1101
|
Clark CA, Schwarz EM, Zhang X, Ziran NM, Drissi H, O'Keefe RJ, Zuscik MJ. Differential regulation of EP receptor isoforms during chondrogenesis and chondrocyte maturation. Biochem Biophys Res Commun 2005; 328:764-76. [PMID: 15694412 DOI: 10.1016/j.bbrc.2004.11.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 01/22/2023]
Abstract
Regulation of chondrogenesis and chondrocyte maturation by prostaglandins has been a topic of interest during recent years. Particular focus on this area derives from the realization that inhibition of prostaglandin synthesis with non-steroidal anti-inflammatory drugs could impact these cartilage-related processes which are important in skeletal development and are recapitulated during bone healing either post-trauma or post-surgery. In addition to reviewing the relevant literature focused on prostaglandin synthesis and signaling through the G-protein coupled EP receptors, we present novel findings that establish the expression profile of EP receptors in chondroprogenitors and chondrocytes. Further, we begin to examine the signaling that may be involved with the transduction of PGE2 effects in these cells. Our findings suggest that EP2 and EP4 receptor activation of cAMP metabolism may represent a central axis of events that facilitate the impact of PGE2 on the processes of mesenchymal stem cell commitment to chondrogenesis and ultimate chondrocyte maturation.
Collapse
Affiliation(s)
- Christine A Clark
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
1102
|
Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 2005; 102:5062-7. [PMID: 15781876 PMCID: PMC555995 DOI: 10.1073/pnas.0500031102] [Citation(s) in RCA: 328] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated the ability of bone morphogenetic proteins (BMPs) to promote chondrogenic differentiation in vitro. However, the in vivo role of BMP signaling during chondrogenesis has been unclear. We report here that BMP signaling is essential for multiple aspects of early chondrogenesis. Whereas mice deficient in type 1 receptors Bmpr1a or Bmpr1b in cartilage are able to form intact cartilaginous elements, double mutants develop a severe generalized chondrodysplasia. The majority of skeletal elements that form through endochondral ossification are absent, and the ones that form are rudimentary. The few cartilage condensations that form in double mutants are delayed in the prechondrocytic state and never form an organized growth plate. The reduced size of mutant condensations results from increased apoptosis and decreased proliferation. Moreover, the expression of cartilage-specific extracellular matrix proteins is severely reduced in mutant elements. We demonstrate that this defect in chondrocytic differentiation can be attributed to lack of Sox9, L-Sox5, and Sox6 expression in precartilaginous condensations in double mutants. In summary, our study demonstrates that BMPR1A and BMPR1B are functionally redundant during early chondrogenesis and that BMP signaling is required for chondrocyte proliferation, survival, and differentiation in vivo.
Collapse
Affiliation(s)
- Byeong S Yoon
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
1103
|
Dong C, Wilhelm D, Koopman P. Sox genes and cancer. Cytogenet Genome Res 2005; 105:442-7. [PMID: 15237232 DOI: 10.1159/000078217] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 11/19/2003] [Indexed: 01/08/2023] Open
Abstract
Sox genes encode transcription factors belonging to the HMG (High Mobility Group) superfamily. They are conserved across species and involved in a number of developmental processes. In vitro studies have shown at least one Sox gene to be capable of inducing oncogenic transformation of fibroblast cells. In addition, overexpression and/or amplification of Sox genes are associated with a large number of tumour types in vivo. We review here the available evidence linking Sox gene expression and cancer, and show that this link is supported by extensive EST database analysis. This work provides a basis for further studies aimed at investigating the possible role of Sox genes in the oncogenic process.
Collapse
Affiliation(s)
- C Dong
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|
1104
|
Pop R, Zaragoza MV, Gaudette M, Dohrmann U, Scherer G. A homozygous nonsense mutation in SOX9 in the dominant disorder campomelic dysplasia: a case of mitotic gene conversion. Hum Genet 2005; 117:43-53. [PMID: 15806394 DOI: 10.1007/s00439-005-1295-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 02/06/2005] [Indexed: 10/25/2022]
Abstract
Campomelic dysplasia (CD; MIM 114290), an autosomal dominant skeletal malformation syndrome with XY sex reversal, is caused by heterozygous de novo mutations in and around the SOX9 gene on 17q. We report a patient with typical signs of CD, including sex reversal, who was, surprisingly, homozygous for the nonsense mutation Y440X. Since neither parent carried the Y440X mutation, possible mechanisms explaining the homozygous situation were a de novo mutation followed by uniparental isodisomy, somatic crossing over, or gene conversion. As the patient was heterozygous for six microsatellite markers flanking SOX9, uniparental isodisomy and somatic crossing over were excluded. Analysis of intragenic single-nucleotide polymorphisms suggested that the homozygous mutation arose by a mitotic gene conversion event involving exchange of at least 440 nucleotides and at most 2,208 nucleotides between a de novo mutant maternal allele and a wild-type paternal allele. Analysis of cloned alleles showed that homozygous mutant cells constituted about 80% of the leukocyte cell population of the patient, whereas about 20% were heterozygous mutant cells. Heterozygous Y440X mutations, previously described in three CD cases, have been identified in seven additional cases, thus constituting the most frequent recurrent mutations in SOX9. These patients frequently have a milder phenotype with longer survival, possibly because of the retention of some transactivation activity of the mutant protein on SOX9 target genes, as shown by cell transfection experiments. The fact that the patient survived for 3 months may thus be explained by homozygosity for a hypomorphic rather than a complete loss-of-function allele, in combination with somatic mosaicism. This is, to our knowledge, the first report of mitotic gene conversion of a wild-type allele by a de novo mutant allele in humans.
Collapse
Affiliation(s)
- Ramona Pop
- Institute of Human Genetics and Anthropology, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
1105
|
Velagaleti GVN, Bien-Willner GA, Northup JK, Lockhart LH, Hawkins JC, Jalal SM, Withers M, Lupski JR, Stankiewicz P. Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet 2005; 76:652-62. [PMID: 15726498 PMCID: PMC1199302 DOI: 10.1086/429252] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 01/26/2005] [Indexed: 01/25/2023] Open
Abstract
Campomelic dysplasia (CD) is a semilethal skeletal malformation syndrome with or without XY sex reversal. In addition to the multiple mutations found within the sex-determining region Y-related high-mobility group box gene (SOX9) on 17q24.3, several chromosome anomalies (translocations, inversions, and deletions) with breakpoints scattered over 1 Mb upstream of SOX9 have been described. Here, we present a balanced translocation, t(4;17)(q28.3;q24.3), segregating in a family with a mild acampomelic CD with Robin sequence. Both chromosome breakpoints have been identified by fluorescence in situ hybridization and have been sequenced using a somatic cell hybrid. The 17q24.3 breakpoint maps approximately 900 kb upstream of SOX9, which is within the same bacterial artificial chromosome clone as the breakpoints of two other reported patients with mild CD. We also report a prenatal identification of acampomelic CD with male-to-female sex reversal in a fetus with a de novo balanced complex karyotype, 46,XY,t(4;7;8;17)(4qter-->4p15.1::17q25.1-->17qter;7qter-->7p15.3::4p15.1-->4pter;8pter-->8q12.1::7p15.3-->7pter;17pter-->17q25.1::8q12.1-->8qter). Surprisingly, the 17q breakpoint maps approximately 1.3 Mb downstream of SOX9, making this the longest-range position effect found in the field of human genetics and the first report of a patient with CD with the chromosome breakpoint mapping 3' of SOX9. By using the Regulatory Potential score in conjunction with analysis of the rearrangement breakpoints, we identified a candidate upstream cis-regulatory element, SOX9cre1. We provide evidence that this 1.1-kb evolutionarily conserved element and the downstream breakpoint region colocalize with SOX9 in the interphase nucleus, despite being located 1.1 Mb upstream and 1.3 Mb downstream of it, respectively. The potential molecular mechanism responsible for the position effect is discussed.
Collapse
Affiliation(s)
- Gopalrao V. N. Velagaleti
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Gabriel A. Bien-Willner
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Jill K. Northup
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Lillian H. Lockhart
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Judy C. Hawkins
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Syed M. Jalal
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Marjorie Withers
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - James R. Lupski
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Pawel Stankiewicz
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
1106
|
Scott A, Stemple DL. Zebrafish notochordal basement membrane: signaling and structure. Curr Top Dev Biol 2005; 65:229-53. [PMID: 15642386 DOI: 10.1016/s0070-2153(04)65009-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Annabelle Scott
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
1107
|
Meech R, Edelman DB, Jones FS, Makarenkova HP. The homeobox transcription factor Barx2 regulates chondrogenesis during limb development. Development 2005; 132:2135-46. [PMID: 15800003 DOI: 10.1242/dev.01811] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among the many factors involved in regulation of chondrogenesis, bone morphogenetic proteins (BMPs) and members of the Sox and homeobox transcription factor families have been shown to have crucial roles. Of these regulators, the homeobox transcription factors that function during chondrogenesis have been the least well defined. We show here that the homeobox transcription factor Barx2 is expressed in primary mesenchymal condensations, digital rays, developing joints and articular cartilage of the developing limb, suggesting that it plays a role in chondrogenesis. Using retroviruses and antisense oligonucleotides to manipulate Barx2 expression in limb bud micromass cultures, we determined that Barx2 is necessary for mesenchymal aggregation and chondrogenic differentiation. In accordance with these findings, Barx2 regulates the expression of several genes encoding cell-adhesion molecules and extracellular matrix proteins, including NCAM and collagen II (Col2a1) in the limb bud. Barx2 bound to elements within the cartilage-specific Col2a1 enhancer, and this binding was reduced by addition of Barx2 or Sox9 antibodies, or by mutation of a HMG box adjacent to the Barx2-binding element, suggesting cooperation between Barx2 and Sox proteins. Moreover, both Barx2 and Sox9 occupy Col2a1 enhancer during chondrogenesis in vivo. We also found that two members of the BMP family that are crucial for chondrogenesis, GDF5 and BMP4, regulate the pattern of Barx2 expression in developing limbs. Based on these data, we suggest that Barx2 acts downstream of BMP signaling and in concert with Sox proteins to regulate chondrogenesis.
