1051
|
Denk GU, Soroka CJ, Mennone A, Koepsell H, Beuers U, Boyer JL. Down-regulation of the organic cation transporter 1 of rat liver in obstructive cholestasis. Hepatology 2004; 39:1382-9. [PMID: 15122767 DOI: 10.1002/hep.20176] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The liver plays a major role in biotransformation and elimination of various therapeutic agents and xenobiotics, many of which are organic cations and substrates of the organic cation transporter 1 (Oct1, Slc22a1). Oct1 is expressed at the basolateral membranes of hepatocytes and proximal renal tubules. Although Oct1 is the major uptake mechanism in hepatocytes for many pharmaceutical compounds, little is known about the effects of liver injury on this process. Our aim was to investigate the effects of obstructive cholestasis on Oct1 expression and function in liver and kidney. The effects of bile duct ligation (BDL) on Oct1 protein, messenger RNA (mRNA) expression, and tissue localization were determined in rat liver and kidney with Western analysis, real-time reverse transcriptase-mediated polymerase chain reaction (RT-PCR), and immunofluorescence. To assess Oct1 function, the model substrate tetraethylammonium ([(14)C]TEA) was administered intravenously to BDL and control rats and distribution of radioactivity was determined. Oct1 protein significantly decreased in cholestatic livers to 42.1 +/- 17.7% (P <.001), 15.5 +/- 4.7% (P <.05), and 8.6 +/- 2.7% (P <.05) of controls after 3, 7, and 14 days, respectively, but not in kidneys. Hepatic Oct1 mRNA decreased to 77.2 +/- 12.7%, 40.7 +/- 8.1% (P <.05), and 50.3 +/- 7.5% (P <.05) 3, 7, and 14 days after BDL, respectively. Tissue immunofluorescence corroborated these data. Hepatic accumulation of [(14)C]TEA in 14-day BDL rats was reduced to 29.6 +/- 10.9% of controls (P <.0005). In conclusion, obstructive cholestasis down-regulates Oct1 and impairs Oct1-mediated uptake in rat liver, suggesting that hepatic uptake of small cationic drugs may be impaired in cholestatic liver injury.
Collapse
Affiliation(s)
- Gerald U Denk
- Liver Center, Yale University School of Medicine, New Haven, CT 06520-8019, USA
| | | | | | | | | | | |
Collapse
|
1052
|
Abstract
Over the last 15 years, a number of transporters that translocate organic cations were characterized functionally and also identified on the molecular level. Organic cations include endogenous compounds such as monoamine neurotransmitters, choline, and coenzymes, but also numerous drugs and xenobiotics. Some of the cloned organic cation transporters accept one main substrate or structurally similar compounds (oligospecific transporters), while others translocate a variety of structurally diverse organic cations (polyspecific transporters). This review provides a survey of cloned organic cation transporters and tentative models that illustrate how different types of organic cation transporters, expressed at specific subcellular sites in hepatocytes and renal proximal tubular cells, are assembled into an integrated functional framework. We briefly describe oligospecific Na(+)- and Cl(-)-dependent monoamine neurotransmitter transporters ( SLC6-family), high-affinity choline transporters ( SLC5-family), and high-affinity thiamine transporters ( SLC19-family), as well as polyspecific transporters that translocate some organic cations next to their preferred, noncationic substrates. The polyspecific cation transporters of the SLC22 family including the subtypes OCT1-3 and OCTN1-2 are presented in detail, covering the current knowledge about distribution, substrate specificity, and recent data on their electrical properties and regulation. Moreover, we discuss artificial and spontaneous mutations of transporters of the SLC22 family that provide novel insight as to the function of specific protein domains. Finally, we discuss the clinical potential of the increasing knowledge about polymorphisms and mutations in polyspecific organic cation transporters.
Collapse
Affiliation(s)
- H Koepsell
- Institut für Anatomie und Zellbiologie, Bayerischen Julius-Maximilians-Universität, Koellikerstr. 6, 97070 Würzburg, Germany.
| | | | | |
Collapse
|
1053
|
Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhäusl W, Fürnsinn C. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 2004; 53:1052-9. [PMID: 15047621 DOI: 10.2337/diabetes.53.4.1052] [Citation(s) in RCA: 405] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metformin and thiazolidinediones (TZDs) are believed to exert their antidiabetic effects via different mechanisms. As evidence suggests that both impair cell respiration in vitro, this study compared their effects on mitochondrial functions. The activity of complex I of the respiratory chain, which is known to be affected by metformin, was measured in tissue homogenates that contained disrupted mitochondria. In homogenates of skeletal muscle, metformin and TZDs reduced the activity of complex I (30 mmol/l metformin, -15 +/- 2%; 100 micromol/l rosiglitazone, -54 +/- 7; and 100 micromol/l pioglitazone, -12 +/- 4; P < 0.05 each). Inhibition of complex I was confirmed by reduced state 3 respiration of isolated mitochondria consuming glutamate + malate as substrates for complex I (30 mmol/l metformin, -77 +/- 1%; 100 micromol/l rosiglitazone, -24 +/- 4; and 100 micromol/l pioglitazone, -18 +/- 5; P < 0.05 each), whereas respiration with succinate feeding into complex II was unaffected. In line with inhibition of complex I, 24-h exposure of isolated rat soleus muscle to metformin or TZDs reduced cell respiration and increased anaerobic glycolysis (glucose oxidation: 270 micromol/l metformin, -30 +/- 9%; 9 micromol/l rosiglitazone, -25 +/- 8; and 9 micromol/l pioglitazone, -45 +/- 3; lactate release: 270 micromol/l metformin, +84 +/- 12; 9 micromol/l rosiglitazone, +38 +/- 6; and 9 micromol/l pioglitazone, +64 +/- 11; P < 0.05 each). As both metformin and TZDs inhibit complex I activity and cell respiration in vitro, similar mitochondrial actions could contribute to their antidiabetic effects.
