10951
|
Abstract
Ovarian cancer is the most lethal of all of the gynecological cancers and can arise from any cell type of the ovary, including germ cells, granulosa or stromal cells. However, the majority of ovarian cancers arise from the surface epithelium, a single layer of cells that covers the surface of the ovary. The lack of a reliable and specific method for the early detection of epithelial ovarian cancer results in diagnosis occurring most commonly at late clinical stages, when treatment is less effective. In part, the deficiency in diagnostic tools is due to the lack of markers for the detection of preneoplastic or early neoplastic changes in the epithelial cells, which reflects our rather poor understanding of this process. Animal models which accurately represent the cellular and molecular changes associated with the initiation and progression of human ovarian cancer have significant potential to facilitate the development of better methods for the early detection and treatment of ovarian cancer. This review describes some of the experimental animal models of ovarian tumorigenesis that have been reported, including those involving specific reproductive factors and environmental toxins. Consideration has also been given to the recent progress in modeling ovarian cancer using genetically engineered mice.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Carcinogens, Environmental/toxicity
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- Chickens
- Epithelial Cells/pathology
- Female
- Hormones/physiology
- Hormones/toxicity
- Humans
- Mice
- Mice, Inbred C3H
- Models, Animal
- Neoplasm Transplantation
- Neoplasms, Experimental/etiology
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/therapy
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/etiology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Ovulation
- Rabbits
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Sheep
- Species Specificity
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
- Department of Obstetrics and Gynecology, University of Ottawa, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
- Ottawa Regional Cancer Centre, 503 Smyth Road, Ottawa, Ontario, Canada K1H 1C4
| | - Tanya J Shaw
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
- Ottawa Regional Cancer Centre, 503 Smyth Road, Ottawa, Ontario, Canada K1H 1C4
| | - Jean-François Ethier
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
- Ottawa Regional Cancer Centre, 503 Smyth Road, Ottawa, Ontario, Canada K1H 1C4
| |
Collapse
|
10952
|
Hertig A, Berrou J, Allory Y, Breton L, Commo F, Costa De Beauregard MA, Carmeliet P, Rondeau E. Type 1 plasminogen activator inhibitor deficiency aggravates the course of experimental glomerulonephritis through overactivation of transforming growth factor beta. FASEB J 2003; 17:1904-6. [PMID: 12897066 DOI: 10.1096/fj.03-0084fje] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type 1 plasminogen activator inhibitor (PAI-1) is the primary inhibitor of tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Whereas PAI-1 is not expressed in normal kidneys, it is strongly induced in glomerular diseases and thus could promote the local accumulation of fibrin. To study the role of PAI-1 in the development of inflammatory glomerular injury, passive antiglomerular basement membrane (GBM) glomerulonephritis (GN) was induced in PAI-1 knockout mice and in wild-type mice of the same genetic background. Unexpectedly, PAI-1 deficiency was associated with an early and severe exacerbation of glomerular injury: Infiltration by CD4 T cells, proportion of fibrinous crescents, and renal function impairment were significantly more pronounced in PAI-1 -/- mice. Interestingly, activation of transforming growth factor (TGF)- beta, which is known to be dependent on the PA/plasmin system in vitro, was dramatically enhanced in the kidneys in the absence of PAI-1. Moreover, administration of neutralizing antibodies against TGF-beta significantly attenuated the disease in PAI-1 -/- mice. This suggests that the poor outcome of GN in PAI-1 -/- mice is consecutive to an uncontrolled activation of TGF-beta and confers PAI-1 with a new, immunomodulatory role.
Collapse
Affiliation(s)
- Alexandre Hertig
- Institut National de la Santé et de la Recherche Médicale U489, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
10953
|
|
10954
|
Florquin S, Rouschop KMA. Reciprocal functions of hepatocyte growth factor and transforming growth factor-beta1 in the progression of renal diseases: a role for CD44? KIDNEY INTERNATIONAL. SUPPLEMENT 2003:S15-20. [PMID: 12969122 DOI: 10.1046/j.1523-1755.64.s86.4.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Progressive renal fibrosis occurs via common pathophysiologic mechanisms, regardless of the primary underlying disease. This cascade includes release of cytokines/chemokines and toxic molecules, interstitial inflammation, tubular cell damage, accumulation of myofibroblasts, and finally, fibrosis. Hepatocyte growth factor (HGF) and transforming growth factor-beta1 (TGF-beta1) are key molecules in this cascade that, in general, exert opposite actions. Hepatocyte growth factor promotes, to some extent, inflammation, protects tubular epithelial cells, blocks myofibroblast transition, and contributes to tissue remodeling. In contrast, TGF-beta1 has powerful anti-inflammatory actions, promotes apoptosis, induces myofibroblast transition, and is a strong pro-fibrotic agent. The mechanisms which orchestrate the reciprocal actions of HGF and TGF-beta1 are still largely unknown and are probably multiple. One of these mechanisms involves the selective up-regulation of CD44 in damaged kidney. The glomerular and tubular expression of CD44 closely correlates with the degree of renal damage, and CD44 has been shown to facilitate the action of both HGF and TGF-beta1. Moreover, during chronic obstructive nephropathy CD44 knock-out mice display much more tubular damage but develop less fibrosis in the course of the renal disease. These histologic findings are associated with impairment of signaling pathways of both HGF and TGF-beta1. The development of new therapeutic strategies aimed at preventing progression of renal diseases that are based on HGF and/or TGF-beta1 may take in account the pivotal role of CD44 expression in the functions of both molecules.
Collapse
Affiliation(s)
- Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
10955
|
Kobayashi E, Sasamura H, Mifune M, Shimizu-Hirota R, Kuroda M, Hayashi M, Saruta T. Hepatocyte growth factor regulates proteoglycan synthesis in interstitial fibroblasts. Kidney Int 2003; 64:1179-88. [PMID: 12969135 DOI: 10.1046/j.1523-1755.2003.00202.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is a clinically important growth factor with therapeutic potential for the treatment of interstitial fibrosis and chronic renal failure. Proteoglycans are components of the renal interstitium, which have multiple actions, including growth regulation. In this study, we examined the effects of HGF on proteoglycan synthesis in interstitial fibroblasts, and the mechanisms of these effects. METHODS AND RESULTS Expression and agonist-induced activation of the HGF receptor c-Met was detected in rat renal interstitial fibroblasts (NRK-49F) by reverse transcription-polymerase chain reaction (RT-PCR) analysis and immune complex/immunoblot assay. Moreover, stimulation of the cells with HGF resulted in a marked increase (five- to tenfold) in phosphorylation of extracellular signal-related protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK), but not of c-Jun NH2 terminal kinase (JNK). Treatment with HGF resulted in a time- and dose-dependent increase (P < 0.01) in both cell-associated and secreted proteoglycan synthesis to two- to fourfold of control levels. This effect was attenuated by the MAPK/ERK kinase (MEK) inhibitor PD98059 and the p38 MAPK inhibitor SB203580. Ion-exchange chromatography suggested that chondroitin sulfate/dermatan sulfate proteoglycans were up-regulated after HGF treatment. Northern blot, RT-PCR, Western blot, and promoter activity assays revealed that HGF caused a significant increase in decorin mRNA and protein, as well as in biglycan mRNA, protein, and promoter activity, suggesting transcriptional control of gene expression. Since the effects of biglycan on fibroblast proliferation are still unclear, the effects of biglycan were examined by thymidine assay, and biglycan was found to attenuate transforming growth factor-beta (TGF-beta)-induced changes in cell proliferation. CONCLUSION These results suggest that HGF causes an increase in the small leucine-rich proteoglycans biglycan and decorin by ERK1/2- and p38 MAPK-mediated pathways in fibroblasts. These findings may be relevant for understanding potential mechanisms by which HGF can exert TGF-beta inhibitory actions in the kidney.
Collapse
Affiliation(s)
- Emi Kobayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
10956
|
Li Y, Yang J, Dai C, Wu C, Liu Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 2003. [PMID: 12925691 DOI: 10.1172/jci200317913] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Under pathologic conditions, renal tubular epithelial cells can undergo epithelial to mesenchymal transition (EMT), a phenotypic conversion that is believed to play a critical role in renal interstitial fibrogenesis. However, the underlying mechanism that governs this process remains largely unknown. Here we demonstrate that integrin-linked kinase (ILK) plays an important role in mediating tubular EMT induced by TGF-beta1. TGF-beta1 induced ILK expression in renal tubular epithelial cells in a time- and dose-dependent manner, which was dependent on intracellular Smad signaling. Forced expression of ILK in human kidney proximal tubular epithelial cells suppressed E-cadherin expression and induced fibronectin expression and its extracellular assembly. ILK also induced MMP-2 expression and promoted cell migration and invasion in Matrigel. Conversely, ectopic expression of a dominant-negative, kinase-dead form of ILK largely abrogated TGF-beta1-initiated tubular cell phenotypic conversion. In vivo, ILK was markedly induced in renal tubular epithelia in mouse models of chronic renal diseases, and such induction was spatially and temporally correlated with tubular EMT. Moreover, inhibition of ILK expression by HGF was associated with blockade of tubular EMT and attenuation of renal fibrosis. These findings suggest that ILK is a critical mediator for tubular EMT and likely plays a crucial role in the pathogenesis of chronic renal fibrosis.
Collapse
Affiliation(s)
- Yingjian Li
- Department of Pathology, University of Pittsburgh School of Medicine, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
10957
|
Abstract
Hydrodynamic delivery is an efficient and inexpensive procedure to deliver a wide range of nucleic acids to hepatic tissues and other organs in vivo. The successful application of hydrodynamic delivery is dependent on the rapid injection of a large aqueous volume containing DNA, RNA or other molecules into the vasculature of the liver. In this review, the development of the procedures for hydrodynamic delivery will be described and the parameters necessary for attaining maximal gene expression will be highlighted. A review of the mechanisms for transfecting hepatocytes, as well as potential uses of this approach in various research and clinical applications, will also be discussed.
