1101
|
Surovaya AN, Burckhardt G, Grokhovsky SL, Birch-Hirschfeld E, Nikitin AM, Fritzsche H, Zimmer C, Gursky GV. Binding of bis-linked netropsin derivatives in the parallel-stranded hairpin form to DNA. J Biomol Struct Dyn 2001; 18:689-701. [PMID: 11334106 DOI: 10.1080/07391102.2001.10506699] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cis-diammine Pt(II)- bridged bis-netropsin and oligomethylene-bridged bis-netropsin in which two monomers are linked in a tail-to-tail manner bind to the DNA oligomer with the sequence 5'-CCTATATCC-3' in a parallel-stranded hairpin form with a stoichiometry 1:1. The difference circular dichroism (CD) spectra characteristic of binding of these ligands in the hairpin form are similar. They differ from CD patterns obtained for binding to the same duplex of another bis-netropsin in which two netropsin moieties were linked in a head-to-tail manner. This reflects the fact that tail-to-tail and head-to-tail bis-netropsins use parallel and antiparallel side-by-side motifs, respectively, for binding to DNA in the hairpin forms. The binding affinity of cis-diammine Pt(II)-bridged bis-netropsin in the hairpin form to DNA oligomers with nucleotide sequences 5'-CCTATATCC-3' (I), 5'-CCTTAATCC-3' (II), 5'-CCTTATTCC-3' (III), 5'-CCTTTTTCC-3' (IV) and 5'-CCAATTTCC-3' (V) decreases in the order I = II > III > IV > V . The binding of oligomethylene-bridged bis-netropsin in the hairpin form follows a similar hierarchy. An opposite order of sequence preferences is observed for partially bonded monodentate binding mode of the synthetic ligand.
Collapse
Affiliation(s)
- A N Surovaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | | | | |
Collapse
|
1102
|
Valverde AM, Mur C, Pons S, Alvarez AM, White MF, Kahn CR, Benito M. Association of insulin receptor substrate 1 (IRS-1) y895 with Grb-2 mediates the insulin signaling involved in IRS-1-deficient brown adipocyte mitogenesis. Mol Cell Biol 2001; 21:2269-80. [PMID: 11259577 PMCID: PMC86861 DOI: 10.1128/mcb.21.7.2269-2280.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently generated immortalized fetal brown adipocyte cell lines from insulin receptor substrate 1 (IRS-1) knockout mice and demonstrated an impairment in insulin-induced lipid synthesis as compared to wild-type cell lines. In this study, we investigated the consequences of IRS-1 deficiency on mitogenesis in response to insulin. The lack of IRS-1 resulted in the inability of insulin-stimulated IRS-1-deficient brown adipocytes to increase DNA synthesis and enter into S/G2/M phases of the cell cycle. These cells showed a severe impairment in activating mitogen-activated protein kinase kinase (MEK1/2) and p42-p44 mitogen-activated protein kinase (MAPK) upon insulin stimulation. IRS-1-deficient cells also lacked tyrosine phosphorylation of SHC and showed no SHC-Grb-2 association in response to insulin. The mitogenic response to insulin could be partially restored by enhancing IRS-2 tyrosine phosphorylation and its association with Grb-2 by inhibition of phosphatidylinositol 3-kinase activity through a feedback mechanism. Reconstitution of IRS-1-deficient brown adipocytes with wild-type IRS-1 restored insulin-induced IRS-1 and SHC tyrosine phosphorylation and IRS-1-Grb-2, IRS-1-SHC, and SHC-Grb-2 associations, leading to the activation of MAPK and enhancement of DNA synthesis. Reconstitution of IRS-1-deficient brown adipocytes with the IRS-1 mutant Tyr895Phe, which lacks IRS-1-Grb-2 binding, restored SHC-IRS-1 association and SHC-Grb-2 association. However, the lack of IRS-1-Grb-2 association impaired MAPK activation and DNA synthesis in insulin-stimulated mutant cells. These data provide strong evidence for an essential role of IRS-1 and its direct association with Grb-2 in the insulin signaling pathway leading to MAPK activation and mitogenesis in brown adipocytes.
Collapse
Affiliation(s)
- A M Valverde
- Departamento de Bioquímica y Biología Molecular, Centro Mixto CSIC/UCM, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
1103
|
Koga Y, Yoshida N, Kobayashi K, Yamada Y. Development of a three-dimensional jaw-tracking system implanted in the freely moving mouse. Med Eng Phys 2001; 23:201-6. [PMID: 11410385 DOI: 10.1016/s1350-4533(01)00038-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A high-resolution mandibular tracking system was designed and tested in a freely moving mouse. A sensor unit, which consisted of four small magnetic sensors, was employed to trace small magnet movements in the three-dimensional space. After the sensor's output-to-displacement transformation equations were obtained from a multiple regression analysis of pre-experimental calibration data, the magnet and the sensors were transferred to the mouse, being kept at the same configuration as determined in the calibration system. In order to measure the three-dimensional jaw movements, the magnet was glued on the mandibular surface of the mouse and the sensor unit was implanted in the nasal bone. Jaw-movement trajectories were obtained as electrical signals from the sensors after being compensated by the output-to-displacement transformation equations of the sensors with a personal computer. This sensor system, applied to the freely moving mouse, could trace the jaw trajectories with an accuracy of better than 20 microm in three-dimensional space. Consequently, the typical pattern of the rhythmical jaw movements of the mouse during mastication was obtained. The mouse protruded the mandible to the most anterior position in the jaw-opening phase and retruded to it the most posterior position in the jaw-closing phase. This tracking system may also be applied to other small animals.
Collapse
Affiliation(s)
- Y Koga
- Department of Orthodontics, Nagasaki University School of Dentistry, 852-8588, Nagasaki, Japan.
| | | | | | | |
Collapse
|
1104
|
Nakae J, Kido Y, Kitamura T, Accili D. Glucose homeostasis: lessons from knockout mice. CURRENT OPINION IN ENDOCRINOLOGY & DIABETES 2001; 8:82-87. [DOI: 10.1097/00060793-200104000-00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
1105
|
Egawa K, Maegawa H, Shimizu S, Morino K, Nishio Y, Bryer-Ash M, Cheung AT, Kolls JK, Kikkawa R, Kashiwagi A. Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in l6 myocytes and Fao hepatoma cells. J Biol Chem 2001; 276:10207-11. [PMID: 11136729 DOI: 10.1074/jbc.m009489200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin signaling is regulated by tyrosine phosphorylation of the signaling molecules, such as the insulin receptor and insulin receptor substrates (IRSs). Therefore, the balance between protein-tyrosine kinases and protein-tyrosine phosphatase activities is thought to be important in the modulation of insulin signaling in insulin-resistant states. We thus employed the adenovirus-mediated gene transfer technique, and we analyzed the effect of overexpression of a wild-type protein-tyrosine phosphatase-1B (PTP1B) on insulin signaling in both L6 myocytes and Fao cells. In both cells, PTP1B overexpression blocked insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1 by more than 70% and resulted in a significant inhibition of the association between IRS-1 and the p85 subunit of phosphatidylinositol 3-kinase and Akt phosphorylation as well as mitogen-activated protein kinase phosphorylation. Moreover, insulin-stimulated glycogen synthesis was also inhibited by PTP1B overexpression in both cells. These effects were specific for insulin signaling, because platelet-derived growth factor (PDGF)-stimulated PDGF receptor tyrosine phosphorylation and Akt phosphorylation were not inhibited by PTP1B overexpression. The present findings demonstrate that PTP1B negatively regulates insulin signaling in L6 and Fao cells, suggesting that PTP1B plays an important role in insulin resistance in muscle and liver.
