of the aortic endothelium is CD45(−)/VEGF-R2(+). To determine if the hemopoietic clusters are derived from endothelial cells, we tagged the E2 endothelial tree from the inside with low-density lipoproteins (LDL) coupled to DiI. 24 hours later, hemopoietic clusters were labelled by LDL. Since no CD45(+) cells were inserted among endothelial cells at the time of vascular labelling, hemopoietic clusters must be concluded to derive from precursors with an endothelial phenotype.
Collapse
Affiliation(s)
- T Jaffredo
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France; 49 bis, Avenue de la Belle Gabrielle, France.
| | | | | | | |
Collapse
|
1080
|
Downs KM, Gifford S, Blahnik M, Gardner RL. Vascularization in the murine allantois occurs by vasculogenesis without accompanying erythropoiesis. Development 1998; 125:4507-20. [PMID: 9778509 DOI: 10.1242/dev.125.22.4507] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to determine whether the blood vessels of the murine allantois are formed by vasculogenesis or angiogenesis. Morphological analysis revealed that differentiation of allantoic mesoderm into an outer layer of mesothelium and an inner vascular network begins in the distal region of the allantois, which is most remote from other tissues, as early as the late neural plate stage (approximately 7.75 days postcoitum). Nascent blood vessels were not found in the base of the allantois until 4-somite pairs had formed in the fetus (approximately 8.25 days postcoitum), and vascular continuity with the yolk sac and fetus was not present until the 6-somite-pair stage (approximately 8.5 days postcoitum). Immunohistochemical analysis demonstrated that flk-1, a molecular marker of early endothelial cells, is expressed in significantly more distal than basal core cells in the early allantois and never in mesothelium. Furthermore, synchronous grafting of donor yolk sac containing blood islands into blood islands of headfold-stage host conceptuses provided no evidence that the yolk sac contributes endothelial cells to the allantois. Finally, when removed from conceptuses and cultured in isolation, neural plate and headfold-stage allantoises formed a conspicuous vascular network that was positive for Flk-1. Hence, the vasculature of the allantois is formed intrinsically by vasculogenesis rather than extrinsically via angiogenesis from the adjacent yolk sac or fetus. Whether allantoic vasculogenesis is associated with erythropoiesis was also investigated. Benzidine-staining in situ revealed that primitive erythroid cells were not identified in the allantois until 6-somite pairs when continuity between its vasculature and that of the yolk sac was first evident. Nevertheless, a small number of allantoises removed from conceptuses at a considerably earlier stage were found to contain erythroid precursor cells following culture in isolation. To determine whether such erythroid cells could be of allantoic origin, host allantoises were made chimeric with lacZ-expressing donor allantoises that were additionally labeled with [3H]methyl thymidine. Following culture and autoradiography, many lacZ-expressing benzidine-stained cells were observed in donor allantoises, but none contained silver grains above background. Moreover, no cells of donor allantoic origin were found in the fetus or yolk sac. Hence, vasculogenesis seems to be independent of erythropoiesis in the allantois and to involve a distal-to-proximal gradient in differentiation of allantoic mesoderm into the endothelial cell lineage. Furthermore, this gradient is established earlier than reported previously, being present at the neural plate stage.
Collapse
Affiliation(s)
- K M Downs
- Department of Anatomy, University of Wisconsin, Madison Medical School, Madison, WI 53706 USA.
| | | | | | | |
Collapse
|
1081
|
Shen BQ, Lee DY, Gerber HP, Keyt BA, Ferrara N, Zioncheck TF. Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J Biol Chem 1998; 273:29979-85. [PMID: 9792718 DOI: 10.1074/jbc.273.45.29979] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the possibility that vascular endothelial growth factor (VEGF) treatment could regulate KDR/Flk-1 receptor expression in endothelial cells. Bovine adrenal cortex endothelial cells were incubated with 200 pM rhVEGF165 for 0-7 days. Western blot analysis showed a 3-5-fold increase in total KDR protein following 4-day VEGF treatment. Scatchard analysis revealed that VEGF induced a 2-3-fold increase in high affinity receptor number (5.0 x 10(4)/cell versus 2. 4 x 10(4)/cell) without significantly affecting receptor binding affinity (Kd 76 pM versus 72 pM). Quantitative polymerase chain reaction analysis demonstrated a 3-fold increase in KDR mRNA levels following VEGF exposure. VEGF-induced KDR expression primarily occurred at the transcriptional level as demonstrated by a luciferase reporter assay system. Receptor selective mutants with wild-type KDR binding and decreased Flt-1 binding also induced KDR up-regulation; in contrast, mutants with decreased KDR binding and wild-type Flt-1 binding did not, suggesting that KDR receptor signaling mediated the increase in KDR expression. Inhibition of tyrosine kinase, Src tyrosine kinase, protein kinase C, and mitogen-activated protein kinase activities all blocked VEGF-induced KDR up-regulation. Finally, co-incubation of nitric-oxide synthase inhibitors with VEGF had no significant effect on KDR expression, but 100 microM sodium nitroprusside, a NO donor, significantly inhibited VEGF-induced KDR up-regulation, indicating that NO negatively regulates KDR expression. In conclusion, our data demonstrate that VEGF binding to the KDR receptor tyrosine kinase results in an increase in KDR receptor gene transcription and protein expression. Thus, KDR up-regulation induced by VEGF may represent an important positive feedback mechanism for VEGF action in tumor and ischemia-induced angiogenesis.