Collapse
Affiliation(s)
- Bradley L Hodges
- Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701, USA.
| | | |
Collapse
|
10958
|
Davies G, Mason MD, Martin TA, Parr C, Watkins G, Lane J, Matsumoto K, Nakamura T, Jiang WG. The HGF/SF antagonist NK4 reverses fibroblast- and HGF-induced prostate tumor growth and angiogenesis in vivo. Int J Cancer 2003; 106:348-54. [PMID: 12845672 DOI: 10.1002/ijc.11220] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Our study examined the in vitro and in vivo responses of a newly discovered HGF/SF antagonist, NK4, on HGF/SF-promoted growth of human prostate cancer cells (PC-3). Nude mice were s.c. injected with either PC-3- and/or HGF/SF-producing fibroblasts (MRC5), and tumor size was measured over a 4-week period. rh-HGF/SF and/or NK4 were introduced by osmotic minipumps. An in vitro study found that NK4 significantly suppressed HGF/SF-induced invasion (HGF/SF; p < 0.01 vs. HGF/SF+NK4) and migration (HGF/SF; p < 0.05 vs. HGF/SF+NK4). Similarly, NK4 also suppressed the invasion (MRC5; p < 0.01 vs. MRC5+NK4) and migration (MRC5; p < 0.05 vs. MRC5+NK4) induced by MRC5 cells. NK4 also suppressed HGF/SF- and MRC5-induced tyrosine phosphorylation of the HGF/SF receptor Met as assessed by immunoprecipitation. Using a nude mouse model, prostate tumor volume (mm(3)) was significantly increased in both HGF/SF- (HGF/SF; p < 0.05 vs. control) and MRC5- (MRC5; p < 0.01 vs. control) treated groups compared to the control. In contrast, NK4 alone significantly reduced the growth of prostate tumors (NK4; p < 0.01 vs. control). In addition, NK4 also suppressed both HGF/SF- (HGF/SF; p < 0.01 vs. HGF/SF+NK4) and MRC5- (MRC5; p < 0.05 vs. MRC5+NK4) induced tumor growth in vivo by significantly reducing (p < 0.05) the degree of tumor angiogenesis using a recently discovered family of tumor endothelial markers (TEMs) by Q-RT-PCR analysis. In conclusion, NK4 suppresses both HGF/SF- and MRC5-induced invasion/migration of PC-3 cells in vitro. Furthermore, the HGF/SF antagonist NK4 significantly reduces prostate tumor growth in vivo by inhibiting the degree of tumor angiogenesis as determined by TEM-1 and TEM-8. Finally, our study provides evidence of the therapeutic potential of NK4 in prostate cancer development by antagonising HGF/SF-mediated events.
Collapse
Affiliation(s)
- Gaynor Davies
- Metastasis Research Group, University Department of Surgery, University of Wales College of Medicine, Cardiff CF14 4XN, Wales, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10959
|
Li Y, Yang J, Dai C, Wu C, Liu Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 2003; 112:503-16. [PMID: 12925691 PMCID: PMC171389 DOI: 10.1172/jci17913] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Under pathologic conditions, renal tubular epithelial cells can undergo epithelial to mesenchymal transition (EMT), a phenotypic conversion that is believed to play a critical role in renal interstitial fibrogenesis. However, the underlying mechanism that governs this process remains largely unknown. Here we demonstrate that integrin-linked kinase (ILK) plays an important role in mediating tubular EMT induced by TGF-beta1. TGF-beta1 induced ILK expression in renal tubular epithelial cells in a time- and dose-dependent manner, which was dependent on intracellular Smad signaling. Forced expression of ILK in human kidney proximal tubular epithelial cells suppressed E-cadherin expression and induced fibronectin expression and its extracellular assembly. ILK also induced MMP-2 expression and promoted cell migration and invasion in Matrigel. Conversely, ectopic expression of a dominant-negative, kinase-dead form of ILK largely abrogated TGF-beta1-initiated tubular cell phenotypic conversion. In vivo, ILK was markedly induced in renal tubular epithelia in mouse models of chronic renal diseases, and such induction was spatially and temporally correlated with tubular EMT. Moreover, inhibition of ILK expression by HGF was associated with blockade of tubular EMT and attenuation of renal fibrosis. These findings suggest that ILK is a critical mediator for tubular EMT and likely plays a crucial role in the pathogenesis of chronic renal fibrosis.
Collapse
Affiliation(s)
- Yingjian Li
- Department of Pathology, University of Pittsburgh School of Medicine, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
10960
|
Abstract
OBJECTIVES Despite technological advances in renal replacement therapy over the past few years, acute renal failure in the intensive care unit remains associated with high morbidity and mortality rates. In this article I review recent research aimed at elucidating mechanisms of renal recovery from acute injury. DESIGN Review of the literature. CONCLUSIONS A number of peptide growth hormones are reviewed, including epidermal growth factor, insulin-like growth factor-1, thyroxine, hepatocyte growth factor, and bone morphogenetic protein-7 promote renal regeneration in model systems. Unfortunately, despite promising studies in animal models of toxin and ischemia-induced acute tubular necrosis, human studies have not shown any clinical benefit. However, several of these molecules have not been studied in clinical trials. Existing pharmacologic strategies have a limited role in renal recovery. Finally, several recent studies have focused on the effects of renal replacement therapy on renal recovery, but additional studies are needed to confirm and extend these results.
Collapse
Affiliation(s)
- Kathleen D Liu
- Department of Medicine, Unicversity of California, San Francisco, USA
| |
Collapse
|
10961
|
Grünert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 2003; 4:657-65. [PMID: 12923528 DOI: 10.1038/nrm1175] [Citation(s) in RCA: 516] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In contrast to the aberrant control of proliferation, apoptosis, angiogenesis and lifespan, the cellular mechanisms that cause local invasion and metastasis of tumour cells are still poorly understood. New experimental approaches have identified different types of epithelial-plasticity changes in tumour cells towards fibroblastoid phenotypes as crucial events that occur during metastasis, and many molecules and signalling pathways cooperate to trigger these processes.
Collapse
Affiliation(s)
- Stefan Grünert
- Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.
| | | | | |
Collapse
|
10962
|
Martin TA, Parr C, Davies G, Watkins G, Lane J, Matsumoto K, Nakamura T, Mansel RE, Jiang WG. Growth and angiogenesis of human breast cancer in a nude mouse tumour model is reduced by NK4, a HGF/SF antagonist. Carcinogenesis 2003; 24:1317-23. [PMID: 12807719 DOI: 10.1093/carcin/bgg072] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) is a cytokine primarily produced by stromal fibroblasts and is a known angiogenic and invasion-inducing factor. It is increased in patients with breast cancer. This study examined the effect of NK4, a newly described HGF/SF antagonist, on HGF/SF-promoted growth of a human breast cancer. Both in vitro (invasion and migration assays) and in vivo (murine tumour model) methods were used to ascertain the effect of NK4 on HGF/SF from two sources: human fibroblast-derived HGF/SF and recombinant HGF/SF. In the in vitro invasion assay and migration assay, both HGF/SF and human fibroblasts, which secrete bioactive HGF/SF, increased the invasiveness and migration of the breast cancer cells (MDA MB 231). NK4 significantly reduced this invasiveness and motility. In the animal model, tumour volume and weight was significantly reduced with addition of NK4. It also suppressed HGF/SF-induced growth and markedly retarded tumour growth induced by fibroblasts (MRC5), secreting bioactive HGF/SF. Tumour angiogenesis was assessed by immunohistochemical staining of primary tissue sections using VE-cadherin (an endothelial cell specific cell-cell adhesion molecule). Again, NK4 reduced the effects of both HGF/SF and fibroblasts. We conclude that NK4 has a significant effect on the growth of human breast tumours in nude mice, particularly when stimulated by HGF/SF or fibroblasts. This may occur by decreasing angiogenesis. This gives a clear indication of the therapeutic worth of NK4.
Collapse
Affiliation(s)
- Tracey A Martin
- Metastasis Research Group, University Department of Surgery, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10963
|
Sondergaard M, Dagnaes-Hansen F, Flyvbjerg A, Jensen TG. Normalization of growth in hypophysectomized mice using hydrodynamic transfer of the human growth hormone gene. Am J Physiol Endocrinol Metab 2003; 285:E427-32. [PMID: 12657568 DOI: 10.1152/ajpendo.00573.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonviral gene transfer was investigated as a potential treatment of growth hormone deficiency (GHD) using hypophysectomized mice as a model. After a single hydrodynamic administration of naked plasmid DNA containing the human growth hormone (hGH) gene controlled by an ubiquitin promoter, sustained elevation of circulating hGH was observed the entire observation period (68 days), with a concomitant normalization of circulating insulin-like growth factor I (IGF-I) and IGF-binding protein-3. Furthermore, longitudinal growth was corrected in terms of normalization of tibia length, tail length, and body weight gain. Liver, spleen, and lung weights were normalized, whereas heart weight was normalized partly. hGH mRNA was expressed exclusively in liver tissue. In conclusion, we showed that nonviral hGH gene transfer normalizes longitudinal growth in hypophysectomized mice, indicating that this method potentially could be relevant as a new therapeutic tool in the clinical handling of GHD.
