1101
|
Pavinato L, Nematian-Ardestani E, Zonta A, De Rubeis S, Buxbaum J, Mancini C, Bruselles A, Tartaglia M, Pessia M, Tucker SJ, D’Adamo MC, Brusco A. KCNK18 Biallelic Variants Associated with Intellectual Disability and Neurodevelopmental Disorders Alter TRESK Channel Activity. Int J Mol Sci 2021; 22:ijms22116064. [PMID: 34199759 PMCID: PMC8200030 DOI: 10.3390/ijms22116064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
The TWIK-related spinal cord potassium channel (TRESK) is encoded by KCNK18, and variants in this gene have previously been associated with susceptibility to familial migraine with aura (MIM #613656). A single amino acid substitution in the same protein, p.Trp101Arg, has also been associated with intellectual disability (ID), opening the possibility that variants in this gene might be involved in different disorders. Here, we report the identification of KCNK18 biallelic missense variants (p.Tyr163Asp and p.Ser252Leu) in a family characterized by three siblings affected by mild-to-moderate ID, autism spectrum disorder (ASD) and other neurodevelopment-related features. Functional characterization of the variants alone or in combination showed impaired channel activity. Interestingly, Ser252 is an important regulatory site of TRESK, suggesting that alteration of this residue could lead to additive downstream effects. The functional relevance of these mutations and the observed co-segregation in all the affected members of the family expand the clinical variability associated with altered TRESK function and provide further insight into the relationship between altered function of this ion channel and human disease.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
- Center for Molecular Medicine Cologne, Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Ehsan Nematian-Ardestani
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta; (E.N.-A.); (M.P.)
| | - Andrea Zonta
- Unit of Medical Genetics, “Città della Salute e della Scienza” University Hospital, 10126 Turin, Italy;
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.D.R.); (J.B.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.D.R.); (J.B.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia Mancini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (C.M.); (M.T.)
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (C.M.); (M.T.)
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta; (E.N.-A.); (M.P.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 4BH, UK;
| | - Maria Cristina D’Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta; (E.N.-A.); (M.P.)
- Correspondence: (M.C.D.); (A.B.)
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
- Unit of Medical Genetics, “Città della Salute e della Scienza” University Hospital, 10126 Turin, Italy;
- Correspondence: (M.C.D.); (A.B.)
| |
Collapse
|
1102
|
Sarn N, Thacker S, Lee H, Eng C. Germline nuclear-predominant Pten murine model exhibits impaired social and perseverative behavior, microglial activation, and increased oxytocinergic activity. Mol Autism 2021; 12:41. [PMID: 34088332 PMCID: PMC8176582 DOI: 10.1186/s13229-021-00448-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has a strong genetic etiology. Germline mutation in the tumor suppressor gene PTEN is one of the best described monogenic risk cases for ASD. Animal modeling of cell-specific Pten loss or mutation has provided insight into how disruptions to the function of PTEN affect neurodevelopment, neurobiology, and social behavior. As such, there is a growing need to understand more about how various aspects of PTEN activity and cell-compartment-specific functions, contribute to certain neurological or behavior phenotypes. METHODS To understand more about the relationship between Pten localization and downstream effects on neurophenotypes, we generated the nuclear-predominant PtenY68H/+ mouse, which is identical to the genotype of some PTEN-ASD individuals. We subjected the PtenY68H/+ mouse to morphological and behavioral phenotyping, including the three-chamber sociability, open field, rotarod, and marble burying tests. We subsequently performed in vivo and in vitro cellular phenotyping and concluded the work with a transcriptomic survey of the PtenY68H/+ cortex, which profiled gene expression. RESULTS We observe a significant increase in P-Akt downstream of canonical Pten signaling, macrocephaly, decreased sociability, decreased preference for novel social stimuli, increased repetitive behavior, and increased thigmotaxis in PtenY68H/+ six-week-old (P40) mice. In addition, we found significant microglial activation with increased expression of complement and neuroinflammatory proteins in vivo and in vitro accompanied by enhanced phagocytosis. These observations were subsequently validated with RNA-seq and qRT-PCR, which revealed overexpression of many genes involved in neuroinflammation and neuronal function, including oxytocin. Oxytocin transcript was fivefold overexpressed (P = 0.0018), and oxytocin protein was strongly overexpressed in the PtenY68H/+ hypothalamus. CONCLUSIONS The nuclear-predominant PtenY68H/+ model has clarified that Pten dysfunction links to microglial pathology and this associates with increased Akt signaling. We also demonstrate that Pten dysfunction associates with changes in the oxytocin system, an important connection between a prominent ASD risk gene and a potent neuroendocrine regulator of social behavior. These cellular and molecular pathologies may related to the observed changes in social behavior. Ultimately, the findings from this work may reveal important biomarkers and/or novel therapeutic modalities that could be explored in individuals with germline mutations in PTEN with ASD.
Collapse
Affiliation(s)
- Nick Sarn
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195 USA
| | - Hyunpil Lee
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195 USA
- Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| |
Collapse
|
1103
|
Li N, Zhou P, Tang H, He L, Fang X, Zhao J, Wang X, Qi Y, Sun C, Lin Y, Qin F, Yang M, Zhang Z, Liao C, Zheng S, Peng X, Xue T, Zhu Q, Li H, Li Y, Liu L, Huang J, Liu L, Peng C, Kaindl AM, Gecz J, Han D, Liu D, Xu K, Hu H. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain 2021; 145:119-141. [PMID: 34077496 PMCID: PMC8967106 DOI: 10.1093/brain/awab209] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Cerebral palsy is the most prevalent physical disability in children; however, its inherent molecular mechanisms remain unclear. In the present study, we performed in-depth clinical and molecular analysis on 120 idiopathic cerebral palsy families, and identified underlying detrimental genetic variants in 45% of these patients. In addition to germline variants, we found disease-related postzygotic mutations in ∼6.7% of cerebral palsy patients. We found that patients with more severe motor impairments or a comorbidity of intellectual disability had a significantly higher chance of harbouring disease-related variants. By a compilation of 114 known cerebral-palsy-related genes, we identified characteristic features in terms of inheritance and function, from which we proposed a dichotomous classification system according to the expression patterns of these genes and associated cognitive impairments. In two patients with both cerebral palsy and intellectual disability, we revealed that the defective TYW1, a tRNA hypermodification enzyme, caused primary microcephaly and problems in motion and cognition by hindering neuronal proliferation and migration. Furthermore, we developed an algorithm and demonstrated in mouse brains that this malfunctioning hypermodification specifically perturbed the translation of a subset of proteins involved in cell cycling. This finding provided a novel and interesting mechanism for congenital microcephaly. In another cerebral palsy patient with normal intelligence, we identified a mitochondrial enzyme GPAM, the hypomorphic form of which led to hypomyelination of the corticospinal tract in both human and mouse models. In addition, we confirmed that the aberrant Gpam in mice perturbed the lipid metabolism in astrocytes, resulting in suppressed astrocytic proliferation and a shortage of lipid contents supplied for oligodendrocytic myelination. Taken together, our findings elucidate novel aspects of the aetiology of cerebral palsy and provide insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Jinxiang Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Xin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Yifei Qi
- Division of Uterine Vascular Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Fengying Qin
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Zhan Zhang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shuxin Zheng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaofang Peng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ting Xue
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Qianying Zhu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yan Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Jingyu Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Changgeng Peng
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, 200029, Shanghai, China
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin, 13353, Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, 13353, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin, 13353, Berlin, Germany
| | - Jozef Gecz
- Adelaide Medical School, University of Adelaide, SA5005, Adelaide, Australia
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.,Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| |
Collapse
|
1104
|
Sullivan PF. Psychiatric Genetics Before "Genetics". Am J Psychiatry 2021; 178:475-476. [PMID: 34154387 DOI: 10.1176/appi.ajp.2021.21020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick F Sullivan
- University of North Carolina, Departments of Genetics and Psychiatry, Chapel Hill; Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm
| |
Collapse
|
1105
|
Fuentes J, Hervás A, Howlin P. ESCAP practice guidance for autism: a summary of evidence-based recommendations for diagnosis and treatment. Eur Child Adolesc Psychiatry 2021; 30:961-984. [PMID: 32666205 PMCID: PMC8140956 DOI: 10.1007/s00787-020-01587-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Across Europe, there is increased awareness of the frequency and importance of autism spectrum disorder (ASD), which is now recognised not only as a childhood disorder but as a heterogeneous, neurodevelopmental condition that persists throughout life. Services for individuals with autism and their families vary widely, but in most European countries, provision is limited. In 2018, European Society of Child and Adolescent Psychiatry (ESCAP) identified the need for a Practice Guidance document that would help to improve knowledge and practice, especially for individuals in underserviced areas. The present document, prepared by the ASD Working Party and endorsed by the ESCAP Board on October 3, 2019, summarises current information on autism and focuses on ways of detecting, diagnosing, and treating this condition.
Collapse
Affiliation(s)
- Joaquin Fuentes
- Child and Adolescent Psychiatrists, Policlínica Gipuzkoa Research Consultant, GAUTENA Autism Society, Paseo de Miramón 174, 20016, San Sebastián, Spain.
| | - Amaia Hervás
- Child and Adolescent Psychiatrists, University Hospital MutuaTerrassa, AGAUR Clinical and Genetic Research Group IGAIN, Barcelona, Spain
| | - Patricia Howlin
- Emeritus Professor of Clinical Child Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| |
Collapse
|
1106
|
Huguet G, Schramm C, Douard E, Tamer P, Main A, Monin P, England J, Jizi K, Renne T, Poirier M, Nowak S, Martin CO, Younis N, Knoth IS, Jean-Louis M, Saci Z, Auger M, Tihy F, Mathonnet G, Maftei C, Léveillé F, Porteous D, Davies G, Redmond P, Harris SE, Hill WD, Lemyre E, Schumann G, Bourgeron T, Pausova Z, Paus T, Karama S, Lippe S, Deary IJ, Almasy L, Labbe A, Glahn D, Greenwood CMT, Jacquemont S. Genome-wide analysis of gene dosage in 24,092 individuals estimates that 10,000 genes modulate cognitive ability. Mol Psychiatry 2021; 26:2663-2676. [PMID: 33414497 PMCID: PMC8953148 DOI: 10.1038/s41380-020-00985-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022]
Abstract
Genomic copy number variants (CNVs) are routinely identified and reported back to patients with neuropsychiatric disorders, but their quantitative effects on essential traits such as cognitive ability are poorly documented. We have recently shown that the effect size of deletions on cognitive ability can be statistically predicted using measures of intolerance to haploinsufficiency. However, the effect sizes of duplications remain unknown. It is also unknown if the effect of multigenic CNVs are driven by a few genes intolerant to haploinsufficiency or distributed across tolerant genes as well. Here, we identified all CNVs > 50 kilobases in 24,092 individuals from unselected and autism cohorts with assessments of general intelligence. Statistical models used measures of intolerance to haploinsufficiency of genes included in CNVs to predict their effect size on intelligence. Intolerant genes decrease general intelligence by 0.8 and 2.6 points of intelligence quotient when duplicated or deleted, respectively. Effect sizes showed no heterogeneity across cohorts. Validation analyses demonstrated that models could predict CNV effect sizes with 78% accuracy. Data on the inheritance of 27,766 CNVs showed that deletions and duplications with the same effect size on intelligence occur de novo at the same frequency. We estimated that around 10,000 intolerant and tolerant genes negatively affect intelligence when deleted, and less than 2% have large effect sizes. Genes encompassed in CNVs were not enriched in any GOterms but gene regulation and brain expression were GOterms overrepresented in the intolerant subgroup. Such pervasive effects on cognition may be related to emergent properties of the genome not restricted to a limited number of biological pathways.