Collapse
Affiliation(s)
- K Egawa
- Third Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1106
|
Katahira H, Nagamatsu S, Ozawa S, Nakamichi Y, Yamaguchi S, Furukawa H, Takizawa M, Yoshimoto K, Itagaki E, Ishida H. Acute inhibition of proinsulin biosynthesis at the translational level by palmitic acid. Biochem Biophys Res Commun 2001; 282:507-10. [PMID: 11401488 DOI: 10.1006/bbrc.2001.4608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of fatty acids on pancreatic beta cell are still controversial. Here, in order to determine whether free fatty acids acutely affect beta cell functions, we studied the effect of palmitic acid (PA) on proinsulin biosynthesis and insulin secretion using rat islets in vitro. Exposure of islets to PA for 1 h reduced glucose-stimulated proinsulin biosynthesis in a dose-dependent manner; in contrast, no change in insulin secretion was observed after 1 h incubation with PA. Furthermore, PA treatment did not cause any change of preproinsulin mRNA level during 1-h incubation period. Thus, our data indicate that PA primarily suppresses glucose-induced proinsulin biosynthesis within 1 h at the translational level.
Collapse
Affiliation(s)
- H Katahira
- Third Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1107
|
Zhang J, Ou J, Bashmakov Y, Horton JD, Brown MS, Goldstein JL. Insulin inhibits transcription of IRS-2 gene in rat liver through an insulin response element (IRE) that resembles IREs of other insulin-repressed genes. Proc Natl Acad Sci U S A 2001; 98:3756-61. [PMID: 11259670 PMCID: PMC31125 DOI: 10.1073/pnas.071054598] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent data indicate that sustained elevations in plasma insulin suppress the mRNA for IRS-2, a component of the insulin signaling pathway in liver, and that this deficiency contributes to hepatic insulin resistance and inappropriate gluconeogenesis. Here, we use nuclear run-on assays to show that insulin inhibits transcription of the IRS-2 gene in the livers of intact rats. Insulin also inhibited transcription of a reporter gene driven by the human IRS-2 promoter that was transfected into freshly isolated rat hepatocytes. The human promoter contains a heptanucleotide sequence, TGTTTTG, that is identical to the insulin response element (IRE) identified previously in the promoters of insulin-repressed genes. Single base pair substitutions in this IRE decreased transcription of the IRS-2-driven reporter in the absence of insulin and abolished insulin-mediated repression. We conclude that insulin represses transcription of the IRS-2 gene by blocking the action of a positive factor that binds to the IRE. Sustained repression of IRS-2, as occurs in chronic hyperinsulinemia, contributes to hepatic insulin resistance and accelerates the development of the diabetic state.
Collapse
Affiliation(s)
- J Zhang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA
| | | | | | | | | | | |
Collapse
|
1108
|
McCarthy M, Menzel S. The genetics of type 2 diabetes. Br J Clin Pharmacol 2001; 51:195-9. [PMID: 11298064 PMCID: PMC2015023 DOI: 10.1046/j.1365-2125.2001.00346.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 11/14/2000] [Indexed: 01/05/2023] Open
Affiliation(s)
- M McCarthy
- Genetics and Genomics Research Institute, Imperial College School of Medicine and MRC-Clinical Sciences Centre, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | | |
Collapse
|
1109
|
Abstract
Insulin resistance is thought to be the primary defect in the pathophysiology of type 2 diabetes. Thus, understanding the cellular mechanisms of insulin action may contribute significantly to developing new treatments for this disease. Although the effects of insulin on glucose and lipid metabolism are well documented, gaps remain in our understanding of the precise molecular mechanisms of signal transduction for the hormone. One potential clue to understanding the unique cellular effects of insulin may lie in the compartmentalization of signaling molecules and metabolic enzymes. We review this evidence, and speculate on how PI-3 kinase-independent and -dependent signaling pathways both diverge from the insulin receptor and converge at discrete targets to insure the specificity of insulin action.
Collapse
Affiliation(s)
- C A Baumann
- Department of Cell Biology, Parke-Davis Pharmaceutical Research and the Department of Physiology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
1110
|
Leibiger B, Leibiger IB, Moede T, Kemper S, Kulkarni RN, Kahn CR, de Vargas LM, Berggren PO. Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. Mol Cell 2001; 7:559-70. [PMID: 11463381 DOI: 10.1016/s1097-2765(01)00203-9] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insulin signaling is mediated by a complex network of diverging and converging pathways, with alternative proteins and isoforms at almost every step in the process. We show here that insulin activates the transcription of its own gene and that of the beta cell glucokinase gene (betaGK) by different mechanisms. Whereas insulin gene transcription is promoted by signaling through insulin receptor A type (Ex11-), PI3K class Ia, and p70s6k, insulin stimulates the betaGK gene by signaling via insulin receptor B type (Ex11+), PI3K class II-like activity, and PKB (c-Akt). Our data provide evidence for selectivity in insulin action via the two isoforms of the insulin receptor, the molecular basis being preferential signaling through different PI3K and protein kinases.
Collapse
Affiliation(s)
- B Leibiger
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
1111
|
Wemmer DE. Designed sequence-specific minor groove ligands. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:439-61. [PMID: 10940255 DOI: 10.1146/annurev.biophys.29.1.439] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the past decade, a general design for sequence-specific minor groove ligands has evolved, based on the natural products distamycin and netropsin. By utilizing a basic set of design rules for connecting pyrrole, imidazole, and hydroxypyrrole modules, new ligands can be prepared to target almost any sequence of interest with both high affinity and specificity. In this review we present the design rules with a brief history of how they evolved. The structural basis for sequence-specific recognition is explained, together with developments that allow linking of recognition modules that enable targeting of long DNA sequences. Examples of the affinity and specificity that can be achieved with a number of variations on the basic design are given. Recently these molecules have been used to compete with proteins both in vitro and in vivo, and a brief description of the experimental results are given.
Collapse
Affiliation(s)
- D E Wemmer
- Department of Chemistry, University of California, Berkeley, USA.
| |
Collapse
|
1112
|
Hwang S, Tamilarasu N, Rana TM. Selection of HIV replication inhibitors: chemistry and biology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:167-97. [PMID: 11013764 DOI: 10.1016/s1054-3589(00)49027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- S Hwang
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
1113
|
Abstract
Replication of human immunodeficiency virus type 1 (HIV-1) requires specific interactions of Tat protein with the transactivation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5'-end of all HIV mRNAs. Here we report that two TAR RNA-binding peptidomimetics, oligourea and oligocarbamate, inhibit transcriptional activation by Tat protein in human cells with an IC50 of approximately 0.5 and 1 microM, respectively. Peptidomimetics that can target specific RNA structures provide novel molecules that can be used to control cellular processes involving protein-RNA interactions in vivo.