Collapse
|
10964
|
Yang J, Dai C, Liu Y. Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:621-32. [PMID: 12875981 PMCID: PMC1868195 DOI: 10.1016/s0002-9440(10)63689-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interstitial myofibroblasts are alpha-smooth muscle actin-positive cells that play a crucial role in the accumulation of excess extracellular matrix during renal interstitial fibrogenesis. Despite their importance in the pathogenesis of renal fibrosis, relatively little is known about the regulators and the mechanism controlling the activation of renal interstitial myofibroblasts in disease conditions. Here, we show that hepatocyte growth factor (HGF) acts as a potent inhibitor of the transforming growth factor (TGF)-beta1-mediated myofibroblastic activation from normal rat renal interstitial fibroblasts (NRK-49F). Simultaneous incubation of HGF abolished TGF-beta1-induced de novo alpha-smooth muscle actin expression, F-actin reorganization, and interstitial collagen I overproduction in a dose-dependent manner. To decipher the mechanism underlying HGF antagonizing TGF-beta1's action, we examined the effects of HGF on TGF-beta1-mediated Smad signaling. HGF neither inhibited Smad-2/3 phosphorylation and their association with Smad-4 induced by TGF-beta1, nor significantly affected inhibitory Smad-6 and -7 expression and cellular abundance of Smad transcriptional co-repressors in NRK-49F cells. However, pretreatment with HGF markedly attenuated activated Smad-2/3 nuclear translocation and accumulation. This action of HGF was apparently dependent on HGF-mediated extracellular signal-regulated kinase-1 and -2 (Erk-1/2) phosphorylation and activation. Inhibition of Erk-1/2 activation by Mek kinase inhibitor PD98059 restored TGF-beta1-mediated Smad-2/3 nuclear accumulation and myofibroblast activation. In vivo, HGF selectively blocked Smad-2/3 nuclear accumulation in renal interstitial cells in the fibrotic kidneys induced by unilateral ureteral obstruction. Therefore, HGF suppresses TGF-beta1-mediated renal interstitial myofibroblastic activation; and this action of HGF is likely related to a mitogen-activated protein kinase-dependent blockade of Smad nuclear translocation.
Collapse
Affiliation(s)
- Junwei Yang
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
10965
|
Abstract
Excessive deposition of extracellular matrix (ECM) in the kidney is the hallmark of diabetic nephropathy. Although the amount of ECM deposited in the kidney depends on the balance between the synthesis and degradation of ECM, the role of ECM degradation in matrix remodeling has been less well appreciated. High glucose, advanced glycation end products, angiotensin II, and TGF-beta1 all increase intracellular reactive oxygen species (ROS) in renal cells and contribute to the development and progression of diabetic renal injury. The role of ROS in increased ECM synthesis has been well documented. ROS may also play a critical role in decreased ECM degradation by mediating high glucose- and TGF-beta1-induced inhibition of the proteolytic system, plasmin, and matrix metalloproteinases in the glomeruli. A recent observation suggests that ROS play an important role in tubulointerstitial fibrosis by mediating TGF-beta1-induced epithelial-mesenchymal transition (EMT). Accelerated ECM degradation is required to disrupt tubular basement membrane and complete EMT. ROS thus seem to be involved in both decreased and increased ECM degradation. It is not clear how cells determine when and where to increase or decrease ECM degradation in response to ROS. Precise definition of ROS-activated signaling pathways leading to ECM remodeling in the kidney will provide new strategies to prevent or treat diabetic renal injury.
Collapse
Affiliation(s)
- Hunjoo Ha
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea.
| | | |
Collapse
|
10966
|
Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 2003; 14:2199-210. [PMID: 12874476 DOI: 10.1097/01.asn.0000079785.13922.f6] [Citation(s) in RCA: 546] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, and the Harvard--MIT, Division of Health Sciences and Technology, Charlestown, Massachusetts, USA.
| | | |
Collapse
|
10967
|
Chabicovsky M, Herkner K, Rossmanith W. Overexpression of activin beta(C) or activin beta(E) in the mouse liver inhibits regenerative deoxyribonucleic acid synthesis of hepatic cells. Endocrinology 2003; 144:3497-504. [PMID: 12865331 DOI: 10.1210/en.2003-0388] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activins are dimeric growth factors composed of beta-subunits, four of which have been isolated so far. Whereas activin beta(A) and beta(B) are expressed in many tissues, the expression of activin beta(C) and beta(E) is confined to the liver. To date no biological role or activity has been assigned to activins formed from beta(C) or beta(E) subunits (activin C and E). Because activin A (beta(A)beta(A)), among its various functions in other tissues, appears to be a negative regulator of liver growth, we hypothesized a similar role for activin C and E. Using a nonviral gene transfer system we specifically delivered genes encoding activin beta(C), beta(E), or beta(A) to the mouse liver. The mRNA analysis and reporter gene coexpression both indicated a reproducible temporal and spatial transgene expression pattern. The effects of activin overexpression were studied in the context of a regenerative proliferation of hepatic cells, a result of the tissue damage associated with the hydrodynamics based gene transfer procedure. Activin beta(C), beta(E), or beta(A) expression, all temporarily inhibited regenerative DNA synthesis of hepatocytes and nonparenchymal cells, though to a varying degree. This first report of a biological activity of activin C and E supports an involvement in liver tissue homeostasis and further emphasizes the role of the growing activin family in liver physiology.
Collapse
Affiliation(s)
- Monika Chabicovsky
- Department of Toxicology, Institute for Cancer Research, Institute of Anatomy, University of Vienna, 1090 Vienna, Austria
| | | | | |
Collapse
|
10968
|
Hayashida T, Decaestecker M, Schnaper HW. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells. FASEB J 2003; 17:1576-8. [PMID: 12824291 DOI: 10.1096/fj.03-0037fje] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transforming growth factor beta (TGF-beta) stimulates renal cell fibrogenesis by a poorly understood mechanism. Previously, we suggested a synergy between TGF-beta1 activated extracellular signal-regulated kinase (ERK) and Smad signaling in collagen production by human glomerular mesangial cells. In a heterologous DNA binding transcription assay, biochemical or dominant-negative ERK blockade reduced TGF-beta1 induced Smad3 activity. Total serine phosphorylation of Smad2/3, but not phosphorylation of the C-terminal SS(P)XS(P) motif, was decreased by pretreatment with the MEK/ERK inhibitors, PD98059 (10 microM) or U0126 (25 microM). This effect was not seen in the mouse mammary epithelial NMuMG cell line, indicating that ERK-dependent activation of Smad2/3 occurs only in certain cell types. TGF-beta stimulated phosphorylation of an expressed Smad3A construct, with a mutated C-terminal SS(P)XS(P) motif, was reduced by a MEK/ERK inhibitor. In contrast, MEK/ERK inhibition did not affect phosphorylation of a Smad3 construct mutated at consensus phosphorylation sites in the linker region (Smad3EPSM). Constitutively active MEK (caMEK) induced alpha2(I) collagen promoter activity, an effect blocked by co-transfected Smad3EPSM, but not Smad3A. The effects of caMEK and TGF-beta1 on collagen promoter activity were additive. These results indicate that ERK-dependent R-Smad linker region phosphorylation enhances collagen I synthesis and imply positive cross talk between the ERK and Smad pathways in human mesangial cells.
Collapse
Affiliation(s)
- Tomoko Hayashida
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, W-140, Pediatrics, 303 E Chicago Ave., Ward 12-112, Chicago, Illinois 60611-3008, USA.
| | | | | |
Collapse
|
10969
|
Abstract
A delicate balance exists between ECM synthesis and degradation such that interruption of the corresponding pathways results in increased plasminogen activator inhibitor-1 (PAI-1), pathological matrix accumulation, and glomerulosclerosis. A new study demonstrates that therapy with a mutant PAI-1 increases matrix turnover and reduces glomerulosclerosis by competing with endogenous PAI-1, suggesting therapeutic utility in the treatment of fibrotic renal disease.
Collapse
Affiliation(s)
- Agnes B Fogo
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| |
Collapse
|
10970
|
Dai C, Li Y, Yang J, Liu Y. Hepatocyte growth factor preserves beta cell mass and mitigates hyperglycemia in streptozotocin-induced diabetic mice. J Biol Chem 2003; 278:27080-7. [PMID: 12746445 DOI: 10.1074/jbc.m211947200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I diabetes is an autoimmune disease that results in destructive depletion of the insulin-producing beta cells in the islets of Langerhans in pancreas. With the knowledge that hepatocyte growth factor (HGF) is a potent survival factor for a wide variety of cells, we hypothesized that supplementation of HGF may provide a novel strategy for protecting pancreatic beta cells from destructive death and for preserving insulin production. In this study, we demonstrate that expression of the exogenous HGF gene preserved insulin excretion and mitigated hyperglycemia of diabetic mice induced by streptozotocin. Blood glucose levels were significantly reduced in mice receiving a single intravenous injection of naked HGF gene at various time points after streptozotocin administration. Consistently, HGF concomitantly increased serum insulin levels in diabetic mice. Immunohistochemical staining revealed a marked preservation of insulin-producing beta cells by HGF in the pancreatic islets of the diabetic mice. This beneficial effect of HGF was apparently mediated by both protection of beta cells from death and promotion of their proliferation. Delivery of HGF gene in vivo induced pro-survival Akt kinase activation and Bcl-xL expression in the pancreatic islets of diabetic mice. These findings suggest that supplementation of HGF to prevent beta cells from destructive depletion and to promote their proliferation might be an effective strategy for ameliorating type I diabetes.