Collapse
Affiliation(s)
- Guillaume Huguet
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada.
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada.
| | - Catherine Schramm
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Elise Douard
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Petra Tamer
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Antoine Main
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Département de Sciences de la Décision, HEC Montreal, Montreal, QC, Canada
| | - Pauline Monin
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jade England
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Khadije Jizi
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Thomas Renne
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Universite de Rouen Normandie, UFR des Sciences et Techniques, Rouen, France
| | - Myriam Poirier
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Sabrina Nowak
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Charles-Olivier Martin
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Nadine Younis
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Inga Sophia Knoth
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Martineau Jean-Louis
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Zohra Saci
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Maude Auger
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Frédérique Tihy
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Géraldine Mathonnet
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Catalina Maftei
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - France Léveillé
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - David Porteous
- Lothian Birth Cohorts Group, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Medical Genetics Section, Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Gail Davies
- Lothian Birth Cohorts Group, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Paul Redmond
- Lothian Birth Cohorts Group, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Lothian Birth Cohorts Group, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - W David Hill
- Lothian Birth Cohorts Group, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Emmanuelle Lemyre
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Gunter Schumann
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, England
| | - Thomas Bourgeron
- Department of Neurosciences, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique Genes, Synapses and Cognition Laboratory, Institut Pasteur, Paris, France
- Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Tomas Paus
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sherif Karama
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Sarah Lippe
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Psychology, Université de Montréal, Montreal, QC, Canada
| | - Ian J Deary
- Medical Genetics Section, Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aurélie Labbe
- Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - David Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Celia M T Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, Departments of Epidemiology, Biostatistics & Occupational Health and Human Genetics, McGill University, Montreal, QC, Canada
| | - Sébastien Jacquemont
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada.
- Centre de recherche et Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada.
| |
Collapse
|
1107
|
Mazin PV, Khaitovich P, Cardoso-Moreira M, Kaessmann H. Alternative splicing during mammalian organ development. Nat Genet 2021; 53:925-934. [PMID: 33941934 PMCID: PMC8187152 DOI: 10.1038/s41588-021-00851-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022]
Abstract
Alternative splicing (AS) is pervasive in mammalian genomes, yet cross-species comparisons have been largely restricted to adult tissues and the functionality of most AS events remains unclear. We assessed AS patterns across pre- and postnatal development of seven organs in six mammals and a bird. Our analyses revealed that developmentally dynamic AS events, which are especially prevalent in the brain, are substantially more conserved than nondynamic ones. Cassette exons with increasing inclusion frequencies during development show the strongest signals of conserved and regulated AS. Newly emerged cassette exons are typically incorporated late in testis development, but those retained during evolution are predominantly brain specific. Our work suggests that an intricate interplay of programs controlling gene expression levels and AS is fundamental to organ development, especially for the brain and heart. In these regulatory networks, AS affords substantial functional diversification of genes through the generation of tissue- and time-specific isoforms from broadly expressed genes.
Collapse
Affiliation(s)
- Pavel V Mazin
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Philipp Khaitovich
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Margarida Cardoso-Moreira
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Evolutionary Developmental Biology Laboratory, The Francis Crick Institute, London, UK.
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
1108
|
Coll-Tané M, Gong NN, Belfer SJ, van Renssen LV, Kurtz-Nelson EC, Szuperak M, Eidhof I, van Reijmersdal B, Terwindt I, Durkin J, Verheij MMM, Kim CN, Hudac CM, Nowakowski TJ, Bernier RA, Pillen S, Earl RK, Eichler EE, Kleefstra T, Kayser MS, Schenck A. The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects. SCIENCE ADVANCES 2021; 7:eabe2626. [PMID: 34088660 PMCID: PMC8177706 DOI: 10.1126/sciadv.abe2626] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/19/2021] [Indexed: 05/11/2023]
Abstract
Sleep disturbances in autism and neurodevelopmental disorders are common and adversely affect patient's quality of life, yet the underlying mechanisms are understudied. We found that individuals with mutations in CHD8, among the highest-confidence autism risk genes, or CHD7 suffer from disturbed sleep maintenance. These defects are recapitulated in Drosophila mutants affecting kismet, the sole CHD8/CHD7 ortholog. We show that Kismet is required in glia for early developmental and adult sleep architecture. This role localizes to subperineurial glia constituting the blood-brain barrier. We demonstrate that Kismet-related sleep disturbances are caused by high serotonin during development, paralleling a well-established but genetically unsolved autism endophenotype. Despite their developmental origin, Kismet's sleep architecture defects can be reversed in adulthood by a behavioral regime resembling human sleep restriction therapy. Our findings provide fundamental insights into glial regulation of sleep and propose a causal mechanistic link between the CHD8/CHD7/Kismet family, developmental hyperserotonemia, and autism-associated sleep disturbances.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands.
| | - Naihua N Gong
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel J Belfer
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lara V van Renssen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | | | - Milan Szuperak
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Isabel Terwindt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Jaclyn Durkin
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, Netherlands
| | - Chang N Kim
- Departments of Anatomy and Psychiatry, University of California, San Francisco, CA 94143 USA
| | - Caitlin M Hudac
- Center for Youth Development and Intervention and Department of Psychology, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tomasz J Nowakowski
- Departments of Anatomy and Psychiatry, University of California, San Francisco, CA 94143 USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98185, USA
| | - Sigrid Pillen
- Center for Sleep Medicine, Kempenhaeghe, Heeze, Netherlands
| | - Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98185, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Matthew S Kayser
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands.
| |
Collapse
|
1109
|
Kang PW, Chakouri N, Diaz J, Tomaselli GF, Yue DT, Ben-Johny M. Elementary mechanisms of calmodulin regulation of Na V1.5 producing divergent arrhythmogenic phenotypes. Proc Natl Acad Sci U S A 2021; 118:e2025085118. [PMID: 34021086 PMCID: PMC8166197 DOI: 10.1073/pnas.2025085118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In cardiomyocytes, NaV1.5 channels mediate initiation and fast propagation of action potentials. The Ca2+-binding protein calmodulin (CaM) serves as a de facto subunit of NaV1.5. Genetic studies and atomic structures suggest that this interaction is pathophysiologically critical, as human mutations within the NaV1.5 carboxy-terminus that disrupt CaM binding are linked to distinct forms of life-threatening arrhythmias, including long QT syndrome 3, a "gain-of-function" defect, and Brugada syndrome, a "loss-of-function" phenotype. Yet, how a common disruption in CaM binding engenders divergent effects on NaV1.5 gating is not fully understood, though vital for elucidating arrhythmogenic mechanisms and for developing new therapies. Here, using extensive single-channel analysis, we find that the disruption of Ca2+-free CaM preassociation with NaV1.5 exerts two disparate effects: 1) a decrease in the peak open probability and 2) an increase in persistent NaV openings. Mechanistically, these effects arise from a CaM-dependent switch in the NaV inactivation mechanism. Specifically, CaM-bound channels preferentially inactivate from the open state, while those devoid of CaM exhibit enhanced closed-state inactivation. Further enriching this scheme, for certain mutant NaV1.5, local Ca2+ fluctuations elicit a rapid recruitment of CaM that reverses the increase in persistent Na current, a factor that may promote beat-to-beat variability in late Na current. In all, these findings identify the elementary mechanism of CaM regulation of NaV1.5 and, in so doing, unravel a noncanonical role for CaM in tuning ion channel gating. Furthermore, our results furnish an in-depth molecular framework for understanding complex arrhythmogenic phenotypes of NaV1.5 channelopathies.
Collapse
Affiliation(s)
- Po Wei Kang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218;
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Johanna Diaz
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Gordon F Tomaselli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David T Yue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Manu Ben-Johny
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218;
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| |
Collapse
|
1110
|
CaMKII Phosphorylation Regulates Synaptic Enrichment of Shank3. eNeuro 2021; 8:ENEURO.0481-20.2021. [PMID: 33568460 PMCID: PMC8152369 DOI: 10.1523/eneuro.0481-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
SHANK3 is a large scaffolding protein in the postsynaptic density (PSD) that organizes protein networks, which are critical for synaptic structure and function. The strong genetic association of SHANK3 with autism spectrum disorder (ASD) emphasizes the importance of SHANK3 in neuronal development. SHANK3 has a critical role in organizing excitatory synapses and is tightly regulated by alternative splicing and posttranslational modifications. In this study, we examined basal and activity-dependent phosphorylation of Shank3 using mass spectrometry (MS) analysis from in vitro phosphorylation assays, in situ experiments, and studies with cultured neurons. We found that Shank3 is highly phosphorylated, and we identified serine 782 (S782) as a potent CaMKII phosphorylation site. Using a phosphorylation state-specific antibody, we demonstrate that CaMKII can phosphorylate Shank3 S782 in vitro and in heterologous cells on cotransfection with CaMKII. We also observed an effect of a nearby ASD-associated variant (Shank3 S685I), which increased S782 phosphorylation. Notably, eliminating phosphorylation of Shank3 with a S782A mutation increased Shank3 and PSD-95 synaptic puncta size without affecting Shank3 colocalization with PSD-95 in cultured hippocampal neurons. Taken together, our study revealed that CaMKII phosphorylates Shank3 S782 and that the phosphorylation affects Shank3 synaptic properties.
Collapse
|
1111
|
Feng S, Huang H, Wang N, Wei Y, Liu Y, Qin D. Sleep Disorders in Children With Autism Spectrum Disorder: Insights From Animal Models, Especially Non-human Primate Model. Front Behav Neurosci 2021; 15:673372. [PMID: 34093147 PMCID: PMC8173056 DOI: 10.3389/fnbeh.2021.673372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder with deficient social skills, communication deficits and repetitive behaviors. The prevalence of ASD has increased among children in recent years. Children with ASD experience more sleep problems, and sleep appears to be essential for the survival and integrity of most living organisms, especially for typical synaptic development and brain plasticity. Many methods have been used to assess sleep problems over past decades such as sleep diaries and parent-reported questionnaires, electroencephalography, actigraphy and videosomnography. A substantial number of rodent and non-human primate models of ASD have been generated. Many of these animal models exhibited sleep disorders at an early age. The aim of this review is to examine and discuss sleep disorders in children with ASD. Toward this aim, we evaluated the prevalence, clinical characteristics, phenotypic analyses, and pathophysiological brain mechanisms of ASD. We highlight the current state of animal models for ASD and explore their implications and prospects for investigating sleep disorders associated with ASD.
