1101
|
Szcześniak MW, Wanowska E, Mukherjee N, Ohler U, Makałowska I. Towards a deeper annotation of human lncRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194385. [PMID: 31128317 DOI: 10.1016/j.bbagrm.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/05/2023]
Abstract
A substantial fraction of the human transcriptome is composed of the so-called long noncoding RNAs (lncRNAs), yet the available catalogs of known lncRNAs are far from complete. Moreover, functional studies of these RNAs are challenged by several factors, such as their tissue-specific expression and functional heterogeneity, resulting in only ca. 1% of them being well characterized. Here, we describe a set of 41,400 novel lncRNAs discovered with RNA-Seq data from 1463 samples encompassing diverse tissues and cell lines. We utilized publicly available transcriptomic and genomic data to provide their characteristics, such as tissue specificity, cellular abundance, polyA status, cellular localization, evolutionary conservation and transcript stability, which allowed us to speculate on their possible biological roles. We also pinpointed 24 novel lncRNAs as candidates for breast cancer biomarkers. The results bring us closer to a comprehensive annotation of human lncRNAs, though vast amounts of further work are needed to validate the predictions and fully decipher their biology. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.
Collapse
Affiliation(s)
- Michał Wojciech Szcześniak
- Adam Mickiewicz University in Poznan, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany.
| | - Elżbieta Wanowska
- Adam Mickiewicz University in Poznan, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Neelanjan Mukherjee
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany; Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany; Humboldt University, Department of Computer Science, Unter den Linden 6, 10099 Berlin, Germany
| | - Izabela Makałowska
- Adam Mickiewicz University in Poznan, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland.
| |
Collapse
|
1102
|
Leng J, Shoura M, McLeish TCB, Real AN, Hardey M, McCafferty J, Ranson NA, Harris SA. Securing the future of research computing in the biosciences. PLoS Comput Biol 2019; 15:e1006958. [PMID: 31095554 PMCID: PMC6521984 DOI: 10.1371/journal.pcbi.1006958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Improvements in technology often drive scientific discovery. Therefore, research requires sustained investment in the latest equipment and training for the researchers who are going to use it. Prioritising and administering infrastructure investment is challenging because future needs are difficult to predict. In the past, highly computationally demanding research was associated primarily with particle physics and astronomy experiments. However, as biology becomes more quantitative and bioscientists generate more and more data, their computational requirements may ultimately exceed those of physical scientists. Computation has always been central to bioinformatics, but now imaging experiments have rapidly growing data processing and storage requirements. There is also an urgent need for new modelling and simulation tools to provide insight and understanding of these biophysical experiments. Bioscience communities must work together to provide the software and skills training needed in their areas. Research-active institutions need to recognise that computation is now vital in many more areas of discovery and create an environment where it can be embraced. The public must also become aware of both the power and limitations of computing, particularly with respect to their health and personal data.
Collapse
Affiliation(s)
- Joanna Leng
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Massa Shoura
- School of Pathology, Stanford University, Palo Alto, California, United States of America
| | | | - Alan N. Real
- Advanced Research Computing, University of Durham, Durham, United Kingdom
| | - Mariann Hardey
- Advanced Research Computing, University of Durham, Durham, United Kingdom
- School of Business, University of Durham, Durham, United Kingdom
| | | | - Neil A. Ranson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sarah A. Harris
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
1103
|
John JP, Thirunavukkarasu P, Ishizuka K, Parekh P, Sawa A. An in-silico approach for discovery of microRNA-TF regulation of DISC1 interactome mediating neuronal migration. NPJ Syst Biol Appl 2019; 5:17. [PMID: 31098296 PMCID: PMC6504871 DOI: 10.1038/s41540-019-0094-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/15/2019] [Indexed: 11/25/2022] Open
Abstract
Neuronal migration constitutes an important step in corticogenesis; dysregulation of the molecular mechanisms mediating this crucial step in neurodevelopment may result in various neuropsychiatric disorders. By curating experimental data from published literature, we identified eight functional modules involving Disrupted-in-schizophrenia 1 (DISC1) and its interacting proteins that regulate neuronal migration. We then identified miRNAs and transcription factors (TFs) that form functional feedback loops and regulate gene expression of the DISC1 interactome. Using this curated data, we conducted in-silico modeling of the DISC1 interactome involved in neuronal migration and identified the proteins that either facilitate or inhibit neuronal migrational processes. We also studied the effect of perturbation of miRNAs and TFs in feedback loops on the DISC1 interactome. From these analyses, we discovered that STAT3, TCF3, and TAL1 (through feedback loop with miRNAs) play a critical role in the transcriptional control of DISC1 interactome thereby regulating neuronal migration. To the best of our knowledge, regulation of the DISC1 interactome mediating neuronal migration by these TFs has not been previously reported. These potentially important TFs can serve as targets for undertaking validation studies, which in turn can reveal the molecular processes that cause neuronal migration defects underlying neurodevelopmental disorders. This underscores the importance of the use of in-silico techniques in aiding the discovery of mechanistic evidence governing important molecular and cellular processes. The present work is one such step towards the discovery of regulatory factors of the DISC1 interactome that mediates neuronal migration.