Collapse
Affiliation(s)
- Chunsun Dai
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
10971
|
Park KM, Byun JY, Kramers C, Kim JI, Huang PL, Bonventre JV. Inducible nitric-oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney. J Biol Chem 2003; 278:27256-66. [PMID: 12682064 DOI: 10.1074/jbc.m301778200] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ischemic preconditioning renders the mouse kidney resistant to subsequent ischemia. Understanding the mechanisms responsible for ischemic preconditioning is important for formulating therapeutic strategies aimed at mimicking protective mechanisms. We report that the resistance afforded by 30 min of bilateral kidney ischemia persists for 12 weeks after preconditioning. The protection is reflected by improved postischemic renal function, reduced leukocyte infiltration, reduced postischemic disruption of the actin cytoskeleton, and reduced postischemic expression of kidney injury molecule-1 (Kim-1). The protection is observed in both BALB/c and C57BL/6J strains of mice. Thirty minutes of prior ischemia increases the expression of inducible nitric-oxide synthase (iNOS) and endothelial NOS (eNOS) and the expression of heat shock protein (HSP)-25 and is associated with increased interstitial expression of alpha-smooth muscle actin (alpha-SMA), an indication of long term postischemic sequelae. Treatment with Nomega-nitro-l-arginine (l-NNA), an inhibitor of NO synthesis, increases kidney susceptibility to ischemia. Gene deletion of iNOS increases kidney susceptibility to ischemia, whereas gene deletion of eNOS has no effect. Pharmacological inhibition of NOS by l-NNA or l-N6-(1-iminoethyl) lysine (l-NIL, a specific inhibitor of iNOS) mitigates the kidney protection afforded by 30 min of ischemic preconditioning. Fifteen minutes of prior ischemic preconditioning, which does not result in the disruption of the actin cytoskeleton, impairment of renal function, increased interstitial alpha-SMA, or increased iNOS or eNOS expression, but does increase HSP-25 expression, partially protects the kidney from ischemia on day 8 via a mechanism that is not abolished by l-NIL treatment. Thus, iNOS is responsible for a significant component of the long term protection afforded the kidney by ischemic preconditioning, which results in persistent renal interstitial disease, but does not explain the preconditioning seen with shorter periods of ischemia.
Collapse
Affiliation(s)
- Kwon Moo Park
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
10972
|
Eikmans M, Baelde JJ, de Heer E, Bruijn JA. ECM homeostasis in renal diseases: a genomic approach. J Pathol 2003; 200:526-36. [PMID: 12845620 DOI: 10.1002/path.1417] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic renal disease is in general histologically accompanied by a vast amount of scar tissue, ie glomerulosclerosis and interstitial fibrosis. Scarring results from excessive accumulation of extracellular matrix (ECM) components, a process driven by a plethora of cytokines and growth factors. Studies in experimental renal disease which target these regulators using gene therapy limit or prevent the development of scarring. This review focuses specifically on the role of transforming growth factor-beta, platelet-derived growth factor, connective tissue growth factor, hepatocyte growth factor, and epidermal growth factor. The results obtained in animal models hold promise for molecular intervention strategies in human renal disease. Microarray technology allows large-scale gene expression profiling in kidney tissue to identify common molecular pathways in a step towards discovery of new drug targets. Molecular techniques are expected to be used for diagnostic and prognostic purposes in nephrological practice to supplement renal biopsy. Several studies already show that molecular techniques might be of use in routine diagnostic practice. Improvement of diagnosis and prediction of outcome in renal patients might lead to more efficient and earlier therapeutic intervention.
Collapse
Affiliation(s)
- M Eikmans
- Department of Pathology, Leiden University Medical Center, Building 1, LI-Q, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
10973
|
Abstract
Maintenance of epithelial tissues needs the stroma. When the epithelium changes, the stroma inevitably follows. In cancer, changes in the stroma drive invasion and metastasis, the hallmarks of malignancy. Stromal changes at the invasion front include the appearance of myofibroblasts, cells sharing characteristics with fibroblasts and smooth muscle cells. The main precursors of myofibroblasts are fibroblasts. The transdifferentiation of fibroblasts into myofibroblasts is modulated by cancer cell-derived cytokines, such as transforming growth factor-beta (TGF-beta). TGF-beta causes cancer progression through paracrine and autocrine effects. Paracrine effects of TGF-beta implicate stimulation of angiogenesis, escape from immunosurveillance and recruitment of myofibroblasts. Autocrine effects of TGF-beta in cancer cells with a functional TGF-beta receptor complex may be caused by a convergence between TGF-beta signalling and beta-catenin or activating Ras mutations. Experimental and clinical observations indicate that myofibroblasts produce pro-invasive signals. Such signals may also be implicated in cancer pain. N-Cadherin and its soluble form act as invasion-promoters. N-Cadherin is expressed in invasive cancer cells and in host cells such as myofibroblasts, neurons, smooth muscle cells, and endothelial cells. N-Cadherin-dependent heterotypic contacts may promote matrix invasion, perineural invasion, muscular invasion, and transendothelial migration; the extracellular, the juxtamembrane and the beta-catenin binding domain of N-cadherin are implicated in positive invasion signalling pathways. A better understanding of stromal contributions to cancer progression will likely increase our awareness of the importance of the combinatorial signals that support and promote growth, dedifferentiation, invasion, and ectopic survival and eventually result in the identification of new therapeutics targeting the stroma.
Collapse
Affiliation(s)
- Olivier De Wever
- Laboratory of Experimental Cancerology, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | | |
Collapse
|
10974
|
Zhou A, Ueno H, Shimomura M, Tanaka R, Shirakawa T, Nakamura H, Matsuo M, Iijima K. Blockade of TGF-beta action ameliorates renal dysfunction and histologic progression in anti-GBM nephritis. Kidney Int 2003; 64:92-101. [PMID: 12787399 DOI: 10.1046/j.1523-1755.2003.00045.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We tested whether the entire soluble extracellular domain of the human transforming growth factor-beta (TGF-beta) type II receptor, fused to the Fc portion of human immunoglobulin G (IgG1) (Tbeta-ExR) and expressed in skeletal muscles by adenovirus-mediated gene transfer (AdTbeta-ExR), can ameliorate renal dysfunction and histologic progression in a rat experimental anti-glomerular basement membrane (GBM) nephritis. METHODS Anti-GBM nephritis was induced in Wistar Kyoto rats by an intravenous injection of anti-rat glomerular basement membrane (GBM) sera. At day 1 (24 hours after induction), AdTbeta-ExR (1 x 109 pfu/mL) was injected into the femoral muscle in the treatment group, and an adenovirus vector-expressing bacterial beta-galactosidase (AdLacZ) was injected into the control group. Then, clinical and histologic changes were examined for 3 weeks after the induction of anti-GBM nephritis. RESULTS Tbeta-ExR was detected in the serum at day 7, but the serum concentration of Tbeta-ExR had decreased below the detectable level by day 14. Although blood pressure and the degree of proteinuria were similar in both groups, the deterioration of renal function was significantly blunted in the treatment group. Crescent formation and interstitial fibrosis were also ameliorated in the treatment group. These histologic improvements were accompanied by the decreased interstitial infiltration of macrophages and the decreased alpha-smooth muscle actin (alpha-SMA)-positive cells in the glomeruli and the interstitium. CONCLUSION This study demonstrated for the first time that the blockade of TGF-beta action by AdTbeta-ExR in the early stage of anti-GBM nephritis ameliorates the clinical and histologic progression. In addition, this study shed light on the development of a specific gene therapy for human crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Aihua Zhou
- Department of Pediatrics, Department of Urology, and Division of Molecular Medicine, Kobe University Graduate Schoolof Medicine, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10975
|
Ding S, Merkulova-Rainon T, Han ZC, Tobelem G. HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood 2003; 101:4816-22. [PMID: 12595309 DOI: 10.1182/blood-2002-06-1731] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a mesenchyme-derived pleiotropic growth factor and a powerful stimulator of angiogenesis, which acts on cells by binding to the c-met receptor. The exact role of the endogenous HGF/c-met system in one or more steps of the angiogenic process is not completely understood. To contribute to this question we used immunocytochemical analysis, Western blotting, and reverse transcription-polymerase chain reaction to study the expression of c-met in endothelial cells cultured in different growth conditions. We found that c-met is not colocalized with vascular endothelial (VE)-cadherin in cell-cell junctions. c-met and VE-cadherin were shown to be inversely regulated by cell density, at both the protein and the mRNA levels. We established that c-met is up-regulated during the in vitro recapitulation of several steps of angiogenesis. The c-met expression was increased shortly after switching to angiogenic growth conditions and remained high during the very first steps of angiogenesis, including cell migration, and cell proliferation. The endothelial cells in which the expression of c-met was up-regulated were more responsive to HGF and exhibited a higher rate of morphogenesis. Moreover, the antibody directed against the extracellular domain of the c-met inhibited angiogenesis in vitro. Our results suggest that c-met is a marker of angiogenic phenotype for endothelial cells and represents an attractive target for the development of new antiangiogenic therapies.
Collapse
Affiliation(s)
- Shunli Ding
- Institut des Vaisseaux et du Sang, Centre de Recherche de l'Association Claude Bernard, Paris, France
| | | | | | | |
Collapse
|
10976
|
Geiss GK, Carter VS, He Y, Kwieciszewski BK, Holzman T, Korth MJ, Lazaro CA, Fausto N, Bumgarner RE, Katze MG. Gene expression profiling of the cellular transcriptional network regulated by alpha/beta interferon and its partial attenuation by the hepatitis C virus nonstructural 5A protein. J Virol 2003; 77:6367-75. [PMID: 12743294 PMCID: PMC155033 DOI: 10.1128/jvi.77.11.6367-6375.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Alpha/beta interferons (IFN-alpha/beta) induce potent antiviral and antiproliferative responses and are used to treat a wide range of human diseases, including chronic hepatitis C virus (HCV) infection. However, for reasons that remain poorly understood, many HCV isolates are resistant to IFN therapy. To better understand the nature of the cellular IFN response, we examined the effects of IFN treatment on global gene expression by using several types of human cells, including HeLa cells, liver cell lines, and primary fetal hepatocytes. In response to IFN, 50 of the approximately 4,600 genes examined were consistently induced in each of these cell types and another 60 were induced in a cell type-specific manner. A search for IFN-stimulated response elements (ISREs) in genomic DNA located upstream of IFN-stimulated genes revealed both previously identified and novel putative ISREs. To determine whether HCV can alter IFN-regulated gene expression, we performed microarray analyses on IFN-treated HeLa cells expressing the HCV nonstructural 5A (NS5A) protein and on IFN-treated Huh7 cells containing an HCV subgenomic replicon. NS5A partially blocked the IFN-mediated induction of 14 IFN-stimulated genes, an effect that may play a role in HCV resistance to IFN. This block may occur through repression of ISRE-mediated transcription, since NS5A also inhibited the IFN-mediated induction of a reporter gene driven from an ISRE-containing promoter. In contrast, the HCV replicon had very little effect on IFN-regulated gene expression. These differences highlight the importance of comparing results from multiple model systems when investigating complex phenomena such as the cellular response to IFN and viral mechanisms of IFN resistance.