Collapse
Affiliation(s)
- Robyn Meech
- The Neurosciences Institute 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
1108
|
Cheung M, Chaboissier MC, Mynett A, Hirst E, Schedl A, Briscoe J. The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 2005; 8:179-92. [PMID: 15691760 DOI: 10.1016/j.devcel.2004.12.010] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 11/16/2004] [Accepted: 12/13/2004] [Indexed: 12/26/2022]
Abstract
Trunk neural crest cells are generated at the border between the neural plate and nonneural ectoderm, where they initiate a distinct program of gene expression, undergo an epithelial-mesenchymal transition (EMT), and delaminate from the neuroepithelium. Here, we provide evidence that members of three families of transcription induce these properties in premigratory neural crest cells. Sox9 acts to provide the competence for neural crest cells to undergo an EMT and is required for trunk neural crest survival. In the absence of Sox9, cells apoptose prior to or shortly after delamination. Slug/Snail, in the presence of Sox9, is sufficient to induce an EMT in neural epithelial cells, while FoxD3 regulates the expression of cell-cell adhesion molecules required for neural crest migration. Together, the data suggest a model in which a combination of transcription factors regulates the acquisition of the diverse properties of neural crest cells.
Collapse
Affiliation(s)
- Martin Cheung
- Developmental Neurobiology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
1109
|
Tamamura Y, Otani T, Kanatani N, Koyama E, Kitagaki J, Komori T, Yamada Y, Costantini F, Wakisaka S, Pacifici M, Iwamoto M, Enomoto-Iwamoto M. Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 2005; 280:19185-95. [PMID: 15760903 DOI: 10.1074/jbc.m414275200] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies have suggested that continuous Wnt/beta-catenin signaling in nascent cartilaginous skeletal elements blocks chondrocyte hypertrophy and endochondral ossification, whereas signaling starting at later stages stimulates hypertrophy and ossification, indicating that Wnt/beta-catenin roles are developmentally regulated. To test this conclusion further, we created transgenic mice expressing a fusion mutant protein of beta-catenin and LEF (CA-LEF) in nascent chondrocytes. Transgenic mice had severe skeletal defects, particularly in limbs. Growth plates were totally disorganized, lacked maturing chondrocytes expressing Indian hedgehog and collagen X, and failed to undergo endochondral ossification. Interestingly, the transgenic cartilaginous elements were ill defined, intermingled with surrounding connective and vascular tissues, and even displayed abnormal joints. However, when activated beta-catenin mutant (delta-beta-catenin) was expressed in chondrocytes already engaged in maturation such as those present in chick limbs, chondrocyte maturation and bone formation were greatly enhanced. Differential responses to Wnt/beta-catenin signaling were confirmed in cultured chondrocytes. Activation in immature cells blocked maturation and actually de-stabilized their phenotype, as revealed by reduced expression of chondrocyte markers, abnormal cytoarchitecture, and loss of proteoglycan matrix. Activation in mature cells instead stimulated hypertrophy, matrix mineralization, and expression of terminal markers such as metalloprotease (MMP)-13 and vascular endothelial growth factor. Because proteoglycans are crucial for cartilage function, we tested possible mechanisms for matrix loss. Delta-beta-catenin expression markedly increased expression of MMP-2, MMP-3, MMP-7, MMP-9, MT3-MMP, and ADAMTS5. In conclusion, Wnt/beta-catenin signaling regulates chondrocyte phenotype, maturation, and function in a developmentally regulated manner, and regulated action by this pathway is critical for growth plate organization, cartilage boundary definition, and endochondral ossification.
Collapse
Affiliation(s)
- Yoshihiro Tamamura
- Department of Orthopaedic Surgery, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1110
|
Bi W, Ohyama T, Nakamura H, Yan J, Visvanathan J, Justice MJ, Lupski JR. Inactivation of Rai1 in mice recapitulates phenotypes observed in chromosome engineered mouse models for Smith–Magenis syndrome. Hum Mol Genet 2005; 14:983-95. [PMID: 15746153 DOI: 10.1093/hmg/ddi085] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retinoic acid induced 1 (RAI1) is among the 20 genes identified in the critical region of Smith-Magenis syndrome (SMS), a genomic disorder with multiple congenital anomalies associated with a 3.7 Mb heterozygous deletion of 17p11.2. Heterozygous premature termination mutations in RAI1 have been identified recently in SMS patients without detectable deletions. To investigate Rai1 function, we generated a null allele in mice by gene targeting and simultaneously inserted a lacZ reporter gene into the Rai1 locus. X-gal staining of the Rai1(+/-) mice recapitulated the endogenous expression pattern of Rai1. The gene was predominantly expressed in the epithelial cells involved in organogenesis. Obesity and craniofacial abnormalities, which have been reported in SMS mouse models containing a heterozygous deletion of the syntenic SMS critical region, were observed in Rai1(+/-) mice. Thus, haploinsufficiency of Rai1 causes obesity and craniofacial abnormalities in mice. Interestingly, the penetrance of craniofacial anomalies is further reduced in Rai1(+/-) mice. Most homozygous mice died during gastrulation and organogenesis. The surviving Rai1(-/-) mice were growth retarded and displayed malformations in both the craniofacial and the axial skeleton. Using green fluorescence protein and GAL4 DNA binding domain fusions to Rai1, we showed that Rai1 is translocated to the nucleus and it has transactivation activity. Our data are consistent with Rai1 functioning as a transcriptional regulator, document that Rai1 haploinsufficiency is responsible for obesity and craniofacial phenotypes in mice with SMS deletions, and indicate Rai1 is important for embryonic and postnatal developments.
Collapse
Affiliation(s)
- Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
1111
|
Qiao B, Padilla SR, Benya PD. Transforming growth factor (TGF)-beta-activated kinase 1 mimics and mediates TGF-beta-induced stimulation of type II collagen synthesis in chondrocytes independent of Col2a1 transcription and Smad3 signaling. J Biol Chem 2005; 280:17562-71. [PMID: 15743758 DOI: 10.1074/jbc.m500646200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor (TGF)-beta, bone morphogenetic protein (BMP), and interleukin-1beta activate TGF-beta-activated kinase 1 (TAK1), which lies upstream of the p38 MAPK, JNK, and NF-kappaB pathways. Our knowledge remains incomplete of TAK1 target genes, requirement for cooperative signaling, and capacity for shared or segregated ligand-dependent responses. We show that adenoviral overexpression of TAK1a in articular chondrocytes stimulated type II collagen protein synthesis 3-6-fold and mimicked the response to TGF-beta1 and BMP2. Both factors activated endogenous TAK1 and its activating protein, TAB1, and the collagen response was inhibited by dominant-negative TAK1a. Isoform-specific antibodies to TGF-beta blocked the response to endogenous and exogenous TGF-beta but not the response to TAK1a. Expression of Smad3 did not stimulate type II collagen synthesis or enhance that caused by TGF-beta1 or TAK1a, in contrast to its effects on its endogenous targets, CTGF and plasminogen-activated inhibitor-1. TAK1a, overexpressed alone and immunoprecipitated, phosphorylated MKK6 and stimulated the plasminogen-activated inhibitor-1 promoter following transient transfection; both effects were enhanced by TAB1 coexpression, but type II collagen synthesis was not. Stimulation by TAK1a or TGF-beta did not require increased Col2a1 mRNA, and TAK1 actually reduced Col2a1 mRNA in parallel with the cartilage markers, SRY-type HMG box 9 (Sox9) and aggrecan. Thus, TAK1 increased target gene expression (Col2a1) by translational or posttranslational mechanisms as a Smad3-independent response shared by TGF-beta1 and BMP2.
Collapse
Affiliation(s)
- Bo Qiao
- Orthopaedic Hospital, Los Angeles, J. Vernon Luck, Sr., M.D. Research Center and UCLA-Orthopaedic Hospital Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
1112
|
Abstract
Regulation of gene expression by transcription factors is one of the major mechanisms for controlling cellular functions. Recent advances in genetic manipulation of model animals has allowed the study of the roles of various genes and their products in physiological settings and has demonstrated the importance of specific transcription factors in bone development. Three lineages of bone cells, chondrocytes, osteoblasts, and osteoclasts, develop and differentiate according to their distinct developmental programs. These cells go through multiple differentiation stages, which are often regulated by specific transcription factors. In this minireview, we will discuss selected transcription factors that have been demonstrated to critically affect bone cell development. Further study of these molecules will lead to deeper understanding in mechanisms that govern development of bone.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
1113
|
Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H. Smad3 Induces Chondrogenesis through the Activation of SOX9 via CREB-binding Protein/p300 Recruitment. J Biol Chem 2005; 280:8343-50. [PMID: 15623506 DOI: 10.1074/jbc.m413913200] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The transcriptional activation by SRY-type high mobility group box 9 (SOX9) and the transforming growth factor beta (TGF-beta) signals are necessary for chondrogenic differentiation. We have previously shown that CREB-binding protein (CBP/p300) act as an important SOX9 co-activator during chondrogenesis. In the present study, we investigated the relationship between TGF-beta-dependent Smad2/3 signaling pathways and the SOX9-CBP/p300 transcriptional complex at the early stage of chondrogenesis. Overexpressed Smad3 strongly induced the primary chondrogenesis of human mesenchymal stem cells. In addition, Smad3 enhanced the transcriptional activity of SOX9 and the expression of alpha1(II) collagen gene (COL2A1), and small interference RNA against Smad3 (si-Smad3) inhibited them. We observed that Smad2/3 associated with Sox9 in a TGF-beta-dependent manner and formed the transcriptional complexes with SOX9 on the enhancer region of COL2A1. Interestingly, the association between Sox9 and CBP/p300 was increased by Smad3 overexpression and was suppressed by si-Smad3. Our findings indicate that Smad3 has a stronger potential to stimulate the SOX9-dependent transcriptional activity by modulating the interaction between SOX9 and CBP/p300, rather than Smad2. This study suggests that the Smad3 pathway presents a key role for the SOX9-dependent transcriptional activation in primary chondrogenesis.
Collapse
Affiliation(s)
- Takayuki Furumatsu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
1114
|
Abstract
The ability of bone morphogenetic proteins (BMPs) to promote chondrogenesis has been investigated extensively over the past two decades. Although BMPs promote almost every aspect of chondrogenesis, from commitment to terminal differentiation is well known, the mechanisms of BMP action in discrete aspects of endochondral bone formation have only recently begun to be investigated. In this review, we focus on in vivo studies that have identified interactions between BMP signaling pathways and key downstream targets of BMP action in chondrogenesis. We also discuss evidence regarding the potential roles of BMP receptors in mediating distinct aspects of chondrogenesis, and studies investigating the intersection of BMP pathways with other pathways known to coordinate the progression of chondrocytes through the growth plate. These studies indicate that both Smad-dependent and -independent BMP pathways are required for chondrogenesis, and that BMPs exert essential roles via regulation of the Indian hedgehog (IHH)/parathyroid hormone-related protein (PTHrP) and fibroblast growth factor (FGF) pathways in the growth plate.