Collapse
Affiliation(s)
- John P. John
- Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
| | - Priyadarshini Thirunavukkarasu
- Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
| | - Koko Ishizuka
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Pravesh Parekh
- Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
| | - Akira Sawa
- Departments of Psychiatry, Mental Health, Neuroscience, and Biomedical Engineering, School of Medicine, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21287 USA
| |
Collapse
|
1104
|
Chauhan R, Shimizu Y, Watashi K, Wakita T, Fukasawa M, Michalak TI. Retrotransposon elements among initial sites of hepatitis B virus integration into human genome in the HepG2-NTCP cell infection model. Cancer Genet 2019; 235-236:39-56. [PMID: 31064734 DOI: 10.1016/j.cancergen.2019.04.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Integration of hepatitis B virus (HBV) DNA into host's genome is evident in all stages and models of HBV infection. Investigations of the initial virus-host junctions have been just recently initiated since their nature may promote liver oncogenesis immediately following infection. We examined the time-frame and host sites at which HBV integrates in HepG2 cells overexpressing sodium taurocholate co-transporting polypeptide (NTCP) receptor mediating HBV entry. HepG2-NTCP cells were analyzed from 15 min to 13 days post-infection (p.i.). The results showed that except for 15 min p.i., HBV-host integrations were detected at all time points thereafter. At 30 min p.i., virus junctions with retrotransposon SINE and with neuroblastoma breakpoint family member 1 gene were detected. At one-hour p.i., HBV integration with retrotransposon THE-1B-LTR was identified, while virus insertions into proline-rich protein and protein kinase cGMP-dependent type 1 encoding genes were found at 3 h p.i. Fusion with runt-related transcription factor 1 was detected at 24 h p.i. and merges with 9 different genes at 13 day p.i. The data showed that retrotransposon elements are frequent among first-hit sites of HBV insertion. This may suggest a mechanism by which HBV DNA may spread across host's genome from earliest stages of infection.
Collapse
Affiliation(s)
- Ranjit Chauhan
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Science Centre, Memorial University, St. John's, NL, Canada
| | - Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Science Centre, Memorial University, St. John's, NL, Canada.
| |
Collapse
|
1105
|
Suntsova M, Gaifullin N, Allina D, Reshetun A, Li X, Mendeleeva L, Surin V, Sergeeva A, Spirin P, Prassolov V, Morgan A, Garazha A, Sorokin M, Buzdin A. Atlas of RNA sequencing profiles for normal human tissues. Sci Data 2019; 6:36. [PMID: 31015567 PMCID: PMC6478850 DOI: 10.1038/s41597-019-0043-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/12/2019] [Indexed: 11/09/2022] Open
Abstract
Comprehensive analysis of molecular pathology requires a collection of reference samples representing normal tissues from healthy donors. For the available limited collections of normal tissues from postmortal donors, there is a problem of data incompatibility, as different datasets generated using different experimental platforms often cannot be merged in a single panel. Here, we constructed and deposited the gene expression database of normal human tissues based on uniformly screened original sequencing data. In total, 142 solid tissue samples representing 20 organs were taken from post-mortal human healthy donors of different age killed in road accidents no later than 36 hours after death. Blood samples were taken from 17 healthy volunteers. We then compared them with the 758 transcriptomic profiles taken from the other databases. We found that overall 463 biosamples showed tissue-specific rather than platform- or database-specific clustering and could be aggregated in a single database termed Oncobox Atlas of Normal Tissue Expression (ANTE). Our data will be useful to all those working with the analysis of human gene expression.