Collapse
Affiliation(s)
- N Tamilarasu
- Department of Pharmacology, Robert Wood Johnson Medical School, and Molecular Biosciences Graduate Program at Rutgers State University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
1114
|
Affiliation(s)
- A R Saltiel
- Department of Medicine, Life Sciences Institute, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| |
Collapse
|
1115
|
Hiraku Y, Oikawa S, Kuroki K, Sugiyama H, Saito I, Kawanishi S. Amplification of bleomycin-induced DNA cleavage at cytosine residues 3' to GGG sequences by pyrrole triamide. Biochem Pharmacol 2001; 61:351-6. [PMID: 11172740 DOI: 10.1016/s0006-2952(00)00563-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the amplification of bleomycin-induced DNA cleavage by synthetic triamides containing N-methylpyrrole (Py) and/or N-methylimidazole (Im), PyPyPy, PyPyIm, PyImPy, and PyImIm, using 32P-labeled DNA fragments obtained from the human c-Ha-ras-1 and p53 genes. Peplomycin, a bleomycin analog, plus Fe(II) caused DNA cleavage at the 5'-GC-3' and 5'-GT-3' sequences (damaged bases are underlined). The addition of PyPyPy dramatically enhanced the cleavage, particularly at cytosine residues 3' to consecutive guanines. Alteration in the site specificity was not observed with other triamides (PyPyIm, PyImPy, and PyImIm). DNase I footprinting revealed that PyPyPy bound to the sites adjacent to the sites where DNA cleavage was enhanced by PyPyPy, and that PyPyPy enhanced DNase I-induced cleavage in GC-rich regions. These findings suggest that binding of PyPyPy to the DNA minor groove changes the DNA conformation to allow peplomycin to cleave DNA more efficiently at GC-rich sequences, resulting in intensive site-specific DNA cleavage particularly at cytosines at the 3'-side of polyguanines. The present study on amplifiers of antitumor drugs would appear to offer a novel approach to the establishment of more effective chemotherapy.
Collapse
Affiliation(s)
- Y Hiraku
- Department of Hygiene, Mie University School of Medicine, Tsu, 514-8507, Mie, Japan
| | | | | | | | | | | |
Collapse
|
1116
|
Abstract
Type 2 diabetes is caused by genetic and environmental factors that affect the ability of the organism to respond to insulin. This impairment results from decreased insulin action in target tissues and insulin production in beta cells. Genetic factors play a key role in the development of type 2 diabetes. However, the inheritance of diabetes is non-Mendelian in nature because of genetic heterogeneity, polygenic pathogenesis, and incomplete penetrance. Novel insight into this complex process has been obtained from 'designer' mice bearing targeted mutations in genes of the insulin action and insulin secretion pathways. These mutant mice are beginning to challenge established paradigms in the pathogenesis of type 2 diabetes and to shed light on the genetic interactions underlying its complex inheritance. Here we review recent progress in the field and assess its relevance to the pathogenesis of diabetes in humans.
Collapse
Affiliation(s)
- J Nakae
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians & Surgeons of Columbia University, New York, NY, USA
| | | | | |
Collapse
|
1117
|
Archer EA, Gong H, Krische MJ. Hydrogen bonding in noncovalent synthesis: selectivity and the directed organization of molecular strands. Tetrahedron 2001. [DOI: 10.1016/s0040-4020(00)00986-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
1118
|
Miyakawa Y, Rojnuckarin P, Habib T, Kaushansky K. Thrombopoietin induces phosphoinositol 3-kinase activation through SHP2, Gab, and insulin receptor substrate proteins in BAF3 cells and primary murine megakaryocytes. J Biol Chem 2001; 276:2494-502. [PMID: 11054408 DOI: 10.1074/jbc.m002633200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombopoietin (TPO) is a recently characterized member of the hematopoietic growth factor family that serves as the primary regulator of megakaryocyte (MK) and platelet production. The hormone acts by binding to the Mpl receptor, the product of the cellular proto-oncogene c-mpl. Although many downstream signaling targets of TPO have been identified in cell lines, primary MKs, and platelets, the molecular mechanism(s) by which many of these molecules are activated remains uncertain. In this report we demonstrate that the TPO-induced activation of phosphoinositol 3-kinase (PI3K), a signaling intermediate vital for cellular survival and proliferation, occurs through its association with inducible signaling complexes in both BaF3 cells engineered to express Mpl (BaF3/Mpl) and in primary murine MKs. Although a direct association between PI3K and Mpl could not be demonstrated, we found that several proteins, including SHP2, Gab2, and IRS2, undergo phosphorylation and association in BaF3/Mpl cells in response to TPO stimulation, complexes that recruit and enhance the enzymatic activity of PI3K. To verify the physiological relevance of the complex, SHP2-Gab2 association was disrupted by overexpressing a dominant negative SHP2 construct. TPO-induced Akt phosphorylation was significantly decreased in transfected cells suggesting an important role of SHP2 in the complex to enhance PI3K activity. In primary murine MKs, TPO also induced phosphorylation of SHP2, its association with p85 and enhanced PI3K activity, but in contrast to the results in cell lines, neither Gab2 nor IRS2 are phosphorylated in MKs. Instead, a 100-kDa tyrosine-phosphorylated protein (pp100) co-immunoprecipitated with the regulatory subunit of PI3K. These findings support a model where PI3K activity is dependent on its recruitment into TPO-induced multiphosphoprotein complexes, implicate the existence of a scaffolding protein in primary MKs distinct from the known Gab and IRS proteins, and suggest that, in contrast to erythroid progenitor cells that employ Gab1 in PI3K signaling complexes, utilization of an alternate member of the Gab/IRS family could be responsible for specificity in TPO signaling.
Collapse
Affiliation(s)
- Y Miyakawa
- Division of Hematology, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | |
Collapse
|
1119
|
Kawazoe Y, Naka T, Fujimoto M, Kohzaki H, Morita Y, Narazaki M, Okumura K, Saitoh H, Nakagawa R, Uchiyama Y, Akira S, Kishimoto T. Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin signal transduction pathway through modulating insulin receptor substrate 1 (IRS-1) phosphorylation. J Exp Med 2001; 193:263-9. [PMID: 11208867 PMCID: PMC2193341 DOI: 10.1084/jem.193.2.263] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1) is known to function as a negative feedback regulator of cytokine signaling, but it is unclear whether it is involved in other biological events. Here, we show that SSI-1 participates and plays an important role in the insulin signal transduction pathway. SSI-1-deficient mice showed a significantly low level of blood sugar. While the forced expression of SSI-1 reduced the phosphorylation level of insulin receptor substrate 1 (IRS-1), SSI-1 deficiency resulted in sustained phosphorylation of IRS-1 in response to insulin.Furthermore, SSI-1 achieves this inhibition both by binding directly to IRS-1 and by suppressing Janus kinases. These findings suggest that SSI-1 acts as a negative feedback factor also in the insulin signal transduction pathway through the suppression of IRS-1 phosphorylation.
Collapse
Affiliation(s)
| | - Tetsuji Naka
- Department of Medicine III, Osaka 565-0871, Japan
| | | | | | | | | | - Kohichi Okumura
- Biomolecular Engineering Research Institute, Osaka 565-0871, Japan
| | | | | | - Yasuo Uchiyama
- Department of Cell Biology and Anatomy I, Medical School, Osaka 565-0871, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka 565-0871, Japan
| | | |
Collapse
|
1120
|
Affiliation(s)
- S K Kim
- Department of Developmental Biology and Medicine, Division of Oncology, Stanford University, Stanford, California, 94305-5329, USA.
| | | |
Collapse
|
1121
|
Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, Dunaif A, White MF. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 2001; 107:181-9. [PMID: 11160134 PMCID: PMC199174 DOI: 10.1172/jci10934] [Citation(s) in RCA: 459] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Serine/threonine phosphorylation of IRS-1 might inhibit insulin signaling, but the relevant phosphorylation sites are difficult to identify in cultured cells and to validate in isolated tissues. Recently, we discovered that recombinant NH2-terminal Jun kinase phosphorylates IRS-1 at Ser307, which inhibits insulin-stimulated tyrosine phosphorylation of IRS-1. To monitor phosphorylation of Ser307 in various cell and tissue backgrounds, we prepared a phosphospecific polyclonal antibody designated alphapSer307. This antibody revealed that TNF-alpha, IGF-1, or insulin stimulated phosphorylation of IRS-1 at Ser307 in 3T3-L1 preadipocytes and adipocytes. Insulin injected into mice or rats also stimulated phosphorylation of Ser307 on IRS-1 immunoprecipitated from muscle; moreover, Ser307 was phosphorylated in human muscle during the hyperinsulinemic euglycemic clamp. Experiments in 3T3-L1 preadipocytes and adipocytes revealed that insulin-stimulated phosphorylation of Ser307 was inhibited by LY294002 or wortmannin, whereas TNF-alpha-stimulated phosphorylation was inhibited by PD98059. Thus, distinct kinase pathways might converge at Ser307 to mediate feedback or heterologous inhibition of IRS-1 signaling to counterregulate the insulin response.