Collapse
Affiliation(s)
- Byeong S Yoon
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
1115
|
Yan YL, Willoughby J, Liu D, Crump JG, Wilson C, Miller CT, Singer A, Kimmel C, Westerfield M, Postlethwait JH. A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development 2005; 132:1069-83. [PMID: 15689370 DOI: 10.1242/dev.01674] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding how developmental systems evolve after genome amplification is important for discerning the origins of vertebrate novelties, including neural crest, placodes, cartilage and bone. Sox9 is important for the development of these features, and zebrafish has two co-orthologs of tetrapod SOX9 stemming from an ancient genome duplication event in the lineage of ray-fin fish. We have used a genotype-driven screen to isolate a mutation deleting sox9b function, and investigated its phenotype and genetic interactions with a sox9a null mutation. Analysis of mutant phenotypes strongly supports the interpretation that ancestral gene functions partitioned spatially and temporally between Sox9 co-orthologs. Distinct subsets of the craniofacial skeleton, otic placode and pectoral appendage express each gene, and are defective in each single mutant. The double mutant phenotype is additive or synergistic. Ears are somewhat reduced in each single mutant but are mostly absent in the double mutant. Loss-of-function animals from mutations and morpholino injections, and gain-of-function animals injected with sox9a and sox9b mRNAs showed that sox9 helps regulate other early crest genes, including foxd3, sox10, snai1b and crestin, as well as the cartilage gene col2a1 and the bone gene runx2a; however, tfap2a was nearly unchanged in mutants. Chondrocytes failed to stack in sox9a mutants, failed to attain proper numbers in sox9b mutants and failed in both morphogenetic processes in double mutants. Pleiotropy can cause mutations in single copy tetrapod genes, such as Sox9, to block development early and obscure later gene functions. By contrast, subfunction partitioning between zebrafish co-orthologs of tetrapod genes, such as sox9a and sox9b, can relax pleiotropy and reveal both early and late developmental gene functions.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1116
|
Mandl EW, Jahr H, Koevoet JLM, van Leeuwen JPTM, Weinans H, Verhaar JAN, van Osch GJVM. Fibroblast growth factor-2 in serum-free medium is a potent mitogen and reduces dedifferentiation of human ear chondrocytes in monolayer culture. Matrix Biol 2005; 23:231-41. [PMID: 15296937 DOI: 10.1016/j.matbio.2004.06.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 02/13/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
The loss of the differentiated phenotype (dedifferentiation) during the expansion culture of donor chondrocytes remains a large problem in cartilage tissue engineering. Dedifferentiated chondrocytes produce other matrix components and therefore the tissue produced will be of less suitable quality. Previously, the addition of fibroblast growth factor-2 (FGF2) to a serum-containing medium (SCM) during expansion culture was shown to have positive effects on the phenotype of articular chondrocytes. In the present study, we focused on a more defined, serum-free medium (SFM), to expand chondrocytes in monolayer culture for the purpose of cartilage tissue engineering. Adult human ear chondrocytes were expanded in serum-free medium supplemented with 100 ng/ml FGF2. Expansion culture in a conventional serum-containing medium (10% FCS) served as control. The cell yield during expansion culture in serum-free medium with FGF2 was significantly higher compared to serum-containing medium. In addition, chondrocytes expanded in the serum-free medium with FGF2 expressed a more differentiated phenotype at the end of monolayer culture, as indicated by higher gene expression ratios of collagen type II to collagen type I and aggrecan to versican. Also, a higher gene expression of Sox9 was found. Next, suspension in alginate and subsequent culture in vitro or subcutaneous implantation in nude mice was used to evaluate the capacity of the chondrocytes, expanded in either medium, to re-express the differentiated phenotype (redifferentiation) and to form cartilage. The observed beneficial effects of the serum-free medium with FGF2 on the chondrocyte phenotype at the end of monolayer culture were sustained on both transcriptional and extracellular level throughout both redifferentiation methods.
Collapse
Affiliation(s)
- E W Mandl
- Department of Orthopaedics, Erasmus MC, Room Ee 1659b, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
1117
|
Brent AE, Braun T, Tabin CJ. Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 2005; 132:515-28. [PMID: 15634692 DOI: 10.1242/dev.01605] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proper formation of the musculoskeletal system requires the coordinated development of the muscle, cartilage and tendon lineages arising from the somitic mesoderm. During early somite development, muscle and cartilage emerge from two distinct compartments, the myotome and sclerotome, in response to signals secreted from surrounding tissues. As the somite matures, the tendon lineage is established within the dorsolateral sclerotome, adjacent to and beneath the myotome. We examine interactions between the three lineages by observing tendon development in mouse mutants with genetically disrupted muscle or cartilage development. Through analysis of embryos carrying null mutations in Myf5 and Myod1, hence lacking both muscle progenitors and differentiated muscle, we identify an essential role for the specified myotome in axial tendon development, and suggest that absence of tendon formation in Myf5/Myod1 mutants results from loss of the myotomal FGF proteins, which depend upon Myf5 and Myod1 for their expression, and are required, in turn, for induction of the tendon progenitor markers. Our analysis of Sox5/Sox6 double mutants, in which the chondroprogenitors are unable to differentiate into cartilage,reveals that the two cell fates arising from the sclerotome, axial tendon and cartilage are alternative lineages, and that cartilage differentiation is required to actively repress tendon development in the dorsolateral sclerotome.
Collapse
Affiliation(s)
- Ava E Brent
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
1118
|
zur Nieden NI, Kempka G, Rancourt DE, Ahr HJ. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC DEVELOPMENTAL BIOLOGY 2005; 5:1. [PMID: 15673475 PMCID: PMC548146 DOI: 10.1186/1471-213x-5-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 01/26/2005] [Indexed: 11/10/2022]
Abstract
Background Recently, tissue engineering has merged with stem cell technology with interest to develop new sources of transplantable material for injury or disease treatment. Eminently interesting, are bone and joint injuries/disorders because of the low self-regenerating capacity of the matrix secreting cells, particularly chondrocytes. ES cells have the unlimited capacity to self-renew and maintain their pluripotency in culture. Upon induction of various signals they will then differentiate into distinctive cell types such as neurons, cardiomyocytes and osteoblasts. Results We present here that BMP-2 can drive ES cells to the cartilage, osteoblast or adipogenic fate depending on supplementary co-factors. TGFβ1, insulin and ascorbic acid were identified as signals that together with BMP-2 induce a chondrocytic phenotype that is characterized by increased expression of cartilage marker genes in a timely co-ordinated fashion. Expression of collagen type IIB and aggrecan, indicative of a fully mature state, continuously ascend until reaching a peak at day 32 of culture to approximately 80-fold over control values. Sox9 and scleraxis, cartilage specific transcription factors, are highly expressed at very early stages and show decreased expression over the time course of EB differentiation. Some smaller proteoglycans, such as decorin and biglycan, are expressed at earlier stages. Overall, proteoglycan biosynthesis is up-regulated 7-fold in response to the supplements added. BMP-2 induced chondrocytes undergo hypertrophy and begin to alter their expression profile towards osteoblasts. Supplying mineralization factors such as β-glycerophosphate and vitamin D3 with the culture medium can facilitate this process. Moreover, gene expression studies show that adipocytes can also differentiate from BMP-2 treated ES cells. Conclusions Ultimately, we have found that ES cells can be successfully triggered to differentiate into chondrocyte-like cells, which can further alter their fate to become hypertrophic, and adipocytes. Compared with previous reports using a brief BMP-2 supplementation early in differentiation, prolonged exposure increased chondrogenic output, while supplementation with insulin and ascorbic acid prevented dedifferentiation. These results provide a foundation for the use of ES cells as a potential therapy in joint injury and disease.
Collapse
Affiliation(s)
- Nicole I zur Nieden
- Molecular & Genetic Toxicology, Bayer HealthCare AG, Wuppertal, Germany
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
- Faculty of Medicine, Dept. of Biochemistry & Molecular Biology, University of Calgary, HMRB 331, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Grazyna Kempka
- Molecular & Genetic Toxicology, Bayer HealthCare AG, Wuppertal, Germany
| | - Derrick E Rancourt
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Hans-Jürgen Ahr
- Molecular & Genetic Toxicology, Bayer HealthCare AG, Wuppertal, Germany
| |
Collapse
|
1119
|
Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J Biol Chem 2005; 280:11626-34. [PMID: 15665004 DOI: 10.1074/jbc.m409158200] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Endochondral ossification is initiated by the differentiation of mesenchymal precursor cells to chondrocytes (chondrogenesis). This process is characterized by a strong interdependence of cell shape, cytoskeletal organization, and the onset of chondrogenic gene expression, but the molecular mechanisms mediating these interactions are not known. Here we investigated the role of the RhoA/ROCK pathway, a well characterized regulator of cytoskeletal organization, in chondrogenesis. We show that pharmacological inhibition of ROCK signaling by Y27632 resulted in increased glycosaminoglycan synthesis and elevated expression of the chondrogenic transcription factor Sox9, whereas overexpression of RhoA in the chondrogenic cell line ATDC5 had the opposite effects. Suppression of Sox9 expression by ROCK signaling was achieved through repression of Sox9 promoter activity. These molecular changes were accompanied by reorganization of the actin cytoskeleton, where RhoA/ROCK signaling suppressed cortical actin organization, a hallmark of differentiated chondrocytes. This led us to analyze the regulation of Sox9 expression by drugs affecting cytoskeletal dynamics. Both inhibition of actin polymerization by cytochalasin D and stabilization of existing actin filaments by jasplakinolide resulted in increased Sox9 mRNA levels, whereas inhibition of microtubule polymerization by colchicine completely blocked Sox9 expression. In conclusion, our data suggest that RhoA/ROCK signaling suppresses chondrogenesis through the control of Sox9 expression and actin organization.
Collapse
Affiliation(s)
- Anita Woods
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
1120
|
Shimo T, Kanyama M, Wu C, Sugito H, Billings PC, Abrams WR, Rosenbloom J, Iwamoto M, Pacifici M, Koyama E. Expression and roles of connective tissue growth factor in Meckel's cartilage development. Dev Dyn 2005; 231:136-47. [PMID: 15305294 DOI: 10.1002/dvdy.20109] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Meckel's cartilage is a prominent feature of the developing mandible, but its formation and roles remain unclear. Because connective tissue growth factor (CTGF, CCN2) regulates formation of other cartilages, we asked whether it is expressed and what roles it may have in developing mouse Meckel's cartilage. Indeed, CTGF was strongly expressed in anterior, central, and posterior regions of embryonic day (E) 12 condensing Meckel's mesenchyme. Expression decreased in E15 newly differentiated chondrocytes but surged again in E18 hypertrophic chondrocytes located in anterior region and most-rostral half of central region. These cells were part of growth plate-like structures with zones of maturation resembling those in a developing long bone and expressed such characteristic genes as Indian hedgehog (Ihh), collagen X, MMP-9, and vascular endothelial growth factor. At each stage examined perichondrial tissues also expressed CTGF. To analyze CTGF roles, mesenchymal cells isolated from E10 first branchial arches were tested for interaction and responses to recombinant CTGF (rCTGF). The cells readily formed aggregates in suspension culture and interacted with substrate-bound rCTGF, but neither event occurred in the presence of CTGF neutralizing antibodies. In good agreement, rCTGF treatment of micromass cultures stimulated both expression of condensation-associated macromolecules (fibronectin and tenascin-C) and chondrocyte differentiation. Expression of these molecules and CTGF itself was markedly up-regulated by treatment with transforming growth factor-beta1, a chondrogenic factor. In conclusion, CTGF is expressed in highly dynamic manners in developing Meckel's cartilage where it may influence multiple events, including chondrogenic cell differentiation and chondrocyte maturation. CTGF may aid chondrogenesis by acting down-stream of transforming growth factor-beta and stimulating cell-cell interactions and expression of condensation-associated genes.