Collapse
Affiliation(s)
- Maria Suntsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Nurshat Gaifullin
- Department of Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Daria Allina
- Pathology Department, Morozov Children's City Hospital, 4th Dobryninsky Lane 1/9, Moscow, 119049, Russia
| | | | - Xinmin Li
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Larisa Mendeleeva
- National Research Center for Hematology, Novy Zykovsky proezd, 4, Moscow, 125167, Russia
| | - Vadim Surin
- National Research Center for Hematology, Novy Zykovsky proezd, 4, Moscow, 125167, Russia
| | - Anna Sergeeva
- National Research Center for Hematology, Novy Zykovsky proezd, 4, Moscow, 125167, Russia
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street, 32, Moscow, 119991, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street, 32, Moscow, 119991, Russia
| | | | - Andrew Garazha
- Omicsway Corp., 340S Lemon Ave, 6040, Walnut, 91789 CA, USA
- Oncobox ltd., Moscow, 121205, Russia
| | - Maxim Sorokin
- Omicsway Corp., 340S Lemon Ave, 6040, Walnut, 91789 CA, USA.
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Anton Buzdin
- Omicsway Corp., 340S Lemon Ave, 6040, Walnut, 91789 CA, USA
- Oncobox ltd., Moscow, 121205, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|
1106
|
Xu LS, Francis A, Turkistany S, Shukla D, Wong A, Batista CR, DeKoter RP. ETV6-RUNX1 interacts with a region in SPIB intron 1 to regulate gene expression in pre-B-cell acute lymphoblastic leukemia. Exp Hematol 2019; 73:50-63.e2. [PMID: 30986496 DOI: 10.1016/j.exphem.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 11/19/2022]
Abstract
The most frequently occurring genetic abnormality in pediatric B-lymphocyte-lineage acute lymphoblastic leukemia is the t(12;21) chromosomal translocation that results in a ETV6-RUNX1 (also known as TEL-AML1) fusion gene. Expression of ETV6-RUNX1 induces a preleukemic condition leading to acquisition of secondary driver mutations, but the mechanism is poorly understood. SPI-B (encoded by SPIB) is an important transcriptional activator of B-cell development and differentiation. We hypothesized that SPIB is directly transcriptionally repressed by ETV6-RUNX1. Using chromatin immunoprecipitation, we identified a regulatory region in the first intron of SPIB that interacts with ETV6-RUNX1. Mutation of the RUNX1 binding site in SPIB intron 1 prevented transcriptional repression in transient transfection assays. Next, we sought to determine to what extent gene expression in REH cells can be altered by ectopic SPI-B expression. SPI-B expression was forced using CRISPR-mediated gene activation and also using a retroviral vector. Forced expression of SPI-B resulted in altered gene expression and, at high levels, impaired cell proliferation and induced apoptosis. Finally, we identified CARD11 and CDKN1A (encoding p21) as transcriptional targets of SPI-B involved in regulation of proliferation and apoptosis. Taken together, this study identifies SPIB as an important target of ETV6-RUNX1 in regulation of B-cell gene expression in t(12;21) leukemia.
Collapse
MESH Headings
- Apoptosis/genetics
- CARD Signaling Adaptor Proteins/biosynthesis
- CARD Signaling Adaptor Proteins/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 12/metabolism
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Leukemic
- Guanylate Cyclase/biosynthesis
- Guanylate Cyclase/genetics
- Humans
- Introns
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Response Elements
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Li S Xu
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Alyssa Francis
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Devanshi Shukla
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Alison Wong
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Carolina R Batista
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, ON, Canada.