Collapse
Affiliation(s)
- Barbara Brunmair
- Department of Medicine III, Division of Endocrinology & Metabolism, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1054
|
McCarty MF. Chronic activation of AMP-activated kinase as a strategy for slowing aging. Med Hypotheses 2004; 63:334-9. [PMID: 15236799 DOI: 10.1016/j.mehy.2004.01.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 01/13/2004] [Indexed: 12/25/2022]
Abstract
Caloric restriction down-regulates insulin secretion and systemic IGF-I activity, and there is reason to suspect that these effects are key mediators of caloric restriction's favorable impact on longevity. Alternative strategies for down-regulating these hormones are thus of great interest; chronic activation of AMP-activated kinase (AMPK)--clinically achievable with the drug metformin--may have utility in this regard. In the liver, AMPK slows hepatic glucose output by down-regulating expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase; in skeletal muscle, it boosts the efficiency of insulin-stimulated glucose uptake by increasing expression of GLUT-4. These effects evidently mandate a down-regulation of insulin secretion. The resulting reduction of hepatic insulin activity can be expected to suppress hepatic production of IGF-I while boosting that of IGFBP-1, thereby decreasing plasma free IGF-I. AMPK can also directly stimulate IGFBP-1 synthesis in hepatocytes, and interfere with the ras/raf/erk pathway of IGF-I signaling. In non-diabetics, metformin therapy is indeed reported to reduce plasma levels of insulin and of free IGF-I; indeed, this is thought to be the mechanism whereby metformin suppresses excess androgen production in PCOS. A pro-longevity effect of the related biguanide phenformin has already been reported in tumor-prone mice, and mouse longevity studies with metformin are currently in progress. The development of AMPK activators which do not share metformin's modest risk of inducing lactic acidosis--apparently reflecting an inhibition of mitochondrial complex 1 that is not intrinsic to AMPK activity--might aid the practical applicability of this pro-longevity strategy.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
1055
|
Leverve XM, Guigas B, Detaille D, Batandier C, Koceir EA, Chauvin C, Fontaine E, Wiernsperger NF. Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. DIABETES & METABOLISM 2003; 29:6S88-94. [PMID: 14502105 DOI: 10.1016/s1262-3636(03)72792-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several links relate mitochondrial metabolism and type 2 diabetes or chronic hyperglycaemia. Among them, ATP synthesis by oxidative phosphorylation and cellular energy metabolism (ATP/ADP ratio), redox status and reactive oxygen species (ROS) production, membrane potential and substrate transport across the mitochondrial membrane are involved at various steps of the very complex network of glucose metabolism. Recently, the following findings (1) mitochondrial ROS production is central in the signalling pathway of harmful effects of hyperglycaemia, (2) AMPK activation is a major regulator of both glucose and lipid metabolism connected with cellular energy status, (3) hyperglycaemia by inhibiting glucose-6-phosphate dehydrogenase (G6PDH) by a cAMP mechanism plays a crucial role in NADPH/NADP ratio and thus in the pro-oxidant/anti-oxidant cellular status, have deeply changed our view of diabetes and related complications. It has been reported that metformin has many different cellular effects according to the experimental models and/or conditions. However, recent important findings may explain its unique efficacy in the treatment of hyperglycaemia- or insulin-resistance related complications. Metformin is a mild inhibitor of respiratory chain complex 1; it activates AMPK in several models, apparently independently of changes in the AMP-to-ATP ratio; it activates G6PDH in a model of high-fat related insulin resistance; and it has antioxidant properties by a mechanism (s), which is (are) not completely elucidated as yet. Although it is clear that metformin has non-mitochondrial effects, since it affects erythrocyte metabolism, the mitochondrial effects of metformin are probably crucial in explaining the various properties of this drug.