Collapse
Affiliation(s)
- Shufei Feng
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Haoyu Huang
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
| | - Na Wang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yun Liu
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
| | - Dongdong Qin
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
1112
|
Genetics and Epigenetics of One-Carbon Metabolism Pathway in Autism Spectrum Disorder: A Sex-Specific Brain Epigenome? Genes (Basel) 2021; 12:genes12050782. [PMID: 34065323 PMCID: PMC8161134 DOI: 10.3390/genes12050782] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition affecting behavior and communication, presenting with extremely different clinical phenotypes and features. ASD etiology is composite and multifaceted with several causes and risk factors responsible for different individual disease pathophysiological processes and clinical phenotypes. From a genetic and epigenetic side, several candidate genes have been reported as potentially linked to ASD, which can be detected in about 10–25% of patients. Folate gene polymorphisms have been previously associated with other psychiatric and neurodegenerative diseases, mainly focused on gene variants in the DHFR gene (5q14.1; rs70991108, 19bp ins/del), MTHFR gene (1p36.22; rs1801133, C677T and rs1801131, A1298C), and CBS gene (21q22.3; rs876657421, 844ins68). Of note, their roles have been scarcely investigated from a sex/gender viewpoint, though ASD is characterized by a strong sex gap in onset-risk and progression. The aim of the present review is to point out the molecular mechanisms related to intracellular folate recycling affecting in turn remethylation and transsulfuration pathways having potential effects on ASD. Brain epigenome during fetal life necessarily reflects the sex-dependent different imprint of the genome-environment interactions which effects are difficult to decrypt. We here will focus on the DHFR, MTHFR and CBS gene-triad by dissecting their roles in a sex-oriented view, primarily to bring new perspectives in ASD epigenetics.
Collapse
|
1113
|
Loss of KCNQ2 or KCNQ3 Leads to Multifocal Time-Varying Activity in the Neonatal Forebrain Ex Vivo. eNeuro 2021; 8:ENEURO.0024-21.2021. [PMID: 33863780 PMCID: PMC8143017 DOI: 10.1523/eneuro.0024-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Epileptic encephalopathies represent a group of disorders often characterized by refractory seizures, regression in cognitive development, and typically poor prognosis. Dysfunction of KCNQ2 and KCNQ3 channels has emerged as a major cause of neonatal epilepsy. However, our understanding of the cellular mechanisms that may both explain the origins of epilepsy and inform treatment strategies for KCNQ2 and KCNQ3 dysfunction is still lacking. Here, using mesoscale calcium imaging and pharmacology, we demonstrate that in mouse neonatal brain slices, conditional loss of Kcnq2 from forebrain excitatory neurons (Pyr:Kcnq2 mice) or constitutive deletion of Kcnq3 leads to sprawling hyperactivity across the neocortex. Surprisingly, the generation of time-varying hypersynchrony in slices from Pyr:Kcnq2 mice does not require fast synaptic transmission. This is in contrast to control littermates and constitutive Kcnq3 knock-out mice where activity is primarily driven by fast synaptic transmission in the neocortex. Unlike in the neocortex, hypersynchronous activity in the hippocampal formation from Kcnq2 conditional and Kcnq3 constitutive knock-out mice persists in the presence of synaptic transmission blockers. Thus, we propose that loss of KCNQ2 or KCNQ3 function differentially leads to network hyperactivity across the forebrain in a region-specific and macro-circuit-specific manner.
Collapse
|
1114
|
Dias C, Pfundt R, Kleefstra T, Shuurs-Hoeijmakers J, Boon EMJ, van Hagen JM, Zwijnenburg P, Weiss MM, Keren B, Mignot C, Isapof A, Weiss K, Hershkovitz T, Iascone M, Maitz S, Feichtinger RG, Kotzot D, Mayr JA, Ben-Omran T, Mahmoud L, Pais LS, Walsh CA, Shashi V, Sullivan JA, Stong N, Lecoquierre F, Guerrot AM, Charollais A, Rodan LH. De novo variants in TCF7L2 are associated with a syndromic neurodevelopmental disorder. Am J Med Genet A 2021; 185:2384-2390. [PMID: 34003604 DOI: 10.1002/ajmg.a.62254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/25/2021] [Accepted: 04/24/2021] [Indexed: 01/21/2023]
Abstract
TCF7L2 encodes transcription factor 7-like 2 (OMIM 602228), a key mediator of the evolutionary conserved canonical Wnt signaling pathway. Although several large-scale sequencing studies have implicated TCF7L2 in intellectual disability and autism, both the genetic mechanism and clinical phenotype have remained incompletely characterized. We present here a comprehensive genetic and phenotypic description of 11 individuals who have been identified to carry de novo variants in TCF7L2, both truncating and missense. Missense variation is clustered in or near a high mobility group box domain, involving this region in these variants' pathogenicity. All affected individuals present with developmental delays in childhood, but most ultimately achieved normal intelligence or had only mild intellectual disability. Myopia was present in approximately half of the individuals, and some individuals also possessed dysmorphic craniofacial features, orthopedic abnormalities, or neuropsychiatric comorbidities including autism and attention-deficit/hyperactivity disorder (ADHD). We thus present an initial clinical and genotypic spectrum associated with variation in TCF7L2, which will be important in informing both medical management and future research.
Collapse
Affiliation(s)
- Caroline Dias
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rolph Pfundt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Tjitske Kleefstra
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
| | | | - Elles M J Boon
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Johanna M van Hagen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Petra Zwijnenburg
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marjan M Weiss
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Boris Keren
- Département de Génétique, hôpital Pitié-Salpêtrière, APHP.Sorbonne Université, Paris, France
| | - Cyril Mignot
- Département de Génétique, hôpital Pitié-Salpêtrière, APHP.Sorbonne Université, Paris, France
| | - Arnaud Isapof
- Service de Neurologie Pédiatrique, Hôpital Armand Trousseau, APHP, Sorbonne Université, Paris, France
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tova Hershkovitz
- Genetics Institute, Rambam Health Care Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - René G Feichtinger
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Dieter Kotzot
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU) Salzburg, Salzburg, Austria
| | - Tawfeg Ben-Omran
- Department of Pediatrics, Sidra Medicine, Department of Medical Genetics, Hamad Medical Corporation, Weill Cornell Medical College, Doha, Qatar
| | - Laila Mahmoud
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Lynn S Pais
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Francois Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, Inserm U1245, Rouen, France
| | - Anne-Marie Guerrot
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, Inserm U1245, Rouen, France
| | - Aude Charollais
- Reference Centre for Learning Disorders, Rouen University Hospital, F-76031 Rouen Cedex, Rouen, France.,Department of Neonatology and Paediatric Intensive Care, Rouen University Hospital, F-76031 Cedex, Rouen, France
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
1115
|
Kahen A, Kavus H, Geltzeiler A, Kentros C, Taylor C, Brooks E, Green Snyder L, Chung W. Neurodevelopmental phenotypes associated with pathogenic variants in SLC6A1. J Med Genet 2021; 59:536-543. [PMID: 34006619 DOI: 10.1136/jmedgenet-2021-107694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND SLC6A1 encodes GAT-1, a major gamma-aminobutyric acid (GABA) transporter in the brain. GAT-1 maintains neurotransmitter homeostasis by removing excess GABA from the synaptic cleft. Pathogenic variants in SLC6A1 disrupt the reuptake of GABA and are associated with a neurobehavioural phenotype. METHODS Medical history interviews, seizure surveys, Vineland Adaptive Behavior Scales Second Edition and other behavioural surveys were completed by primary care givers of 28 participants in Simons Searchlight. All participants underwent clinical whole exome sequencing or gene panel sequencing. Additional cases from the medical literature with comparable data were included. RESULTS We identified 28 individuals with largely de novo pathogenic/likely pathogenic variants including missense (15/21 or 71%) and truncating variants (6/21 or 29%). Missense variants were largely clustered around the sixth and seventh transmembrane domains, which functions as a GABA binding pocket. The phenotype of individuals with pathogenic variants in SLC6A1 includes hypotonia, intellectual disability/developmental delay, language disorder/speech delay, autism spectrum disorder, sleep issues and seizures. CONCLUSION Pathogenic variants in SLC6A1 are associated with a clinical phenotype of developmental delay, behaviour problems and seizures. Understanding of the genotype-phenotype correlation within SLC6A1 may provide opportunities to develop new treatments for GABA-related conditions.
Collapse
Affiliation(s)
- Ashley Kahen
- College of Dental Medicine, Columbia University, New York, New York, USA
| | - Haluk Kavus
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Alexa Geltzeiler
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Catherine Kentros
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Cora Taylor
- Pediatric Psychology, Geisinger Autism & Developmental Medicine Institute, Lewisburg, Pennsylvania, USA
| | - Elizabeth Brooks
- Simons Foundation Autism Research Initiative, New York, New York, USA
| | | | - Wendy Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA .,Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
1116
|
Basu-Shrivastava M, Kozoriz A, Desagher S, Lassot I. To Ubiquitinate or Not to Ubiquitinate: TRIM17 in Cell Life and Death. Cells 2021; 10:1235. [PMID: 34069831 PMCID: PMC8157266 DOI: 10.3390/cells10051235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin-ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions. However, it can be highly induced in stress conditions which makes it a putative stress sensor required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as Parkinson's disease or cancer. Here, in addition to recent data that endorse this duality, we review what is currently known from public databases and the literature about TRIM17 gene regulation and expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology and human disorders.
Collapse
Affiliation(s)
| | - Alina Kozoriz
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| |
Collapse
|
1117
|
Bertelsen N, Landi I, Bethlehem RAI, Seidlitz J, Busuoli EM, Mandelli V, Satta E, Trakoshis S, Auyeung B, Kundu P, Loth E, Dumas G, Baumeister S, Beckmann CF, Bölte S, Bourgeron T, Charman T, Durston S, Ecker C, Holt RJ, Johnson MH, Jones EJH, Mason L, Meyer-Lindenberg A, Moessnang C, Oldehinkel M, Persico AM, Tillmann J, Williams SCR, Spooren W, Murphy DGM, Buitelaar JK, Baron-Cohen S, Lai MC, Lombardo MV. Imbalanced social-communicative and restricted repetitive behavior subtypes of autism spectrum disorder exhibit different neural circuitry. Commun Biol 2021; 4:574. [PMID: 33990680 PMCID: PMC8121854 DOI: 10.1038/s42003-021-02015-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Social-communication (SC) and restricted repetitive behaviors (RRB) are autism diagnostic symptom domains. SC and RRB severity can markedly differ within and between individuals and may be underpinned by different neural circuitry and genetic mechanisms. Modeling SC-RRB balance could help identify how neural circuitry and genetic mechanisms map onto such phenotypic heterogeneity. Here, we developed a phenotypic stratification model that makes highly accurate (97-99%) out-of-sample SC = RRB, SC > RRB, and RRB > SC subtype predictions. Applying this model to resting state fMRI data from the EU-AIMS LEAP dataset (n = 509), we find that while the phenotypic subtypes share many commonalities in terms of intrinsic functional connectivity, they also show replicable differences within some networks compared to a typically-developing group (TD). Specifically, the somatomotor network is hypoconnected with perisylvian circuitry in SC > RRB and visual association circuitry in SC = RRB. The SC = RRB subtype show hyperconnectivity between medial motor and anterior salience circuitry. Genes that are highly expressed within these networks show a differential enrichment pattern with known autism-associated genes, indicating that such circuits are affected by differing autism-associated genomic mechanisms. These results suggest that SC-RRB imbalance subtypes share many commonalities, but also express subtle differences in functional neural circuitry and the genomic underpinnings behind such circuitry.