Collapse
Affiliation(s)
- B Q Shen
- Department of Pharmacokinetics and Metabolism, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
1082
|
Suzuma K, Takagi H, Otani A, Suzuma I, Honda Y. Increased expression of KDR/Flk-1 (VEGFR-2) in murine model of ischemia-induced retinal neovascularization. Microvasc Res 1998; 56:183-91. [PMID: 9828156 DOI: 10.1006/mvre.1998.2111] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the vascular endothelial growth factor (VEGF)/VEGF receptor system plays a critical role in the pathogenesis of ischemic retinal neovascular diseases such as diabetic retinopathy, regulation of VEGF receptor expression in ischemic retina has not been fully investigated in vivo. Accordingly, we studied the regulation of Flt-1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2) expression in a mouse model of ischemia-induced retinal neovascularization. Immunohistochemistry for Flt-1 and KDR/Flk-1 revealed that, in hypoxic retina, the immunoreactivity of KDR/Flk-1 was increased in both intensity and extent of involvement in the vessels near the avascular area, particularly at the neovascular tufts, but that the pattern of Flt-1 expression in hypoxic retina was almost the same as that of control animals. The number of KDR/Flk-1-positive vessels was significantly increased in hypoxic retina (P < 0.01). In addition, expression of both Flt-1 and KDR/Flk-1 was observed in nonvascular cells of the neural retina. Northern blot analysis demonstrated that the mRNA levels of KDR/Flk-1 were greater in the neovascular retina of hypoxic animals than in control animals. We suggest that the increased expression of KDR/Flk-1 in vascular cells might potentiate the VEGF-mediated angiogenesis that accompanies many ischemic retinal diseases.
Collapse
Affiliation(s)
- K Suzuma
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606, Japan
| | | | | | | | | |
Collapse
|
1083
|
Abstract
Oncogenic mutations resulting in activated Ras Guanosine Triphosphate (GTP) are prevalent in 30% of all human cancers, but not primary nervous system tumors. Several growth factors/receptors are implicated in the pathogenesis of malignant astrocytomas including epidermal growth factor (EGFR) and platelet derived growth factor (PDGF-R) receptors, plus the highly potent and specific angiogenic vascular endothelial growth factor (VEGF). A significant proportion of these tumors also express a truncated EGFR, which is constitutively activated. Our work demonstrates that the mitogenic signals from both the normal PDGF-R and EGFR and the truncated EGFR activate Ras. Inhibition of Ras by genetic or pharmacological strategies leads to decreased astrocytoma tumorgenic growth in vitro and decreased expression of VEGF. This suggests that these agents may be potentially important as novel anti-proliferative and anti-angiogenic therapies for human malignant astrocytomas. In contrast to astrocytomas, where increased levels of activated Ras GTP results from transmitted signals from activated growth factor receptors, the loss of neurofibromin is postulated to lead to functional up-regulation of the Ras pathway in neurofibromatosis-1(NF-1). We have demonstrated that NF-1 neurofibromas and neurogenic sarcomas, compared to non-NF-1 Schwannomas, have markedly elevated levels of activated Ras GTP. Increased Ras GTP was associated with increased tumor vascularity in the NF-1 neurogenic sarcomas, perhaps related to increased VEGF secretion. The role of Ras inhibitors as potential therapy in this tumor is also under study.