Collapse
Affiliation(s)
- X M Leverve
- INSERM E-0221 Bioénergétique Fondamentale et Appliquée, Université Joseph-Fourier, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
1056
|
Giannarelli R, Aragona M, Coppelli A, Del Prato S. Reducing insulin resistance with metformin: the evidence today. DIABETES & METABOLISM 2003; 29:6S28-35. [PMID: 14502098 DOI: 10.1016/s1262-3636(03)72785-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin resistance, defined as the inability of insulin to exert a normal biological action at the level of its target tissues, is one of the principal pathogenetic defects of type 2 diabetes. Metformin, the most widely-prescribed insulin-sensitizing agent in current clinical use, improves blood glucose control mainly by improving insulin-mediated suppression of hepatic glucose production, and by enhancing insulin-stimulated glucose disposal in skeletal muscle. Experimental studies show that metformin-mediated improvements in insulin sensitivity may be associated with several mechanisms, including increased insulin receptor tyrosine kinase activity, enhanced glycogen synthesis, and an increase in the recruitment and activity of GLUT4 glucose transporters. In adipose tissue, metformin promotes the re-esterification of free fatty acids and inhibits lipolysis, which may indirectly improve insulin sensitivity through reduced lipotoxicity. The improved glycaemia with metformin is not associated with increased circulating levels of insulin, and the risk of hypoglycaemia with metformin is minimal. The therapeutic profile of metformin supports its use for the control of blood glucose, in diabetic patients and for the prevention of diabetes in subjects with impaired glucose tolerance. Moreover, the improvement by metformin of cardiovascular risk factors associated with the dysmetabolic syndrome may account for the significant improvements in macrovascular outcomes observed in the UK Prospective Diabetes Study.
Collapse
Affiliation(s)
- R Giannarelli
- Department of Endocrinology and Metabolism, Section of Diabetes, School of Medicine, University of Pisa, Italy
| | | | | | | |
Collapse
|
1057
|
Sweeney D, Raymer ML, Lockwood TD. Antidiabetic and antimalarial biguanide drugs are metal-interactive antiproteolytic agents. Biochem Pharmacol 2003; 66:663-77. [PMID: 12906931 DOI: 10.1016/s0006-2952(03)00338-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Various biguanide derivatives are used as antihyperglycemic and antimalarial drugs (e.g., 1,1-dimethyl biguanide (metformin), phenylethyl biguanide (phenformin), N-(4-chlorophenyl)-N'-(isopropyl)-imidodicarbonimidic diamide (proguanil)); however, no common mechanism has been suggested in these controversial therapeutic actions. Biguanides bind endogenous metals that inhibit cysteine proteases independently, e.g., Zn(2+), Cu(2+), Fe(3+). Here, various biguanide derivatives are reported to be metal-interactive inhibitors of cathepsin B from mammals and falcipain-2 from Plasmodium falciparum. Structural homologies were identified among the Phe-Arg protease substrate motif and the metal complexes of phenformin and proguanil. Molecular modeling revealed that the position of the scissile amide substrate bond corresponds to the biguanide-complexed inhibitory metal when the phenyl groups are homologously aligned. Binding of the phenformin-metal complex within the active site of human cathepsin B was modeled with computational docking. A major binding mode involved binding of the drug phenyl group at the protease S2 subsite, and the complexed inhibitory metal shared between the drug and the protease Cys29-His199 catalytic pair. Cysteine protease inhibition was assayed with carbobenzyloxy-PHE-ARG-7-aminomethylcoumarin substrate. In the absence of metal ions, phenformin was a weakly competitive protease inhibitor (apparent K(i) several microM); however, metformin was noninhibitory. In contrast, the metal complexes of both metformin and phenformin were protease inhibitors with potency at therapeutic concentrations. Biguanide-metal complexes were more potent cysteine protease inhibitors than either the biguanide or metal ions alone, i.e., synergistic. Similar to chloroquine, therapeutic extracellular concentrations of metformin, phenformin, and proguanil caused metal-interactive inhibition of lysosomal protein degradation as bioassayed in primary tissue using perfused myocardium. The biguanide moiety is identified as a past and future structural scaffold for synthesis of many protease inhibitors. Results are discussed in relation to Zn(2+)-interactive inhibition of insulin degradation in hormone target tissues, and Fe(3+)-interactive inhibition of hemoglobin degradation in parasite food vacuoles. Previous studies on insulin hypercatabolism and insulin resistance are speculatively reviewed in light of present findings.
Collapse
Affiliation(s)
- Deacon Sweeney
- Department of Computer Science, College of Engineering, Wright State University, Kettering, OH 45429, USA
| | | | | |
Collapse
|
1058
|
Orban JC, Giunti C, Levraut J, Grimaud D, Ichai C. [Metformin-associated lactic acidosis remains a serious complication of metformin therapy]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2003; 22:461-5. [PMID: 12831973 DOI: 10.1016/s0750-7658(03)00067-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report 4 cases of lactic acidosis in diabetic patients usually treated with metformin. For the first 3 patients, the clinical history was similar because lactic acidosis was precipitated by gastro-intestinal disorders whereas all of them were simultaneously treated with several nephrotoxic drugs. These 3 patients presented with acute renal failure on arrival at hospital. Their issue was fatal whereas any obvious cause of overproduction of lactate was found. The fourth case, which was due to a voluntary intoxication, was the only one presenting with a favourable evolution. The metformin plasma and red blood cell levels were performed for 2 of 4 patients and confirmed the overdose. These observations remind that metformin-associated lactic acidosis remains a serious complication, and that medical doctors must respect strictly contra-indications and guidelines for withdrawing metformin.