Collapse
Affiliation(s)
- Natasha Bertelsen
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, TN, Italy
- Center for Mind/Brain Sciences, University of Trento, Rovereto, TN, Italy
| | - Isotta Landi
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, TN, Italy
| | | | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Elena Maria Busuoli
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, TN, Italy
- Center for Mind/Brain Sciences, University of Trento, Rovereto, TN, Italy
| | - Veronica Mandelli
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, TN, Italy
- Center for Mind/Brain Sciences, University of Trento, Rovereto, TN, Italy
| | - Eleonora Satta
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, TN, Italy
| | - Stavros Trakoshis
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, TN, Italy
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Bonnie Auyeung
- Department of Psychology, School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, UK
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Prantik Kundu
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Eva Loth
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Guillaume Dumas
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Sarah Baumeister
- Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sven Bölte
- Department of Women's and Children's Health; Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm, Sweden
- Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Australia
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sarah Durston
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany
| | - Rosemary J Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Mark H Johnson
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Henry Wellcome Building, London, UK
| | - Luke Mason
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Henry Wellcome Building, London, UK
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marianne Oldehinkel
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria, Australia
| | - Antonio M Persico
- Child and Adolescent Neuropsychiatry Unit, Gaetano Martino University Hospital, University of Messina, Messina, Italy
- University Campus Bio-Medico, Rome, Italy
| | - Julian Tillmann
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Applied Psychology: Health, Development, Enhancement, and Intervention, University of Vienna, Vienna, Austria
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Will Spooren
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Declan G M Murphy
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Azrieli Adult Neurodevelopmental Centre, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry and Autism Research Unit, The Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, TN, Italy.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
1118
|
Takata A, Hamanaka K, Matsumoto N. Refinement of the clinical variant interpretation framework by statistical evidence and machine learning. MED 2021; 2:611-632.e9. [PMID: 35590234 DOI: 10.1016/j.medj.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/28/2020] [Accepted: 02/16/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for variant interpretation are used widely in clinical genetics, there is room for improvement of these knowledge-based guidelines. METHODS Statistical assessment of average deleteriousness of start-lost, stop-lost, and in-frame insertion and deletion (indel) variants and extraction of deleterious subsets was performed, being informed by proportions of rare variants in the general population of the Genome Aggregation Database (gnomAD). A machine learning-based model scoring the pathogenicity of start-lost variants (the PoStaL model) was constructed by predicting possible translation initiation sites on transcripts by deep learning and training a random forest on known pathogenic and likely benign variants. FINDINGS The proportion of rare variants was highest in stop-lost variants, followed by in-frame indels and start-lost variants, suggesting that the criteria in the ACMG/AMP guidelines assigning PVS (pathogenic very strong) to start-lost variants and PM (pathogenic moderate) to stop-lost and in-frame indel variants would not be appropriate. Regarding deleterious subsets, stop-lost variants introducing extensions of more than 30 amino acids and in-frame indels computationally predicted to be damaging are enriched for rare and known pathogenic variants. For start-lost variants, we developed the PoStaL model, which outperforms existing tools. We also provide comprehensive lists of the PoStaL scores for start-lost variants and the length of extended amino acids by stop-lost variants. CONCLUSIONS Our study could contribute to refinement of the ACMG/AMP guidelines, provides resources for future investigation, and provides an example of how to improve knowledge-based frameworks by data-driven approaches. FUNDING The study was supported by grants from the Japan Agency for Medical Research and Development (AMED) and the Japan Society for the Promotion of Science (JSPS).
Collapse
Affiliation(s)
- Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
1119
|
Implications of Extended Inhibitory Neuron Development. Int J Mol Sci 2021; 22:ijms22105113. [PMID: 34066025 PMCID: PMC8150951 DOI: 10.3390/ijms22105113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
A prolonged developmental timeline for GABA (γ-aminobutyric acid)-expressing inhibitory neurons (GABAergic interneurons) is an amplified trait in larger, gyrencephalic animals. In several species, the generation, migration, and maturation of interneurons take place over several months, in some cases persisting after birth. The late integration of GABAergic interneurons occurs in a region-specific pattern, especially during the early postnatal period. These changes can contribute to the formation of functional connectivity and plasticity, especially in the cortical regions responsible for higher cognitive tasks. In this review, we discuss GABAergic interneuron development in the late gestational and postnatal forebrain. We propose the protracted development of interneurons at each stage (neurogenesis, neuronal migration, and network integration), as a mechanism for increased complexity and cognitive flexibility in larger, gyrencephalic brains. This developmental feature of interneurons also provides an avenue for environmental influences to shape neural circuit formation.
Collapse
|
1120
|
Pintacuda G, Lassen FH, Hsu YHH, Kim A, Martín JM, Malolepsza E, Lim JK, Fornelos N, Eggan KC, Lage K. Genoppi is an open-source software for robust and standardized integration of proteomic and genetic data. Nat Commun 2021; 12:2580. [PMID: 33972534 PMCID: PMC8110583 DOI: 10.1038/s41467-021-22648-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 01/03/2023] Open
Abstract
Combining genetic and cell-type-specific proteomic datasets can generate biological insights and therapeutic hypotheses, but a technical and statistical framework for such analyses is lacking. Here, we present an open-source computational tool called Genoppi (lagelab.org/genoppi) that enables robust, standardized, and intuitive integration of quantitative proteomic results with genetic data. We use Genoppi to analyze 16 cell-type-specific protein interaction datasets of four proteins (BCL2, TDP-43, MDM2, PTEN) involved in cancer and neurological disease. Through systematic quality control of the data and integration with published protein interactions, we show a general pattern of both cell-type-independent and cell-type-specific interactions across three cancer cell types and one human iPSC-derived neuronal cell type. Furthermore, through the integration of proteomic and genetic datasets in Genoppi, our results suggest that the neuron-specific interactions of these proteins are mediating their genetic involvement in neurodegenerative diseases. Importantly, our analyses suggest that human iPSC-derived neurons are a relevant model system for studying the involvement of BCL2 and TDP-43 in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Greta Pintacuda
- Stanley Center at Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Frederik H Lassen
- Stanley Center at Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yu-Han H Hsu
- Stanley Center at Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - April Kim
- Stanley Center at Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Jacqueline M Martín
- Stanley Center at Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Edyta Malolepsza
- Stanley Center at Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Justin K Lim
- Stanley Center at Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nadine Fornelos
- Stanley Center at Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin C Eggan
- Stanley Center at Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Kasper Lage
- Stanley Center at Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
| |
Collapse
|
1121
|
Masten AS, Lucke CM, Nelson KM, Stallworthy IC. Resilience in Development and Psychopathology: Multisystem Perspectives. Annu Rev Clin Psychol 2021; 17:521-549. [DOI: 10.1146/annurev-clinpsy-081219-120307] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Resilience science in psychology and related fields emerged from clinical research on risk for psychopathology in the 1970s and matured over the ensuing decades with advances in theory, methods, and knowledge. Definitions and models of resilience shifted to reflect the expanding influence of developmental systems theory and the growing need to integrate knowledge about resilience across levels and disciplines to address multisystem threats. Resilience is defined for scalability and integrative purposes as the capacity of a dynamic system to adapt successfully through multisystem processes to challenges that threaten system function, survival, or development. Striking alignment of resilience factors observed in human systems, ranging from individuals to communities, suggests the possibility of networked, multisystem protective factors that work in concert. Evidence suggests that there may be resilience factors that provide transdiagnostic protection against the effects of adverse childhood experiences on risk for psychopathology. Multisystem studies of resilience offer promising directions for future research and its applications to promote mental health and positive development in children and youth at risk for psychopathology.
Collapse
Affiliation(s)
- Ann S. Masten
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota 55455-0345, USA:
| | - Cara M. Lucke
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota 55455-0345, USA:
| | - Kayla M. Nelson
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota 55455-0345, USA:
| | - Isabella C. Stallworthy
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota 55455-0345, USA:
| |
Collapse
|
1122
|
Pham HTN, Tran HN, Le XT, Do HT, Nguyen TT, Le Nguyen C, Yoshida H, Yamaguchi M, William FR, Matsumoto K. Ilex kudingcha C.J. Tseng Mitigates Phenotypic Characteristics of Human Autism Spectrum Disorders in a Drosophila Melanogaster Rugose Mutant. Neurochem Res 2021; 46:1995-2007. [PMID: 33950474 DOI: 10.1007/s11064-021-03337-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/05/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022]
Abstract
Autism spectrum disorders (ASD) have heterogeneous etiologies involving dysfunction of central nervous systems, for which no effective pan-specific treatments are available. Ilex kudingcha (IK) C.J. Tseng is a nootropic botanical used in Asia for neuroprotection and improvement of cognition. This study establishes that a chemically characterized extract from IK (IKE) mitigates behavioral traits in the Drosophila melanogaster rugose mutant, whose traits resemble human ASD, and examines possible mechanisms. IKE treatment significantly ameliorated deficits in social interaction, short-term memory, and locomotor activity in Drosophila rugose, and significantly increased synaptic bouton number of size more than 2 μm2 in the neuromuscular junctions (NMJs) of Drosophila rugose. To clarify mechanism(s) of IKE action, methylphenidate (MPH), a dopamine transporter inhibitor, was included as a reference drug in the behavioral assays: MPH significantly improved social interaction and short-term memory deficit in Drosophila rugose; administration of the dopamine D1 receptor antagonist SCH23390 and dopamine D2 receptor antagonist sulpiride reversed the ameliorative effects of both MPH and IKE on the social interaction deficits of Drosophila rugose. To extend analysis of IKE treatment to the vertebrate central nervous system, ASD-associated gene expression in mouse hippocampus was studied by RNA-seq: IKE treatment altered the expression of genes coding phosphoinositide 3-kinases/protein kinase B (PI3K-Akt), proteins in glutamatergic, dopaminergic, serotonergic, and GABAergic synapses, cAMP response element-binding protein (CREB), and RNA transporter proteins. These results provide a foundation for further analysis of IKE as a candidate for treatment of some forms of ASD.
Collapse
Affiliation(s)
- Hang Thi Nguyet Pham
- National Institute of Medicinal Materials, Hoan Kiem District, Hanoi, 110100, Vietnam.
| | - Hong Nguyen Tran
- National Institute of Medicinal Materials, Hoan Kiem District, Hanoi, 110100, Vietnam
| | - Xoan Thi Le
- National Institute of Medicinal Materials, Hoan Kiem District, Hanoi, 110100, Vietnam
| | - Ha Thi Do
- National Institute of Medicinal Materials, Hoan Kiem District, Hanoi, 110100, Vietnam
| | - Tue Trong Nguyen
- Hanoi Medical University, Dong Da District, Hanoi, 116001, Vietnam
| | - Chien Le Nguyen
- Military Medical Academy, Ha Dong District, Hanoi, 100000, Vietnam
| | - Hideki Yoshida
- Kyoto Institute of Technology, Matsugasaki, Kyoto, Sakyo-ku, 606-8585, Japan
| | - Masamistu Yamaguchi
- Kyoto Institute of Technology, Matsugasaki, Kyoto, Sakyo-ku, 606-8585, Japan.,Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd, Seika-cho, Kyoto, 619-0237, Japan
| | - Folk R William
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Kinzo Matsumoto
- Center for Supporting Pharmaceutical Education, Daiichi University of Phamacy, Fukuoka, 815-8511, Japan
| |
Collapse
|
1123
|
Farini D, Cesari E, Weatheritt RJ, La Sala G, Naro C, Pagliarini V, Bonvissuto D, Medici V, Guerra M, Di Pietro C, Rizzo FR, Musella A, Carola V, Centonze D, Blencowe BJ, Marazziti D, Sette C. A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum. Cell Rep 2021; 31:107703. [PMID: 32492419 DOI: 10.1016/j.celrep.2020.107703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Tight coordination of gene expression in the developing cerebellum is crucial for establishment of neuronal circuits governing motor and cognitive function. However, transcriptional changes alone do not explain all of the switches underlying neuronal differentiation. Here we unveiled a widespread and highly dynamic splicing program that affects synaptic genes in cerebellar neurons. The motifs enriched in modulated exons implicated the splicing factor Sam68 as a regulator of this program. Sam68 controls splicing of exons with weak branchpoints by directly binding near the 3' splice site and competing with U2AF recruitment. Ablation of Sam68 disrupts splicing regulation of synaptic genes associated with neurodevelopmental diseases and impairs synaptic connections and firing of Purkinje cells, resulting in motor coordination defects, ataxia, and abnormal social behavior. These findings uncover an unexpectedly dynamic splicing regulatory network that shapes the synapse in early life and establishes motor and cognitive circuitry in the developing cerebellum.