Collapse
Affiliation(s)
- Tsuyoshi Shimo
- Department of Orthopaedic Surgery, Thomas Jefferson University Medical School, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1121
|
Moro T, Ogasawara T, Chikuda H, Ikeda T, Ogata N, Maruyama Z, Komori T, Hoshi K, Chung UI, Nakamura K, Okayama H, Kawaguchi H. Inhibition of Cdk6 expression through p38 MAP kinase is involved in differentiation of mouse prechondrocyte ATDC5. J Cell Physiol 2005; 204:927-33. [PMID: 15795936 DOI: 10.1002/jcp.20350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Because a temporal arrest in the G1-phase of the cell cycle is a prerequisite for cell differentiation, this study investigated the involvement of cell cycle factors in the differentiation of cultured mouse prechondrocyte cell line ATDC5. Among the G1 cell cycle factors examined, both protein and mRNA levels of cyclin-dependent kinase (Cdk6) were downregulated during the culture in a differentiation medium. The protein degradation of Cdk6 was not involved in this downregulation because proteasome inhibitors did not reverse the protein level. When inhibitors of p38 MAPK, ERK-1/2, and PI3K/Akt were added to the culture, only a p38 MAPK inhibitor SB203580 blocked the decrease in the Cdk6 protein level by the differentiation medium, indicating that the Cdk6 inhibition was mediated by p38 MAPK pathway. In fact, p38 MAPK was confirmed to be phosphorylated during differentiation of ATDC5 cells. Enforced expression of Cdk6 in ATDC5 cells blocked the chondrocyte differentiation and inhibited Sox5 and Sox6 expressions. However, the Cdk6 overexpression did not affect the proliferation or the cell cycle progression, suggesting that the inhibitory effect of Cdk6 on the differentiation was exerted by a mechanism largely independent of its cell cycle regulation. These results indicate that Cdk6 may be a regulator of chondrocyte differentiation and that its p38-mediated downregulation is involved in the efficient differentiation.
Collapse
Affiliation(s)
- Toru Moro
- Department of Sensory and Motor System Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1122
|
Abstract
Chondrogenesis is an essential process in vertebrates. It leads to the formation of cartilage growth plates, which drive body growth and have primary roles in endochondral ossification. It also leads to the formation of permanent cartilaginous tissues that provide major structural support in the articular joints and respiratory and auditory tracts throughout life. Defects in chondrogenesis cause chondrodysostoses and chondrodysplasias. These skeletal malformation diseases account for a significant proportion of birth defects in humans and can dramatically affect a person's expectancy and quality of life. Chondrogenesis occurs when pluripotent mesenchymal cells commit to the chondrocyte lineage, and through a series of differentiation steps build and eventually remodel cartilage. This review summarizes and discusses our current knowledge and lack of knowledge about the chondrocyte differentiation pathway, from mesenchymal cells to growth plate and articular chondrocytes, with a main focus on how it is controlled by tissue patterning and cell differentiation transcription factors, such as, but not limited to, Pax1 and Pax9, Nkx3.1 and Nkx3.2, Sox9, Sox5 and Sox6, Runx2 and Runx3, and c-Maf.
Collapse
Affiliation(s)
- Véronique Lefebvre
- Department of Biomedical Engineering and Orthopaedic Research Center, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
1123
|
Maeda T, Jikko A, Abe M, Yokohama-Tamaki T, Akiyama H, Furukawa S, Takigawa M, Wakisaka S. Cartducin, a paralog of Acrp30/adiponectin, is induced during chondrogenic differentiation and promotes proliferation of chondrogenic precursors and chondrocytes. J Cell Physiol 2005; 206:537-44. [DOI: 10.1002/jcp.20493] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1124
|
Magne D, Julien M, Vinatier C, Merhi-Soussi F, Weiss P, Guicheux J. Cartilage formation in growth plate and arteries: from physiology to pathology. Bioessays 2005; 27:708-16. [PMID: 15954094 DOI: 10.1002/bies.20254] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vascular calcifications are the consequence of several pathological conditions such as atherosclerosis, diabetes, hypercholesterolemia and chronic renal insufficiency. They are associated with risks of amputation, ischemic heart disease, stroke and increased mortality. A growing body of evidence indicates that vascular smooth muscle cells (VSMCs) undergo chondrogenic commitment eventually leading to vascular calcification, by mechanisms similar to those governing ossification in the cartilage growth plate. Our knowledge of the formation of cartilage growth plate can therefore help us to understand why and how arteries calcify and, consequently, develop new therapeutic strategies. Reciprocally, thorough consideration of the events leading to ectopic chondrocyte differentiation appears crucial to further increase our understanding of growth plate formation. In this context, we will review the effects of known or suspected factors that promote chondrogenic differentiation in growth plate and arteries.
Collapse
Affiliation(s)
- D Magne
- INSERM EM 99-03, Research Center on Osteoarticular and Dental Tissue Engineering, Nantes, France
| | | | | | | | | | | |
Collapse
|
1125
|
Abstract
Mammalian spermatogenesis is a complex hormone-dependent developmental program in which a myriad of events must take place to ensure that germ cells reach their proper stage of development at the proper time. Many of these events are controlled by cell type- and stage-specific transcription factors. The regulatory mechanisms involved provide an intriguing paradigm for the field of developmental biology and may lead to the development of new contraceptives an and innovative routs to treat male infertility. In this review, we address three aspects of the genetic regulatory mechanism that drive spermatogenesis. First, we detail what is known about how steroid hormones (both androgens and estrogens) and their cognate receptors initiate and maintain mammalian spermatogenesis. Steroids act through three mechanistic routes: (i) direct activation of genes through hormone-dependent promoter elements, (ii) secondary transcriptional responses through activation of hormone-dependent transcription factors, and (iii) rapid, transcription-independent (nonclassical) events induced by steroid hormones. Second, we provide a survey of transcription factors that function in mammalian spermatogenesis, including homeobox, zinc-finger, heat-shock, and cAMP-response family members. Our survey is not intended to cover all examples but to give a flavor for the gamut of biological roles conferred by transcription factors in the testis, particularly those defined in knockout mice. Third, we address how testis-specific transcription is achieved. In particular, we cover the evidence for and against the idea that some testis-specific genes are transcriptionally silent in somatic tissues as a result of DNA methylation.
Collapse
Affiliation(s)
- James A Maclean
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
1126
|
Ikeda T, Kawaguchi H, Kamekura S, Ogata N, Mori Y, Nakamura K, Ikegawa S, Chung UI. Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J Bone Miner Metab 2005; 23:337-40. [PMID: 16133682 DOI: 10.1007/s00774-005-0610-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 04/03/2005] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiyuki Ikeda
- Division of Tissue Engineering, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1127
|
Uusitalo H, Rantakokko J, Vuorio E, Aro HT. Bone defect repair in immobilization-induced osteopenia: a pQCT, biomechanical, and molecular biologic study in the mouse femur. Bone 2005; 36:142-9. [PMID: 15664012 DOI: 10.1016/j.bone.2004.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2004] [Revised: 09/06/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
The present study was carried out to determine whether immobilization-induced (Im) osteopenic bone possesses the same reparative capacity as normal healthy bone. Furthermore, the effects of mechanical loading versus immobilization on bone defect healing were studied. Three-week cast-immobilization was used to induce local osteopenia in mice. A standardized metaphyseal bone defect of the distal femur was created unilaterally both in immobilization-induced (Im) osteopenic mice and in nonimmobilized (Mo) age-matched control animals. After creation of the bone defect, the animals in both groups were further divided into two groups: 3-week cast-immobilization (Im-Im and Mo-Im) groups, and unrestricted weight-bearing (Im-Mo and Mo-Mo) groups. The healing process was followed up to 3 weeks using RNA analysis, histomorphometry, biomechanical testing, and pQCT measurements. At 3 weeks of healing without immobilization, bone mineral density (BMD), as well as bone bending stiffness and strength were higher in normal (Mo-Mo) than in osteopenic (Im-Mo) bone. Although the levels of mRNAs characteristic to chondrocytes (Sox9 and type II collagen), hypertrophic chondrocytes (Type X collagen), osteoblasts (type I collagen and osteocalcin), and osteoclasts (cathepsin K) during the bone defect healing exhibited similarities in their expression profiles, mechanical loading conditions also caused characteristic differences. Mechanical loading during healing (Mo-Mo group) induced stronger expression of cartilage- and bone-specific genes and resulted in higher BMD than that seen in the cast-immobilized group (Mo-Im). In biomechanical analysis, increased bending stiffness and strength were also observed in animals that were allowed weight-bearing during healing. Thus, our study shows that bone healing follows the same molecular pathway both in osteopenic and normal bones and presents evidence for reduced or delayed regeneration of noncritical size defects in immobilization-induced osteopenic bone.