Collapse
Affiliation(s)
- A Guha
- Division of Neurosurgery, Toronto Hospital, University of Toronto, Canada
| |
Collapse
|
1084
|
Krum JM, Rosenstein JM. VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS. Exp Neurol 1998; 154:57-65. [PMID: 9875268 DOI: 10.1006/exnr.1998.6930] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Significant angiogenesis occurs only after injury in the adult mammalian brain; capillaries proliferate and astrocytes are activated by presently unresolved cellular mechanisms. Because of the intimate relationship between astrocytes and brain capillaries we examined the expression of the specific endothelial mitogen vascular endothelial growth factor (VEGF) in reactive astrocytes following CNS trauma models: neural grafting, stab wounds, and glioma implantation. In situ hybridization was combined with GFAP immunohistochemistry to delineate VEGF mRNA expression in reactive astrocytes. In addition, VEGF and its receptor flt-1 protein expression were detected immunohistochemically. In all three models we found unexpectedly that only reactive astrocytes, not endothelium, expressed the VEGF receptor flt-1, VEGF mRNA, and VEGF protein in a spatiotemporal manner, suggesting that activated astroglia may have a direct role in the induction of angiogenesis or permeability in mature brain. In addition, secreted VEGF may play a part in astroglial signalling by the induction of its own receptor in reactive astroglia following injury. These findings may have significant implications with regard to growth and reparative mechanisms of the adult cerebrovasculature.
Collapse
Affiliation(s)
- J M Krum
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|
1085
|
Zachary I. Vascular endothelial growth factor: how it transmits its signal. EXPERIMENTAL NEPHROLOGY 1998; 6:480-7. [PMID: 9807017 DOI: 10.1159/000020560] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an essential molecule in the development and formation of mammalian blood vessels in health and disease. VEGF is also increasingly implicated in other biological processes including renal development and pathophysiology. The biological activities of VEGF in vivo and in its target cells in culture are mediated through two receptor protein tyrosine kinases, KDR/Flk-1 and Flt-1. KDR/Flk-1 is able to mediate the tyrosine phosphorylation of several cellular components as well as the generation of second messengers. Recent findings have revealed novel signaling mechanisms which may mediate the biological actions of VEGF. In contrast, the signal transduction mechanisms triggered by Flt-1 remain largely unknown.
Collapse
Affiliation(s)
- I Zachary
- Cruciform Project and Department of Medicine, University College, London, UK.
| |
Collapse
|
1086
|
Ramsauer M, Kunz J, Krause D, Dermietzel R. Regulation of a blood-brain barrier-specific enzyme expressed by cerebral pericytes (pericytic aminopeptidase N/pAPN) under cell culture conditions. J Cereb Blood Flow Metab 1998; 18:1270-81. [PMID: 9809517 DOI: 10.1097/00004647-199811000-00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study we show that the aminopeptidase N of cerebral pericytes (pAPN) associated with the blood-brain barrier (BBB) is downregulated in pericytic cell cultures. This observation is in accordance with previous data describing comparable in vitro effects for BBB-specific enzymes of endothelial or pericytic origin, such as gamma-glutamyl transpeptidase or alkaline phosphatase. By polymerase chain reaction and in situ hybridization we were able to determine that the down-regulation of pAPN occurs at the posttranscriptional level. The mRNA of pAPN was found to be constitutively expressed even when the protein is no longer detectable. Culturing the pericytes in an endothelial cell-conditioned medium allowed pAPN to be reexpressed. However, the reexpression effect depended largely on the culturing conditions of the pericytes. Although purified pericytes deprived of endothelial cells did not reveal a reexpression effect, pericytes that were kept in contact with endothelial cells were able to acquire a pAPN-positive phenotype, indicating that endothelial cells constitute an essential requirement for the in vitro reexpression of pAPN. Astrocytes, however, were insufficient in exerting any reexpression effect.