Collapse
Affiliation(s)
- Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Robert J Weatheritt
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Davide Bonvissuto
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| | - Vanessa Medici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Francesca Romana Rizzo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; San Raffaele Pisana and University San Raffaele, IRCCS, Rome, Italy
| | | | - Valeria Carola
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Department of Dynamic and Clinical Psychology, University of Rome Sapienza, Rome, Italy
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Benjamin J Blencowe
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Claudio Sette
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
1124
|
The role of GABAergic signalling in neurodevelopmental disorders. Nat Rev Neurosci 2021; 22:290-307. [PMID: 33772226 PMCID: PMC9001156 DOI: 10.1038/s41583-021-00443-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
GABAergic inhibition shapes the connectivity, activity and plasticity of the brain. A series of exciting new discoveries provides compelling evidence that disruptions in a number of key facets of GABAergic inhibition have critical roles in the aetiology of neurodevelopmental disorders (NDDs). These facets include the generation, migration and survival of GABAergic neurons, the formation of GABAergic synapses and circuit connectivity, and the dynamic regulation of the efficacy of GABAergic signalling through neuronal chloride transporters. In this Review, we discuss recent work that elucidates the functions and dysfunctions of GABAergic signalling in health and disease, that uncovers the contribution of GABAergic neural circuit dysfunction to NDD aetiology and that leverages such mechanistic insights to advance precision medicine for the treatment of NDDs.
Collapse
|
1125
|
Research and training in autism spectrum disorder to catalyze the next genomic and neuroscience revolutions. Mol Psychiatry 2021; 26:1429-1431. [PMID: 32601454 DOI: 10.1038/s41380-020-0830-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1126
|
Johnson MH, Charman T, Pickles A, Jones EJH. Annual Research Review: Anterior Modifiers in the Emergence of Neurodevelopmental Disorders (AMEND)-a systems neuroscience approach to common developmental disorders. J Child Psychol Psychiatry 2021; 62:610-630. [PMID: 33432656 PMCID: PMC8609429 DOI: 10.1111/jcpp.13372] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
We present the Anterior Modifiers in the Emergence of Neurodevelopmental Disorders (AMEND) framework, designed to reframe the field of prospective studies of neurodevelopmental disorders. In AMEND we propose conceptual, statistical and methodological approaches to separating markers of early-stage perturbations from later developmental modifiers. We describe the evidence for, and features of, these interacting components before outlining analytical approaches to studying how different profiles of early perturbations and later modifiers interact to produce phenotypic outcomes. We suggest this approach could both advance our theoretical understanding and clinical approach to the emergence of developmental psychopathology in early childhood.
Collapse
Affiliation(s)
- Mark H. Johnson
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | - Tony Charman
- Department of PsychologyInstitute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Andrew Pickles
- Department of Biostatistics and Health InformaticsInstitute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Emily J. H. Jones
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK
| |
Collapse
|
1127
|
|
1128
|
Chiang AH, Chang J, Wang J, Vitkup D. Exons as units of phenotypic impact for truncating mutations in autism. Mol Psychiatry 2021; 26:1685-1695. [PMID: 33110259 DOI: 10.1038/s41380-020-00876-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorders (ASD) are a group of related neurodevelopmental diseases displaying significant genetic and phenotypic heterogeneity. Despite recent progress in understanding ASD genetics, the nature of phenotypic heterogeneity across probands remains unclear. Notably, likely gene-disrupting (LGD) de novo mutations affecting the same gene often result in substantially different ASD phenotypes. Nevertheless, we find that truncating mutations affecting the same exon frequently lead to strikingly similar intellectual phenotypes in unrelated ASD probands. Analogous patterns are observed for two independent proband cohorts and several other important ASD-associated phenotypes. We find that exons biased toward prenatal and postnatal expression preferentially contribute to ASD cases with lower and higher IQ phenotypes, respectively. These results suggest that exons, rather than genes, often represent a unit of effective phenotypic impact for truncating mutations in autism. The observed phenotypic patterns are likely mediated by nonsense-mediated decay (NMD) of splicing isoforms, with autism phenotypes usually triggered by relatively mild (15-30%) decreases in overall gene dosage. We find that each ASD gene with recurrent mutations can be characterized by a parameter, phenotype dosage sensitivity (PDS), which quantifies the relationship between changes in a gene's dosage and changes in a given disease phenotype. We further demonstrate analogous relationships between exon LGDs and gene expression changes in multiple human tissues. Therefore, similar phenotypic patterns may be also observed in other human genetic disorders.
Collapse
Affiliation(s)
- Andrew H Chiang
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Jonathan Chang
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Jiayao Wang
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - Dennis Vitkup
- Department of Biomedical Informatics, Columbia University, New York, NY, USA. .,Department of Systems Biology, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA.
| |
Collapse
|
1129
|
Roth DM, Baddam P, Lin H, Vidal-García M, Aponte JD, De Souza ST, Godziuk D, Watson AES, Footz T, Schachter NF, Egan SE, Hallgrímsson B, Graf D, Voronova A. The Chromatin Regulator Ankrd11 Controls Palate and Cranial Bone Development. Front Cell Dev Biol 2021; 9:645386. [PMID: 33996804 PMCID: PMC8117352 DOI: 10.3389/fcell.2021.645386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 11/19/2022] Open
Abstract
Epigenetic and chromatin regulation of craniofacial development remains poorly understood. Ankyrin Repeat Domain 11 (ANKRD11) is a chromatin regulator that has previously been shown to control neural stem cell fates via modulation of histone acetylation. ANKRD11 gene variants, or microdeletions of the 16q24.3 chromosomal region encompassing the ANKRD11 gene, cause KBG syndrome, a rare autosomal dominant congenital disorder with variable neurodevelopmental and craniofacial involvement. Craniofacial abnormalities include a distinct facial gestalt, delayed bone age, tooth abnormalities, delayed fontanelle closure, and frequently cleft or submucosal palate. Despite this, the dramatic phenotype and precise role of ANKRD11 in embryonic craniofacial development remain unexplored. Quantitative analysis of 3D images of KBG syndromic subjects shows an overall reduction in the size of the middle and lower face. Here, we report that mice with heterozygous deletion of Ankrd11 in neural crest cells (Ankrd11nchet) display a mild midfacial hypoplasia including reduced midfacial width and a persistent open fontanelle, both of which mirror KBG syndrome patient facial phenotypes. Mice with a homozygous Ankrd11 deletion in neural crest cells (Ankrd11ncko) die at birth. They show increased severity of several clinical manifestations described for KBG syndrome, such as cleft palate, retrognathia, midfacial hypoplasia, and reduced calvarial growth. At E14.5, Ankrd11 expression in the craniofacial complex is closely associated with developing bony structures, while expression at birth is markedly decreased. Conditional deletion of Ankrd11 leads to a reduction in ossification of midfacial bones, with several ossification centers failing to expand and/or fuse. Intramembranous bones show features of delayed maturation, with bone remodeling severely curtailed at birth. Palatal shelves remain hypoplastic at all developmental stages, with a local reduction in proliferation at E13.5. Our study identifies Ankrd11 as a critical regulator of intramembranous ossification and palate development and suggests that Ankrd11nchet and Ankrd11ncko mice may serve as pre-clinical models for KBG syndrome in humans.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Haiming Lin
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jose David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah-Thea De Souza
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Devyn Godziuk
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Adrianne Eve Scovil Watson
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nathan F. Schachter
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E. Egan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
1130
|
Case Report: Association of Comorbid Psychiatric Disorders and Sigmoid Prolapse with de novo POGZ Mutation. J Autism Dev Disord 2021; 52:1408-1411. [PMID: 33909211 DOI: 10.1007/s10803-021-05032-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
|
1131
|
Karalis V, Bateup HS. Current Approaches and Future Directions for the Treatment of mTORopathies. Dev Neurosci 2021; 43:143-158. [PMID: 33910214 PMCID: PMC8440338 DOI: 10.1159/000515672] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a kinase at the center of an evolutionarily conserved signaling pathway that orchestrates cell growth and metabolism. mTOR responds to an array of intra- and extracellular stimuli and in turn controls multiple cellular anabolic and catabolic processes. Aberrant mTOR activity is associated with numerous diseases, with particularly profound impact on the nervous system. mTOR is found in two protein complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which are governed by different upstream regulators and have distinct cellular actions. Mutations in genes encoding for mTOR regulators result in a collection of neurodevelopmental disorders known as mTORopathies. While these disorders can affect multiple organs, neuropsychiatric conditions such as epilepsy, intellectual disability, and autism spectrum disorder have a major impact on quality of life. The neuropsychiatric aspects of mTORopathies have been particularly challenging to treat in a clinical setting. Current therapeutic approaches center on rapamycin and its analogs, drugs that are administered systemically to inhibit mTOR activity. While these drugs show some clinical efficacy, adverse side effects, incomplete suppression of mTOR targets, and lack of specificity for mTORC1 or mTORC2 may limit their utility. An increased understanding of the neurobiology of mTOR and the underlying molecular, cellular, and circuit mechanisms of mTOR-related disorders will facilitate the development of improved therapeutics. Animal models of mTORopathies have helped unravel the consequences of mTOR pathway mutations in specific brain cell types and developmental stages, revealing an array of disease-related phenotypes. In this review, we discuss current progress and potential future directions for the therapeutic treatment of mTORopathies with a focus on findings from genetic mouse models.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
1132
|
Transcription factor encoding of neuron subtype: Strategies that specify arbor pattern. Curr Opin Neurobiol 2021; 69:149-158. [PMID: 33895620 DOI: 10.1016/j.conb.2021.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023]
Abstract
Dendrite and axon arbors form scaffolds that connect a neuron to its partners; they are patterned to support the specific connectivity and computational requirements of each neuron subtype. Transcription factor networks control the specification of neuron subtypes, and the consequent diversification of their stereotyped arbor patterns during differentiation. We outline how the differentiation trajectories of stereotyped arbors are shaped by hierarchical deployment of precursor cell and postmitotic transcription factors. These transcription factors exert modular control over the dendrite and axon features of a single neuron, create spatial and functional compartmentalization of an arbor, instruct implementation of developmental patterning rules, and exert operational control over the cell biological processes that construct an arbor.