Collapse
Affiliation(s)
- J C Orban
- Service de réanimation, département d'anesthésie-réanimation Est, hôpital Saint-Roch, 5, rue Pierre-Dévoluy, CHU de Nice, 06006 cedex 1, Nice, France
| | | | | | | | | |
Collapse
|
1059
|
Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 2003; 63:844-8. [PMID: 12644585 DOI: 10.1124/mol.63.4.844] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biguanides are a class of drugs widely used as oral antihyperglycemic agents for the treatment of type 2 diabetes mellitus, but they are associated with lactic acidosis, a lethal side effect. We reported previously that biguanides are good substrates of rat organic cation transporter 1 (Oct1; Slc22a1) and, using Oct1(-/-) mice, that mouse Oct1 is responsible for the hepatic uptake of a biguanide, metformin. In the present study, we investigated whether the liver is the key organ for the lactic acidosis. When mice were given metformin, the blood lactate concentration significantly increased in the wild-type mice, whereas only a slight increase was observed in Oct1(-/-) mice. The plasma concentration of metformin exhibited similar time profiles between the wild-type and Oct1(-/-) mice, suggesting that the liver is the key organ responsible for the lactic acidosis. Furthermore, the extent of the increase in blood lactate caused by three different biguanides (metformin, buformin, and phenformin) was compared with the abilities to reduce oxygen consumption in isolated rat hepatocytes. When rats were given each of these biguanides, the lactate concentration increased significantly. This effect was dose-dependent, and the EC(50) values of metformin, buformin, and phenformin were 734, 119, and 4.97 microM, respectively. All of these biguanides reduced the oxygen consumption by isolated rat hepatocytes in a concentration-dependent manner. When the concentration required to reduce the oxygen consumption to 75% of the control value (from 0.40 to 0.29 micromol/min/mg protein) was compared with the EC(50) value obtained in vivo, a clear correlation was observed among the three biguanides, suggesting that oxygen consumption in isolated rat hepatocytes can be used as an index of the incidence of lactic acidosis.
Collapse
Affiliation(s)
- De-Sheng Wang
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
1060
|
Abstract
Patients with Raynaud's phenomenon have abnormal digital vasoconstriction in response to cold. The pathogenesis remains unknown but may involve a local neurovascular defect leading to vasoconstriction. Diagnosis of primary Raynaud's phenomenon is based on typical symptomatology coupled with normal physical examination, normal laboratory studies and lack of observable pathology by nail fold capillaroscopy. Secondary Raynaud's phenomenon is known to occur associated with several connective tissue diseases, vascular injury due to repeated vibrational trauma, and other causes which produce demonstrable vascular and microcirculatory damage. Treatment of Raynaud's symptoms is conservative and aimed at prevention of attacks. Patients are advised to remain warm and, if possible, to live in warm climates. We suggest that an ergogenic (thermogenic) steroid, 7-oxo-DHEA (3-acetoxyandrost-5-ene-7,17-dione), which is available without prescription as the trademarked 7-keto DHEA, may be very helpful in prevention of primary Raynaud's attacks by increasing the basal metabolic rate and inhibiting vasospasm.
Collapse
Affiliation(s)
- Garret Ihler
- Department of Medical Biochemistry and Medical Genetics, Texas A&M College of Medicine, College Station 77843, USA.
| | | |
Collapse
|
1061
|
Touyz RM, Cruzado M, Tabet F, Yao G, Salomon S, Schiffrin EL. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can J Physiol Pharmacol 2003; 81:159-67. [PMID: 12710530 DOI: 10.1139/y02-164] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the role of receptor tyrosine kinases in Ang II-stimulated generation of reactive oxygen species (ROS) and assessed whether MAP kinase signaling by Ang II is mediated via redox-sensitive pathways. Production of ROS and activation of NADPH oxidase were determined by DCFDA (dichlorodihydrofluorescein diacetate; 2 micromol/L) fluorescence and lucigenin (5 micromol/L) chemiluminescence, respectively, in rat vascular smooth muscle cells (VSMC). Phosphorylation of ERK1/2, p38MAP kinase and ERK5 was determined by immunoblotting. The role of insulin-like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) was assessed with the antagonists AG1024 and AG1478, respectively. ROS bioavailability was manipulated with Tiron (10(-5) mol/L), an intracellular scavenger, and diphenylene iodinium (DPI; 10(-6) mol/L), an NADPH oxidase inhibitor. Ang II stimulated NADPH oxidase activity and dose-dependently increased ROS production (p < 0.05). These actions were reduced by AG1024 and AG1478. Ang II-induced ERK1/2 phosphorylation (276% of control) was decreased by AG1478 and AG1024. Neither DPI nor tiron influenced Ang II-stimulated ERK1/2 activity. Ang II increased phosphorylation of p38 MAP kinase (204% of control) and ERK5 (278% of control). These effects were reduced by AG1024 and AG1478 and almost abolished by DPI and tiron. Thus Ang II stimulates production of NADPH-inducible ROS partially through transactivation of IGF-1R and EGFR. Inhibition of receptor tyrosine kinases and reduced ROS bioavaliability attenuated Ang II-induced phosphorylation of p38 MAP kinase and ERK5, but not of ERK1/2. These findings suggest that Ang II activates p38MAP kinase and ERK5 via redox-dependent cascades that are regulated by IGF-1R and EGFR transactivation. ERK1/2 regulation by Ang II is via redox-insensitive pathways.