| |
Collapse
|
1107
|
Nataf S, Uriagereka J, Benitez-Burraco A. The Promoter Regions of Intellectual Disability-Associated Genes Are Uniquely Enriched in LTR Sequences of the MER41 Primate-Specific Endogenous Retrovirus: An Evolutionary Connection Between Immunity and Cognition. Front Genet 2019; 10:321. [PMID: 31031802 PMCID: PMC6473030 DOI: 10.3389/fgene.2019.00321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Social behavior and neuronal connectivity in rodents have been shown to be shaped by the prototypical T lymphocyte-derived pro-inflammatory cytokine Interferon-gamma (IFNγ). It has also been demonstrated that STAT1 (Signal Transducer And Activator Of Transcription 1), a transcription factor (TF) crucially involved in the IFNγ pathway, binds consensus sequences that, in humans, are located with a high frequency in the LTRs (Long Terminal Repeats) of the MER41 family of primate-specific HERVs (Human Endogenous Retroviruses). However, the putative role of an IFNγ/STAT1/MER41 pathway in human cognition and/or behavior is still poorly documented. Here, we present evidence that the promoter regions of intellectual disability-associated genes are uniquely enriched in LTR sequences of the MER41 HERVs. This observation is specific to MER41 among more than 130 HERVs examined. Moreover, we have not found such a significant enrichment in the promoter regions of genes that associate with autism spectrum disorder (ASD) or schizophrenia. Interestingly, ID-associated genes exhibit promoter-localized MER41 LTRs that harbor TF binding sites (TFBSs) for not only STAT1 but also other immune TFs such as, in particular, NFKB1 (Nuclear Factor Kappa B Subunit 1) and STAT3 (Signal Transducer And Activator Of Transcription 3). Moreover, IL-6 (Interleukin 6) rather than IFNγ, is identified as the main candidate cytokine regulating such an immune/MER41/cognition pathway. Of note, differences between humans and chimpanzees are observed regarding the insertion sites of MER41 LTRs in the promoter regions of ID-associated genes. Finally, a survey of the human proteome has allowed us to map a protein-protein network which links the identified immune/MER41/cognition pathway to FOXP2 (Forkhead Box P2), a key TF involved in the emergence of human speech. Our work suggests that together with the evolution of immune genes, the stepped self-domestication of MER41 in the genomes of primates could have contributed to cognitive evolution. We further propose that non-inherited forms of ID might result from the untimely or quantitatively inappropriate expression of immune signals, notably IL-6, that putatively regulate cognition-associated genes via promoter-localized MER41 LTRs.
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Lyon, France
- Claude Bernard University Lyon 1, Lyon, France
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Juan Uriagereka
- Department of Linguistics and School of Languages, Literatures and Cultures, University of Maryland, College Park, MD, United States
| | - Antonio Benitez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
1108
|
Bandesh K, Prasad G, Giri AK, Kauser Y, Upadhyay M, Basu A, Tandon N, Bharadwaj D. Genome-wide association study of blood lipids in Indians confirms universality of established variants. J Hum Genet 2019; 64:573-587. [PMID: 30911093 DOI: 10.1038/s10038-019-0591-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 12/30/2022]
Abstract
Lipids foster energy production and their altered levels have been coupled with metabolic ailments. Indians feature high prevalence of metabolic diseases, yet uncharacterized for genes regulating lipid homeostasis. We performed first GWAS for quantitative lipids (total cholesterol, LDL, HDL, and triglycerides) exclusively in 5271 Indians. Further to corroborate our genetic findings, we investigated DNA methylation marks in peripheral blood in Indians at the identified loci (N = 233) and retrieved gene regulatory features from public domains. Recurrent GWAS loci-CELSR2, CETP, LPL, ZNF259, and BUD13 cropped up as lead signals in Indians, reflecting their universal applicability. Besides established variants, we found certain unreported variants at sub-genome-wide level-QKI, REEP3, TMCC2, FAM129C, FAM241B, and LOC100506207. These variants though failed to attain GWAS significance in Indians, but largely turned out to be active CpG sites in human subcutaneous adipose tissue and showed robust association to two or more lipid traits. Of which, QKI variants showed significant association to all four lipid traits and their designated region was observed to be a key gene regulatory segment denoting active transcription particularly in human subcutaneous adipose tissue. Both established and novel loci were observed to be significantly associated with altered DNA methylation in Indians for specific CpGs that resided in key regulatory elements. Further, gene-based association analysis pinpointed novel GWAS loci-LINC01340 and IQCJ-SCHIP1 for TC; IFT27, IFT88, and LINC02141 for HDL; and TEX26 for TG. Present study ascertains universality of selected known genes and also identifies certain novel loci for lipids in Indians by integrating data from various levels of gene regulation.