Collapse
Affiliation(s)
- L Rui
- Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
1122
|
Metzler DE, Metzler CM, Sauke DJ. The Nucleic Acids. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
1123
|
Federici M, Hribal ML, Ranalli M, Marselli L, Porzio O, Lauro D, Borboni P, Lauro R, Marchetti P, Melino G, Sesti G. The common Arg972 polymorphism in insulin receptor substrate-1 causes apoptosis of human pancreatic islets. FASEB J 2001; 15:22-24. [PMID: 11099486 DOI: 10.1096/fj.00-0414fje] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular scanning of human IRS-1 gene revealed a common polymorphism causing Gly-->Arg972 change. Diabetic and pre-diabetic carriers of Arg972 IRS-1 are characterized by low fasting levels of insulin and C-peptide. To investigate directly whether the Arg 972 IRS-1 affects human islet cells survival, we took advantage of the unique opportunity to analyze pancreatic islets isolated from three donors heterozygous for the Arg972 and six donors carrying wild-type IRS-1. Islets from carriers of Arg972 IRS-1 showed a two-fold increase in the number of apoptotic cells as compared with wild-type. IRS-1-associated PI3-kinase activity was decreased in islets from carriers of Arg972 IRS-1. Same results were reproduced in RIN rat b-cell lines stably expressing wild-type IRS-1 or Arg972 IRS-1. Using these cells, we characterized the downstream pathway by which Arg972 IRS-1 impairs b-cell survival. RIN-Arg972 cells exhibited a marked impairment in the sequential activation of PI3-kinase, Akt, and BAD as compared with RI N-WT. Impaired BAD phosphorylation resulted in increased binding to Bcl-XL instead of 14-3-3 protein, thus sequestering the Bcl-XL antiapoptotic protein to promote survival. Both caspase-9 and caspase-3 activities were increased in RIN-Arg972 cells. The results show that the common Arg972 polymorphism in IRS-1 impairs human b-cell survival and causes resistance to antiapoptotic effects of insulin by affecting the PI3-kinase/Akt survival pathway. These findings establish an important role for the insulin signaling in human b-cell survival and suggest that genetic defects in early steps of insulin signaling may contribute to b-cell failure.
Collapse
Affiliation(s)
- M Federici
- Laboratory of Molecular Medicine, Department of Internal Medicine, University of Rome-'Tor Vergata', 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1124
|
Metzler DE, Metzler CM, Sauke DJ. The Organization of Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
1125
|
Nguyen DH, Szewczyk JW, Baird EE, Dervan PB. Alternative heterocycles for DNA recognition: an N-methylpyrazole/N-methylpyrrole pair specifies for A.T/T.A base pairs. Bioorg Med Chem 2001; 9:7-17. [PMID: 11197348 DOI: 10.1016/s0968-0896(00)00219-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Side-by-side pairs of three five-membered rings, N-methylpyrrole (Py), N-methylimidazole (Im), and N-methylhydroxy-pyrrole (Hp), have been demonstrated to distinguish each of the four Watson Crick base pairs in the minor groove of DNA. However, not all DNA sequences targeted by these pairing rules achieve affinities and specificities comparable to DNA binding proteins. We have initiated a search for new heterocycles which can expand the sequence repetoire currently available. Two heterocyclic aromatic amino acids. N-methylpyrazole (Pz) and 4-methylthiazole (Th), were incorporated into a single position of an eight-ring polyamide of sequence ImImXPy-gamma-lmPyPyPy-beta-Dp to examine the modulation of affinity and specificity for DNA binding by a Pz/Py pair and or a Th/Py pair. The X/Py pairings Pz/Py and Th/Py were evaluated by quantitative DNase I footprint titrations on a DNA fragment with the four sites 5'-TGGNCA-3' (N=T, A, G, C). The Pz/Py pair binds T.A and A.T with similar affinity to a Py/Py pair but with improved specificity. disfavoring both G.C and C.G by about 100-fold. The Th/Py pair binds poorly to all four Watson Crick base pairs. These results demonstrate that in some instances new heterocyclic aromatic amino acid pairs can be incorporated into imidazole-pyrrole polyamides to mimic the DNA specificity of Py/Py pairs which may be relevant as biological criteria in animal studies become important.
Collapse
Affiliation(s)
- D H Nguyen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| | | | | | | |
Collapse
|
1126
|
Kulkarni RN, Kahn CR. Genetic models of Insulin Resistance:Alterations in β-cell biology. MOLECULAR BASIS OF PANCREAS DEVELOPMENT AND FUNCTION 2001. [DOI: 10.1007/978-1-4615-1669-9_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
1127
|
Frayling TM, Hattersley AT. The role of genetic susceptibility in the association of low birth weight with type 2 diabetes. Br Med Bull 2001; 60:89-101. [PMID: 11809620 DOI: 10.1093/bmb/60.1.89] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We suggest that altered fetal growth and type 2 diabetes may be two phenotypes of the same genotype - in other words the 'thrifty phenotype' is the result of a 'thrifty genotype'. Supporting this there is strong evidence that paternal factors and, therefore, genes influence fetal growth and that these paternal genes affecting fetal growth may also alter diabetes risk. Further study is needed to determine whether common gene variants can explain the association between reduced birth weight and increased risk of type 2 diabetes. If the genetic hypothesis is true, common diabetes genes are likely to have subtle effects on insulin secretion and/or action and, therefore, subtle effects on fetal growth. Large cohorts of infants and their parents will be required - probably in the region of thousands rather than hundreds - to identify gene variants that may explain the association between reduced birth weight and increased risk of type 2 diabetes. All previously described associations between birth weight and type 2 diabetes have required many hundreds of subjects and it is likely that the geneticists and the 'programmists' are trying to identify very subtle physiological effects.
Collapse
Affiliation(s)
- T M Frayling
- Department of Diabetes and Vascular Medicine, School of Postgraduate Medicine and Health Sciences, University of Exeter, Exeter, UK.
| | | |
Collapse
|
1128
|
An Historical and Phylogenetic Perspective of Islet-Cell Development. MOLECULAR BASIS OF PANCREAS DEVELOPMENT AND FUNCTION 2001. [DOI: 10.1007/978-1-4615-1669-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
1129
|
Abstract
The purpose of this review is to consider how current animal models of fetal programming contribute to knowledge of the metabolic syndrome in adult humans. Low birth weight infants have an increased risk of developing cardiovascular and coronary heart disease, hypertension, diabetes and stroke in adulthood. A number of animal studies confirm the association between events during fetal life and subsequent adult disease. This review considers how these have contributed to our understanding of this relationship, and how they may help to uncover the underlying mechanisms. The importance of dietary, pharmacological, genetic and surgical models is assessed, and their usefulness in the prevention of human disease evaluated. Although progress has been made, further investigations using animals are needed to clarify the mechanisms involved in the programming of adult disease. Once these processes are understood, it may be possible to identify and protect at-risk individuals.