Collapse
|
1133
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
1134
|
Wickramasekara RN, Robertson B, Hulen J, Hallgren J, Stessman HAF. Differential effects by sex with Kmt5b loss. Autism Res 2021; 14:1554-1571. [PMID: 33871180 DOI: 10.1002/aur.2516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 01/21/2023]
Abstract
Lysine methyl transferase 5B (KMT5B) has been recently highlighted as a risk gene in genetic studies of neurodevelopmental disorders (NDDs), specifically, autism spectrum disorder (ASD) and intellectual disability (ID); yet, its role in the brain is not known. The goal of this work was to neurodevelopmentally characterize the effect(s) of KMT5B haploinsufficiency using a mouse model. A Kmt5b gene-trap mouse line was obtained from the Knockout Mouse Project. Wild type (WT) and heterozygous (HET) mice were subjected to a comprehensive neurodevelopmental test battery to assess reflexes, motor behavior, learning/memory, social behavior, repetitive movement, and common ASD comorbidities (obsessive compulsion, depression, and anxiety). Given the strong sex bias observed in the ASD patient population, we tested both a male and female cohort of animals and compared differences between genotypes and sexes. HET mice were significantly smaller than WT littermates starting at postnatal day 10 through young adulthood which was correlated with smaller brain size (i.e., microcephaly). This was more severe in males than females. HET male neonates also had delayed eye opening and significantly weaker reflexes than WT littermates. In young adults, significant differences between genotypes relative to anxiety, depression, fear, and extinction learning were observed. Interestingly, several sexually dimorphic differences were noted including increased repetitive grooming behavior in HET females and an increased latency to hot plate response in HET females versus a decreased latency in HET males. LAY SUMMARY: Lysine methyl transferase 5B (KMT5B) has been recently highlighted as a risk gene in neurodevelopmental disorders (NDDs), specifically, autism spectrum disorder (ASD) and intellectual disability (ID); yet its role in the brain is not known. Our study indicates that mice lacking one genomic copy of Kmt5b show deficits in neonatal reflexes, sociability, repetitive stress-induced grooming, changes in thermal pain sensing, decreased depression and anxiety, increased fear, slower extinction learning, and lower body weight, length, and brain size. Furthermore, several outcomes differed by sex, perhaps mirroring the sex bias in ASD.
Collapse
Affiliation(s)
- Rochelle N Wickramasekara
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Brynn Robertson
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jason Hulen
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jodi Hallgren
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Holly A F Stessman
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska, USA
| |
Collapse
|
1135
|
Gillentine MA, Wang T, Hoekzema K, Rosenfeld J, Liu P, Guo H, Kim CN, De Vries BBA, Vissers LELM, Nordenskjold M, Kvarnung M, Lindstrand A, Nordgren A, Gecz J, Iascone M, Cereda A, Scatigno A, Maitz S, Zanni G, Bertini E, Zweier C, Schuhmann S, Wiesener A, Pepper M, Panjwani H, Torti E, Abid F, Anselm I, Srivastava S, Atwal P, Bacino CA, Bhat G, Cobian K, Bird LM, Friedman J, Wright MS, Callewaert B, Petit F, Mathieu S, Afenjar A, Christensen CK, White KM, Elpeleg O, Berger I, Espineli EJ, Fagerberg C, Brasch-Andersen C, Hansen LK, Feyma T, Hughes S, Thiffault I, Sullivan B, Yan S, Keller K, Keren B, Mignot C, Kooy F, Meuwissen M, Basinger A, Kukolich M, Philips M, Ortega L, Drummond-Borg M, Lauridsen M, Sorensen K, Lehman A, Lopez-Rangel E, Levy P, Lessel D, Lotze T, Madan-Khetarpal S, Sebastian J, Vento J, Vats D, Benman LM, Mckee S, Mirzaa GM, Muss C, Pappas J, Peeters H, Romano C, Elia M, Galesi O, Simon MEH, van Gassen KLI, Simpson K, Stratton R, Syed S, Thevenon J, Palafoll IV, Vitobello A, Bournez M, Faivre L, Xia K, Earl RK, Nowakowski T, Bernier RA, Eichler EE. Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders. Genome Med 2021; 13:63. [PMID: 33874999 PMCID: PMC8056596 DOI: 10.1186/s13073-021-00870-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. METHODS We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. RESULTS We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. CONCLUSIONS Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.
Collapse
Affiliation(s)
- Madelyn A Gillentine
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Jill Rosenfeld
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pengfei Liu
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Hui Guo
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Bert B A De Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Magnus Nordenskjold
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jozef Gecz
- School of Medicine and the Robinson Research Institute, the University of Adelaide at the Women's and Children's Hospital, Adelaide, South Australia, Australia.,Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Maria Iascone
- Laboratorio di Genetica Medica - ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Agnese Scatigno
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Silvia Maitz
- Genetic Unit, Department of Pediatrics, Fondazione MBBM S. Gerardo Hospital, Monza, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sarah Schuhmann
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Micah Pepper
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA
| | - Heena Panjwani
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA
| | | | - Farida Abid
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paldeep Atwal
- The Atwal Clinic: Genomic & Personalized Medicine, Jacksonville, FL, USA
| | - Carlos A Bacino
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Gifty Bhat
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Katherine Cobian
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Jennifer Friedman
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.,Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Meredith S Wright
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Florence Petit
- Clinique de Génétique, Hôpital Jeanne de Flandre, Bâtiment Modulaire, CHU, 59037, Lille Cedex, France
| | - Sophie Mathieu
- Sorbonne Universités, Centre de Référence déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, AP-HP, Paris, France
| | - Alexandra Afenjar
- Sorbonne Universités, Centre de Référence déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, AP-HP, Paris, France
| | - Celenie K Christensen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kerry M White
- Department of Medical and Molecular Genetics, IU Health, Indianapolis, IN, USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Itai Berger
- Pediatric Neurology, Assuta-Ashdod University Hospital, Ashdod, Israel.,Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Edward J Espineli
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | - Timothy Feyma
- Gillette Children's Specialty Healthcare, Saint Paul, MN, USA
| | - Susan Hughes
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA.,The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Isabelle Thiffault
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA.,Children's Mercy Kansas City, Center for Pediatric Genomic Medicine, Kansas City, MO, USA
| | - Bonnie Sullivan
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Shuang Yan
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Kory Keller
- Oregon Health & Science University, Corvallis, OR, USA
| | - Boris Keren
- Department of Genetics, Hópital Pitié-Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Genetics, Hópital Pitié-Salpêtrière, Paris, France
| | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Alice Basinger
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Mary Kukolich
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Meredith Philips
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Lucia Ortega
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | | | - Mathilde Lauridsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kristina Sorensen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,BC Children's Hospital and BC Women's Hospital, Vancouver, BC, Canada
| | | | - Elena Lopez-Rangel
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Division of Developmental Pediatrics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.,Sunny Hill Health Centre for Children, Vancouver, BC, Canada
| | - Paul Levy
- Department of Pediatrics, The Children's Hospital at Montefiore, Bronx, NY, USA
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timothy Lotze
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Suneeta Madan-Khetarpal
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Sebastian
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jodie Vento
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Divya Vats
- Kaiser Permanente Southern California, Los Angeles, CA, USA
| | | | - Shane Mckee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Candace Muss
- Al Dupont Hospital for Children, Wilmington, DE, USA
| | - John Pappas
- NYU Grossman School of Medicine, Department of Pediatrics, Clinical Genetic Services, New York, NY, USA
| | - Hilde Peeters
- Center for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | | | | | | | - Marleen E H Simon
- Department of Genetics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Kara Simpson
- Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Robert Stratton
- Department of Genetics, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Sabeen Syed
- Department of Pediatric Gastroenterology, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Julien Thevenon
- Àrea de Genètica Clínica i Molecular, Hospital Vall d'Hebrón, Barcelona, Spain
| | | | - Antonio Vitobello
- UF Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne and INSERM UMR1231 GAD, Université de Bourgogne Franche-Comté, F-21000, Dijon, France.,INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
| | - Marie Bournez
- Centre de Référence Maladies Rares « déficience intellectuelle », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes malformatifs » Université Bourgogne Franche-Comté, Dijon, France
| | - Laurence Faivre
- INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes malformatifs » Université Bourgogne Franche-Comté, Dijon, France
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | | | - Rachel K Earl
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Tomasz Nowakowski
- Department of Anatomy, University of California, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Raphael A Bernier
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
1136
|
Iannone AF, De Marco García NV. The Emergence of Network Activity Patterns in the Somatosensory Cortex - An Early Window to Autism Spectrum Disorders. Neuroscience 2021; 466:298-309. [PMID: 33887384 DOI: 10.1016/j.neuroscience.2021.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022]
Abstract
Across mammalian species, patterned activity in neural populations is a prominent feature of developing sensory cortices. Numerous studies have long appreciated the diversity of these patterns, characterizing their differences in spatial and temporal dynamics. In the murine somatosensory cortex, neuronal co-activation is thought to guide the formation of sensory maps and prepare the cortex for sensory processing after birth. While pioneering studies deftly utilized slice electrophysiology and unit recordings to characterize correlated activity, a detailed understanding of the underlying circuits remains poorly understood. More recently, advances in in vivo calcium imaging in awake mouse pups and increasing genetic tractability of neuronal types have allowed unprecedented manipulation of circuit components at select developmental timepoints. These novel approaches have proven fundamental in uncovering the identity of neurons engaged in correlated activity during development. In particular, recent studies have highlighted interneurons as key in refining the spatial extent and temporal progression of patterned activity. Here, we discuss how emergent synchronous activity across the first postnatal weeks is shaped by underlying gamma aminobutyric acid (GABA)ergic contributors in the somatosensory cortex. Further, the importance of participation in specific activity patterns per se for neuronal maturation and perdurance will be of particular highlight in this survey of recent literature. Finally, we underscore how aberrant neuronal synchrony and disrupted inhibitory interneuron activity underlie sensory perturbations in neurodevelopmental disorders, particularly Autism Spectrum Disorders (ASDs), emphasizing the importance of future investigative approaches that incorporate the spatiotemporal features of patterned activity alongside the cellular components to probe disordered circuit assembly.
Collapse
Affiliation(s)
- Andrew F Iannone
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
1137
|
Jangjoo M, Goodman SJ, Choufani S, Trost B, Scherer SW, Kelley E, Ayub M, Nicolson R, Georgiades S, Crosbie J, Schachar R, Anagnostou E, Grunebaum E, Weksberg R. An Epigenetically Distinct Subset of Children With Autism Spectrum Disorder Resulting From Differences in Blood Cell Composition. Front Neurol 2021; 12:612817. [PMID: 33935932 PMCID: PMC8085304 DOI: 10.3389/fneur.2021.612817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that often involves impaired cognition, communication difficulties and restrictive, repetitive behaviors. ASD is extremely heterogeneous both clinically and etiologically, which represents one of the greatest challenges in studying the molecular underpinnings of ASD. While hundreds of ASD-associated genes have been identified that confer varying degrees of risk, no single gene variant accounts for >1% of ASD cases. Notably, a large number of ASD-risk genes function as epigenetic regulators, indicating potential epigenetic dysregulation in ASD. As such, we compared genome-wide DNA methylation (DNAm) in the blood of children with ASD (n = 265) to samples from age- and sex-matched, neurotypical controls (n = 122) using the Illumina Infinium HumanMethylation450 arrays. Results: While DNAm patterns did not distinctly separate ASD cases from controls, our analysis identified an epigenetically unique subset of ASD cases (n = 32); these individuals exhibited significant differential methylation from both controls than the remaining ASD cases. The CpG sites at which this subset was differentially methylated mapped to known ASD risk genes that encode proteins of the nervous and immune systems. Moreover, the observed DNAm differences were attributable to altered blood cell composition, i.e., lower granulocyte proportion and granulocyte-to-lymphocyte ratio in the ASD subset, as compared to the remaining ASD cases and controls. This ASD subset did not differ from the rest of the ASD cases in the frequency or type of high-risk genomic variants. Conclusion: Within our ASD cohort, we identified a subset of individuals that exhibit differential methylation from both controls and the remaining ASD group tightly associated with shifts in immune cell type proportions. This is an important feature that should be assessed in all epigenetic studies of blood cells in ASD. This finding also builds on past reports of changes in the immune systems of children with ASD, supporting the potential role of altered immunological mechanisms in the complex pathophysiology of ASD. The discovery of significant molecular and immunological features in subgroups of individuals with ASD may allow clinicians to better stratify patients, facilitating personalized interventions and improved outcomes.