Collapse
Affiliation(s)
- Rhian M Touyz
- Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montréal, QC H2W 1R7, Canada.
| | | | | | | | | | | |
Collapse
|
1062
|
Howell N. Navigating between Scylla and Charybdis: Mitochondria are both precedented and novel targets for drug development. Drug Dev Res 2002. [DOI: 10.1002/ddr.10111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1063
|
Abstract
Clusters of O- and S-linked α-sialosides with valencies of two to four were constructed to serve as potential multivalent inhibitors towards sialoadhesins (siglecs). Thus, O- and S-prop-2-ynyl α-sialosides (3, 7), together with 4-iodophenyl sialoside 5 were prepared from acetochloroneuraminic acid derivative 1 using silver salicylate and propargyl alcohol for 3 and phase-transfer catalysis for 5 and 7, respectively. Oxidative acetylenic homocoupling of 3 and 7 under Glaser conditions (CuCl, O2) provided 1,3-diynes 8 and 9 in 83-86% yields. Palladium catalyzed cross-coupling of O-prop-2-ynyl sialoside 3 with 5 using Pd2(dba)3 and PPh3 gave nonsymmetrical dimer 10 (82%). Alternatively, symmetrical clusters were then prepared as above under Sonogashira cross-coupling conditions with 1,4-diiodobenzene (11), 1,3,5-triodobenzene (14), and finally 1,2,4,6-tetraiodobenzene (17) to provide both O- and S-linked dimers 12 (93%) and 13 (88%), trimers 15 (81%) and 16 (76%), while only O-linked tetramer 18 was prepared in 87% yield. Finally, treatment of the O-linked prop-2-ynyl sialoside 3 with Grubbs' metathesis catalyst Cl2Ru(PCy3)2=CHPh (19) gave, as expected, benzeneannulation regioisomeric trimers 20a, 20b in 68% yield.Key words: siglec, sialoadhesins, sialic acid, Sonogashira, palladium cross-coupling.
Collapse
|
1064
|
Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 2002; 302:510-5. [PMID: 12130709 DOI: 10.1124/jpet.102.034140] [Citation(s) in RCA: 330] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metformin, a biguanide, is widely used as an oral hypoglycemic agent for the treatment of type 2 diabetes mellitus. The purpose of the present study was to investigate the role of organic cation transporter 1 (Oct1) in the disposition of metformin. Transfection of rat Oct1 cDNA results in the time-dependent and saturable uptake of metformin by the Chinese hamster ovary cell line with K(m) and V(max) values of 377 microM and 1386 pmol/min/mg of protein, respectively. Buformin and phenformin, two other biguanides, were also transported by rOct1 with a higher affinity than metformin: their K(m) values were 49 and 16 microM, respectively. To investigate the role of Oct1 in the disposition of metformin, the tissue distribution of metformin was determined in Oct1 gene-knockout mice after i.v. administration. Distribution of metformin to the liver in Oct1(-/-) mice was more than 30 times lower than that in Oct1(+/+) mice, and can be accounted for by the extracellular space. Distribution to the small intestine was also decreased in Oct1(-/-) mice, whereas that to the kidney as well as the urinary excretion profile showed only minimal differences. In conclusion, the present findings suggest that Oct1 is responsible for the hepatic uptake as well as playing a role in the intestinal uptake of metformin, whereas the renal distribution and excretion are mainly governed by other transport mechanism(s).
Collapse
Affiliation(s)
- De-Sheng Wang
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkuo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
1065
|
Hansen SH, McCormack JG. Application of (13)C-filtered (1)H NMR to evaluate drug action on gluconeogenesis and glycogenolysis simultaneously in isolated rat hepatocytes. NMR IN BIOMEDICINE 2002; 15:313-319. [PMID: 12203222 DOI: 10.1002/nbm.773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of two inhibitors of hepatic glucose production, AICAR (5-aminoimidazole-4-carboxamide riboside) and metformin, whose precise mechanisms of action are a matter of some controversy, have been investigated in isolated rat hepatocytes by application of a novel NMR-based method whereby effects on metabolic flow from the two glucose-producing pathways, glycogenolysis and gluconeogenesis, and also lactate production, can be studied simultaneously. Hepatocytes were pre-incubated for 24 h with 15 mM 1-(13)C-glucose to load the cells with labeled glycogen, which under subsequent glycogenolytic conditions would yield predominantly 1-(13)C glucose and 3-(13)C-lactate, followed (after washing) by incubation in media with 2-(13)C-glycerol, which under subsequent gluconeogenic conditions would yield 2,5-(13)C-glucose, or if metabolized to lactate, 2-(13)C-lactate. Glucose production was then stimulated by glucagon for 3 h in the absence or presence of the inhibitors and then incubation media were analyzed by (13)C-HSQC (heteronuclear single quantum coherence)-filtered (1)H NMR spectra. The results show that metformin only inhibits glucose production by inhibition of gluconeogenesis, but also that it increases lactate production from both glycogenolysis and from glycerol, whereas, and contrary to expectations, AICAR inhibits glucose production by inhibiting both gluconeogenesis and glycogenolysis, and also increases lactate production from glycerol. The data show that application of this methodology can be used to answer important questions about drug action on hepatic metabolism that are not readily accessible by alternative means.