Collapse
Affiliation(s)
- C E Bertram
- Centre for Fetal Origins of Adult Disease, Princess Anne Hospital, Southampton, UK
| | | |
Collapse
|
1130
|
Tsuruzoe K, Emkey R, Kriauciunas KM, Ueki K, Kahn CR. Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling. Mol Cell Biol 2001; 21:26-38. [PMID: 11113178 PMCID: PMC86565 DOI: 10.1128/mcb.21.1.26-38.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To investigate the roles of insulin receptor substrate 3 (IRS-3) and IRS-4 in the insulin-like growth factor 1 (IGF-1) signaling cascade, we introduced these proteins into 3T3 embryonic fibroblast cell lines prepared from wild-type (WT) and IRS-1 knockout (KO) mice by using a retroviral system. Following transduction of IRS-3 or IRS-4, the cells showed a significant decrease in IRS-2 mRNA and protein levels without any change in the IRS-1 protein level. In these cell lines, IGF-1 caused the rapid tyrosine phosphorylation of all four IRS proteins. However, IRS-3- or IRS-4-expressing cells also showed a marked decrease in IRS-1 and IRS-2 phosphorylation compared to the host cells. This decrease was accounted for in part by a decrease in the level of IRS-2 protein but occurred with no significant change in the IRS-1 protein level. IRS-3- or IRS-4-overexpressing cells showed an increase in basal phosphatidylinositol 3-kinase activity and basal Akt phosphorylation, while the IGF-1-stimulated levels correlated well with total tyrosine phosphorylation level of all IRS proteins in each cell line. IRS-3 expression in WT cells also caused an increase in IGF-1-induced mitogen-activated protein kinase phosphorylation and egr-1 expression ( approximately 1.8- and approximately 2.4-fold with respect to WT). In the IRS-1 KO cells, the impaired mitogenic response to IGF-1 was reconstituted with IRS-1 to supranormal levels and was returned to almost normal by IRS-2 or IRS-3 but was not improved by overexpression of IRS-4. These data suggest that IRS-3 and IRS-4 may act as negative regulators of the IGF-1 signaling pathway by suppressing the function of other IRS proteins at several steps.
Collapse
Affiliation(s)
- K Tsuruzoe
- Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
1131
|
Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, Klumperman J, Thorens B, Thomas G. Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 2000; 408:994-7. [PMID: 11140689 DOI: 10.1038/35050135] [Citation(s) in RCA: 357] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insulin controls glucose homeostasis by regulating glucose use in peripheral tissues, and its own production and secretion in pancreatic beta cells. These responses are largely mediated downstream of the insulin receptor substrates, IRS-1 and IRS-2 (refs 4-8), through distinct signalling pathways. Although a number of effectors of these pathways have been identified, their roles in mediating glucose homeostasis are poorly defined. Here we show that mice deficient for S6 kinase 1, an effector of the phosphatidylinositide-3-OH kinase signalling pathway, are hypoinsulinaemic and glucose intolerant. Whereas insulin resistance is not observed in isolated muscle, such mice exhibit a sharp reduction in glucose-induced insulin secretion and in pancreatic insulin content. This is not due to a lesion in glucose sensing or insulin production, but to a reduction in pancreatic endocrine mass, which is accounted for by a selective decrease in beta-cell size. The observed phenotype closely parallels those of preclinical type 2 diabetes mellitus, in which malnutrition-induced hypoinsulinaemia predisposes individuals to glucose intolerance.
Collapse
Affiliation(s)
- M Pende
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
1132
|
Previs SF, Withers DJ, Ren JM, White MF, Shulman GI. Contrasting effects of IRS-1 versus IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo. J Biol Chem 2000; 275:38990-4. [PMID: 10995761 DOI: 10.1074/jbc.m006490200] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To examine the impact of homozygous genetic disruption of insulin receptor substrate (IRS)-1 (IRS-1(-/-)) or IRS-2 (IRS-2(-/-)) on basal and insulin-stimulated carbohydrate and lipid metabolism in vivo, we infused 18-h fasted mice (wild-type (WT), IRS-1(-/-), and IRS-2(-/-)) with [3-(3)H]glucose and [(2)H(5)]glycerol and assessed rates of glucose and glycerol turnover under basal (0-90 min) and hyperinsulinemic-euglycemic clamp (90-210 min; 5 mm glucose, and 5 milliunits of insulin.kg(-)(1).min(-)(1)) conditions. Both IRS-1(-)(/-) and IRS-2(-)(/-) mice were insulin-resistant as reflected by markedly impaired insulin-stimulated whole-body glucose utilization compared with WT mice. Insulin resistance in the IRS-1(-)(/-) mice could be ascribed mainly to decreased insulin-stimulated peripheral glucose metabolism. In contrast, IRS-2(-)(/-) mice displayed multiple defects in insulin-mediated carbohydrate metabolism as reflected by (i) decreased peripheral glucose utilization, (ii) decreased suppression of endogenous glucose production, and (iii) decreased hepatic glycogen synthesis. Additionally, IRS-2(-)(/-) mice also showed marked insulin resistance in adipose tissue as reflected by reduced suppression of plasma free fatty acid concentrations and glycerol turnover during the hyperinsulinemic-euglycemic clamp. These data suggest important tissue-specific roles for IRS-1 and IRS-2 in mediating the effect of insulin on carbohydrate and lipid metabolism in vivo in mice. IRS-1 appears to have its major role in muscle, whereas IRS-2 appears to impact on liver, muscle, and adipose tissue.
Collapse
Affiliation(s)
- S F Previs
- Department of Internal Medicine and the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | |
Collapse
|
1133
|
Matthaei S, Stumvoll M, Kellerer M, Häring HU. Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev 2000; 21:585-618. [PMID: 11133066 DOI: 10.1210/edrv.21.6.0413] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus type 2 is a world-wide growing health problem affecting more than 150 million people at the beginning of the new millennium. It is believed that this number will double in the next 25 yr. The pathophysiological hallmarks of type 2 diabetes mellitus consist of insulin resistance, pancreatic beta-cell dysfunction, and increased endogenous glucose production. To reduce the marked increase of cardiovascular mortality of type 2 diabetic subjects, optimal treatment aims at normalization of body weight, glycemia, blood pressure, and lipidemia. This review focuses on the pathophysiology and molecular pathogenesis of insulin resistance and on the capability of antihyperglycemic pharmacological agents to treat insulin resistance, i.e., a-glucosidase inhibitors, biguanides, thiazolidinediones, sulfonylureas, and insulin. Finally, a rational treatment approach is proposed based on the dynamic pathophysiological abnormalities of this highly heterogeneous and progressive disease.