Collapse
Affiliation(s)
- Gary K Geiss
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10977
|
Cheng S, Lovett DH. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1937-49. [PMID: 12759250 PMCID: PMC1868144 DOI: 10.1016/s0002-9440(10)64327-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progressive renal interstitial fibrosis and tubular atrophy represent the final injury pathway for all commonly encountered forms of renal disease that lead to end-stage renal failure. It has been recently recognized that myofibroblastic cells are the major contributors to the deposition of interstitial collagens. While there are several potential cellular sources of myofibroblasts, attention has focused on the transformation of the organized tubular epithelium to the myofibroblastic phenotype, a process potently driven both in vitro and in vivo by transforming growth factor-beta1 (TGF-beta1). Integrity of the underlying basal lamina provides cellular signals that maintain the epithelial phenotype, and disruption by discrete proteases could potentially initiate the transformation process. We demonstrate that TGF-beta1 coordinately stimulates the synthesis of a specific matrix metalloproteinase, gelatinase A (MMP-2), and its activator protease, MT1-MMP (MMP-14), and that active gelatinase A is absolutely required for epithelial-mesenchymal transformation induced by TGF-beta1. In addition, purified active gelatinase A alone is sufficient to induce epithelial-mesenchymal transformation in the absence of exogenous TGF-beta1. Gelatinase A may also mediate epithelial-mesenchymal transformation in a paracrine manner through the proteolytic generation of active TGF-beta1 peptide. MT1-MMP and gelatinase A were co-localized to sites of active epithelial-mesenchymal transformation and basal lamina disruption in the rat remnant kidney model of progressive renal fibrosis. These studies indicate that a discrete matrix metalloproteinase, gelatinase A, is capable of inducing the complex genetic rearrangements that characterize renal tubular epithelial-mesenchymal transformation.
Collapse
Affiliation(s)
- Sunfa Cheng
- Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California, San Francisco 94121, USA
| | | |
Collapse
|
10978
|
Bariéty J, Bruneval P, Hill GS, Mandet C, Jacquot C, Meyrier A. Transdifferentiation of epithelial glomerular cells. J Am Soc Nephrol 2003; 14 Suppl 1:S42-7. [PMID: 12761238 DOI: 10.1097/01.asn.0000067651.34743.b0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jean Bariéty
- University Paris VI, Hospital Georges Pompidou, Paris, France
| | | | | | | | | | | |
Collapse
|
10979
|
Zhang X, Liu Y. Suppression of HGF receptor gene expression by oxidative stress is mediated through the interplay between Sp1 and Egr-1. Am J Physiol Renal Physiol 2003; 284:F1216-25. [PMID: 12569082 DOI: 10.1152/ajprenal.00426.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) receptor, the product of the c-met protooncogene, is transcriptionally regulated by a wide variety of cytokines as well as extracellular environmental cues. In this report, we demonstrate that c-met expression was significantly suppressed by oxidative stress. Treatment of mouse renal inner medullary collecting duct epithelial cells with 0.5 mM H(2)O(2) inhibited c-met mRNA and protein expression, which was concomitant with induction of Egr-1 transcription factor. Ectopic expression of Egr-1 in renal epithelial cells markedly inhibited endogenous c-met expression in a dose-dependent fashion, suggesting a causative effect of Egr-1 in mediating c-met suppression. The cis-acting element responsible for H(2)O(2)-induced c-met inhibition was localized at nucleotide position -223 to -68 of c-met promoter, in which reside an imperfect Egr-1 and three Sp1-binding sites. Egr-1 markedly suppressed c-met promoter activity but did not directly bind to its cis-acting element in the c-met gene. Induction of Egr-1 by oxidative stress attenuated the binding of Sp1 to its cognate sites, but it did not affect Sp1 abundance in renal epithelial cells. Immunoprecipitation uncovered that Egr-1 physically interacted with Sp1 by forming the Sp1/Egr-1 complex, which presumably resulted in a decreased availability of unbound Sp1 as a transcriptional activator for the c-met gene. Thus it appears that inhibition of c-met expression by oxidative stress is mediated by the interplay between Sp1 and Egr-1 transcription factors. Our findings reveal a novel transcriptional regulatory mechanism by which Egr-1 sequesters Sp1 as a transcriptional activator of c-met via physical interaction.
Collapse
Affiliation(s)
- Xianghong Zhang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
10980
|
Poulsom R, Alison MR, Cook T, Jeffery R, Ryan E, Forbes SJ, Hunt T, Wyles S, Wright NA. Bone marrow stem cells contribute to healing of the kidney. J Am Soc Nephrol 2003; 14 Suppl 1:S48-54. [PMID: 12761239 DOI: 10.1097/01.asn.0000068162.02174.29] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A variety of recent studies support the existence of pathways, in adult humans and rodents, that allow adult stem cells to be surprisingly flexible in their differentiation repertoires. Termed plasticity, this property allows adult stem cells, assumed until now to be committed to generating a fixed range of progeny, on relocation to switch to make other specialized sets of cells appropriate to their new niche. Cells normally present within the bone marrow seem particularly flexible and are able to contribute usefully to many recipient organs. In studies of the liver, bone marrow-derived cells are seen with specialized structural and metabolic adaptations commensurate with their new locations, and these may be abundant, even sufficient, to rescue recipient mice from genetic defects and with evidence that they have proliferated in situ. In the kidney, several studies provide evidence for the presence of "reprogrammed" cells, but in most, it remains possible that cells arrive and redifferentiate but are no longer stem cells. Nevertheless, that appropriately differentiated cells are delivered deep within organs simply by injection of bone marrow cells should make us think differently about the way organs regenerate and repair. Migratory pathways for multipotential cells could be exploited to effect repairs using an individual's own stem cells, perhaps after gene therapy. This concept makes it clear that a transplanted organ would in time become affected by the genetic susceptibilities of the recipient, because of phenotypes that are expressed when trafficking cells incorporate and differentiate.
Collapse
Affiliation(s)
- Richard Poulsom
- Histopathology Unit, Cancer Research UK, London Research Institute, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
10981
|
Tamama K, Sumino H, Ichikawa S, Kanda T, Kotajima N, Fukumura Y, Kurabayashi M, Murakami M. Hormone replacement therapy causes a decrease in hepatocyte growth factor in hypertensive women. J Hypertens 2003; 21:1151-6. [PMID: 12777952 DOI: 10.1097/00004872-200306000-00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Serum hepatocyte growth factor (HGF) is associated with blood pressure. We investigated whether the serum HGF level differs between hypertensive and normotensive postmenopausal women (PMW) and whether hormone replacement therapy (HRT) alters the serum HGF level and blood pressure in hypertensive and normotensive PMW. DESIGN Prospective observational study. METHODS A total of 33 PMW with mild to moderate essential hypertension controlled by antihypertensive treatment (mean age, 57 +/- 6 years) and 23 normotensive PMW (mean age, 57 +/- 7 years) received continuous HRT (0.625 mg of conjugated equine estrogen combined with 2.5 mg of medroxyprogesterone acetate) once a day orally for 12 months, and we measured serum HGF levels and blood pressure before and 12 months after the start of HRT. RESULTS The baseline serum HGF level was significantly higher in hypertensive PMW than in normotensive PMW. HRT significantly decreased the serum HGF level in hypertensive subjects, from 2.85 +/- 0.64 pmol/l to 2.49 +/- 0.65 pmol/l (P < 0.001), but not in normotensive subjects. HRT did not change blood pressure in either group. CONCLUSIONS Serum HGF level before the start of HRT was higher in the hypertensive PMW than in the normotensive PMW. Furthermore, HRT decreases serum HGF without decreasing blood pressure in hypertensive PMW. The HRT-induced decrease in serum HGF was greater in hypertensive PMW than in normotensive PMW, and the decrease was independent of blood pressure changes.
Collapse
Affiliation(s)
- Kenichi Tamama
- The Department of Laboratory Medicine, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10982
|
Bessho K, Mizuno S, Matsumoto K, Nakamura T. Counteractive effects of HGF on PDGF-induced mesangial cell proliferation in a rat model of glomerulonephritis. Am J Physiol Renal Physiol 2003; 284:F1171-80. [PMID: 12595276 DOI: 10.1152/ajprenal.00326.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation and proliferation of glomerular mesangial cells play an important role in the development of mesangioproliferative glomerulonephritis. We investigated the role of hepatocyte growth factor (HGF) in regulating activated mesangial cell proliferation. In glomeruli of normal rats, mesangial cells barely expressed the c-Met/HGF receptor. However, when mesangioproliferative glomerulonephritis was induced in rats by the administration of an anti-Thy 1.1 antibody, glomerular HGF expression transiently decreased along with mesangiolysis, and activation of mesangial cells was associated with upregulation of the c-Met receptor. Activated mesangial cells in culture also expressed the c-Met/HGF receptor. Although addition of HGF to cultured mesangial cells did not increase DNA synthesis, HGF did diminish PDGF-induced DNA synthesis. PDGF induced activation of ERK, which continued for at least 48 h. When PDGF and HGF were simultaneously added, HGF inhibited the prolonged activation of ERK, which suggests that early inactivation of PDGF-induced ERK may be involved in the inhibitory effect of HGF on mesangial cell proliferation. Furthermore, administration of HGF to rats with anti-Thy 1.1 nephritis resulted in a selective suppression of activated mesangial cell proliferation, and this suppressive effect was associated with attenuation of phosphorylated glomerular ERK. These results indicate that HGF counteracts PDGF-induced mesangial cell proliferation and functions as a negative regulator of activated mesangial cell proliferation.