Collapse
|
1066
|
Ahmad N, Gabius HJ, Kaltner H, André S, Kuwabara I, Liu FT, Oscarson S, Norberg T, Brewer CF. Thermodynamic binding studies of cell surface carbohydrate epitopes to galectins-1, -3, and -7: Evidence for differential binding specificities. CAN J CHEM 2002. [DOI: 10.1139/v02-162] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Binding of a series of sialylated and non-sialylated cell surface carbohydrates to bovine heart galectin-1, recombinant murine galectin-3, and recombinant human galectin-7 was investigated by isothermal titration microcalori metry (ITC) and hemagglutination inhibition measurements. Galectin-7 shows nearly equal affinities for lactose and Galbeta(14)GlcNAc (LacNAc-II). Galectin-7, however, displays six- and 11-fold weaker affinity for LacNAc-II compared with galectins-1 and -3, respectively. The affinity of galectin-7 for LacNAc-II containing oligosaccharides is also weaker than the other two galectins. ITC measurements show that all three galectins bind to di- and trimeric oligomers of LacNAc-II, which are epitopes found in poly-N-acetyllactosamine chains of glycoprotein receptors, with affinity constants similar to that of LacNAc-II. The binding valencies of the di- and trimeric LacNAc-II oligomers were observed to be one from ITC measurements, indicating formation of 1:1 complexes with all three galectins. Thus, galectins-1, -3, and -7 all possess binding sites that primarily accommodate one LacNAc-II moiety per monomer of protein. Sialylated oligosaccharides show different specificities for the three galectins. While 2,3-sialyl LacNAc-II binds to all three galectins, 2,6-sialyl LacNAc-II fails to bind to any of the galectins; 2,6-sialylated diLacNAc binds well to galectin-3 and galectin-7, but only weakly to galectin-1. Similar results are obtained with 2,6-sialyl lacto-N-neo-tetraose, which has a reducing end lactose moiety. Thus, unlike galectin-1, which predominantly recognizes non-reducing terminal LacNAc-II residues in oligosaccharides, galectins-3 and -7 recognize both non-reducing terminal LacNAc-II residues as well as internal LacNAc-II and lactose residues in sialylated and non-sialylated oligosaccharides.Key words: isothermal titration microcalorimetry, galectins, binding specificities, lectins, carbohydrates.
Collapse
|
1067
|
Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 2002; 51:2074-81. [PMID: 12086935 DOI: 10.2337/diabetes.51.7.2074] [Citation(s) in RCA: 602] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metformin is an effective hypoglycemic drug that lowers blood glucose concentrations by decreasing hepatic glucose production and increasing glucose disposal in skeletal muscle; however, the molecular site of metformin action is not well understood. AMP-activated protein kinase (AMPK) activity increases in response to depletion of cellular energy stores, and this enzyme has been implicated in the stimulation of glucose uptake into skeletal muscle and the inhibition of liver gluconeogenesis. We recently reported that AMPK is activated by metformin in cultured rat hepatocytes, mediating the inhibitory effects of the drug on hepatic glucose production. In the present study, we evaluated whether therapeutic doses of metformin increase AMPK activity in vivo in subjects with type 2 diabetes. Metformin treatment for 10 weeks significantly increased AMPK alpha2 activity in the skeletal muscle, and this was associated with increased phosphorylation of AMPK on Thr172 and decreased acetyl-CoA carboxylase-2 activity. The increase in AMPK alpha2 activity was likely due to a change in muscle energy status because ATP and phosphocreatine concentrations were lower after metformin treatment. Metformin-induced increases in AMPK activity were associated with higher rates of glucose disposal and muscle glycogen concentrations. These findings suggest that the metabolic effects of metformin in subjects with type 2 diabetes may be mediated by the activation of AMPK alpha2.