Collapse
Affiliation(s)
- H Uusitalo
- Skeletal Research Program, Department of Medical Biochemistry and Molecular Biology, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
1128
|
Priam F, Ronco V, Locker M, Bourd K, Bonnefoix M, Duchêne T, Bitard J, Wurtz T, Kellermann O, Goldberg M, Poliard A. New cellular models for tracking the odontoblast phenotype. Arch Oral Biol 2004; 50:271-7. [PMID: 15721161 DOI: 10.1016/j.archoralbio.2004.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 10/12/2004] [Indexed: 12/11/2022]
Abstract
Odontoblasts and osteoblasts differ functionally and histologically. Because of their close relationship, mesenchymal cells derived from teeth and bone are difficult to distinguish ex vivo. Indeed, the main non-collagenous components of the odontoblastic extracellular matrix, dentin sialoprotein (DSP) or dentin matrix protein 1 (DMP1), have also been detected in osteoblasts. The need to develop cellular models of odontoblast differentiation and to identify markers specific for the odontoblast lineage, has led us to establish clonal cell lines from tooth germs of day 18 mouse embryos transgenic for an adenovirus-SV40 recombinant plasmid. In this study, we analyzed the phenotypes of three independent clones by RT-PCR and Western blot. These clones synthesised DSP, DMP1 and other extracellular matrix proteins typical of the odontoblast and are therefore likely to be derived from the pulp. Transcripts encoding a set of homeobox proteins involved in craniofacial development, such as Pax9, Msx1, Cbfa1, Dlx2 and 5 were also expressed albeit at a different level. These features of the pulpal clones are shared by the C1 mesodermal cells that are capable of differentiating along osteogenic, chondrogenic or adipogenic lineages In contrast, transcripts for two LIM-domain homeobox family genes (Lhx6 and Lhx7) were only detected in the dental clones. Since these genes are preferentially expressed in the mesenchyme of the developing tooth, this suggests that our transgenic-derived cell lines retain intrinsic properties of odontoblastic cells. They may help to characterise genes specifying the odontoblast phenotype and the signalling pathways underlying odontoblast differentiation.
Collapse
Affiliation(s)
- F Priam
- Faculté de Chirurgie dentaire de Montrouge - Université Paris V, 1 rue Maurice Arnoux-92120 Montrouge, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1129
|
Risbud MV, Albert TJ, Guttapalli A, Vresilovic EJ, Hillibrand AS, Vaccaro AR, Shapiro IM. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine (Phila Pa 1976) 2004; 29:2627-32. [PMID: 15564911 DOI: 10.1097/01.brs.0000146462.92171.7f] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Because mesenchymal stem cells can differentiate into chondrocyte-like cells, we ask the question, can mesenchymal stem cells commit to the nucleus pulposus phenotype? BACKGROUND Back pain, a significant source of morbidity in our society, is linked to degenerative changes of the intervertebral disc. Absence of suitable graft tissue limits therapeutic approaches for repair of disc tissue. For this reason, there is considerable interest in developing "tissue engineering" strategies for the regeneration of the nucleus pulposus. METHODS Rat mesenchymal stem cells were immobilized in 3-dimensional alginate hydrogels and cultured in a medium containing transforming growth factor-beta1 under hypoxia (2% O2) and normoxia (20% O2). Mesenchymal stem cells were examined by confocal microscopy to evaluate their viability and metabolic status after labeling with Celltracker green, a thiol sensitive dye, and Mitotracker red, a dye sensitive to the mitochondrial membrane potential. Flow cytometry, semiquantitative reverse transcription polymerase chain reaction and Western blot analysis were carried out to evaluate phenotypic and biosynthetic activities and the signaling pathways involved in the differentiation process. RESULTS Under hypoxic conditions, mesenchymal stem cells formed large aggregates and exhibited positive Celltracker and Mitotracker signals. Glucose transporter-3, matrix metalloproteinase-2, collagen type II and type XI, and aggrecan mRNA and protein expression was upregulated, whereas there was no change in the levels of decorin, biglycan, fibromodulin, and lumican. Hypoxia maintained the expression of CD44 (hyaluronan receptor), ALCAM (CD166), and endoglin (transforming growth factor-beta receptor). Likewise, expression of beta3 and alpha2 integrin was upregulated. Transforming growth factor-beta treatment increased MAPK activity and Sox-9, aggrecan, and collagen type II gene expression. Basal levels of the phosphorylated MAPK isoform ERK1/2, but not p38, were higher under hypoxic conditions than normoxia, and its activation was further augmented by treatment of cells with transforming growth factor-beta. In hypoxia, transforming growth factor-beta sustained phosphorylated p38 expression for an extended time period. Pharmacological inhibition of ERK1/2 and p38 enzymatic activity resulted in a decrease in Sox-9, aggrecan, and collagen type II mRNA levels. CONCLUSIONS Our results indicate that hypoxia and transforming growth factor-beta drive mesenchymal stem cell differentiation towards a phenotype consistent with that of the nucleus pulposus. Measurement of selected signaling molecules and response to specific inhibitors suggest involvement of MAPK signaling pathways. It is concluded that mesenchymal stem cells could be used to repopulate the damaged or degenerate intervertebral disc.
Collapse
Affiliation(s)
- Makarand V Risbud
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | | | |
Collapse
|
1130
|
Kou I, Ikegawa S. SOX9-dependent and -independent Transcriptional Regulation of Human Cartilage Link Protein. J Biol Chem 2004; 279:50942-8. [PMID: 15456769 DOI: 10.1074/jbc.m406786200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cartilage link protein is a key component of the cartilage extracellular matrix. The transcriptional regulation of the gene encoding cartilage link protein (CRTL1) is largely unknown, however. Here, we investigated the regulation of CRTL1 by SOX9, a key regulator of cartilage matrix genes and chondrogenesis. Knockdown of SOX9 resulted in decreased CRTL1 expression. SOX9 induced CRTL1 expression effectively in human non-chondrocytic immortalized cell lines as well as in mesenchymal stem cell and adult dermal fibroblast. These results indicate that, like other cartilage matrix genes, SOX9 is a key regulator of CRTL1. Unlike other cartilage matrix genes, however, the activation of CRTL1 by SOX9 and its known transcriptional co-activators L-SOX5 and SOX6 was cell type-dependent. Two cis-acting enhancer elements resided in the 5'-untranslated region of CRTL1. One contained a heptameric SOX binding sequence and showed SOX9-dependent enhancer activity in several cell lines. The other showed cell type-specific SOX9-independent enhancer activity. These findings suggest that the enhancer elements may mediate differential expression of CRTL1 during chondrocyte differentiation and maturation.
Collapse
Affiliation(s)
- Ikuyo Kou
- Laboratory for Bone and Joint Diseases, SNP Research Center, RIKEN, Tokyo 108-8639, Japan
| | | |
Collapse
|
1131
|
Rountree RB, Schoor M, Chen H, Marks ME, Harley V, Mishina Y, Kingsley DM. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol 2004; 2:e355. [PMID: 15492776 PMCID: PMC523229 DOI: 10.1371/journal.pbio.0020355] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Accepted: 08/19/2004] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage plays an essential role in health and mobility, but is frequently damaged or lost in millions of people that develop arthritis. The molecular mechanisms that create and maintain this thin layer of cartilage that covers the surface of bones in joint regions are poorly understood, in part because tools to manipulate gene expression specifically in this tissue have not been available. Here we use regulatory information from the mouse Gdf5 gene (a bone morphogenetic protein [BMP] family member) to develop new mouse lines that can be used to either activate or inactivate genes specifically in developing joints. Expression of Cre recombinase from Gdf5 bacterial artificial chromosome clones leads to specific activation or inactivation of floxed target genes in developing joints, including early joint interzones, adult articular cartilage, and the joint capsule. We have used this system to test the role of BMP receptor signaling in joint development. Mice with null mutations in Bmpr1a are known to die early in embryogenesis with multiple defects. However, combining a floxed Bmpr1a allele with the Gdf5-Cre driver bypasses this embryonic lethality, and leads to birth and postnatal development of mice missing the Bmpr1a gene in articular regions. Most joints in the body form normally in the absence of Bmpr1a receptor function. However, articular cartilage within the joints gradually wears away in receptor-deficient mice after birth in a process resembling human osteoarthritis. Gdf5-Cre mice provide a general system that can be used to test the role of genes in articular regions. BMP receptor signaling is required not only for early development and creation of multiple tissues, but also for ongoing maintenance of articular cartilage after birth. Genetic variation in the strength of BMP receptor signaling may be an important risk factor in human osteoarthritis, and treatments that mimic or augment BMP receptor signaling should be investigated as a possible therapeutic strategy for maintaining the health of joint linings.
Collapse
MESH Headings
- Alleles
- Animals
- Apoptosis
- Bone Morphogenetic Protein Receptors/metabolism
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Proteins/genetics
- Cartilage/metabolism
- Cartilage/pathology
- Cartilage, Articular/embryology
- Cartilage, Articular/growth & development
- Cartilage, Articular/metabolism
- Cell Proliferation
- Chromosomes, Artificial, Bacterial/metabolism
- Gene Expression Regulation, Developmental
- Genetic Variation
- Growth Differentiation Factor 5
- Inflammation
- Integrases/metabolism
- Joints/embryology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Mutation
- Osteoarthritis/metabolism
- Phenotype
- Recombination, Genetic
- Risk Factors
- Signal Transduction
- Synovial Membrane/embryology
- Time Factors
Collapse
Affiliation(s)
- Ryan B Rountree
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Michael Schoor
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Hao Chen
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Melissa E Marks
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Vincent Harley
- 2Prince Henry's Institute of Medical Research, Monash Medical CentreClayton, VictoriaAustralia
| | - Yuji Mishina
- 3National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle Park, North CarolinaUnited States of America
| | - David M Kingsley
- 1Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| |
Collapse
|
1132
|
Saas J, Lindauer K, Bau B, Takigawa M, Aigner T. Molecular phenotyping of HCS-2/8 cells as an in vitro model of human chondrocytes. Osteoarthritis Cartilage 2004; 12:924-34. [PMID: 15501409 DOI: 10.1016/j.joca.2004.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 08/11/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cultures of primary articular chondrocytes for studying chondrocyte biology are notoriously difficult to handle. One alternative is the use of chondrocytic cell lines. Because the HCS-2/8 cells are the most widely used cell line in cartilage research, we investigated the molecular phenotype of these cells by mRNA-expression profiling. DESIGN Monolayers of HCS-2/8 cells were cultured to sub-confluence, confluence and over-confluence; primary human chondrocytes were grown in monolayer culture and alginate-bead cultures and several other chondrocytic cell lines were cultured as monolayers. RNA was isolated and analyzed by cDNA array profiling using Affymetrix GeneChips (U95A/U95Av2) and quantitative PCR. RESULTS Important similarities, but also remarkable differences between the HCS-2/8 cells and adult human articular chondrocytes were detected: Aggrecan and several cartilage typical collagens as well as SOX9 transcripts were strongly expressed in HCS-2/8 cells, whereas HCS-2/8 cells expressed hardly any chondrocyte-typical cartilage matrix degrading enzymes. Of all culturing conditions, clustering analysis showed that HCS-2/8 cultured at confluence are most closely related to primary chondrocytes. CONCLUSION Our study confirms how careful one needs to be in choosing in vitro model systems for investigating effects of interest. The major issue of chondrocyte cell lines appears to be that they mainly proliferate and show less expression of genes of matrix synthesis and turnover. A successful approach will have to select suitable chondrocyte cell lines and to validate findings obtained using primary chondrocytes. This allows to establish a reproducible in vitro model showing the property of interest and subsequently to relate back the obtained results to the physiologic situation.