Collapse
Affiliation(s)
- M Ramsauer
- Institut für Anatomie, Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
1087
|
Mitchell CA, Risau W, Drexler HC. Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: a role for vascular endothelial growth factor as a survival factor for endothelium. Dev Dyn 1998; 213:322-33. [PMID: 9825867 DOI: 10.1002/(sici)1097-0177(199811)213:3<322::aid-aja8>3.0.co;2-e] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of the embryonic lens is dependent on the formation and regression of the tunica vasculosa lentis (TVL), which is a transiently occurring capillary plexus that surrounds the posterior part of the lens. In this study, by using the terminal deoxy-nucleotidyl transferase mediated nick end-labelling technique (TUNEL), electron microscopy, radioactive end-labelling of DNA extracted from TVL, and the Comet assay, we show that widespread apoptosis of the endothelial cells that constitute the TVL is occurring already at embryonic day 17.5 (E17.5) of mouse development, much earlier than was reported previously (Jack [1972a] Am. J. Ophthalmol. 74:261-272; Lang [1997] Cell Death Diff. 4:12-20). In addition to apoptotic cell death, regression of this structure is associated with loss of capillary integrity, leakage of erythrocytes into the vitreal compartment, and phagocytosis of the apoptotic endothelium by tissue macrophages (hyalocytes). In situ hybridization experiments with probes for the flk-1 receptor and its high-affinity ligand, vascular endothelial growth factor (VEGF; Terman et al. [1992] Biochem. Biophys. Res. Commun. 187:1579-1586; Millauer et al. [1993] Cell 72:835-846), revealed strong endothelial cell expression for flk-1 in the eyes of E13.5-E17.5 embryos. VEGF mRNA was detected in lens epithelial cells located at the posterior pole of the developing lens in E13.5 embryos, in close proximity to the TVL capillaries. At later times (E14.5-E17.5), when the lens epithelial cells have differentiated into primary lens fiber cells, and a thick lenticular capsule is formed, the expression of VEGF mRNA becomes restricted to the anterior and equatorial portions of the lens. The physical separation of the VEGF-producing cells from the flk-1-expressing endothelium (due to the differentiation of the lens epithelial cells into lens fiber cells and the formation of the lenticular capsule) may deprive the endothelium of an essential survival factor and, thus, may constitute the primary mechanism that is responsible for the induction of endothelial cell apoptosis in this model.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Cell Survival/physiology
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/embryology
- Female
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- In Situ Nick-End Labeling
- Lens, Crystalline/blood supply
- Lens, Crystalline/embryology
- Lens, Crystalline/ultrastructure
- Lymphokines/genetics
- Lymphokines/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Electron
- Pregnancy
- RNA, Messenger/analysis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptors, Growth Factor/genetics
- Receptors, Mitogen/genetics
- Receptors, Vascular Endothelial Growth Factor
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- C A Mitchell
- Max-Planck Institut für Physiologische und Klinische Forschung, W.G. Kerckhoff Institut, Bad Nauheim, Germany.
| | | | | |
Collapse
|
1088
|
Mohammadi M, Froum S, Hamby JM, Schroeder MC, Panek RL, Lu GH, Eliseenkova AV, Green D, Schlessinger J, Hubbard SR. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J 1998; 17:5896-904. [PMID: 9774334 PMCID: PMC1170917 DOI: 10.1093/emboj/17.20.5896] [Citation(s) in RCA: 403] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Angiogenesis, the sprouting of new blood vessels from pre-existing ones, is an essential physiological process in development, yet also plays a major role in the progression of human diseases such as diabetic retinopathy, atherosclerosis and cancer. The effects of the most potent angiogenic factors, vascular endothelial growth factor (VEGF), angiopoietin and fibroblast growth factor (FGF) are mediated through cell surface receptors that possess intrinsic protein tyrosine kinase activity. In this report, we describe a synthetic compound of the pyrido[2,3-d]pyrimidine class, designated PD 173074, that selectively inhibits the tyrosine kinase activities of the FGF and VEGF receptors. We show that systemic administration of PD 173074 in mice can effectively block angiogenesis induced by either FGF or VEGF with no apparent toxicity. To elucidate the determinants of selectivity, we have determined the crystal structure of PD 173074 in complex with the tyrosine kinase domain of FGF receptor 1 at 2.5 A resolution. A high degree of surface complementarity between PD 173074 and the hydrophobic, ATP-binding pocket of FGF receptor 1 underlies the potency and selectivity of this inhibitor. PD 173074 is thus a promising candidate for a therapeutic angiogenesis inhibitor to be used in the treatment of cancer and other diseases whose progression is dependent upon new blood vessel formation.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Cells, Cultured
- Cornea/blood supply
- Crystallography, X-Ray
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Mice
- Models, Molecular
- Molecular Sequence Data
- Neovascularization, Physiologic/drug effects
- Protein Structure, Tertiary
- Pyrimidines/administration & dosage
- Pyrimidines/chemistry
- Pyrimidines/metabolism
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/chemistry
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Growth Factor/antagonists & inhibitors
- Receptors, Vascular Endothelial Growth Factor
Collapse
Affiliation(s)
- M Mohammadi