Collapse
Affiliation(s)
- Nicolas Musi
- Research Division, Joslin Diabetes Center, Brigham and Women's Hospital and Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1068
|
Detaille D, Guigas B, Leverve X, Wiernsperger N, Devos P. Obligatory role of membrane events in the regulatory effect of metformin on the respiratory chain function. Biochem Pharmacol 2002; 63:1259-72. [PMID: 11960602 DOI: 10.1016/s0006-2952(02)00858-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
From recent findings about the indirect effect of metformin (MET) targeted on the respiratory chain complex I, we reconsidered this question and tried to determine the causality of any alteration at this enzymatic level using Xenopus laevis oocytes. Addition of MET (50 microM) reduced by 40% the rotenone-sensitive activity of complex I only in incubating intact oocytes but not in mitochondria isolated by differential centrifugation. The drug prior injected inside these cells had also no measurable effect. In spite of this and the weak binding of MET to the mitochondrial fraction, there was a fairly good correlation between the marked inhibitory action of MET on complex I and its progressive appearance within the oocyte cytoplasm. The intriguing observation that MET as a liposomal form was again able to exert its role when added directly to isolated mitochondria is in accordance with a membrane-mediated uptake and vesicular routing of MET. Furthermore, a temperature-dependent effect was clearly shown. At 4 degrees, oocytes failed to take up efficiently MET and accordingly its subsequent action on respiration was therefore lost. Likewise, MET transport was hindered and inhibition of complex I totally disappeared when a structural analog, asymmetrical dimethylarginine (ADMA), was placed together with MET either at an identical concentration or in excess. These data strongly support the view that MET may recognise some specific membranous sites, likely belonging to effector systems, before penetrating the cell in a bound state via an obscure endocytotic event which still has to be identified.
Collapse
Affiliation(s)
- Dominique Detaille
- Laboratory of Comparative Biochemistry and Physiology, University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | |
Collapse
|
1069
|
Kiersztan A, Modzelewska A, Jarzyna R, Jagielska E, Bryła J. Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochem Pharmacol 2002; 63:1371-82. [PMID: 11960614 DOI: 10.1016/s0006-2952(02)00861-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effect of vanadyl acetylacetonate (VAc) and metformin on gluconeogenesis has been studied in isolated hepatocytes and kidney-cortex tubules of rabbit. Glucose formation from alanine+glycerol+octanoate, pyruvate or dihydroxyacetone was inhibited by 50-80% by 100 microM VAc or 500 microM metformin in renal tubules of control and alloxan-diabetic animals, while the inhibitory action of these compounds in hepatocytes was less pronounced (by about 20-30%). In contrast to VAc, metformin increased the rate of lactate formation by about 2-fold in renal tubules incubated with alanine+glycerol+octanoate. In view of VAc-induced changes in intracellular gluconeogenic intermediates and gluconeogenic enzyme activities, it is likely that this compound may decrease fluxes through pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and glucose-6-phosphatase. In contrast to VAc, metformin-induced decrease in renal gluconeogenesis may result from a decline of cytosolic oxaloacetate level and consequently PEPCK activity. Following 6 days of VAc administration (1.275 mg Vkg(-1) body weight daily) the blood glucose level in alloxan-diabetic rabbits was normalised while blood glucose changes in control animals were not observed. On the contrary, in diabetic animals treated for 6 days with metformin (200 mg kg(-1) body weight day(-1)) a high blood glucose level was maintained. Unfortunately, VAc-treated control and diabetic rabbits exhibited elevated serum urea and creatinine levels. In VAc-treated animals vanadium was accumulated in kidney-cortex up to 7.6+/-0.6 microg Vg(-1) dry weight. In view of a potential vanadium nephrotoxicity a therapeutic application of vanadium compounds needs a critical re-evaluation.
Collapse
Affiliation(s)
- Anna Kiersztan
- Department of Metabolism Regulation, Institute of Biochemistry, Warsaw University, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | | | |
Collapse
|
1070
|
Krungkrai J, Kanchanarithisak R, Krungkrai SR, Rochanakij S. Mitochondrial NADH dehydrogenase from Plasmodium falciparum and Plasmodium berghei. Exp Parasitol 2002; 100:54-61. [PMID: 11971654 DOI: 10.1006/expr.2001.4674] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrial electron transport system is necessary for growth and survival of malarial parasites in mammalian host cells. NADH dehydrogenase of respiratory complex I was demonstrated in isolated mitochondrial organelles of the human parasite Plasmodium falciparum and the mouse parasite Plasmodium berghei by using the specific inhibitor rotenone on oxygen consumption and enzyme activity. It was partially purified by two sequential steps of fast protein liquid chromatographic techniques from n-octyl glucoside solubilization of the isolated mitochondria of both parasites. In addition, physical and kinetic properties of the malarial enzymes were compared to the host mouse liver mitochondrial respiratory complex I either as intact or as partially purified forms. The malarial enzyme required both NADH and ubiquinone for maximal catalysis. Furthermore, rotenone and plumbagin (ubiquinone analog) showed strong inhibitory effect against the purified malarial enzymes and had antimalarial activity against in vitro growth of P. falciparum. Some unique properties suggest that the enzyme could be exploited as chemotherapeutic target for drug development, and it may have physiological significance in the mitochondrial metabolism of the parasite.