Collapse
Affiliation(s)
- Khushdeep Bandesh
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India
| | - Gauri Prasad
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India
| | - Anil K Giri
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India
| | - Yasmeen Kauser
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India
| | - Medha Upadhyay
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Analabha Basu
- National Institute of Biomedical Genomics, P.O.: Netaji Subhas Sanatorium, Kalyani, 741251, West Bengal, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dwaipayan Bharadwaj
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India. .,Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
1109
|
|
1110
|
Petrov P, Sarapulov AV, Eöry L, Scielzo C, Scarfò L, Smith J, Burt DW, Mattila PK. Computational analysis of the evolutionarily conserved Missing In Metastasis/Metastasis Suppressor 1 gene predicts novel interactions, regulatory regions and transcriptional control. Sci Rep 2019; 9:4155. [PMID: 30858428 PMCID: PMC6411742 DOI: 10.1038/s41598-019-40697-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022] Open
Abstract
Missing in Metastasis (MIM), or Metastasis Suppressor 1 (MTSS1), is a highly conserved protein, which links the plasma membrane to the actin cytoskeleton. MIM has been implicated in various cancers, however, its modes of action remain largely enigmatic. Here, we performed an extensive in silico characterisation of MIM to gain better understanding of its function. We detected previously unappreciated functional motifs including adaptor protein (AP) complex interaction site and a C-helix, pointing to a role in endocytosis and regulation of actin dynamics, respectively. We also identified new functional regions, characterised with phosphorylation sites or distinct hydrophilic properties. Strong negative selection during evolution, yielding high conservation of MIM, has been combined with positive selection at key sites. Interestingly, our analysis of intra-molecular co-evolution revealed potential regulatory hotspots that coincided with reduced potentially pathogenic polymorphisms. We explored databases for the mutations and expression levels of MIM in cancer. Experimentally, we focused on chronic lymphocytic leukaemia (CLL), where MIM showed high overall expression, however, downregulation on poor prognosis samples. Finally, we propose strong conservation of MTSS1 also on the transcriptional level and predict novel transcriptional regulators. Our data highlight important targets for future studies on the role of MIM in different tissues and cancers.
Collapse
Affiliation(s)
- Petar Petrov
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| | - Alexey V Sarapulov
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Lel Eöry
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Easter Bush campus, Midlothian, EH25 9RG, United Kingdom
| | - Cristina Scielzo
- Unit of B Cell Neoplasia, Division of Molecular Oncology, IRCCS, San Raffaele Scientific Institute, Milano, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Lydia Scarfò
- Unit of B Cell Neoplasia, Division of Molecular Oncology, IRCCS, San Raffaele Scientific Institute, Milano, Italy.,Università Vita-Salute San Raffaele, Milan, Italy.,Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS, San Raffaele Scientific Institute, Milano, Italy
| | - Jacqueline Smith
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Easter Bush campus, Midlothian, EH25 9RG, United Kingdom
| | - David W Burt
- University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pieta K Mattila
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|
1111
|
Cazaly E, Saad J, Wang W, Heckman C, Ollikainen M, Tang J. Making Sense of the Epigenome Using Data Integration Approaches. Front Pharmacol 2019; 10:126. [PMID: 30837884 PMCID: PMC6390500 DOI: 10.3389/fphar.2019.00126] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/31/2019] [Indexed: 12/19/2022] Open
Abstract
Epigenetic research involves examining the mitotically heritable processes that regulate gene expression, independent of changes in the DNA sequence. Recent technical advances such as whole-genome bisulfite sequencing and affordable epigenomic array-based technologies, allow researchers to measure epigenetic profiles of large cohorts at a genome-wide level, generating comprehensive high-dimensional datasets that may contain important information for disease development and treatment opportunities. The epigenomic profile for a certain disease is often a result of the complex interplay between multiple genetic and environmental factors, which poses an enormous challenge to visualize and interpret these data. Furthermore, due to the dynamic nature of the epigenome, it is critical to determine causal relationships from the many correlated associations. In this review we provide an overview of recent data analysis approaches to integrate various omics layers to understand epigenetic mechanisms of complex diseases, such as obesity and cancer. We discuss the following topics: (i) advantages and limitations of major epigenetic profiling techniques, (ii) resources for standardization, annotation and harmonization of epigenetic data, and (iii) statistical methods and machine learning methods for establishing data-driven hypotheses of key regulatory mechanisms. Finally, we discuss the future directions for data integration that shall facilitate the discovery of epigenetic-based biomarkers and therapies.