Collapse
Affiliation(s)
- S Matthaei
- Department of Internal Medicine IV, University of Tübingen, Germany
| | | | | | | |
Collapse
|
1134
|
Noonan WT, Banks RO. Renal function and glucose transport in male and female mice with diet-induced type II diabetes mellitus. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 225:221-30. [PMID: 11082217 DOI: 10.1046/j.1525-1373.2000.22528.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aim of this study was to measure cardiovascular and renal function, including the renal transport capacity for glucose, in male and female C57BL/6J mice with diet-induced Type II diabetes mellitus. Typical of Type II diabetes, mice fed a high-fat, high-simple carbohydrate diet for 3 months were obese (45-65 g), hyperglycemic (138-259 mg%), and hyperinsulinemic (1.8-15.06 ng/ml); significant gender differences were observed in all cases. Based on systolic pressure measurements in conscious mice and arterial blood pressure measurements in anesthetized mice, no diet-induced hypertension was observed in either male or female mice. Urine flow rate, sodium, potassium, osmolar, and protein excretion rates were significantly increased (P < 0.05) in male mice fed the high-fat, high-simple carbohydrate diet compared with female mice fed the same diet. However, no differences in the excretion variables existed between male and female mice fed the control diet. The glomerular filtration rate (ml min-1 g kw-1), determined by FITC-inulin, in male and female mice fed the control diet (0.87 +/- 0.01 and 0.90 +/- 0.1, respectively) and high-fat, high-simple carbohydrate diet (0.96 +/- 0.1 and 0.93 +/- 0.2, respectively) was not different between the groups. These hyperglycemic mice were also not glucosuric. Infusions of progressive amounts of glucose in male mice fed either diet for 3 or 6 months demonstrated that the renal threshold for glucose was 400 mg% for all these mice, well above the fasting plasma glucose concentrations observed in this study. Thus, C57BL/6J mice were valuable tools for studying diet-induced obesity, hyperglycemia, and hyperinsulinemia; however, no hypertension or kidney dysfunction was apparent within the time frame of the current study.
Collapse
Affiliation(s)
- W T Noonan
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267-0576, USA
| | | |
Collapse
|
1135
|
Abstract
Atherosclerosis is a complex, multifactorial disease with both genetic and environmental determinants. Experimental investigation of the effects of these determinants on the development and progression of atherosclerosis has been greatly facilitated by the use of targeted mouse models of the disease, particularly those resulting from the absence of functional genes for apolipoprotein E or the low density lipoprotein receptor (LDLR). This review focuses on the influence on atherosclerosis of combining apoE or LDLR deficiencies with factors affecting atherogenesis, including (1) inflammatory processes, (2) glucose metabolism, (3) blood pressure, and (4) coagulation and fibrinolysis. We also discuss the general problem of using the mouse to test the effects on atherogenesis of human polymorphic variations and future ways of enhancing the usefulness of these mouse models.
Collapse
Affiliation(s)
- J W Knowles
- Department of Pathology and Laboratory Medicine and the Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
1136
|
Müller G. The Molecular Mechanism of the Insulin-mimetic/sensitizing Activity of the Antidiabetic Sulfonylurea Drug Amaryl. Mol Med 2000. [DOI: 10.1007/bf03401827] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
1137
|
Giovannone B, Scaldaferri ML, Federici M, Porzio O, Lauro D, Fusco A, Sbraccia P, Borboni P, Lauro R, Sesti G. Insulin receptor substrate (IRS) transduction system: distinct and overlapping signaling potential. Diabetes Metab Res Rev 2000; 16:434-41. [PMID: 11114102 DOI: 10.1002/1520-7560(2000)9999:9999<::aid-dmrr159>3.0.co;2-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin receptor substrate (IRS) proteins play a central role in maintaining basic cellular functions such as growth and metabolism. They act as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as the insulin receptor, and a complex network of intracellular signalling molecules containing Src homology 2 (SH2) domains. Four members (IRS-1, IRS-2, IRS-3, IRS-4) of this family have been identified which differ in their subcellular distribution and interaction with SH2 domain proteins. In addition, differential IRS tissue- and developmental-specific expression patterns may contribute to specificity in their signaling potential.
Collapse
Affiliation(s)
- B Giovannone
- Laboratory of Molecular Medicine, Department of Internal Medicine, University of Rome - 'Tor Vergata' Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1138
|
Ryabinin VA, Sinyakov AN, de Soultrait VR, Caumont A, Parissi V, Zakharova OD, Vasyutina EL, Yurchenko E, Bayandin R, Litvak S, Tarrago-Litvak L, Nevinsky GA. Inhibition of HIV-1 integrase-catalysed reaction by new DNA minor groove ligands: the oligo-1,3-thiazolecarboxamide derivatives. Eur J Med Chem 2000; 35:989-1000. [PMID: 11137227 DOI: 10.1016/s0223-5234(00)01181-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the life cycle of the retrovirus, responsible for catalysing the insertion of the viral genome into the host cell chromosome. For this reason it provides an attractive target for antiviral drug design. We synthesized a series of novel thiazole (Tz)-containing oligopeptides (TCOs; oligo-1,3-thiazolecarboxamides), specifically interacting within the minor groove of DNA. The oligocarboxamide derivatives contained 1-4 Tz rings and different N- and C-terminal groups. The effect of these oligocarboxamides on the HIV-1 IN-catalysed reaction was investigated. Some of the compounds were able to inhibit the reaction. The inhibitory effect of the TCOs increased with the number of Tz units. The structure of various additional positively and/or negatively charged groups attached to the N- and C-termini of TCOs had a pronounced effect on their interaction with the DNA substrate complexed to IN. Modified TCOs having a better affinity for this complex should provide a rationale for the design of drugs targeting the integration step.
Collapse
Affiliation(s)
- V A Ryabinin
- Institute of Molecular Biology, Koltsovo, Novosibirsk region 633159, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1139
|
Fruman DA, Mauvais-Jarvis F, Pollard DA, Yballe CM, Brazil D, Bronson RT, Kahn CR, Cantley LC. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nat Genet 2000; 26:379-82. [PMID: 11062485 DOI: 10.1038/81715] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphoinositide 3-kinases produce 3'-phosphorylated phosphoinositides that act as second messengers to recruit other signalling proteins to the membrane. Pi3ks are activated by many extracellular stimuli and have been implicated in a variety of cellular responses. The Pi3k gene family is complex and the physiological roles of different classes and isoforms are not clear. The gene Pik3r1 encodes three proteins (p85 alpha, p55 alpha and p50 alpha) that serve as regulatory subunits of class IA Pi3ks (ref. 2). Mice lacking only the p85 alpha isoform are viable but display hypoglycaemia and increased insulin sensitivity correlating with upregulation of the p55 alpha and p50 alpha variants. Here we report that loss of all protein products of Pik3r1 results in perinatal lethality. We observed, among other abnormalities, extensive hepatocyte necrosis and chylous ascites. We also noted enlarged skeletal muscle fibres, brown fat necrosis and calcification of cardiac tissue. In liver and muscle, loss of the major regulatory isoform caused a great decrease in expression and activity of class IA Pi3k catalytic subunits; nevertheless, homozygous mice still displayed hypoglycaemia, lower insulin levels and increased glucose tolerance. Our findings reveal that p55 alpha and/or p50 alpha are required for survival, but not for development of hypoglycaemia, in mice lacking p85 alpha.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Adipose Tissue, Brown/pathology
- Animals
- Animals, Outbred Strains
- Calcinosis/genetics
- Cardiomyopathies/genetics
- Catalysis
- Chylous Ascites/genetics
- Crosses, Genetic
- Dimerization
- Enzyme Induction
- Female
- Genes
- Genes, Lethal
- Genotype
- Germ-Free Life
- Glucose/metabolism
- Glucose/pharmacology
- Hypertrophy
- Hypoglycemia/genetics
- Insulin/pharmacology
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Muscle Fibers, Skeletal/pathology
- Necrosis
- Phosphatidylinositol 3-Kinases/deficiency
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/physiology
- Phosphorylation
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Protein Isoforms/physiology
- Protein Processing, Post-Translational/genetics
- Protein Subunits
- Second Messenger Systems/genetics
Collapse
Affiliation(s)
- D A Fruman
- Division of Signal Transduction, Beth Israel Deaconess Medical Center Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
1140
|
Abstract
Insulin resistance, the hallmark of non-insulin dependent diabetes mellitus, is characterized by the failure of tissues to take up and store glucose in response to insulin. Two recent studies shed new light on the importance of insulin signalling in the liver and how this may become defective in diabetes.