Collapse
Affiliation(s)
- J Saas
- Aventis Pharma Deutschland GmbH, Disease Group Osteoarthritis and Department of Bioinformatics Frankfurt, Germany
| | | | | | | | | |
Collapse
|
1133
|
Ikeda T, Kamekura S, Mabuchi A, Kou I, Seki S, Takato T, Nakamura K, Kawaguchi H, Ikegawa S, Chung UI. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. ACTA ACUST UNITED AC 2004; 50:3561-73. [PMID: 15529345 DOI: 10.1002/art.20611] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To regenerate permanent cartilage, it is crucial to know not only the necessary conditions for chondrogenesis, but also the sufficient conditions. The objective of this study was to determine the signal sufficient for chondrogenesis. METHODS Embryonic stem cells that had been engineered to fluoresce upon chondrocyte differentiation were treated with combinations of factors necessary for chondrogenesis, and chondrocyte differentiation was detected as fluorescence. We screened for the combination that could induce fluorescence within 3 days. Then, primary mesenchymal stem cells, nonchondrogenic immortalized cell lines, and primary dermal fibroblasts were treated with the combination, and the induction of chondrocyte differentiation was assessed by detecting the expression of the cartilage marker genes and the accumulation of proteoglycan-rich matrix. The effects of monolayer, spheroid, and 3-dimensional culture systems on induction by combinations of transcription factors were compared. The effects of the combination on hypertrophic and osteoblastic differentiation were evaluated by detecting the expression of the characteristic marker genes. RESULTS No single factor induced fluorescence. Among various combinations examined, only the SOX5, SOX6, and SOX9 combination (the SOX trio) induced fluorescence within 3 days. The SOX trio successfully induced chondrocyte differentiation in all cell types tested, including nonchondrogenic types, and the induction occurred regardless of the culture system used. Contrary to the conventional chondrogenic techniques, the SOX trio suppressed hypertrophic and osteogenic differentiation at the same time. CONCLUSION These data strongly suggest that the SOX trio provides signals sufficient for the induction of permanent cartilage.
Collapse
Affiliation(s)
- Toshiyuki Ikeda
- Laboratory for Bone & Joint Diseases, SNP Research Center, RIKEN (The Institute of Physical and Chemical Research), University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1134
|
Lee YH, Aoki Y, Hong CS, Saint-Germain N, Credidio C, Saint-Jeannet JP. Early requirement of the transcriptional activator Sox9 for neural crest specification in Xenopus. Dev Biol 2004; 275:93-103. [PMID: 15464575 DOI: 10.1016/j.ydbio.2004.07.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 07/13/2004] [Accepted: 07/27/2004] [Indexed: 11/27/2022]
Abstract
The neural crest is a multipotent population of cells that arises at the neural plate border in the vertebrate embryo. We have previously shown that a member of the Sox family of transcription factors, Sox9, is a regulator of neural crest formation in Xenopus, as Sox9-depleted embryos failed to form neural crest progenitors. Here, we describe experiments that further investigate Sox9 function during neural crest development. Induction of neural crest progenitors in Xenopus is regulated by Wnt signaling. We show that this process is largely dependent on Sox9 function as Wnt-mediated neural crest induction is inhibited in the context of Sox9-depleted embryos. Moreover, we demonstrate that Sox9 functions as a transcriptional activator during neural crest formation. Expression of a construct in which Sox9 DNA-binding domain (HMG box) is fused to the repressor domain of Drosophila engrailed blocked neural crest formation, thereby mimicking the phenotype of Sox9-depleted embryos. Finally, using a hormone-inducible inhibitory mutant of Sox9, lacking the transactivation domain, we show that Sox9 function is required for neural crest specification but not for its subsequent migration.
Collapse
Affiliation(s)
- Young-Hoon Lee
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
1135
|
Boulet AM, Moon AM, Arenkiel BR, Capecchi MR. The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev Biol 2004; 273:361-72. [PMID: 15328019 DOI: 10.1016/j.ydbio.2004.06.012] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 06/16/2004] [Accepted: 06/21/2004] [Indexed: 11/23/2022]
Abstract
Although numerous molecules required for limb bud formation have recently been identified, the molecular pathways that initiate this process and ensure that limb formation occurs at specific axial positions have yet to be fully elucidated. Based on experiments in the chick, Fgf8 expression in the intermediate mesoderm (IM) has been proposed to play a critical role in the initiation of limb bud outgrowth via restriction of Fgf10 expression to the appropriate region of the lateral plate mesoderm. Contrary to the outcome predicted by this model, ablation of Fgf8 expression in the intermediate mesoderm before limb bud initiation had no effect on initial limb bud outgrowth or on the formation of normal limbs. When their expression patterns were first elucidated, both Fgf4 and Fgf8 were proposed to mediate critical functions of the apical ectodermal ridge (AER), which is required for proper limb bud outgrowth. Although mice lacking Fgf4 in the AER have normal limbs, limb development is severely affected in Fgf8 mutants and certain skeletal elements are not produced. By creating mice lacking both Fgf4 and Fgf8 function in the forelimb AER, we show that limb bud mesenchyme fails to survive in the absence of both FGF family members. Thus, Fgf4 is responsible for the partial compensation of distal limb development in the absence of Fgf8. A prolonged period of increased apoptosis, beginning at 10 days of gestation in a proximal-dorsal region of the limb bud, leads to the elimination of enough mesenchymal cells to preclude formation of distal limb structures. Expression of Shh and Fgf10 is nearly abolished in double mutant limb buds. By using a CRE driver expressed in both forelimb and hindlimb ectoderm to inactivate Fgf4 and Fgf8, we have produced mice lacking all limbs, allowing a direct comparison of FGF requirements in the two locations.
Collapse
Affiliation(s)
- Anne M Boulet
- Department of Human Genetics, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
1136
|
Ihanamäki T, Pelliniemi LJ, Vuorio E. Collagens and collagen-related matrix components in the human and mouse eye. Prog Retin Eye Res 2004; 23:403-34. [PMID: 15219875 DOI: 10.1016/j.preteyeres.2004.04.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The three-dimensional structure of the eye plays an important role in providing a correct optical environment for vision. Much of this function is dependent on the unique structural features of ocular connective tissue, especially of the collagen types and their supramolecular structures. For example, the organization of collagen fibrils is largely responsible for transparency and refraction of cornea, lens and vitreous body, and collagens present in the sclera are largely responsible for the structural strength of the eye. Phylogenetically, most of the collagens are highly conserved between different species, which suggests that collagens also share similar functions in mice and men. Despite considerable differences between the mouse and the human eye, particularly in the proportion of the different tissue components, the difficulty of performing systematic histologic and molecular studies on the human eye has made mouse an appealing alternative to studies addressing the role of individual genes and their mutations in ocular diseases. From a genetic standpoint, the mouse has major advantages over other experimental animals as its genome is better known than that of other species and it can be manipulated by the modern techniques of genetic engineering. Furthermore, it is easy, quick and relatively cheap to produce large quantities of mice for systematic studies. Thus, transgenic techniques have made it possible to study consequences of specific mutations in genes coding for structural components of ocular connective tissues in mice. As these changes in mice have been shown to resemble those in human diseases, mouse models are likely to provide efficient tools for pathogenetic studies on human disorders affecting the extracellular matrix. This review is aimed to clarify the role of collagenous components in the mouse and human eye with a closer look at the new findings of the collagens in the cartilage and the eye, the so-called "cartilage collagens".
Collapse
Affiliation(s)
- Tapio Ihanamäki
- Department of Ophthalmology, Helsinki University Central Hospital, PO Box 220, FIN-00029 HUS Helsinki, Finland.
| | | | | |
Collapse
|
1137
|
Abstract
Extracellular matrix metabolism plays a central role in development of skeletal tissues and in most orthopaedic diseases and trauma such as fracture or osteotomy repair, arthritis, cartilage repair, and congenital skeletal deformity. During development or disease, specific genes must be expressed in order to make or repair appropriate extracellular matrix. For example, specific gene expression patterns are characteristic of bone and cartilage. The precise expression pattern depends on a balance of positive and negative transcription factors, proteins that control the synthesis of mRNA from the specific gene. In cartilage, a number of studies indicate that Sox transcription factors are critical positive regulators in genes such as COL2A1, COL9A2, COL11A2, aggrecan, and CD-RAP. In addition, negative regulators are also essential to fine tune gene regulation in chondrocytes and to turn off gene expression in noncartilaginous tissues. Negative transcription factors in cartilage include partial differentialEF-1, snail/slug, CYRBP1, NT2, and C/EBP. Runx2 and osterix are critical transcription factors for osteogenesis but also have some influence on chondrogenesis. The availability of cis-regulatory sites in specific genes combined with the availability of transcription factors in the nucleus determines the level of gene expression.
Collapse
Affiliation(s)
- Ken Okazaki
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA
| | | |
Collapse
|
1138
|
Postlethwait J, Amores A, Cresko W, Singer A, Yan YL. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 2004; 20:481-90. [PMID: 15363902 DOI: 10.1016/j.tig.2004.08.001] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Half of all vertebrate species are teleost fish. What accounts for this explosion of biodiversity? Recent evidence and advances in evolutionary theory suggest that genomic features could have played a significant role in the teleost radiation. This review examines evidence for an ancient whole-genome duplication (tetraploidization) event that probably occurred just before the teleost radiation. The partitioning of ancestral subfunctions between gene copies arising from this duplication could have contributed to the genetic isolation of populations, to lineage-specific diversification of developmental programs, and ultimately to phenotypic variation among teleost fish. Beyond its importance for understanding mechanisms that generate biodiversity, the partitioning of subfunctions between teleost co-orthologs of human genes can facilitate the identification of tissue-specific conserved noncoding regions and can simplify the analysis of ancestral gene functions obscured by pleiotropy or haploinsufficiency. Applying these principles on a genomic scale can accelerate the functional annotation of the human genome and understanding of the roles of human genes in health and disease.
Collapse
Affiliation(s)
- John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | |
Collapse
|
1139
|
Jorgensen C, Gordeladze J, Noel D. Tissue engineering through autologous mesenchymal stem cells. Curr Opin Biotechnol 2004; 15:406-10. [PMID: 15464369 DOI: 10.1016/j.copbio.2004.08.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The regeneration of damaged cartilage in different pathological situations is a major goal for the future and could be achieved through cell and/or gene therapy. Mesenchymal stem cells (MSCs) are the progenitors of multiple lineages, including bone, cartilage, muscle, fat, and astrocytes. MSCs seem to be the best candidates for cell therapy to regenerate injured tissue, as they are easily isolated from bone marrow and can be rapidly amplified. Full healing is extremely demanding, however, and includes integration of the regenerated tissue within the surrounding host tissue and true differentiation through pathways involved in embryonic development. This goal might be reached through the combined use of scaffolds, MSC-mediated therapy and the expression of selective differentiating factors. The long-term behavior of MSCs associated with biomaterials and implanted in pathological joints remains to be investigated before clinical application in osteoarthritis or rheumatoid arthritis.