Collapse
Affiliation(s)
- Kazuhiko Bessho
- Division of Molecular Regenerative Medicine, Course of Advanced Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | |
Collapse
|
10983
|
Zhang G, Kim H, Cai X, López-Guisa JM, Alpers CE, Liu Y, Carmeliet P, Eddy AA. Urokinase receptor deficiency accelerates renal fibrosis in obstructive nephropathy. J Am Soc Nephrol 2003; 14:1254-71. [PMID: 12707394 DOI: 10.1097/01.asn.0000064292.37793.fb] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The urokinase cellular receptor (uPAR) recognizes the N-terminal growth factor domain of urokinase-type plasminogen activator (uPA) and is expressed by several cell types. The present study was designed to test the hypothesis that uPAR regulates the renal fibrogenic response to chronic injury. Groups of uPAR wild-type (+/+) and deficient (-/-) mice were investigated between 3 and 14 d after unilateral ureteral obstruction (UUO) or sham surgery. Not detected in normal kidneys, uPAR mRNA was expressed in response to UUO in the +/+ mice. By in situ hybridization, uPAR mRNA transcripts were detected in renal tubules and interstitial cells of the obstructed uPAR+/+ kidneys. The severity of renal fibrosis, based on the measurement of total collagen (13.5 +/- 1.5 versus 9.8 +/- 1.0 microg/mg kidney on day 14; -/- versus +/+) and interstitial area stained by Masson trichrome (22 +/- 4% versus 14 +/- 3% on day 14; -/- versus +/+) was significantly greater in the uPAR-/- mice. In the absence of uPAR, renal uPA activity was significantly decreased compared with the wild-type animals after UUO (62 +/- 20 versus 135 +/- 13 units at day 3 UUO; 74 +/- 17 versus 141 +/- 16 at day 7 UUO; 98 +/- 20 versus 165 +/- 10 at day 14 UUO; -/- versus +/+). In contrast, renal expression of several genes that regulate plasmin activity were similar in both genotypes, including uPA, tPA, PAI-1, protease nexin-1, and alpha2-antiplasmin. Worse renal fibrosis in the uPAR-/- mice appears to be TGF-beta-independent, as TGF-beta activity was actually reduced by 65% in the -/- mice despite similar renal TGF-beta1 mRNA levels. Significantly lower levels of the major 2.3-kb transcript and the 69-kd active protein of hepatocyte growth factor (HGF), a known anti-fibrotic growth factor, in the uPAR-/- mice suggests a potential link between HGF and the renoprotective effects of uPAR. These data suggest that renal uPAR attenuates the fibrogenic response to renal injury, an outcome that is mediated in part by urokinase-dependent but plasminogen-independent functions.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Division of Nephrology, University of Washington, Children's Hospital and Regional Medical Center, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | |
Collapse
|
10984
|
de Souza Durão M, Razvickas CV, Gonçalves EAP, Okano IR, Camargo SMR, Monte JCM, dos Santos OFP. The role of growth factors on renal tubular cells submitted to hypoxia and deprived of glucose. Ren Fail 2003; 25:341-53. [PMID: 12803499 DOI: 10.1081/jdi-120021149] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND In acute renal failure (ARF) renal tubular cell death and detachment can be induced by necrotic and apoptotic mechanisms. Several studies have demonstrated some benefits of the use of growth factors in experimental models of ARF. METHODS MDCK cells were cultured in a glucose-free medium for 24h and were submitted to hypoxia (PO2 around 35 mmHg) for additional 24 h. To evaluate the possible protective role of growth factors, EGF, IGF-I or HGF were added to the medium (20 ng mL). LDH release, viability (acridine orange and ethidium bromide dyes) and quantification of apoptotic cells (Hoechst 33342 dye fluorescence) were determined. RESULTS In the injury group, an increase on LDH release (60% vs. 3%) and on number of apoptotic cells (22% vs. 0.2%) which was associated with a reduced cell viability (61% vs. 94%) when compared with controls. Only HGF, not EGF or IGF-I, was able to protect cells from injury. HGF caused a significant reduction on LDH release (30%) and on number of apoptotic cells (5%), with an increase on viability cellular (79%). CONCLUSIONS HGF decreases cell death on MDCK cells after hypoxic-induced injury, probably acting in both necrotic and apoptotic mechanisms.
Collapse
Affiliation(s)
- Marcelino de Souza Durão
- Nephrology Division, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
10985
|
Zhang G, Kim H, Cai X, Lopez-Guisa JM, Carmeliet P, Eddy AA. Urokinase receptor modulates cellular and angiogenic responses in obstructive nephropathy. J Am Soc Nephrol 2003; 14:1234-53. [PMID: 12707393 DOI: 10.1097/01.asn.0000064701.70231.3f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Interstitial cells have been implicated in the pathogenesis of renal fibrosis. Given that the urokinase receptor (uPAR) is known to play a role in cell adhesion, migration, and angiogenesis, the present study was designed to evaluate the role of uPAR in the regulation of the phenotypic composition of interstitial cells (macrophages, myofibroblasts, capillaries) in response to chronic renal injury. Groups of uPAR wild-type (+/+) and knockout (-/-) mice were investigated between 3 and 14 d after unilateral ureteral obstruction (UUO) or sham surgery (n = 8 mice per group). The density of F4/80+ interstitial macrophages (Mphi) was significantly lower in the -/- mice (3.3 +/- 0.4 versus 6.9 +/- 1.7% area at day 3 UUO; 10.8 +/- 1.6 versus 15.7 +/- 1.0% at day 14 UUO; -/- versus +/+). In contrast, in the -/- mice there were significantly more alpha smooth muscle actin (alphaSMA)-positive cells (12.9 +/- 3.2 versus 7.8 +/- 1.5% area at day 3 UUO; 21.0 +/- 4.7 versus 9.7 +/- 1.9% at day 14 UUO) and CD34-positive endothelial cells (8.4 +/- 1.9 versus 4.0 +/- 1.1% area at day 14 UUO). These differences were associated with significantly more interstitial fibrosis in the -/- mice based on Sirius red staining (4.6 +/- 0.9 versus 2.3 +/- 0.9% area at 14 d UUO). Absence of the uPAR scavenger receptor was associated with significantly greater accumulation of plasminogen activator inhibitor-1 protein (PAI-1) (20.5 +/- 3.5 versus 9.1 +/- 2.9% area, day 14 UUO) and vitronectin protein (2.4 +/- 1.1 versus 0.9 +/- 0.4% area, day 14 UUO). By immunostaining alphaSMA+ cells, CD34+ cells, vitronectin and PAI-1 co-localized to the same tubulointerstitial area. The number of apoptotic cells increased in response to UUO but was significantly higher in the -/- mice (2.0 +/- 0.2 versus 1.2 +/- 0.2 per 100 tubulointerstitial cells, day 14 UUO) while the number of proliferating cells was significantly lower in the uPAR-/- mice. These data suggest that uPAR deficiency suppresses renal Mphi recruitment, but the absence of this scavenger receptor actually accentuates the fibrogenic response, likely due in part to the delayed clearance of angiogenic/profibrotic molecules such as PAI-1 and decreased receptor-associated uPA activity.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Children's Hospital and Regional Medical Center, Division of Nephrology, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | | | | | | | | | | |
Collapse
|
10986
|
Zhu H, Zhao H, Collins CD, Eckenrode SE, Run Q, McIndoe RA, Crawford JM, Nelson DR, She JX, Liu C. Gene expression associated with interferon alfa antiviral activity in an HCV replicon cell line. Hepatology 2003; 37:1180-8. [PMID: 12717400 DOI: 10.1053/jhep.2003.50184] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interferon alfa (IFN-alpha)-based treatment is the only therapeutic option for chronic hepatitis C viral infection. However, the molecular mechanisms of IFN-alpha antiviral activity are not completely understood. The recent development of an HCV replicon cell culture system provides a feasible experimental model to investigate the molecular details of IFN-induced direct antiviral activity in hepatocytes. In this report, we show that IFN-alpha can effectively inhibit HCV subgenomic RNA replication and suppress viral nonstructural protein synthesis. Using cDNA microarray analysis, we also show that the replicon cells have different gene expression profile compared with the parental hepatoma cells (Huh7). IFN-alpha can induce a number of responsive genes in the replicon cells. One of the genes, 6-16 (G1P3), can enhance IFN-alpha antiviral efficacy. In addition, we demonstrate that IFN-alpha can significantly activate STAT3 in hepatoma cells, suggesting that this pathway plays a role in IFN-alpha signaling. In conclusion, our results indicate that IFN-alpha antiviral activity is associated with activation of STAT3-signaling pathway and intracellular gene activation. Our results also suggest that IFN-alpha-induced target genes may play an important role in IFN-alpha anti-HCV activity.
Collapse
Affiliation(s)
- Haizhen Zhu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville 32610, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10987
|
Abstract
PURPOSE OF REVIEW Renal fibrosis characterizes a common endpoint of diverse renal diseases which leads to functional impairment ultimately resulting in terminal renal failure. RECENT FINDINGS Recent advances in this field led to the discovery of several novel mediators as well as novel aspects of known mediators. Studies on the origin and role of specific renal cell types involved in renal fibrosis identified bone marrow derived mesangial progenitors and offered substantial evidence for the concept of epithelial to mesenchymal transition. Much progress has also been made in better understanding of the interactions between different mediators and between mediators and renal target cells. Compounds designed on the basis of this current knowledge have proven to be potent inhibitors of the development of renal fibrosis or might even induce resolution of renal fibrosis. SUMMARY The number and diversity of recent studies in this field offer hope for new treatment regimes in our clinical efforts towards prevention and regression of progressive fibrosing renal diseases.