- Department of Pharmacology, New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1089
|
Pedram A, Razandi M, Levin ER. Extracellular signal-regulated protein kinase/Jun kinase cross-talk underlies vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 1998; 273:26722-8. [PMID: 9756915 DOI: 10.1074/jbc.273.41.26722] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ligand binding to vascular endothelial cell growth factor (VEGF) receptors activates the mitogen-activated protein kinases extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK). Possible cross-communication of ERK and JNK effecting endothelial cell (EC) actions of VEGF is poorly understood. Incubation of EC with PD 98059, a specific mitogen-activated protein kinase kinase inhibitor, or transfection with Y185F, a dominant negative ERK2, strongly inhibited VEGF-activated JNK. JNK was also activated by ERK2 expression in the absence of VEGF, inhibited 82% by co-transfection with dominant negative SEK-1, indicating upstream activation of JNK by ERK. VEGF-stimulated JNK activity was also reversed by dominant negative SEK-1. Other EC growth factors exhibited similar cross-activation of JNK through ERK. VEGF stimulated the nuclear incorporation of thymidine, reversed 89% by PD 98059 and 72% by Y185F. Dominant negative SEK-1 or JNK-1 also significantly reduced VEGF-stimulated thymidine incorporation. Expression of wild type Jip-1, which prevents JNK nuclear translocation, inhibited VEGF-induced EC proliferation by 75%. VEGF stimulated both cyclin D1 synthesis and Cdk4 kinase activity, inhibited by PD 98059 and dominant negative JNK-1. Important events for VEGF-induced G1/S progression and cell proliferation are enhanced through a novel ERK to JNK cross-activation and subsequent JNK action.
Collapse
Affiliation(s)
- A Pedram
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, California 90822, USA
| | | | | |
Collapse
|
1090
|
Roberts WG, Delaat J, Nagane M, Huang S, Cavenee WK, Palade GE. Host microvasculature influence on tumor vascular morphology and endothelial gene expression. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:1239-48. [PMID: 9777955 PMCID: PMC1853053 DOI: 10.1016/s0002-9440(10)65668-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have previously demonstrated that vascular endothelial growth factor-165 (VEGF), a tumor-secreted angiogenic factor, can acutely and chronically induce fenestrations in microvascular endothelium (Cancer Res 1997, 57:765-772). Because the morphology and function of microvascular endothelium differs from tissue to tissue, we undertook studies to examine whether the neovasculature in tumors also differed depending upon tumor location. Four tumor types implanted in the brain or subcutis in nude mice were studied: a murine rhabdomyosarcoma (M1S), a murine mammary carcinoma (EMT), and two human glioblastomas (U87 and U251). In addition, we studied Chinese hamster ovary cells stably transfected with human VEGF165. As previously reported, tumors grown in the subcutaneous space had a microvasculature that was fenestrated and had open endothelial gaps. The identical tumors when grown in the brain also had fenestrated endothelium and vessels with open endothelial gaps, but they were drastically reduced in occurrence. Open endothelial gaps were not seen in all tumors implanted in the brain (EMT and M1S), although fenestrated endothelium was always seen. VEGF and VEGF receptors were measured in tumors from both locations by immunoblotting and competitive polymerase chain reaction, respectively. VEGF amount was not significantly different between the tumor locations. Interestingly, total tumor vascular mRNA expression of both Flk-1 and Flt-1 was greater in tumor vessels derived from the brain compared with tumor vessels derived from subcutaneous tissues. These results demonstrate that the host microvascular environment determines the morphology and function of the tumor vasculature and that endothelia from different tissues vary in their ability to express the VEGF receptors given identical stimuli.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/blood supply
- Brain Neoplasms/metabolism
- Brain Neoplasms/pathology
- CHO Cells/transplantation
- CHO Cells/ultrastructure
- Cricetinae
- DNA Primers/chemistry
- DNA, Neoplasm/analysis
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Expression
- Glioblastoma/blood supply
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Humans
- Lymphokines/genetics
- Lymphokines/metabolism
- Male
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Mice, Nude
- Neoplasm Transplantation
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Polymerase Chain Reaction
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Receptors, Vascular Endothelial Growth Factor
- Rhabdomyosarcoma/blood supply
- Rhabdomyosarcoma/metabolism
- Rhabdomyosarcoma/pathology
- Skin Neoplasms/blood supply
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factor Receptor-1
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- W G Roberts
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, USA
| | | | | | | | | | | |
Collapse
|
1091
|
Abstract
Chemorepulsive signals that repel or paralyze neuronal growth cones have been found to play important roles in axon guidance in a stereotyped manner. Recent progress in the identification of neuropilins as the receptors for class III secreted collapsin/semaphorin subfamily members, which are neuronal repellents, and in the analysis of mutant mice lacking neuropilin function has confirmed the importance of these chemorepellents in axon guidance. In addition, characterization of the neuropilin protein has yielded new insights into the functions of this molecule in vascular formation and in axon guidance.