Collapse
Affiliation(s)
- Christian Jorgensen
- Service d'Immuno-Rhumatologie, Hôpital Lapeyronie, 34295 Montpellier, Cedex 5, France.
| | | | | |
Collapse
|
1140
|
Yamashiro T, Wang XP, Li Z, Oya S, Aberg T, Fukunaga T, Kamioka H, Speck NA, Takano-Yamamoto T, Thesleff I. Possible roles of Runx1 and Sox9 in incipient intramembranous ossification. J Bone Miner Res 2004; 19:1671-7. [PMID: 15355562 DOI: 10.1359/jbmr.040801] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 04/21/2004] [Accepted: 05/21/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED We evaluated the detailed expression patterns of Runx1 and Sox9 in various types of bone formation, and determined whether Runx1 expression was affected by Runx2 deficiency and Runx2 expression by Runx1 deficiency. Our results indicate that both Runx1 and Sox9 are intensely expressed in the future osteogenic cell compartment and in cartilage. The pattern of Runx1 and Sox9 expression suggests that both genes could potentially be involved in incipient intramembranous bone formation during craniofacial development. INTRODUCTION Runx1, a gene essential for hematopoiesis, contains RUNX binding sites in its promoter region, suggesting possible cross-regulation with Runx2 and potential regulatory roles in bone development. On the other hand, Sox9 is essential for chondrogenesis, and haploinsufficiency of Sox9 leads to premature ossification of the skeletal system. In this study, we studied the possible roles of Runx1 and Sox9 in bone development. MATERIALS AND METHODS Runx1, Runx2/Osf2, and Sox9 expression was evaluated by in situ hybridization in the growing craniofacial bones of embryonic day (E)12-16 mice and in the endochondral bone-forming regions of embryonic and postnatal long bones. In addition, we evaluated Runx2/Osf2 expression in the growing face of Runx1 knockout mice at E12.5 and Runx1 expression in Runx2 knockout mice at E14.5. RESULTS Runx1 and Sox9 were expressed in cartilage, and the regions of expression expanded to the neighboring Runx2-expressing osteogenic regions. Expression of both Runx1 and Sox9 was markedly downregulated on ossification. Runx1 and Sox9 expression was absent in the regions of endochondral bone formation and in actively modeling or remodeling bone tissues in the long bones as well as in ossified craniofacial bones. Runx2 expression was not affected by gene disruption of Runx1, whereas the expression domains of Runx1 were extended in Runx2(-/-) mice compared with wildtype mice. CONCLUSIONS Runx1 and Sox9 are specifically expressed in the osteogenic cell compartments in the craniofacial bones and the bone collar of long bones, and this expression is downregulated on terminal differentiation of osteoblasts. Our results suggest that Runx1 may play a role in incipient intramembranous bone formation.
Collapse
Affiliation(s)
- Takashi Yamashiro
- Department of Orthodontics, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1141
|
Malpeli M, Randazzo N, Cancedda R, Dozin B. Serum-free growth medium sustains commitment of human articular chondrocyte through maintenance of Sox9 expression. ACTA ACUST UNITED AC 2004; 10:145-55. [PMID: 15009940 DOI: 10.1089/107632704322791790] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human articular cartilage heals poorly in adults and current surgical procedures do not provide long-term repair. Cell therapy and tissue engineering could become the treatment of choice, but suffer a major limitation as chondrocytes in vitro lose the differentiated phenotype. In vivo, the chondrogenic lineage is specified by transcription factor Sox9. Thus, cell-based therapy could be successful if Sox9 expression and chondrogenic commitment of the expanded cells were preserved. To achieve this goal, we developed a serum-free medium that supports cell proliferation and preserves the differentiation potential. Indeed, expression of Sox9 is maintained when the conventionally used serum is substituted for by this defined supplement. Spontaneous cartilage formation after expansion in serum-free medium is obtained in vitro in a high-density pellet culture and confirmed in vivo in a functional assay in immunodeficient mice. By contrast, cells grown in serum lose the expression of Sox9 and fail to reform cartilage both in vitro and in vivo unless they are rescued by chondrogenic inducers such as transforming growth factor beta(1) and dexamethasone. Our data emphasize the importance of the microenvironment in modulating commitment, plasticity, and phenotype of chondrocytes, and provide an experimental system to study their physiological or pathological metabolism in a controlled context.
Collapse
Affiliation(s)
- Mara Malpeli
- Istituto Nazionale per la Ricerca sul Cancro/Centro Biotecnologie Avanzate, Genoa, Italy
| | | | | | | |
Collapse
|
1142
|
Smits P, Dy P, Mitra S, Lefebvre V. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. ACTA ACUST UNITED AC 2004; 164:747-58. [PMID: 14993235 PMCID: PMC2172159 DOI: 10.1083/jcb.200312045] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sox5 and Sox6 encode Sry-related transcription factors that redundantly promote early chondroblast differentiation. Using mouse embryos with three or four null alleles of Sox5 and Sox6, we show that they are also essential and redundant in major steps of growth plate chondrocyte differentiation. Sox5 and Sox6 promote the development of a highly proliferating pool of chondroblasts between the epiphyses and metaphyses of future long bones. This pool is the likely cellular source of growth plates. Sox5 and Sox6 permit formation of growth plate columnar zones by keeping chondroblasts proliferating and by delaying chondrocyte prehypertrophy. They allow induction of chondrocyte hypertrophy and permit formation of prehypertrophic and hypertrophic zones by delaying chondrocyte terminal differentiation induced by ossification fronts. They act, at least in part, by down-regulating Ihh signaling, Fgfr3, and Runx2 and by up-regulating Bmp6. In conclusion, Sox5 and Sox6 are needed for the establishment of multilayered growth plates, and thereby for proper and timely development of endochondral bones.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bone Development/physiology
- Bone Morphogenetic Protein 6
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Bone and Bones/abnormalities
- Bone and Bones/anatomy & histology
- Bone and Bones/embryology
- Cartilage/cytology
- Cartilage/embryology
- Cartilage/pathology
- Cell Differentiation/physiology
- Cell Division/physiology
- Chondrocytes/cytology
- Chondrocytes/metabolism
- Core Binding Factor Alpha 1 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Female
- Gestational Age
- Growth Plate/cytology
- Growth Plate/pathology
- Growth Plate/physiology
- Hedgehog Proteins
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/metabolism
- Hypertrophy/metabolism
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/metabolism
- Patched Receptors
- Pregnancy
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proteins/genetics
- Proteins/metabolism
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Cell Surface
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- SOXD Transcription Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Patrick Smits
- Dept. of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., ND-20, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
1143
|
Lengner CJ, Lepper C, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation. J Cell Physiol 2004; 200:327-33. [PMID: 15254959 DOI: 10.1002/jcp.20118] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cartilage formation is an intricate process that requires temporal and spatial organization of regulatory factors in order for a mesenchymal progenitor cell to differentiate through the distinct stages of chondrogenesis. Gene function during this process has best been studied by analysis of in vivo cartilage formation in genetically altered mouse models. Mouse embryonic fibroblasts (MEFs) isolated from such mouse models have been widely used for the study of growth control and DNA damage response. Here, we address the potential of MEFs to undergo chondrogenic differentiation. We demonstrate for the first time that MEFs can enter and complete the program of chondrogenic differentiation ex vivo, from undifferentiated progenitor cells to mature, hypertrophic chondrocytes. We show that chondrogenic differentiation can be induced by cell-cell contact or BMP-2 treatment, while in combination, these conditions synergistically enhance chondrocyte differentiation resulting in the formation of 3-dimensional (3-D) cartilaginous tissue ex vivo. Temporal expression profiles of pro-chondrogenic transcription factors Bapx1 and Sox9 and cartilaginous extracellular matrix (ECM) proteins Collagen Type II and X (Coll II and Coll X) demonstrate that the in vivo progression of chondrocyte maturation is recapitulated in the MEF model system. Our findings establish the MEF as a powerful tool for the generation of cartilaginous tissue ex vivo and for the study of gene function during chondrogenesis.
Collapse
Affiliation(s)
- Christopher J Lengner
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0106, USA
| | | | | | | | | | | |
Collapse
|
1144
|
Skamrov AV, Nechaenko MA, Goryunova LE, Feoktistova ES, Khaspekov GL, Kovalevsky DA, Vinnitsky LI, Sheremeteva GF, Beabealashvilli RS. Gene expression analysis to identify mRNA markers of cardiac myxoma. J Mol Cell Cardiol 2004; 37:717-33. [PMID: 15350845 DOI: 10.1016/j.yjmcc.2004.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 05/26/2004] [Accepted: 06/09/2004] [Indexed: 11/19/2022]
Abstract
cDNA expression arrays were used to identify mRNA expression markers for cardiac myxoma. The RNA profile analysis suggests that cardiac myxoma should be considered as a stand-alone tissue rather than a pathological modification of particular normal tissue. The analysis reveals a set of genes which are highly and steadily expressed in cardiac myxomas and can serve as an mRNA expression markers of the tumour. Marker status of selected genes was confirmed by reverse transcriptase polymerase chain reaction analysis. Genes MIA (melanoma inhibitory activity) and PLA2G2A (phospholipase A2, group IIA) show the highest specificity as cardiac myxoma markers, since they have more than 10-fold higher RNA level in cardiac myxomas than in any one of 15 normal tissues tested. Among markers of myxoma at least three are participants of phospholipid metabolism: ANXA3, PLA2G2A, and phospholipid transfer protein. Tissue inhibitor of metalloproteinase 1 and secretory leucocyte protease inhibitor are inhibitors of proteases degrading extracellular matrix proteins and participating in cell proliferation regulation. MIA, SPP1, fibromodulin are modulators or participants of the interaction between extracellular matrix proteins and their cell surface receptors. SOX9 is a transcription factor required for chondrocyte differentiation. Calretenin (CALB2) is an intracellular calcium-binding protein with poorly understood function.