Collapse
Affiliation(s)
- Frank Eitner
- Division of Nephrology and Immunology, Aachen University, Aachen, Germany.
| | | |
Collapse
|
10988
|
Chilosi M, Poletti V, Zamò A, Lestani M, Montagna L, Piccoli P, Pedron S, Bertaso M, Scarpa A, Murer B, Cancellieri A, Maestro R, Semenzato G, Doglioni C. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1495-502. [PMID: 12707032 PMCID: PMC1851206 DOI: 10.1016/s0002-9440(10)64282-4] [Citation(s) in RCA: 543] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate the molecular events that may underpin dysfunctional repair processes that characterize idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP), we analyzed the expression patterns of beta-catenin on 20 IPF/UIP lung samples, together with two downstream target genes of Wnt signaling, cyclin-D1, and matrilysin. In 18 of 20 cases of IPF/UIP investigated on serial sections, nuclear beta-catenin immunoreactivity and abnormal levels of cyclin-D1 and matrilysin were demonstrated in proliferative bronchiolar lesions (basal-cell hyperplasia, squamous metaplasia, bronchiolization, honeycombing). The nature of these lesions was precisely defined using specific markers (DeltaN-p63, surfactant-protein-A, cytokeratin-5). Interestingly, nuclear beta-catenin accumulation was also demonstrated in fibroblast foci in most (16 of 20) IPF/UIP samples, often associated with bronchiolar lesions. Similar features were not observed in normal lung and other fibrosing pulmonary diseases (diffuse alveolar damage, organizing pneumonia, nonspecific interstitial pneumonia, desquamative interstitial pneumonia). Sequence analysis performed on DNA extracted from three samples of IPF/UIP did not reveal abnormalities affecting the beta-catenin gene. On the basis of these findings new models for IPF/UIP pathogenesis can be hypothesized, centered on the aberrant activation of Wnt/beta-catenin signaling, with eventual triggering of divergent epithelial regeneration at bronchiolo-alveolar junctions and epithelial-mesenchymal-transitions, leading to severe and irreversible remodeling of the pulmonary tissue.
Collapse
Affiliation(s)
- Marco Chilosi
- Department of Pathology, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10989
|
Masszi A, Di Ciano C, Sirokmány G, Arthur WT, Rotstein OD, Wang J, McCulloch CAG, Rosivall L, Mucsi I, Kapus A. Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol 2003; 284:F911-24. [PMID: 12505862 DOI: 10.1152/ajprenal.00183.2002] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
New research suggests that, during tubulointerstitial fibrosis, alpha-smooth muscle actin (SMA)-expressing mesenchymal cells might derive from the tubular epithelium via epithelial-mesenchymal transition (EMT). Although transforming growth factor-beta(1) (TGF-beta(1)) plays a key role in EMT, the underlying cellular mechanisms are not well understood. Here we characterized TGF-beta(1)-induced EMT in LLC-PK(1) cells and examined the role of the small GTPase Rho and its effector, Rho kinase, (ROK) in the ensuing cytoskeletal remodeling and SMA expression. TGF-beta(1) treatment caused delocalization and downregulation of cell contact proteins (ZO-1, E-cadherin, beta-catenin), cytoskeleton reorganization (stress fiber assembly, myosin light chain phosphorylation), and robust SMA synthesis. TGF-beta(1) induced a biphasic Rho activation. Stress fiber assembly was prevented by the Rho-inhibiting C3 transferase and by dominant negative (DN) ROK. The SMA promoter was activated strongly by constitutively active Rho but not ROK. Accordingly, TGF-beta(1)-induced SMA promoter activation was potently abrogated by two Rho-inhibiting constructs, C3 transferase and p190RhoGAP, but not by DN-ROK. Truncation analysis showed that the first CC(A/T)richGG (CArG B) serum response factor-binding cis element is essential for the Rho responsiveness of the SMA promoter. Thus Rho plays a dual role in TGF-beta(1)-induced EMT of renal epithelial cells. It is indispensable both for cytoskeleton remodeling and for the activation of the SMA promoter. The cytoskeletal effects are mediated via the Rho/ROK pathway, whereas the transcriptional effects are partially ROK independent.
Collapse
Affiliation(s)
- Andras Masszi
- Department of Surgery, The Toronto General Hospital, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10990
|
Xue F, Takahara T, Yata Y, Kuwabara Y, Shinno E, Nonome K, Minemura M, Takahara S, Li X, Yamato E, Watanabe A. Hepatocyte growth factor gene therapy accelerates regeneration in cirrhotic mouse livers after hepatectomy. Gut 2003; 52:694-700. [PMID: 12692055 PMCID: PMC1773642 DOI: 10.1136/gut.52.5.694] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Impaired regeneration and dysfunction of the cirrhotic liver following partial hepatectomy (PHx) are the most serious risk factors for postoperative liver failure. AIMS Using naked hepatocyte growth factor (HGF) plasmid by the electroporation (EP) in vivo method, we investigated HGF for its role and mechanism of proliferation and restoration of liver mass in cirrhotic mice following PHx. ANIMALS Eight week old female mice were used. METHODS HGF plasmid 50 micro g was injected intramuscularly and transferred by EP in vivo once a week for three weeks. After establishment of carbon tetrachloride induced cirrhosis, mice underwent PHx. The HGF treated group was given naked HGF plasmid four days before PHx, and additional HGF was given once a week until they were killed, while a control group was given only empty plasmid. Mice were killed 2, 4, 10, and 14 days after PHx. Morphological and functional restoration of the liver were examined, as well as activation of mitogen activated protein kinase (MAPK) and mRNA levels of HGF activator (HGFA). RESULTS The HGF treated group demonstrated a continuous threefold increase in HGF levels in plasma. Therapy with HGF in cirrhotic PHx resulted in effective liver regeneration via restoration of HGFA and activation of MAPK p44/p42, accelerated normalisation of liver function, and increased collagen degradation. CONCLUSIONS HGF gene therapy by in vivo EP may be useful for hepatic resection in cirrhotic livers by stimulating liver proliferative and collagenolytic capacities, as well as accelerating functional recovery.
Collapse
Affiliation(s)
- F Xue
- Third Department of Internal Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10991
|
Dai C, Yang J, Liu Y. Transforming growth factor-beta1 potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. J Biol Chem 2003; 278:12537-45. [PMID: 12560323 DOI: 10.1074/jbc.m300777200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tubular atrophy resulting from epithelial cell loss is one of the characteristic features in the development of chronic renal interstitial fibrosis. Although the trigger(s) and mechanism for tubular cell loss remain undefined, the hyperactive transforming growth factor (TGF)-beta1 signaling has long been suspected to play an active role. Here we demonstrate that although TGF-beta1 did not induce cell death per se, it dramatically potentiated renal tubular cell apoptosis initiated by other death cues in vitro. Pre-incubation of human kidney epithelial cells (HKC) with TGF-beta1 markedly promoted staurosporine-induced cell death in a time- and dose-dependent manner. TGF-beta1 dramatically accelerated the cleavage and activation of pro-caspase-9, but not pro-caspase-8, in HKC cells. This event was followed by an accelerated activation of pro-caspase-3. To elucidate the mechanism underlying TGF-beta1 promotion of tubular cell death, we investigated the signaling pathways activated by TGF-beta1. Both Smad-2 and p38 mitogen-activated protein (MAP) kinase were rapidly activated by TGF-beta1, as demonstrated by the early induction of phosphorylated Smad-2 and p38 MAP kinase, respectively. We found that overexpression of inhibitory Smad-7 completely abolished Smad-2 phosphorylation and activation induced by TGF-beta1 but did not inhibit TGF-beta1-induced apoptosis. However, suppression of p38 MAP kinase with chemical inhibitor SC68376 not only abolished p38 MAP kinase phosphorylation but also obliterated apoptosis induced by TGF-beta1. These results suggest that hyperactive TGF-beta1 signaling potentiates renal tubular epithelial cell apoptosis by a Smad-independent, p38 MAP kinase-dependent mechanism.
Collapse
Affiliation(s)
- Chunsun Dai
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
10992
|
|
10993
|
Chai Q, Krag S, Chai S, Ledet T, Wogensen L. Localisation and phenotypical characterisation of collagen-producing cells in TGF-beta 1-induced renal interstitial fibrosis. Histochem Cell Biol 2003; 119:267-80. [PMID: 12684813 DOI: 10.1007/s00418-003-0513-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2003] [Indexed: 11/28/2022]
Abstract
Transforming growth factor beta 1 (TGF-beta 1) contributes to the accumulation of extracellular matrix (ECM) in the tubulointerstitial space in chronic renal diseases. Identification of target cells and the contribution of epithelial-mesenchymal transformation (EMT) in TGF-beta 1-induced fibrosis in vivo are currently under investigation. We have developed a transgenic model of slowly developing TGF-beta 1-driven tubulointerstitial fibrosis (TIF). By using this model our aim was to localise the ECM-producing cells, to investigate the temporal and spatial distribution of the cellular markers alpha-smooth muscle cell actin (alpha SM-actin), Fsp1 and Hsp47 and to explore the possible involvement of EMT in TGF-beta1-induced TIF in vivo. We utilised a combination of in situ hybridisation, immunohistochemistry and western blotting techniques and found that alpha SM-actin-positive interstitial cells are the main source of collagen types I and III and fibronectin, whereas collagen type IV(alpha 1/alpha 2) originates mainly from the tubular epithelial cells. Furthermore, macrophages are not important combatants during the early course of TGF-beta 1-induced TIF. Finally, EMT is not necessary for the initiation of TGF-beta 1-induced TIF. We conclude, that intervention directed against the recruitment of activated interstitial cells may avoid the development of end-stage renal disease.