Collapse
Affiliation(s)
- Jerapan Krungkrai
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Rama 4 Rd., Bangkok 10330, Thailand.
| | | | | | | |
Collapse
|
1071
|
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001. [PMID: 11602624 DOI: 10.1172/jci13505, 10.1172/jci200113505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin's beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin's inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- G Zhou
- Department of Molecular Endocrinology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1072
|
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108:1167-74. [PMID: 11602624 PMCID: PMC209533 DOI: 10.1172/jci13505] [Citation(s) in RCA: 4160] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin's beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin's inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- G Zhou
- Department of Molecular Endocrinology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1073
|
Affiliation(s)
- L A Witters
- Endocrine-Metabolism Division, Departments of Medicine and Biochemistry, Dartmouth Medical School, Remsen 322, Hanover, NH 03755-3833, USA.
| |
Collapse
|
1074
|
Fulgencio JP, Kohl C, Girard J, Pégorier JP. Effect of metformin on fatty acid and glucose metabolism in freshly isolated hepatocytes and on specific gene expression in cultured hepatocytes. Biochem Pharmacol 2001; 62:439-46. [PMID: 11448453 DOI: 10.1016/s0006-2952(01)00679-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The short-term effect of metformin on fatty acid and glucose metabolism was studied in freshly incubated hepatocytes from 24-hr starved rats. Metformin (5 or 50 mM) had no effect on oleate or octanoate oxidation rates (CO(2)+ acid-soluble products), whatever the concentration used. Similarly, metformin had no effect on oleate esterification (triglycerides and phospholipid synthesis) regardless of whether the hepatocytes were isolated from starved (low esterification rates) or fed rats (high esterification rates). In contrast, metformin markedly reduced the rates of glucose production from lactate/pyruvate, alanine, dihydroxyacetone, and galactose. Using crossover plot experiments, it was shown that the main effect of metformin on hepatic gluconeogenesis was located upstream of the formation of dihydroxyacetone phosphate. Increasing the time of exposure to metformin (24 hr instead of 1 hr) led to significant changes in the expression of genes involved in glucose and fatty acid metabolism. Indeed, when hepatocytes were cultured in the presence of 50 to 500 microM metformin, the expression of genes encoding regulatory proteins of fatty acid oxidation (carnitine palmitoyltransferase I), ketogenesis (mitochondrial hydroxymethylgltaryl-CoA synthase), and gluconeogenesis (glucose 6-phosphatase, phosphoenolpyruvate carboxykinase) was decreased by 30 to 60%, whereas expression of genes encoding regulatory proteins involved in glycolysis (glucokinase and liver-type pyruvate kinase) was increased by 250%. In conclusion, this work suggests that metformin could reduce hepatic glucose production through short-term (metabolic) and long-term (genic) effects.
Collapse
Affiliation(s)
- J P Fulgencio
- Endocrinologie, Métabolisme et Développement, UPR 1524 CNRS, ICGM, Service du Pr Girard, 24 rue du Faubourg ST Jacques 75014 Paris, France
| | | | | | | |
Collapse
|
1075
|
Arlt W, Auchus RJ, Miller WL. Thiazolidinediones but not metformin directly inhibit the steroidogenic enzymes P450c17 and 3beta -hydroxysteroid dehydrogenase. J Biol Chem 2001; 276:16767-71. [PMID: 11278997 DOI: 10.1074/jbc.m100040200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen biosynthesis requires 3beta-hydroxysteroid dehydrogenase type II (3betaHSDII) and the 17alpha-hydroxylase and 17,20-lyase activities of cytochrome P450c17. Thiazolidinedione and biguanide drugs, which are used to increase insulin sensitivity in type 2 diabetes, lower serum androgen concentrations in women with polycystic ovary syndrome. However, it is unclear whether this is secondary to increased insulin sensitivity or to direct effects on steroidogenesis. To investigate potential actions of these drugs on P450c17 and 3betaHSDII, we used "humanized yeast" that express these steroidogenic enzymes in microsomal environments. The biguanide metformin had no effect on either enzyme, whereas the thiazolidinedione troglitazone inhibited 3betaHSDII (K(I) = 25.4 +/- 5.1 microm) and both activities of P450c17 (K(I) for 17alpha-hydroxylase, 8.4 +/- 0.6 microm; K(I) for 17,20-lyase, 5.3 +/- 0.7 microm). The action of troglitazone on P450c17 was competitive, but it was mainly a noncompetitive inhibitor of 3betaHSDII. The thiazolidinediones rosiglitazone and pioglitazone exerted direct but weaker inhibitory effects on both P450c17 and 3betaHSDII. These differential effects of the thiazolidinediones do not correlate with their effects on insulin sensitivity, suggesting that distinct regions of the thiazolidinedione molecule mediate these two actions. Thus, thiazolidinediones inhibit two key enzymes in human androgen synthesis contributing to their androgen-lowering effects, whereas metformin affects androgen synthesis indirectly, probably by lowering circulating insulin concentrations.
Collapse
Affiliation(s)
- W Arlt
- Department of Pediatrics and the Metabolic Research Unit, University of California, San Francisco, California 94143-0978, USA
| | | | | |
Collapse
|
1076
|
|