Collapse
Affiliation(s)
- Maryam Jangjoo
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah J. Goodman
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brett Trost
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W. Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Kelley
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster University, Hamilton, ON, Canada
| | - Jennifer Crosbie
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Eyal Grunebaum
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
1138
|
Targeted sequencing and integrative analysis to prioritize candidate genes in neurodevelopmental disorders. Mol Neurobiol 2021; 58:3863-3873. [PMID: 33860439 PMCID: PMC8280036 DOI: 10.1007/s12035-021-02377-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/29/2021] [Indexed: 11/09/2022]
Abstract
Neurodevelopmental disorders (NDDs) are a group of diseases characterized by high heterogeneity and frequently co-occurring symptoms. The mutational spectrum in patients with NDDs is largely incomplete. Here, we sequenced 547 genes from 1102 patients with NDDs and validated 1271 potential functional variants, including 108 de novo variants (DNVs) in 78 autosomal genes and seven inherited hemizygous variants in six X chromosomal genes. Notably, 36 of these 78 genes are the first to be reported in Chinese patients with NDDs. By integrating our genetic data with public data, we prioritized 212 NDD candidate genes with FDR < 0.1, including 17 novel genes. The novel candidate genes interacted or were co-expressed with known candidate genes, forming a functional network involved in known pathways. We highlighted MSL2, which carried two de novo protein-truncating variants (p.L192Vfs*3 and p.S486Ifs*11) and was frequently connected with known candidate genes. This study provides the mutational spectrum of NDDs in China and prioritizes 212 NDD candidate genes for further functional validation and genetic counseling.
Collapse
|
1139
|
Towards a Change in the Diagnostic Algorithm of Autism Spectrum Disorders: Evidence Supporting Whole Exome Sequencing as a First-Tier Test. Genes (Basel) 2021; 12:genes12040560. [PMID: 33921431 PMCID: PMC8068856 DOI: 10.3390/genes12040560] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and extremely heterogeneous neurodevelopmental disorder (NDD) with a strong genetic component. In recent years, the clinical relevance of de novo mutations to the aetiology of ASD has been demonstrated. Current guidelines recommend chromosomal microarray (CMA) and a FMR1 testing as first-tier tests, but there is increasing evidence that support the use of NGS for the diagnosis of NDDs. Specifically in ASD, it has not been extensively evaluated and, thus, we performed and compared the clinical utility of CMA, FMR1 testing, and/or whole exome sequencing (WES) in a cohort of 343 ASD patients. We achieved a global diagnostic rate of 12.8% (44/343), the majority of them being characterised by WES (33/44; 75%) compared to CMA (9/44; 20.4%) or FMR1 testing (2/44; 4.5%). Taking into account the age at which genetic testing was carried out, we identified a causal genetic alteration in 22.5% (37/164) of patients over 5 years old, but only in 3.9% (7/179) of patients under this age. Our data evidence the higher diagnostic power of WES compared to CMA in the study of ASD and support the implementation of WES as a first-tier test for the genetic diagnosis of this disorder, when there is no suspicion of fragile X syndrome.
Collapse
|
1140
|
Vieira MM, Jeong J, Roche KW. The role of NMDA receptor and neuroligin rare variants in synaptic dysfunction underlying neurodevelopmental disorders. Curr Opin Neurobiol 2021; 69:93-104. [PMID: 33823469 DOI: 10.1016/j.conb.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022]
Abstract
Many genes encoding synaptic proteins are associated with neurodevelopmental disorders (NDDs) such as autism spectrum disorders (ASDs), intellectual disability (ID), and epilepsy. Here we review recent studies on the synaptic effects of disease-associated rare variants identified in two families of synaptic proteins: NMDA receptors (NMDARs) and the postsynaptic adhesion molecules neuroligins (NLGNs). Many NMDAR subunit genes (GRINs) are highly intolerant to variation, and both gain-of-function (GOF) and loss-of-function (LOF) variants are implicated in disease. NLGN genes are also associated with ASDs, and in some cases, contribute to the male bias identified in these patients. Understanding the molecular basis of synaptic dysfunction of rare variants in these genes will help the design of new therapeutic approaches.
Collapse
Affiliation(s)
- Marta Mota Vieira
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jaehoon Jeong
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
1141
|
Eaton M, Zhang J, Ma Z, Park AC, Lietzke E, Romero CM, Liu Y, Coleman ER, Chen X, Xiao T, Que Z, Lai S, Wu J, Lee JH, Palant S, Nguyen HP, Huang Z, Skarnes WC, Koss WA, Yang Y. Generation and basic characterization of a gene-trap knockout mouse model of Scn2a with a substantial reduction of voltage-gated sodium channel Na v 1.2 expression. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12725. [PMID: 33369088 DOI: 10.1111/gbb.12725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Large-scale genetic studies revealed SCN2A as one of the most frequently mutated genes in patients with neurodevelopmental disorders. SCN2A encodes for the voltage-gated sodium channel isoform 1.2 (Nav 1.2) expressed in the neurons of the central nervous system. Homozygous knockout (null) of Scn2a in mice is perinatal lethal, whereas heterozygous knockout of Scn2a (Scn2a+/- ) results in mild behavior abnormalities. The Nav 1.2 expression level in Scn2a+/- mice is reported to be around 50-60% of the wild-type (WT) level, which indicates that a close to 50% reduction of Nav 1.2 expression may not be sufficient to lead to major behavioral phenotypes in mice. To overcome this barrier, we characterized a novel mouse model of severe Scn2a deficiency using a targeted gene-trap knockout (gtKO) strategy. This approach produces viable homozygous mice (Scn2agtKO/gtKO ) that can survive to adulthood, with about a quarter of Nav 1.2 expression compared to WT mice. Innate behaviors like nesting and mating were profoundly disrupted in Scn2agtKO/gtKO mice. Notably, Scn2agtKO/gtKO mice have a significantly decreased center duration compared to WT in the open field test, suggesting anxiety-like behaviors in a novel, open space. These mice also have decreased thermal and cold tolerance. Additionally, Scn2agtKO/gtKO mice have increased fix-pattern exploration in the novel object exploration test and a slight increase in grooming, indicating a detectable level of repetitive behaviors. They bury little to no marbles and have decreased interaction with novel objects. These Scn2a gene-trap knockout mice thus provide a unique model to study pathophysiology associated with severe Scn2a deficiency.
Collapse
Affiliation(s)
- Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhixiong Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Anthony C Park
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Emma Lietzke
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Chloé M Romero
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Yushuang Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Emily R Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Shirong Lai
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Ji Hea Lee
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Sophia Palant
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Huynhvi P Nguyen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - William C Skarnes
- Department of Cellular Engineering, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Wendy A Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
- Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
1142
|
Castroflorio E, den Hoed J, Svistunova D, Finelli MJ, Cebrian-Serrano A, Corrochano S, Bassett AR, Davies B, Oliver PL. The Ncoa7 locus regulates V-ATPase formation and function, neurodevelopment and behaviour. Cell Mol Life Sci 2021; 78:3503-3524. [PMID: 33340069 PMCID: PMC8038996 DOI: 10.1007/s00018-020-03721-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/08/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Members of the Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc) protein family are associated with multiple neurodevelopmental disorders, although their exact roles in disease remain unclear. For example, nuclear receptor coactivator 7 (NCOA7) has been associated with autism, although almost nothing is known regarding the mode-of-action of this TLDc protein in the nervous system. Here we investigated the molecular function of NCOA7 in neurons and generated a novel mouse model to determine the consequences of deleting this locus in vivo. We show that NCOA7 interacts with the cytoplasmic domain of the vacuolar (V)-ATPase in the brain and demonstrate that this protein is required for normal assembly and activity of this critical proton pump. Neurons lacking Ncoa7 exhibit altered development alongside defective lysosomal formation and function; accordingly, Ncoa7 deletion animals exhibited abnormal neuronal patterning defects and a reduced expression of lysosomal markers. Furthermore, behavioural assessment revealed anxiety and social defects in mice lacking Ncoa7. In summary, we demonstrate that NCOA7 is an important V-ATPase regulatory protein in the brain, modulating lysosomal function, neuronal connectivity and behaviour; thus our study reveals a molecular mechanism controlling endolysosomal homeostasis that is essential for neurodevelopment.
Collapse
Affiliation(s)
| | - Joery den Hoed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Daria Svistunova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | | - Silvia Corrochano
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
- Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos, Calle del Prof Martín Lagos s/n, 28040, Madrid, Spain
| | - Andrew R Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Peter L Oliver
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
1143
|
Wang T, Zhang Y, Liu L, Wang Y, Chen H, Fan T, Li J, Xia K, Sun Z. Targeted sequencing and integrative analysis of 3,195 Chinese patients with neurodevelopmental disorders prioritized 26 novel candidate genes. J Genet Genomics 2021; 48:312-323. [PMID: 33994118 DOI: 10.1016/j.jgg.2021.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
Neurodevelopmental disorders (NDDs) are a set of complex disorders characterized by diverse and co-occurring clinical symptoms. The genetic contribution in patients with NDDs remains largely unknown. Here, we sequence 519 NDD-related genes in 3,195 Chinese probands with neurodevelopmental phenotypes and identify 2,522 putative functional mutations consisting of 137 de novo mutations (DNMs) in 86 genes and 2,385 rare inherited mutations (RIMs) with 22 X-linked hemizygotes in 13 genes, 2 homozygous mutations in 2 genes and 23 compound heterozygous mutations in 10 genes. Furthermore, the DNMs of 16,807 probands with NDDs are retrieved from public datasets and combine in an integrated analysis with the mutation data of our Chinese NDD probands by taking 3,582 in-house controls of Chinese origin as background. We prioritize 26 novel candidate genes. Notably, six of these genes - ITSN1, UBR3, CADM1, RYR3, FLNA, and PLXNA3 - preferably contribute to autism spectrum disorders (ASDs), as demonstrated by high co-expression and/or interaction with ASD genes confirmed via rescue experiments in a mouse model. Importantly, these genes are differentially expressed in the ASD cortex in a significant manner and involved in ASD-associated networks. Together, our study expands the genetic spectrum of Chinese NDDs, further facilitating both basic and translational research.
Collapse
Affiliation(s)
- Tao Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410083, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; DIAGenes Precision Medicine, Beijing 102600, China
| | - Yi Zhang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China
| | - Liqui Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiqian Chen
- Shanghai Adeptus Biotechnology, Shanghai 200126, China
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinchen Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha Hunan, 410083, China.