Collapse
Affiliation(s)
- Qing Chai
- The Research Laboratory for Biochemical Pathology, The Institute for Experimental Clinical Research, Aarhus Kommunehospital, 44-Noerrebrogade, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
10994
|
Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 2003; 284:F608-27. [PMID: 12620919 DOI: 10.1152/ajprenal.00284.2002] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In humans and experimental models of renal ischemia, tubular cells in various nephron segments undergo necrotic and/or apoptotic cell death. Various factors, including nucleotide depletion, electrolyte imbalance, reactive oxygen species, endonucleases, disruption of mitochondrial integrity, and activation of various components of the apoptotic machinery, have been implicated in renal cell vulnerability. Several approaches to limit the injury and augment the regeneration process, including nucleotide repletion, administration of growth factors, reactive oxygen species scavengers, and inhibition of inducers and executioners of cell death, proved to be effective in animal models. Nevertheless, an effective approach to limit or prevent ischemic renal injury in humans remains elusive, primarily because of an incomplete understanding of the mechanisms of cellular injury. Elucidation of cell death pathways in animal models in the setting of renal injury and extrapolation of the findings to humans will aid in the design of potential therapeutic strategies. This review evaluates our understanding of the molecular signaling events in apoptotic and necrotic cell death and the contribution of various molecular components of these pathways to renal injury.
Collapse
Affiliation(s)
- Babu J Padanilam
- Department of Physiology and Biophysics, University of Nebraska Medical Center, Omaha, Nebraska 68198-4575, USA.
| |
Collapse
|
10995
|
Abstract
The most fundamental type of organization of cells in metazoa is that of epithelia, which comprise sheets of adherent cells that divide the organism into topologically and physiologically distinct spaces. Some epithelial cells cover the outside of the organism; these often form multiple layers, such as in skin. Other epithelial cells form monolayers that line internal organs, and yet others form tubes that infiltrate the whole organism, carrying liquids and gases containing nutrients, waste and other materials. These tubes can form elaborate networks in the lung, kidney, reproductive passages and vasculature tree, as well as the many glands branching from the digestive system such as the liver, pancreas and salivary glands. In vitro systems can be used to study tube formation and might help to define common principles underlying the formation of diverse types of tubular organ.
Collapse
Affiliation(s)
- Mirjam M P Zegers
- Department of Anatomy, Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0452, USA
| | | | | | | | | |
Collapse
|
10996
|
Chen S, Agarwal A, Glushakova OY, Jorgensen MS, Salgar SK, Poirier A, Flotte TR, Croker BP, Madsen KM, Atkinson MA, Hauswirth WW, Berns KI, Tisher CC. Gene delivery in renal tubular epithelial cells using recombinant adeno-associated viral vectors. J Am Soc Nephrol 2003; 14:947-58. [PMID: 12660329 DOI: 10.1097/01.asn.0000057858.45649.f7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Gene therapy has the potential to provide a therapeutic strategy for numerous renal diseases such as diabetic nephropathy, chronic rejection, Alport syndrome, polycystic kidney disease, and inherited tubular disorders. In previous studies using cationic liposomes or adenoviral or retroviral vectors to deliver genes into the kidney, transgene expression has been transient and often associated with adverse host immune responses, particularly with the use of adenoviral vectors. The unique properties of recombinant adeno-associated viral (rAAV) vectors permit long-term stable transgene expression with a relatively low host immune response. The purpose of the present study was to evaluate gene expression in the rat kidney after intrarenal arterial infusion of a rAAV (serotype 2) vector encoding green fluorescence protein (GFP) induced by a cytomegalovirus-chicken beta-actin hybrid promoter. The left kidney of experimental animals was treated with either saline or transduced with rAAV2-GFP (0.125 ml/100 g body wt, 1 x 10(10)/ml infectious units) through the renal artery. A time-dependent expression of GFP was observed in all kidneys injected with rAAV2-GFP, with maximal expression observed at 6 wk posttransduction. The expression of GFP was restricted to cells in the S(3) segment of the proximal tubule and intercalated cells in the collecting duct, the latter identified by co-localization with H(+)-ATPase. No transduction was observed in the glomeruli or the intrarenal vasculature. These studies demonstrate successful transgene expression in tubular epithelial cells, specifically in the S(3) segment of the proximal tubule and intercalated cells, after intrarenal administration of a rAAV vector and provide the impetus for further studies to exploit its use as a tool for gene therapy in the kidney.
Collapse
Affiliation(s)
- Sifeng Chen
- Department of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10997
|
Efficient expression of human factor IX cDNA in liver mediated by hydrodynamics-based plasmid administration. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/bf03187054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10998
|
Chromek M, Tullus K, Hertting O, Jaremko G, Khalil A, Li YH, Brauner A. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinases-1 in acute pyelonephritis and renal scarring. Pediatr Res 2003; 53:698-705. [PMID: 12612199 DOI: 10.1203/01.pdr.0000057575.86337.cb] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of the present study was to elucidate the role of matrix metalloproteinase-9 (MMP-9), and its main inhibitor tissue inhibitor of metalloproteinases-1 (TIMP-1), in acute pyelonephritis and the process of renal scarring. Urine samples from 40 children with acute pyelonephritis, 16 children at 6-wk follow-up and 15 children with nonrenal fever were analyzed using ELISA. MMP-9 and TIMP-1 levels were compared with the outcome of pyelonephritis as measured by renal static scintigraphy. A mouse model of acute ascending pyelonephritis was used to localize the sites of production and the kinetics of MMP-9 and TIMP-1 using immunohistochemistry and ELISA. Human renal epithelial A498 cells, primary mesangial cells and monocytic THP-1 cells were stimulated by Escherichia coli. MMP-9 and TIMP-1 mRNA was analyzed by reverse transcription-PCR (RT-PCR) and protein production by ELISA. We demonstrate a significant increase of MMP-9 and TIMP-1 in the urine of children with acute pyelonephritis. Both proteins were produced mainly by leukocytes, and TIMP-1 also by resident kidney cells. Cells reacted differently after stimulation by bacteria. In mesangial cells and monocytes a decreased constitutive TIMP-1 production was found, which was in contrast to epithelial cells. Out of 40 children with pyelonephritis, 23 had higher urinary TIMP-1 than MMP-9 levels. These children had significantly more severe changes in both acute and follow-up scintigraphy scans indicating higher degree of acute tissue damage and renal scarring. Thus, our findings suggest an association between TIMP-1 and the process of renal scarring.
Collapse
Affiliation(s)
- Milan Chromek
- Department of Clinical Microbiology, Microbiology and Tumorbiology Center, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
10999
|
Waltner-Law M, Duong DT, Daniels MC, Herzog B, Wang XL, Prasad R, Granner DK. Elements of the glucocorticoid and retinoic acid response units are involved in cAMP-mediated expression of the PEPCK gene. J Biol Chem 2003; 278:10427-35. [PMID: 12531892 DOI: 10.1074/jbc.m211846200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although many genes are regulated by the concerted action of several hormones, hormonal signaling to gene promoters has generally been studied one hormone at a time. The phosphoenolpyruvate carboxykinase (PEPCK) gene is a case in point. Transcription of this gene is induced by glucagon (acting by the second messenger, cAMP), glucocorticoids, and retinoic acid, and it is dominantly repressed by insulin. These hormonal responses require the presence of different hormone response units (HRUs), which consist of constellations of DNA elements and associated transcription factors. These include the glucocorticoid response unit (GRU), cAMP response unit (CRU), retinoic acid response unit (RARU), and the insulin response unit. HRUs are known to have functional overlap. In particular, the cAMP response element of the CRU is also a component of the GRU. The purpose of this study was to determine whether known GRU or RARU elements or transcription factors function as components of the CRU. We show here that the glucocorticoid accessory factor binding site 1 and glucocorticoid accessory factor binding site 3 elements, which are components of both the GRU and RARU, are an important part of the CRU. Furthermore, we find that the transcription factor, chicken ovalbumin upstream promoter-transcription factor, and two coactivators, cAMP response element-binding protein-binding protein and steroid receptor coactivator-1, participate in both the cAMP and glucocorticoid responses. This provides a further illustration of how the PEPCK gene promoter integrates different hormone responses through overlapping HRUs that utilize some of the same transcription factors and coactivators.
Collapse
Affiliation(s)
- Mary Waltner-Law
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | | | | | |
Collapse
|
11000
|
Ackland ML, Newgreen DF, Fridman M, Waltham MC, Arvanitis A, Minichiello J, Price JT, Thompson EW. Epidermal growth factor-induced epithelio-mesenchymal transition in human breast carcinoma cells. J Transl Med 2003; 83:435-48. [PMID: 12649344 DOI: 10.1097/01.lab.0000059927.97515.fd] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PMC42-LA cells display an epithelial phenotype: the cells congregate into pavement epithelial sheets in which E-cadherin and beta-catenin are localized at cell-cell borders. They abundantly express cytokeratins, although 5% to 10% of the cells also express the mesenchymal marker vimentin. Stimulation of PMC42-LA cells with epidermal growth factor (EGF) leads to epithelio-mesenchymal transition-like changes including up-regulation of vimentin and down-regulation of E-cadherin. Vimentin expression is seen in virtually all cells, and this increase is abrogated by treatment of cells with an EGF receptor antagonist. The expression of the mesenchyme-associated extracellular matrix molecules fibronectin and chondroitin sulfate proteoglycan also increase in the presence of EGF. PMC42-LA cells adhere rapidly to collagen I, collagen IV, and laminin-1 substrates and markedly more slowly to fibronectin and vitronectin. EGF increases the speed of cell adhesion to most of these extracellular matrix molecules without altering the order of adhesive preference. EGF also caused a time-dependent increase in the motility of PMC42-LA cells, commensurate with the degree of vimentin staining. The increase in motility was at least partly chemokinetic, because it was evident both with and without chemoattractive stimuli. Although E-cadherin staining at cell-cell junctions disappeared in response to EGF, beta-catenin persisted at the cell periphery. Further analysis revealed that N-cadherin was present at the cell-cell junctions of untreated cells and that expression was increased after EGF treatment. N- and E-cadherin are not usually coexpressed in human carcinoma cell lines but can be coexpressed in embryonic tissues, and this may signify an epithelial cell population prone to epithelio-mesenchymal-like responses.
Collapse
|