Collapse
Affiliation(s)
- H Fujisawa
- Group of Developmental Neurobiology, Nagoya University Graduate School of Science, Japan.
| | | |
Collapse
|
1092
|
Behzadian MA, Wang XL, Shabrawey M, Caldwell RB. Effects of hypoxia on glial cell expression of angiogenesis-regulating factors VEGF and TGF-? Glia 1998. [DOI: 10.1002/(sici)1098-1136(199810)24:2<216::aid-glia6>3.0.co;2-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
1093
|
Vascular Endothelial Growth Factor induziert kardiovaskuläre Fehlbildungen in der Embryonalentwicklung. Ann Anat 1998. [DOI: 10.1016/s0940-9602(98)80093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
1094
|
Cleaver O, Krieg PA. VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 1998; 125:3905-14. [PMID: 9729498 DOI: 10.1242/dev.125.19.3905] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Angioblasts are precursor cells of the vascular endothelium which organize into the primitive blood vessels during embryogenesis. The molecular mechanisms underlying patterning of the embryonic vasculature remain unclear. Mutational analyses of the receptor tyrosine kinase flk-1 and its ligand vascular endothelial growth factor, VEGF, indicate that these molecules are critical for vascular development. Targeted ablation of the flk-1 gene results in complete failure of blood and vascular development (F. Shalaby et al. (1995) Nature 376, 62–66), while targeted ablation of the VEGF gene results in gross abnormalities in vascular patterning (P. Carmeliet et al. (1996) Nature 380, 435–439; N. Ferrara et al. (1996) Nature 380, 439–442). Here we report a role for VEGF in patterning the dorsal aorta of the Xenopus embryo. We show that the diffusible form of VEGF is expressed by the hypochord, which lies at the embryonic midline immediately dorsal to the location of the future dorsal aorta. We find that, initially, no flk-1-expressing angioblasts are present at this location, but that during subsequent development, angioblasts migrate from the lateral plate mesoderm to the midline where they form a single dorsal aorta. We have demonstrated that VEGF can act as a chemoattractant for angioblasts by ectopic expression of VEGF in the embryo. These results strongly suggest that localized sources of VEGF play a role in patterning the embryonic vasculature.
Collapse
Affiliation(s)
- O Cleaver
- Institute for Cellular and Molecular Biology and Department of Zoology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
1095
|
Rodriguez CR, Fei DT, Keyt B, Baly DL. A sensitive fluorometric enzyme-linked immunosorbent assay that measures vascular endothelial growth factor165 in human plasma. J Immunol Methods 1998; 219:45-55. [PMID: 9831387 DOI: 10.1016/s0022-1759(98)00131-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A specific and sensitive fluorometric enzyme-linked immunosorbent assay (ELISA) was developed to measure endogenous levels of vascular endothelial growth factor (VEGF165) in human plasma. The ELISA can be performed in 10% human EDTA plasma, yielding a neat plasma sensitivity of 10 pg/ml or 0.2 pM. The recovery of recombinant human VEGF (rhVEGF) added to human plasma ranges from 89 to 100%. The capture antibody depletes the endogenous signal in normal human plasma, suggesting that the signal is specific for VEGF. The inter-assay and intra-assay coefficients of variation (CV) for the ELISA ranges from 5 to 14% and 8 to 18%, respectively. Characterization of the ELISA using plasmin derived VEGF variants suggests the assay is specific for the VEGF165 isoform. The heterodimer, VEGF(165/110) quantitates similar to that of the intact VEGF165 homodimer, however, the homodimers VEGF121, VEGF110 and the carboxy terminal domain (residues 111-165) are not detected in the assay. Circulating endogenous VEGF levels measured in 50 normal healthy individuals range from 20 to 141 pg/ml, with a mean of 42 +/- 22 pg/ml. There were no significant differences in VEGF levels between males and females. Circulating endogenous VEGF levels in cancer patients ranged from 32 to 418 pg/ml, averaging 129 +/- 17 pg/ml.