Collapse
Affiliation(s)
- A V Skamrov
- National Cardiology Research Center, Ministry of Health of the Russian Federation, 3rd Cherepkovskaya street 15A, Moscow 121552, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
1145
|
Pirvola U, Zhang X, Mantela J, Ornitz DM, Ylikoski J. Fgf9 signaling regulates inner ear morphogenesis through epithelial–mesenchymal interactions. Dev Biol 2004; 273:350-60. [PMID: 15328018 DOI: 10.1016/j.ydbio.2004.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2004] [Revised: 06/16/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
The mammalian inner ear comprises the cochleovestibular labyrinth, derived from the ectodermal otic placode, and the encasing bony labyrinth of the temporal bone. Epithelial-mesenchymal interactions are thought to control inner ear development, but the modes and the molecules involved are largely unresolved. We show here that, during the precartilage and cartilage stages, Fgf9 is expressed in specific nonsensory domains of the otic epithelium and its receptors, Fgfr1(IIIc) and Fgfr2(IIIc), widely in the surrounding mesenchyme. To address the role of Fgf9 signaling, we analyzed the inner ears of mice homozygous for Fgf9 null alleles. Fgf9 inactivation leads to a hypoplastic vestibular component of the otic capsule and to the absence of the epithelial semicircular ducts. Reduced proliferation of the prechondrogenic mesenchyme was found to underlie capsular hypoplasticity. Semicircular duct development is blocked at the initial stages, since fusion plates do not form. Our results show that the mesenchyme directs fusion plate formation and they give direct evidence for the existence of reciprocal epithelial-mesenchymal interactions in the developing inner ear. In addition to the vestibule, in the cochlea, Fgf9 mutation caused defects in the interactions between the Reissner's membrane and the mesenchymal cells, leading to a malformed scala vestibuli. Together, these data show that Fgf9 signaling is required for inner ear morphogenesis.
Collapse
Affiliation(s)
- Ulla Pirvola
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
1146
|
Niimi T, Hayashi Y, Futaki S, Sekiguchi K. SOX7 and SOX17 Regulate the Parietal Endoderm-specific Enhancer Activity of Mouse Laminin α1 Gene. J Biol Chem 2004; 279:38055-61. [PMID: 15220343 DOI: 10.1074/jbc.m403724200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laminin-1 is the major component of embryonic basement membrane and consists of alpha1, beta1, and gamma1 chains. The expression of laminin-1 is induced in mouse F9 embryonal carcinoma cells upon differentiation into parietal endoderm cells. We recently identified a parietal endoderm-specific enhancer in the mouse laminin alpha1 (Lama1) gene and showed that Sp1/Sp3 and YY1 transcription factors were involved in the enhancer activity. Although here we identified that NF-Y binds to the enhancer sequence between Sp1/Sp3- and YY1-binding sites, all these transcription factors are ubiquitously expressed and thus are not sufficient to explain parietal endoderm-specific enhancer activity. In the present study, we further showed that SOX7 and SOX17 are involved in the regulation of parietal endoderm-specific enhancer activity of the mouse Lama1 gene. Northern blot analysis revealed that the steady-state levels of mouse Sox7 and Sox17 mRNAs increased in parallel with that of Lama1 mRNA during the differentiation of F9 cells. Both SOX7 and SOX17 markedly trans-activated the transcription of the Lama1 enhancer-reporter construct in undifferentiated F9 cells in a manner dependent on high mobility group box-mediated DNA binding. Electrophoretic mobility shift assays and mutational analyses revealed that SOX7 and SOX17 bound specifically to two SOX-binding sites within the Lama1 enhancer, and that these SOX-binding sites functioned synergistically to confer the trans-activation by SOX7 and SOX17. Furthermore, this trans-activation was dependent on the integrity of the binding sites for Sp1/Sp3 and NF-Y located at upstream of the two SOX-binding sites. These results indicate that the transcription of the mouse Lama1 gene during the differentiation of F9 cells is controlled by a combination of the actions of the ubiquitous factors, Sp1/Sp3 and NF-Y, and the parietal endoderm-specific factors, SOX7 and SOX17.
Collapse
Affiliation(s)
- Tomoaki Niimi
- Sekiguchi Biomatrix Signaling Project, ERATO, Japan Science and Technology Agency, Aichi Medical University, Karimata, Yazako, Nagakute, Aichi 480-1195, Japan
| | | | | | | |
Collapse
|
1147
|
Blache P, van de Wetering M, Duluc I, Domon C, Berta P, Freund JN, Clevers H, Jay P. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. ACTA ACUST UNITED AC 2004; 166:37-47. [PMID: 15240568 PMCID: PMC2172132 DOI: 10.1083/jcb.200311021] [Citation(s) in RCA: 394] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
TCF and SOX proteins belong to the high mobility group box transcription factor family. Whereas TCFs, the transcriptional effectors of the Wnt pathway, have been widely implicated in the development, homeostasis and disease of the intestine epithelium, little is known about the function of the SOX proteins in this tissue. Here, we identified SOX9 in a SOX expression screening in the mouse fetal intestine. We report that the SOX9 protein is expressed in the intestinal epithelium in a pattern characteristic of Wnt targets. We provide in vitro and in vivo evidence that a bipartite β-catenin/TCF4 transcription factor, the effector of the Wnt signaling pathway, is required for SOX9 expression in epithelial cells. Finally, in colon epithelium-derived cells, SOX9 transcriptionally represses the CDX2 and MUC2 genes, normally expressed in the mature villus cells of the intestinal epithelium, and may therefore contribute to the Wnt-dependent maintenance of a progenitor cell phenotype.
Collapse
Affiliation(s)
- Philippe Blache
- Institut de Génétique Humaine, CNRS UPR1142, 141 rue de la Cardonille, 34396 Montpellier, Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
1148
|
Eswarakumar VP, Horowitz MC, Locklin R, Morriss-Kay GM, Lonai P. A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis. Proc Natl Acad Sci U S A 2004; 101:12555-60. [PMID: 15316116 PMCID: PMC515096 DOI: 10.1073/pnas.0405031101] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Indexed: 11/18/2022] Open
Abstract
The b and c variants of fibroblast growth factor receptor 2 (FGFR2) differ in sequence, binding specificity, and localization. Fgfr2b, expressed in epithelia, is required for limb outgrowth and branching morphogenesis, whereas the mesenchymal Fgfr2c variant is required by the osteocyte lineage for normal skeletogenesis. Gain-of-function mutations in human FGFR2c are associated with craniosynostosis syndromes. To confirm and extend this evidence, we introduced a Cys342Tyr replacement into Fgfr2c to create a gain-of-function mutation equivalent to a mutation in human Crouzon and Pfeiffer syndromes. Fgfr2c(C342Y/)(+) heterozygote mice are viable and fertile with shortened face, protruding eyes, premature fusion of cranial sutures, and enhanced Spp1 expression in the calvaria. Homozygous mutants display multiple joint fusions, cleft palate, and trachea and lung defects, and die shortly after birth. They show enhanced Cbfa1/Runx2 expression without significant change in chondrocyte-specific Ihh, PTHrP, Sox9, Col2a, or Col10a gene expression. Histomorphometric analysis and bone marrow stromal cell culture showed a significant increase of osteoblast progenitors with no change in osteoclastogenic cells. Chondrocyte proliferation was decreased in the skull base at embryonic day 14.5 but not later. These results suggest that long-term aspects of the mutant phenotype, including craniosynostosis, are related to the Fgfr2c regulation of the osteoblast lineage. The effect on early chondrocyte proliferation but not gene expression suggests cooperation of Fgfr2c with Fgfr3 in the formation of the cartilage model for endochondral bone.
Collapse
|
1149
|
Perez-Alcala S, Nieto MA, Barbas JA. LSox5 regulates RhoB expression in the neural tube and promotes generation of the neural crest. Development 2004; 131:4455-65. [PMID: 15306568 DOI: 10.1242/dev.01329] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the Sox family of transcription factors are involved in a number of crucial developmental processes, including sex determination, neurogenesis and skeletal development. LSox5 is a member of the group D Sox factors that, in conjunction with Sox6 and Sox9, promotes chondrogenesis by activating the expression of cartilage-specific extracellular matrix molecules. We have cloned the chicken homologue of LSox5 and found that it is initially expressed in the premigratory and migratory neural crest after Slug and FoxD3. Subsequently, the expression of LSox5 is maintained in cephalic crest derivatives, and it appears to be required for the development of the glial lineage, the Schwann cells and satellite glia in cranial ganglia. Misexpression of LSox5 in the cephalic neural tube activated RhoB expression throughout the dorsoventral axis. Furthermore, the prolonged forced expression of LSox5 enlarged the dorsal territory in which the neural crest is generated, extended the 'temporal window' of neural crest segregation, and led to an overproduction of neural crest cells in cephalic regions. In addition to HNK-1, the additional neural crest cells expressed putative upstream markers (Slug, FoxD3) indicating that a regulatory feedback mechanism may operate during neural crest generation. Thus, our data show that in addition to the SoxE genes (Sox9 and Sox10) a SoxD gene (Sox5) also participates in neural crest development and that a cooperative interaction may operate during neural crest generation, as seen during the formation of cartilage.
Collapse
|
1150
|
Jay KE, Rouleau A, Underhill TM, Bhatia M. Identification of a novel population of human cord blood cells with hematopoietic and chondrocytic potential. Cell Res 2004; 14:268-82. [PMID: 15353124 DOI: 10.1038/sj.cr.7290228] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
With the exception of mature erythrocytes, cells within the human hematopoietic system are characterized by the cell surface expression of the pan-leukocyte receptor CD45. Here, we identify a novel subset among mononuclear cord blood cells depleted of lineage commitment markers (Lin-) that are devoid of CD45 expression. Surprisingly, functional examination of Lin-CD45- cells also lacking cell surface CD34 revealed they were capable of multipotential hematopoietic progenitor capacity. Co-culture with mouse embryonic limb bud cells demonstrated that Lin-CD45-CD34- cells were capable of contributing to cartilage nodules and differentiating into human chondrocytes. BMP-4, a mesodermal factor known to promote chondrogenesis, significantly augmented Lin-CD45-CD34- differentiation into chondrocytes. Moreover, unlike CD34+ human hematopoietic stem cells, Lin-CD45-CD34- cells were unable to proliferate or survive in liquid cultures, whereas single Lin-CD45-CD34- cells were able to chimerize the inner cell mass (ICM) of murine blastocysts and proliferate in this embryonic environment. Our study identifies a novel population of Lin-CD45-CD34- cells capable of commitment into both hematopoietic and chondrocytic lineages, suggesting that human cord blood may provide a more ubiquitous source of tissue with broader developmental potential than previously appreciated.
Collapse
Affiliation(s)
- Karen E Jay
- Stem Cell Biology and Regenerative Medicine, The John P. Robarts Research Institute, 100 Perth Drive, London, Ontario, N6A 5K8, Canada
| | | | | | | |
Collapse
|