Collapse
Affiliation(s)
- G A Rutter
- Department of Biochemistry, School of Medical Sciences, University of Bristol, UK.
| |
Collapse
|
1141
|
Zhan ZY, Dervan PB. Alternative heterocycles for DNA recognition: a 3-pyrazole/pyrrole pair specifies for G.C base pairs. Bioorg Med Chem 2000; 8:2467-74. [PMID: 11058042 DOI: 10.1016/s0968-0896(00)00182-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic ligands comprising three aromatic amino acids, pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp), specifically recognize predetermined sequences as side-by-side pairs in the minor groove of DNA. To expand the repertoire of aromatic rings that may be utilized for minor groove recognition, three five-membered heterocyclic rings, 3-pyrazolecarboxylic acid (3-Pz), 4-pyrazolecarboxylic acid (4-Pz), and furan-2-carboxylic acid (Fr), were examined at the N-terminus of eight-ring hairpin polyamide ligands. The DNA binding properties of 3-Pz, 4-Pz, and Fr each paired with Py were studied by quantitative DNase I footprinting titrations on a 283 bp DNA restriction fragment containing four 6-bp binding sites 5'-ATNCCTAA-3' (N = G, C, A, or T; 6-bp polyamide binding site is underlined). The pair 3-Pz/Py has increased binding affinity and sequence specificity for G.C bp compared with Im/Py.
Collapse
Affiliation(s)
- Z Y Zhan
- The Beckman Institute, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
1142
|
Xing L, Ge C, Zeltser R, Maskevitch G, Mayer BJ, Alexandropoulos K. c-Src signaling induced by the adapters Sin and Cas is mediated by Rap1 GTPase. Mol Cell Biol 2000; 20:7363-77. [PMID: 10982853 PMCID: PMC86290 DOI: 10.1128/mcb.20.19.7363-7377.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncogenic Src proteins have been extensively studied to gain insight into the signaling mechanisms of Src. To better understand signaling through wild-type Src, we used an approach that involves activation of Src signaling through the binding of physiologic ligands to the Src SH3 domain. To this end, we used full-length and truncated versions of the multiadapter molecules Cas and Sin to activate c-Src, and we examined the intracellular pathways that mediate Src signaling under these conditions. We show that although all proteins bind to and are phosphorylated by c-Src, quantitative differences exist in the ability of the different ligands to activate c-Src signaling. In addition, we show that Sin- and Cas-induced Src signaling, as assayed by transcriptional activation, is exclusively mediated through a pathway that involves the adapter Crk and the GTP-binding protein Rap1. These data are in contrast to previous observations showing Ras to mediate signaling downstream of transforming Src alleles. In our system, we found that signaling through the oncogenic SrcY527 mutant is indeed mediated by Ras. In addition, we found that Rap1 also mediates oncogenic Src signaling. Our results show for the first time that Rap1 mediates c-Src kinase signaling and reveal mechanistic differences in the signaling properties of wild-type and transforming Src proteins.
Collapse
Affiliation(s)
- L Xing
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
1143
|
Leibiger B, Wahlander K, Berggren PO, Leibiger IB. Glucose-stimulated insulin biosynthesis depends on insulin-stimulated insulin gene transcription. J Biol Chem 2000; 275:30153-6. [PMID: 10913151 DOI: 10.1074/jbc.m005216200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose stimulation of pancreatic beta-cells leads to insulin secretion as well as up-regulation of insulin biosynthesis. The acute elevation in pro-insulin levels is thought to be exclusively because of the activation of translation of pre-existing prepro-insulin mRNA. Glucose-stimulated insulin gene transcription is believed to be a long term effect and should therefore not contribute to the acute elevation in pro-insulin levels. We have recently shown that glucose activates insulin gene transcription within minutes and that secreted insulin is one of the key factors triggering this process in an autocrine manner. We now provide evidence that 50% of the glucose-stimulated, acute pro-insulin biosynthesis within 30 min results from up-regulated insulin gene transcription. Our data led us to propose that glucose elevates pro-insulin levels by stimulating both transcriptional and post-transcriptional/post-translational events to an equal extent. Whereas the stimulatory effect on transcription is mediated by insulin secreted in response to glucose, glucose directly stimulates the post-transcriptional/post-translational processes.
Collapse
Affiliation(s)
- B Leibiger
- Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
1144
|
Burks DJ, Font de Mora J, Schubert M, Withers DJ, Myers MG, Towery HH, Altamuro SL, Flint CL, White MF. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 2000; 407:377-82. [PMID: 11014193 DOI: 10.1038/35030105] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Severe dietary restriction, catabolic states and even short-term caloric deprivation impair fertility in mammals. Likewise, obesity is associated with infertile conditions such as polycystic ovary syndrome. The reproductive status of lower organisms such as Caenorhabditis elegans is also modulated by availability of nutrients. Thus, fertility requires the integration of reproductive and metabolic signals. Here we show that deletion of insulin receptor substrate-2 (IRS-2), a component of the insulin/insulin-like growth factor-1 signalling cascade, causes female infertility. Mice lacking IRS-2 have small, anovulatory ovaries with reduced numbers of follicles. Plasma concentrations of luteinizing hormone, prolactin and sex steroids are low in these animals. Pituitaries are decreased in size and contain reduced numbers of gonadotrophs. Females lacking IRS-2 have increased food intake and obesity, despite elevated levels of leptin. Our findings indicate that insulin, together with leptin and other neuropeptides, may modulate hypothalamic control of appetite and reproductive endocrinology. Coupled with findings on the role of insulin-signalling pathways in the regulation of fertility, metabolism and longevity in C. elegans and Drosophila, we have identified an evolutionarily conserved mechanism in mammals that regulates both reproduction and energy homeostasis.
Collapse
Affiliation(s)
- D J Burks
- Howard Hughes Medical Institute, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1145
|
Sachs M, Brohmann H, Zechner D, Müller T, Hülsken J, Walther I, Schaeper U, Birchmeier C, Birchmeier W. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 2000; 150:1375-84. [PMID: 10995442 PMCID: PMC2150711 DOI: 10.1083/jcb.150.6.1375] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The docking protein Gab1 binds phosphorylated c-Met receptor tyrosine kinase directly and mediates signals of c-Met in cell culture. Gab1 is phosphorylated by c-Met and by other receptor and nonreceptor tyrosine kinases. Here, we report the functional analysis of Gab1 by targeted mutagenesis in the mouse, and compare the phenotypes of the Gab1 and c-Met mutations. Gab1 is essential for several steps in development: migration of myogenic precursor cells into the limb anlage is impaired in Gab1-/- embryos. As a consequence, extensor muscle groups of the forelimbs are virtually absent, and the flexor muscles reach less far. Fewer hindlimb muscles exist, which are smaller and disorganized. Muscles in the diaphragm, which also originate from migratory precursors, are missing. Moreover, Gab1-/- embryos die in a broad time window between E13.5 and E18.5, and display reduced liver size and placental defects. The labyrinth layer, but not the spongiotrophoblast layer, of the placenta is severely reduced, resulting in impaired communication between maternal and fetal circulation. Thus, extensive similarities between the phenotypes of c-Met and HGF/SF mutant mice exist, and the muscle migration phenotype is even more pronounced in Gab1-/-:c-Met+/- embryos. This is genetic evidence that Gab1 is essential for c-Met signaling in vivo. Analogy exists to signal transmission by insulin receptors, which require IRS1 and IRS2 as specific docking proteins.