Collapse
Affiliation(s)
- Emma Cazaly
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Joseph Saad
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Wenyu Wang
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Caroline Heckman
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
1112
|
Xue Y, Meehan B, Macdonald E, Venneti S, Wang XQD, Witkowski L, Jelinic P, Kong T, Martinez D, Morin G, Firlit M, Abedini A, Johnson RM, Cencic R, Patibandla J, Chen H, Papadakis AI, Auguste A, de Rink I, Kerkhoven RM, Bertos N, Gotlieb WH, Clarke BA, Leary A, Witcher M, Guiot MC, Pelletier J, Dostie J, Park M, Judkins AR, Hass R, Levine DA, Rak J, Vanderhyden B, Foulkes WD, Huang S. CDK4/6 inhibitors target SMARCA4-determined cyclin D1 deficiency in hypercalcemic small cell carcinoma of the ovary. Nat Commun 2019; 10:558. [PMID: 30718512 PMCID: PMC6361890 DOI: 10.1038/s41467-018-06958-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022] Open
Abstract
Inactivating mutations in SMARCA4 (BRG1), a key SWI/SNF chromatin remodelling gene, underlie small cell carcinoma of the ovary, hypercalcemic type (SCCOHT). To reveal its druggable vulnerabilities, we perform kinase-focused RNAi screens and uncover that SMARCA4-deficient SCCOHT cells are highly sensitive to the inhibition of cyclin-dependent kinase 4/6 (CDK4/6). SMARCA4 loss causes profound downregulation of cyclin D1, which limits CDK4/6 kinase activity in SCCOHT cells and leads to in vitro and in vivo susceptibility to CDK4/6 inhibitors. SCCOHT patient tumors are deficient in cyclin D1 yet retain the retinoblastoma-proficient/p16INK4a-deficient profile associated with positive responses to CDK4/6 inhibitors. Thus, our findings indicate that CDK4/6 inhibitors, approved for a breast cancer subtype addicted to CDK4/6 activation, could be repurposed to treat SCCOHT. Moreover, our study suggests a novel paradigm whereby critically low oncogene levels, caused by loss of a driver tumor suppressor, may also be exploited therapeutically.
Collapse
Affiliation(s)
- Yibo Xue
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Brian Meehan
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada
- Research Institute of McGill University Health Centre Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Elizabeth Macdonald
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Sriram Venneti
- Pathology and Neuropathology, University of Michigan Medical School, Ann Arbor, MI, 48109-0605, USA
| | - Xue Qing D Wang
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Department of Medical Genetics, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
- Lady Davis Institute, McGill University, Montreal, QC, H3T 1E2, Canada
- Department of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, H4A 3JI, Canada
| | - Petar Jelinic
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Tim Kong
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Daniel Martinez
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Geneviève Morin
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Michelle Firlit
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Atefeh Abedini
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Radia M Johnson
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Jay Patibandla
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sat University, 510275, Guangzhou, China
| | - Andreas I Papadakis
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Aurelie Auguste
- Department of Cancer Medicine, Gustave Roussy, INSERM U981, 94800, Villejuif, France
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Ron M Kerkhoven
- Genomics Core Facility, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Nicholas Bertos
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Blaise A Clarke
- Department of Laboratory Medicine and Pathobiology, University of Toronto, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Alexandra Leary
- Department of Cancer Medicine, Gustave Roussy, INSERM U981, 94800, Villejuif, France
| | - Michael Witcher
- Department of Oncology, McGill University, Montreal, QC, H3T 1E2, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Marie-Christine Guiot
- Department of Pathology, Montreal Neurological Hospital/Institute, McGill University Health Centre, Montreal, QC, H3A 2B4, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90027, USA
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Gynecology and Obstetrics, Medical University Hannover, 30625, Hannover, Germany
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Janusz Rak
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada
- Research Institute of McGill University Health Centre Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Barbara Vanderhyden
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1Y 4E9, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada.
- Department of Medical Genetics, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada.
- Lady Davis Institute, McGill University, Montreal, QC, H3T 1E2, Canada.
- Department of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, H4A 3JI, Canada.
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.