Collapse
Affiliation(s)
- C R Rodriguez
- Department of BioAnalytical Technology, Genetech, South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
1096
|
Nicosia RF, Villaschi S. Autoregulation of angiogenesis by cells of the vessel wall. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 185:1-43. [PMID: 9750264 DOI: 10.1016/s0074-7696(08)60148-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cells of the vessel wall can regulate angiogenesis by producing growth factors, proteolytic enzymes, extracellular matrix components, cell adhesion molecules, and vasoactive factors. This property enables preexisting blood vessels to generate new vessels in the absence of exogenous angiogenic stimuli. Vascular autoregulation of angiogenesis can be studied by culturing rat aortic or venous explants in collagen gels under serum-free conditions. In this system, the combined effect of injury and exposure of explants to collagen triggers a self-limited angiogenic response. Interactions among endothelial cells, smooth muscle cells, and fibroblasts play a critical role in the regulation of this process. This chapter reviews the literature on angiogenesis, focusing on the vessel wall as a highly specialized and plastic tissue capable of regenerating itself through autocrine, paracrine, and juxtacrine mechanisms.
Collapse
Affiliation(s)
- R F Nicosia
- Department of Pathology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19102, USA
| | | |
Collapse
|
1097
|
Pérez-Pomares JM, Macías D, García-Garrido L, Munõz-Chápuli R. Immunolocalization of the vascular endothelial growth factor receptor-2 in the subepicardial mesenchyme of hamster embryos: identification of the coronary vessel precursors. THE HISTOCHEMICAL JOURNAL 1998; 30:627-34. [PMID: 9870763 DOI: 10.1023/a:1003446105182] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The earliest evidence of the development of the cardiac vessels in mammals is the emergence of subepicardial blood islands, which are thought to originate from mesenchymal progenitors. In order to identify these progenitor cells, we have studied the immunohistochemical localization in the heart of Syrian hamster embryos of the type 2 vascular endothelial growth factor receptor, the earliest molecule known to be expressed in the vasculogenic cell lineage. Only a few immunoreactive subepicardial mesenchymal cells were present by 10 days post coitum. By 11 days post coitum, the subepicardial mesenchymal cells became abundant at the dorsal part of the ventricle, the atrioventricular and the conoventricular grooves. About 20% of cells were labelled with the antibody. Immunoreactive cells were isolated or formed pairs, short cords, rounded clusters or ring-like structures at the subepicardium or, occasionally, within the ventricular myocardium. Other labelled cells were simultaneously cytokeratin immunoreactive. By 12 days post coitum, most immunoreactive mesenchymal cells have been replaced by a capillary network. We propose that an active process of vascular differentiation occurs between 10 and 12 days post coitum in the subepicardium of this species, and it might be a suitable model for the study of vasculogenetic mechanisms.
Collapse
Affiliation(s)
- J M Pérez-Pomares
- Department of Animal Biology, Faculty of Science, University of Málaga, Spain
| | | | | | | |
Collapse
|
1098
|
Yamaguchi H, Ishii E, Tashiro K, Miyazaki S. Role of umbilical vein endothelial cells in hematopoiesis. Leuk Lymphoma 1998; 31:61-9. [PMID: 9720715 DOI: 10.3109/10428199809057585] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Effective hematopoiesis is usually induced by interactions between hematopoietic progenitor cells (HPC) and stromal cells. In cord blood (CB), umbilical vein endothelial cells (HUVEC) can support HPC as a stromal microenvironment. EC activated mainly by IL-1 and TNFalpha produce a variety of cytokines and growth factors such as IL-1, IL-4, IL-6, GM-CSF and G-CSF. Since HPC express c-kit on their surface, the SCF produced by HUVEC plays an important role in the hematopoiesis of CB. We examined the expression of cytokines and growth factors on HUVEC by PCR. Resting HUVEC expressed high level of SCF, and low levels of IL-6, IL-7, and IL-8. Thus, a variety of cytokines and growth factors are produced by EC, and this cytokine network is thought to play an important role in regulating hematopoiesis. Activated EC can also express various adhesion molecules including E-selectin, VCAM-1 and ICAM-1, and facilitate the adhesion of hematopoietic cells to the endothelium. Furthermore, the interaction of CB cells with HUVEC has recently been shown in vitro. We previously showed that the culture media of HUVEC induced high numbers of colony formation. Suitable cytokine productions are thus provided to HPC by the interaction of HUVEC and cord MNC. On the basis of these findings, several mechanisms to support hematopoiesis in CB can be considered. Specific growth factors produced by EC bind to HPC to induce proliferation. While cell-cell interactions involve adhesion of HPC to HUVEC via adhesion molecules, and the adhesion of HPC to EC will facilitate interaction with cytokines and growth factors. Thus HPC in CB proliferate and are maintained by growth factors, and adhesion molecules produced by HUVEC, and HPC themselves.