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410083, China; CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai 200031, China; School of Basic Medical Science, Central South University, Changsha, Hunan, 410083, China.
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
1144
|
Springer K, Varghese N, Tzingounis AV. Flexible Stoichiometry: Implications for KCNQ2- and KCNQ3-Associated Neurodevelopmental Disorders. Dev Neurosci 2021; 43:191-200. [PMID: 33794528 PMCID: PMC8440324 DOI: 10.1159/000515495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022] Open
Abstract
KCNQ2 and KCNQ3 pathogenic channel variants have been associated with a spectrum of developmentally regulated diseases that vary in age of onset, severity, and whether it is transient (i.e., benign familial neonatal seizures) or long-lasting (i.e., developmental and epileptic encephalopathy). KCNQ2 and KCNQ3 channels have also emerged as a target for novel antiepileptic drugs as their activation could reduce epileptic activity. Consequently, a great effort has taken place over the last 2 decades to understand the mechanisms that control the assembly, gating, and modulation of KCNQ2 and KCNQ3 channels. The current view that KCNQ2 and KCNQ3 channels assemble as heteromeric channels (KCNQ2/3) forms the basis of our understanding of KCNQ2 and KCNQ3 channelopathies and drug design. Here, we review the evidence that supports the formation of KCNQ2/3 heteromers in neurons. We also highlight functional and transcriptomic studies that suggest channel composition might not be necessarily fixed in the nervous system, but rather is dynamic and flexible, allowing some neurons to express KCNQ2 and KCNQ3 homomers. We propose that to fully understand KCNQ2 and KCNQ3 channelopathies, we need to adopt a more flexible view of KCNQ2 and KCNQ3 channel stoichiometry, which might differ across development, brain regions, cell types, and disease states.
Collapse
Affiliation(s)
- Kristen Springer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Nissi Varghese
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Anastasios V Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
1145
|
Jin C, Chen M, Lin D, Sun W. Cell type-aware analysis of RNA-seq data. NATURE COMPUTATIONAL SCIENCE 2021; 1:253-261. [PMID: 34957416 PMCID: PMC8697413 DOI: 10.1038/s43588-021-00055-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Most tissue samples are composed of different cell types. Differential expression analysis without accounting for cell type composition cannot separate the changes due to cell type composition or cell type-specific expression. We propose a computational framework to address these limitations: Cell Type Aware analysis of RNA-seq (CARseq). CARseq employs a negative binomial distribution that appropriately models the count data from RNA-seq experiments. Simulation studies show that CARseq has substantially higher power than a linear model-based approach and it also provides more accurate estimate of the rankings of differentially expressed genes. We have applied CARseq to compare gene expression of schizophrenia/autism subjects versus controls, and identified the cell types underlying the difference and similarities of these two neuron-developmental diseases. Our results are consistent with the results from differential expression analysis using single cell RNA-seq data.
Collapse
Affiliation(s)
- Chong Jin
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | | | - Danyu Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | - Wei Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill
- Public Health Science Division, Fred Hutchinson Cancer Research Center
- Department of Biostatistics, University of Washington
| |
Collapse
|
1146
|
Moreno-De-Luca D, Martin CL. All for one and one for all: heterogeneity of genetic etiologies in neurodevelopmental psychiatric disorders. Curr Opin Genet Dev 2021; 68:71-78. [PMID: 33773394 DOI: 10.1016/j.gde.2021.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022]
Abstract
Alexandre Dumas' famous phrase All for One and One for All recapitulates our current understanding of the genomic architecture of neurodevelopmental psychiatric disorders (NPD), like autism Spectrum disorder, bipolar disorder, and schizophrenia. Many rare genomic variants of large effect size have been identified; all of them together can explain a significant proportion of NPD. In parallel, one rare genomic variant can cause all of the above NPD. Finally, common genomic variants of individually small effect size can be combined to further explain risk for NPD. How do we reconcile different genomic variants accounting for one clinical diagnosis, and different clinical diagnoses arising from a single genomic variant? Here, we discuss a framework to understand genetic and clinical heterogeneity in NPD.
Collapse
Affiliation(s)
- Daniel Moreno-De-Luca
- Genomic Psychiatry Consultation Service, Verrecchia Clinic for Children with Autism and Developmental Disabilities, Bradley Hospital, Providence, RI, United States; Division of Child and Adolescent Psychiatry, Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, United States.
| | - Christa Lese Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, United States; Genomic Medicine Institute, Geisinger, Danville, PA, United States.
| |
Collapse
|
1147
|
Agarwala S, Ramachandra NB. Role of CNTNAP2 in autism manifestation outlines the regulation of signaling between neurons at the synapse. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00138-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Autism is characterized by high heritability and a complex genetic mutational landscape with restricted social behavior and impaired social communication. Whole-exome sequencing is a reliable tool to pinpoint variants for unraveling the disease pathophysiology. The present meta-analysis was performed using 222 whole-exome sequences deposited by Simons Simplex Collection (SSC) at the European Nucleotide Archive. This sample cohort was used to identify causal mutations in autism-specific genes to create a mutational landscape focusing on the CNTNAP2 gene.
Results
The authors account for the identification of 15 high confidence genes with 24 variants for autism with Simons Foundation Autism Research Initiative (SFARI) gene scoring. These genes encompass critical autism pathways such as neuron development, synapse complexity, cytoskeleton, and microtubule activation. Among these 15 genes, overlapping variants were present across multiple samples: KMT2C in 167 cases, CNTNAP2 in 192 samples, CACNA1C in 152 cases, and SHANK3 in 124 cases. Pathway analysis identifies clustering and interplay of autism genes—WDFY3, SHANK2, CNTNAP2, HOMER1, SYNGAP1, and ANK2 with CNTNAP2. These genes coincide across autism-relevant pathways, namely abnormal social behavior and intellectual and cognitive impairment. Based on multiple layers of selection criteria, CNTNAP2 was chosen as the master gene for the study. It is an essential gene for autism with speech-language delays, a typical phenotype in most cases under study. It showcases nine variants across multiple samples with one damaging variant, T589P, with a GERP rank score range of 0.065–0.95. This unique variant was present across 86.5% of the samples impairing the epithelial growth factor (EGF) domain. Established microRNA (miRNA) genes hsa-mir-548aq and hsa-mir-548f were mutated within the CNTNAP2 region, adding to the severity. The mutated protein showed reduced stability by 0.25, increased solvent accessibility by 9%, and reduced depth by 0.2, which rendered the protein non-functional. Secondary physical interactors of CNTNAP2 through CNTN2 proteins were mutated in the samples, further intensifying the severity.
Conclusion
CNTNAP2 has been identified as a master gene in autism manifestation responsible for speech-language delay by impairing the EGF protein domain and downstream cascade. The decrease in EGF is correlated with vital autism symptoms, especially language disabilities.
Collapse
|
1148
|
Comparison of the diagnostic yield of aCGH and genome-wide sequencing across different neurodevelopmental disorders. NPJ Genom Med 2021; 6:25. [PMID: 33767182 PMCID: PMC7994713 DOI: 10.1038/s41525-021-00188-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Most consensus recommendations for the genetic diagnosis of neurodevelopmental disorders (NDDs) do not include the use of next generation sequencing (NGS) and are still based on chromosomal microarrays, such as comparative genomic hybridization array (aCGH). This study compares the diagnostic yield obtained by aCGH and clinical exome sequencing in NDD globally and its spectrum of disorders. To that end, 1412 patients clinically diagnosed with NDDs and studied with aCGH were classified into phenotype categories: global developmental delay/intellectual disability (GDD/ID); autism spectrum disorder (ASD); and other NDDs. These categories were further subclassified based on the most frequent accompanying signs and symptoms into isolated forms, forms with epilepsy; forms with micro/macrocephaly and syndromic forms. Two hundred and forty-five patients of the 1412 were subjected to clinical exome sequencing. Diagnostic yield of aCGH and clinical exome sequencing, expressed as the number of solved cases, was compared for each phenotype category and subcategory. Clinical exome sequencing was superior than aCGH for all cases except for isolated ASD, with no additional cases solved by NGS. Globally, clinical exome sequencing solved 20% of cases (versus 5.7% by aCGH) and the diagnostic yield was highest for all forms of GDD/ID and lowest for Other NDDs (7.1% versus 1.4% by aCGH) and ASD (6.1% versus 3% by aCGH). In the majority of cases, diagnostic yield was higher in the phenotype subcategories than in the mother category. These results suggest that NGS could be used as a first-tier test in the diagnostic algorithm of all NDDs followed by aCGH when necessary.
Collapse
|
1149
|
Hu C, Feng P, Yang Q, Xiao L. Clinical and Neurobiological Aspects of TAO Kinase Family in Neurodevelopmental Disorders. Front Mol Neurosci 2021; 14:655037. [PMID: 33867937 PMCID: PMC8044823 DOI: 10.3389/fnmol.2021.655037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the complexity of neurodevelopmental disorders (NDDs), from their genotype to phenotype, in the last few decades substantial progress has been made in understanding their pathophysiology. Recent accumulating evidence shows the relevance of genetic variants in thousand and one (TAO) kinases as major contributors to several NDDs. Although it is well-known that TAO kinases are a highly conserved family of STE20 kinase and play important roles in multiple biological processes, the emerging roles of TAO kinases in neurodevelopment and NDDs have yet to be intensively discussed. In this review article, we summarize the potential roles of the TAO kinases based on structural and biochemical analyses, present the genetic data from clinical investigations, and assess the mechanistic link between the mutations of TAO kinases, neuropathology, and behavioral impairment in NDDs. We then offer potential perspectives from basic research to clinical therapies, which may contribute to fully understanding how TAO kinases are involved in NDDs.
Collapse
Affiliation(s)
- Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Pan Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qian Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
1150
|
Zhou Y, Liu J, Chu L, Dong M, Feng L. Whole-Exome Sequencing Reveals Novel Variations in Patients with Familial Von Hippel-Lindau Syndrome. World Neurosurg 2021; 150:e696-e704. [PMID: 33774214 DOI: 10.1016/j.wneu.2021.03.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Von Hippel-Lindau (VHL) syndrome is a rare disease that occurs in an autosomal-dominant genetic pattern. Due to the high genetic variability of VHL diseases, current studies have limited clinical value. Moreover, casual genetic variations in patients with VHL syndrome are still unclear. METHODS Here, we performed whole-exome sequencing of 25 individuals to identify reliable disease-related variations. Systemic computational analysis was performed for variant detection, and Sanger sequencing was used to validate detected mutations. RESULTS Most of the known mutations in the VHL gene were observed in the studied population. In addition, a large fragment deletion in VHL exon 2 in the immediate family members of the last family was detected. This had not been reported earlier. Moreover, we identified 3 novel mutation sites in the MAP2K3 gene that may be involved in the occurrence and development of the VHL disease. CONCLUSIONS These results demonstrated that the heterogeneous nature of VHL syndrome and novel mutational signatures may help to improve the diagnostic ability of VHL syndrome.
Collapse
Affiliation(s)
- Yuhao Zhou
- Guizhou Medical University, Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Jian Liu
- Guizhou Medical University, Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, P. R. China.
| | - Liangzhao Chu
- Department of Neurosurgery, Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Minghao Dong
- Department of Neurosurgery, Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Luqian Feng
- Department of Neurosurgery, Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| |
Collapse
|