- The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
1113
|
Broecker F, Moelling K. Evolution of Immune Systems From Viruses and Transposable Elements. Front Microbiol 2019; 10:51. [PMID: 30761103 PMCID: PMC6361761 DOI: 10.3389/fmicb.2019.00051] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Virus-derived sequences and transposable elements constitute a substantial portion of many cellular genomes. Recent insights reveal the intimate evolutionary relationship between these sequences and various cellular immune pathways. At the most basic level, superinfection exclusion may be considered a prototypical virus-mediated immune system that has been described in both prokaryotes and eukaryotes. More complex immune mechanisms fully or partially derived from mobile genetic elements include CRISPR-Cas of prokaryotes and the RAG1/2 system of vertebrates, which provide immunological memory of foreign genetic elements and generate antibody and T cell receptor diversity, respectively. In this review, we summarize the current knowledge on the contribution of mobile genetic elements to the evolution of cellular immune pathways. A picture is emerging in which the various cellular immune systems originate from and are spread by viruses and transposable elements. Immune systems likely evolved from simple superinfection exclusion to highly complex defense strategies.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
1114
|
Khatri I, Ganguly K, Sharma S, Carmicheal J, Kaur S, Batra SK, Bhasin MK. Systems Biology Approach to Identify Novel Genomic Determinants for Pancreatic Cancer Pathogenesis. Sci Rep 2019; 9:123. [PMID: 30644396 PMCID: PMC6333820 DOI: 10.1038/s41598-018-36328-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a 5-year survival rate of <8%. Its dismal prognosis stems from inefficient therapeutic modalities owing to the lack of understanding about pancreatic cancer pathogenesis. Considering the molecular complexity and heterogeneity of PDAC, identification of novel molecular contributors involved in PDAC onset and progression using global "omics" analysis will pave the way to improved strategies for disease prevention and therapeutic targeting. Meta-analysis of multiple miRNA microarray datasets containing healthy controls (HC), chronic pancreatitis (CP) and PDAC cases, identified 13 miRNAs involved in the progression of PDAC. These miRNAs showed dysregulation in both tissue as well as blood samples, along with progressive decrease in expression from HC to CP to PDAC. Gene-miRNA interaction analysis further elucidated 5 miRNAs (29a/b, 27a, 130b and 148a) that are significantly downregulated in conjunction with concomitant upregulation of their target genes throughout PDAC progression. Among these, miRNA-29a/b targeted genes were found to be most significantly altered in comparative profiling of HC, CP and PDAC, indicating its involvement in malignant evolution. Further, pathway analysis suggested direct involvement of miRNA-29a/b in downregulating the key pathways associated with PDAC development and metastasis including focal adhesion signaling and extracellular matrix organization. Our systems biology data analysis, in combination with real-time PCR validation indicates direct functional involvement of miRNA-29a in PDAC progression and is a potential prognostic marker and therapeutic candidate for patients with progressive disease.
Collapse
Affiliation(s)
- Indu Khatri
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sunandini Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Manoj K Bhasin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
1115
|
Zheng R, Wan C, Mei S, Qin Q, Wu Q, Sun H, Chen CH, Brown M, Zhang X, Meyer CA, Liu X. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res 2019; 47:D729-D735. [PMID: 30462313 PMCID: PMC6324081 DOI: 10.1093/nar/gky1094] [Citation(s) in RCA: 497] [Impact Index Per Article: 99.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
The Cistrome Data Browser (DB) is a resource of human and mouse cis-regulatory information derived from ChIP-seq, DNase-seq and ATAC-seq chromatin profiling assays, which map the genome-wide locations of transcription factor binding sites, histone post-translational modifications and regions of chromatin accessible to endonuclease activity. Currently, the Cistrome DB contains approximately 47,000 human and mouse samples with about 24,000 newly collected datasets compared to the previous release two years ago. Furthermore, the Cistrome DB has a new Toolkit module with several features that allow users to better utilize the large-scale ChIP-seq, DNase-seq, and ATAC-seq data. First, users can query the factors which are likely to regulate a specific gene of interest. Second, the Cistrome DB Toolkit facilitates searches for factor binding, histone modifications, and chromatin accessibility in any given genomic interval shorter than 2Mb. Third, the Toolkit can determine the most similar ChIP-seq, DNase-seq, and ATAC-seq samples in terms of genomic interval overlaps with user-provided genomic interval sets. The Cistrome DB is a user-friendly, up-to-date, and well maintained resource, and the new tools will greatly benefit the biomedical research community. The database is freely available at http://cistrome.org/db, and the Toolkit is at http://dbtoolkit.cistrome.org.