Collapse
Affiliation(s)
- H Yamaguchi
- Division of Pediatrics, Saga Prefectural Hospital Koseikan, Saga Medical School, Japan
| | | | | | | |
Collapse
|
1099
|
Abrahamson DR, Robert B, Hyink DP, St John PL, Daniel TO. Origins and formation of microvasculature in the developing kidney. KIDNEY INTERNATIONAL. SUPPLEMENT 1998; 67:S7-11. [PMID: 9736245 DOI: 10.1046/j.1523-1755.1998.06702.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of microvessel assembly in the developing kidney is not known and may occur through vasculogenic, angiogenic, or both processes. To examine this question, we grafted rat and mice embryonic (E) day 12 (E12) kidneys, which have only a rudimentary vasculature, into anterior eye chambers of mouse and rat hosts. Species-specific, monoclonal anti-basement membrane antibodies showed that glomerular basement membranes, mesangial matrices, and microvessel basement membranes were always derived from the graft. When wild-type E12 mouse kidneys were grafted into anterior chambers of ROSA26 mice, in which the beta-galactosidase transgene is expressed ubiquitously, glomerular and microvascular endothelial cells stemmed from the graft, even after maintenance of kidneys in organ culture for 6 days before grafting. Immunolabeling with antibodies against the vascular endothelial growth factor (VEGF) receptor, Flk1, the EphB1 receptor, and its ligand, ephrin-B1, labeled discrete mesenchymal cells in embryonic and newborn kidney cortex, as well as developing microvessel and glomerular endothelium. In adult kidneys, Flk1 labeled glomeruli weakly, other vascular structures were unlabeled. When wild-type E12 kidneys were grafted under renal capsules of adult ROSA26 hosts, endothelium developing within the graft again came from the implanted kidney. In contrast, when E12 kidneys were grafted into renal cortices of newborns, glomeruli within grafts now contained host-derived endothelium. Similarly, when ROSA26 E12 kidneys were implanted into newborn wild-type hosts, chimeric vessels containing graft- and host-derived endothelium were seen in nearby host tissue. Our results indicate that cells capable of forming the entire microvascular tree of grafted metanephroi are already present in the E12 kidney. We hypothesize that Flk1/VEGF and EphB1/ephrin-B1 mediate renal endothelial mitosis-motility and cell guidance-aggregation behavior, respectively.
Collapse
Affiliation(s)
- D R Abrahamson
- Department of Cell Biology, University of Alabama at Birmingham, 35294-0019, USA.
| | | | | | | | | |
Collapse
|
1100
|
Maloney JP, Silliman CC, Ambruso DR, Wang J, Tuder RM, Voelkel NF. In vitro release of vascular endothelial growth factor during platelet aggregation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1054-61. [PMID: 9724313 DOI: 10.1152/ajpheart.1998.275.3.h1054] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet aggregation is a cardinal feature of both vascular repair and vascular disease. During aggregation platelets release a variety of vasoactive substances; some of these promote angiogenesis, endothelial permeability, and endothelial growth, actions shared by vascular endothelial growth factor (VEGF). This study was undertaken to investigate the hypothesis that VEGF is released by aggregating platelets. We found that VEGF was secreted during the in vitro aggregation of platelet-rich plasma induced by thrombin, collagen, epinephrine, and ADP (range 23-518 pg VEGF/ml). Furthermore, serum VEGF levels were elevated compared with plasma (230 +/- 63 vs. 38 +/- 8 pg VEGF/ml), indicative of VEGF release during whole blood coagulation. Lysates of apheresed, leukocyte-poor platelet units contained significant amounts of VEGF (2.4 +/- 0.8 pg VEGF/mg protein). VEGF message and protein were also present in a megakaryocytic cell line (Dami cell). These results suggest constitutive roles for platelet VEGF in the repair of intimal vessel injury and in the altered permeability and intimal proliferation seen at sites of platelet aggregation and thrombosis.
Collapse
Affiliation(s)
- J P Maloney
- Department of Pulmonary Sciences, University of Colorado School of Medicine and the Bonfils Blood Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|