Collapse
Affiliation(s)
- M Sachs
- Department of Growth and Differentiation, Max-Delbrueck-Center for Molecular Medicine, 13092 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
1146
|
Uysal KT, Scheja L, Wiesbrock SM, Bonner-Weir S, Hotamisligil GS. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 2000; 141:3388-96. [PMID: 10965911 DOI: 10.1210/endo.141.9.7637] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adipocyte fatty acid-binding protein, aP2, is a member of the intracellular fatty acid binding protein family. Previously, studies have shown increased insulin sensitivity in aP2-deficient mice with dietary obesity. Here, we asked whether aP2-related alterations in lipolytic response and insulin production are features of obesity-induced insulin resistance and investigated the effects of aP2-deficiency on glucose homeostasis and lipid metabolism in ob/ob mice, a model of extreme obesity. ob/ob mice homozygous for the aP2 null allele (ob/ ob-aP2-/-) became more obese than ob/ob mice as indicated by significantly increased body weight and fat pad size but unaltered body length. However, despite their extreme adiposity, ob/ob-aP2-/- animals were more insulin-sensitive compared with ob/ob controls, as demonstrated by significantly lower plasma glucose and insulin levels and better performance in both insulin and glucose tolerance tests. These animals also showed improvements in dyslipidemia and had lower plasma triglyceride and cholesterol levels. Lipolytic response to beta-adrenergic stimulation and lipolysis-associated insulin secretion was significantly reduced in ob/ob-aP2-/- mice. Interestingly, glucose-stimulated insulin secretion, while virtually abolished in ob/ob controls, was significantly improved in ob/ob-aP2-/- animals. There were no apparent morphological differences in the structure or size of the pancreatic islets between genotypes. Taken together, the data indicate that in obesity, aP2-deficiency not only improves peripheral insulin resistance but also preserves pancreatic beta cell function and has beneficial effects on lipid metabolism.
Collapse
Affiliation(s)
- K T Uysal
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
1147
|
Pommier Y, Marchand C, Neamati N. Retroviral integrase inhibitors year 2000: update and perspectives. Antiviral Res 2000; 47:139-48. [PMID: 10974366 DOI: 10.1016/s0166-3542(00)00112-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
HIV-1 integrase is an essential enzyme for retroviral replication and a rational target for the design of anti-AIDS drugs. A number of inhibitors have been reported in the past 8 years. This review focuses on the recent developments in the past 2 years. There are now several inhibitors with known sites of actions and antiviral activity. The challenge is to convert these leads into drugs that will selectively target integrase in vivo, and can be added to our antiviral armamentarium.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892-4255, USA.
| | | | | |
Collapse
|
1148
|
Wu X, Sallinen K, Anttila L, Mäkinen M, Luo C, Pöllänen P, Erkkola R. Expression of insulin-receptor substrate-1 and -2 in ovaries from women with insulin resistance and from controls. Fertil Steril 2000; 74:564-72. [PMID: 10973656 DOI: 10.1016/s0015-0282(00)00688-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the role of insulin-receptor substrate (IRS)-1 and -2 in ovary dysfunction in women with insulin resistance. DESIGN Immunoblotting and immunohistochemical analyses of the localization and staining intensity of IRS-1 and IRS-2 in the ovaries of women with the polycystic ovary syndrome (PCOS) and gestational diabetes mellitus. SETTING Department of Obstetrics and Gynecology, Turku University Central Hospital. PATIENT(S) Sections of ovary were obtained at the time of cesarean section from five volunteers without medical complications and three patients with gestational diabetes mellitus. Paraffin-embedded ovary sections were selected from those on file from the department of pathology; four were from women with a histologic diagnosis of PCOS and seven were from women with endometriosis (controls). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Protein expression of IRS in human ovary samples. RESULT(S) Immunoblotting with specific monoclonal and polyclonal antibodies showed the presence of 165-kDa and 183-kDa proteins that corresponded to the size of IRS-1 and IRS-2, respectively, in normal pregnant ovaries and human cultured follicles. Immunohistochemical staining showed that positive IRS-2 expression in antral follicles was restricted to theca internal cells in ovulatory ovaries but was distributed widely in all compartments of follicles in different stages in polycystic ovaries. Compared with follicles at a similar stage of development in ovulatory ovaries, follicles in polycystic ovaries showed decreased staining for IRS-1 in granulosa cells but increased staining for IRS-2 in theca internal cells. These features of IRS-1 and -2 expression were also noted in preantral and atretic follicles from patients with gestational diabetes mellitus compared with those who had uncomplicated pregnancy. CONCLUSION(S) This study highlights a shift of the follicular insulin signal protein from IRS-1 to IRS-2 in insulin-resistant states and suggests an association between this change and ovarian abnormality in PCOS and gestational diabetes mellitus.
Collapse
Affiliation(s)
- X Wu
- Department of Obstetrics and Gynecology, University Central Hospital of Turku, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
1149
|
Celi FS, Negri C, Tanner K, Raben N, De Pablo F, Rovira A, Pallardo LF, Martin-Vaquero P, Stern MP, Mitchell BD, Shuldiner AR. Molecular scanning for mutations in the insulin receptor substrate-1 (IRS-1) gene in Mexican Americans with Type 2 diabetes mellitus. Diabetes Metab Res Rev 2000; 16:370-7. [PMID: 11025561 DOI: 10.1002/1520-7560(2000)9999:9999<::aid-dmrr129>3.0.co;2-b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Insulin receptor substrate-1 (IRS-1) is an endogenous substrate for the insulin receptor tyrosine kinase, which plays an important role in insulin signaling. Mutations in the IRS-1 gene are associated in some populations with obesity and Type 2 diabetes. METHODS To determine whether variation in the IRS-1 gene contributes to genetic susceptibility to insulin resistance and Type 2 diabetes in Mexican Americans, the entire coding region of the IRS-1 gene was screened for variation in 31 unrelated subjects with Type 2 diabetes using single-stranded conformational polymorphism analysis (SSCP) and dideoxy sequence analysis. Variants encoding amino acid substitutions were genotyped in 27 unrelated nondiabetic Mexican Americans and in all family members of subjects containing these variants, and association analyses were performed. To trace the ancestral origins of the variants, Iberian Caucasians and Pima Indians were also genotyped. RESULTS Eight single base changes were found: four silent polymorphisms and four missense mutations (Ala94Thr, Ala512Pro, Ser892Gly and Gly971Arg). Allele frequencies were 0.009, 0.017, 0.017 and 0.043, respectively. There were no significant associations of any of these variants with diabetes, glucose or insulin levels during an oral glucose tolerance test, or with body mass index (BMI) in Mexican American families except for a modest association between the Ala94Thr variant and decreased BMI (30.4 kg/m(2) vs 24.0 kg/m(2); p=0.035). None of these four missense mutations were detected in Pima Indians. In Iberian Caucasians, neither Ala94Thr nor Ser892Gly were detected, and Ala512Pro was detected in only 0/60 diabetic patients and 1/60 nondiabetic controls. Gly971Arg was relatively more common in Iberian Caucasians with 12/58 diabetic patients and 7/60 nondiabetic controls being heterozygous for this variant (p=0.21 for comparison between diabetic and nondiabetic subjects). CONCLUSIONS Ala94Thr, Ala512Pro and Ser892Gly mutation are rare in the populations studied. Gly971Arg, is more common in Mexican Americans and Caucasians, but is not a major contributor to genetic susceptibility to Type 2 diabetes.
Collapse
Affiliation(s)
- F S Celi
- Dipartimento di Medicina Sperimentale e Patologia, Università di Roma 'La Sapienza' Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1150
|
Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 2000. [PMID: 10903329 DOI: 10.1172/jci10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- J E Pessin
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|