Collapse
Affiliation(s)
- Rongbin Zheng
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changxin Wan
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shenglin Mei
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qian Qin
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qiu Wu
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hanfei Sun
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chen-Hao Chen
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Biological and Biomedical Science Program, Harvard Medical School, Boston, MA 02115, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Xiaoyan Zhang
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Clifford A Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - X Shirley Liu
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
1116
|
Liang WQ, Zeng D, Chen CF, Sun SM, Lu XF, Peng CY, Lin HY. Long noncoding RNA H19 is a critical oncogenic driver and contributes to epithelial-mesenchymal transition in papillary thyroid carcinoma. Cancer Manag Res 2019; 11:2059-2072. [PMID: 30881130 PMCID: PMC6411319 DOI: 10.2147/cmar.s195906] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Growing evidence has indicated that the long noncoding RNA H19 (lncRNA H19), frequently deregulated in almost all tumor types tested, acted as a pivotal contributor to both cancer initiation and progression. However, the role of lncRNA H19 in human papillary thyroid carcinoma (PTC) remains controversial. The aim of the study was to investigate the expression and potential function of lncRNA H19 in human PTC. PATIENTS AND METHODS The lncRNA H19 level was determined by quantitative real-time (RT)-PCR analyses in 58 PTC tissue samples and their paired paracancerous tissue samples. RNA interference, RT-PCR analysis, and Western blot assay were used to determine the impact of lncRNA H19 on epithelial-mesenchymal transition (EMT) markers in human PTC cells. The migratory and invasive capacities of PTC cells were determined by wound-healing and transwell migration and invasion assays. RESULTS lncRNA H19 expression was 2.417-fold higher in PTC tissues than their paired paracancerous tissue (95% CI: 1.898-2.935, P<0.0001). Higher level of lncRNA H19 was correlated to elevated expression of Vimentin, ZEB2, Twist, and Snail2. Inhibition of lncRNA H19 resulted in upregulation of E-cadherin and downregulation of Vimentin both at mRNA and protein levels. Conversely, enforced expression of the exogenous lncRNA H19 led to E-cadherin mRNA and protein downregulation and relative upregulation of Vimentin. Moreover, wound-healing and transwell migration and invasion assays showed that lncRNA H19 could promote the migratory and invasive abilities of PTC cells. CONCLUSION The level of lncRNA H19 was significantly higher in PTC tissues than paired paracancerous tissue or normal tissues. Overexpression of lncRNA H19 was correlated with higher tumor burden of PTC. It also contributes to EMT process, as well as promotes migration and invasion of PTC cells.
Collapse
Affiliation(s)
- Wei-Quan Liang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China
| | - Chun-Fa Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - Shu-Ming Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - Xiao-Feng Lu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - Chun-Yan Peng
- Department of Clinical Laboratory, Taihe Hospital of Hubei University of Medicine, Hubei 442008, People's Republic of China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| |
Collapse
|
1117
|
Abstract
In the epigenetics field, large-scale functional genomics datasets of ever-increasing size and complexity have been produced using experimental techniques based on high-throughput sequencing. In particular, the study of the 3D organization of chromatin has raised increasing interest, thanks to the development of advanced experimental techniques. In this context, Hi-C has been widely adopted as a high-throughput method to measure pairwise contacts between virtually any pair of genomic loci, thus yielding unprecedented challenges for analyzing and handling the resulting complex datasets. In this review, we focus on the increasing complexity of available Hi-C datasets, which parallels the adoption of novel protocol variants. We also review the complexity of the multiple data analysis steps required to preprocess Hi-C sequencing reads and extract biologically meaningful information. Finally, we discuss solutions for handling and visualizing such large genomics datasets.
Collapse
|
1118
|
Vevera J, Zarrei M, Hartmannová H, Jedličková I, Mušálková D, Přistoupilová A, Oliveriusová P, Trešlová H, Nosková L, Hodaňová K, Stránecký V, Jiřička V, Preiss M, Příhodová K, Šaligová J, Wei J, Woodbury-Smith M, Bleyer AJ, Scherer SW, Kmoch S. Rare copy number variation in extremely impulsively violent males. GENES BRAIN AND BEHAVIOR 2018; 18:e12536. [DOI: 10.1111/gbb.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Vevera
- Department of Psychiatry; Faculty of Medicine and University Hospital in Pilsen, Charles University; Prague Czech Republic
- Department of Psychiatry, First Faculty of Medicine; Charles University and General University Hospital in Prague; Prague Czech Republic
- Institute for Postgraduate Medical Education; Prague Czech Republic
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Anna Přistoupilová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Petra Oliveriusová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Helena Trešlová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Václav Jiřička
- Prison Service of the Czech Republic, Directorate General; Department of Psychology; Prague Czech Republic
| | - Marek Preiss
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
- Psychology Department; University of New York in Prague; Prague Czech Republic
| | - Kateřina Příhodová
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
| | - Jana Šaligová
- Children's Faculty Hospital; Department of Pediatrics and Adolescent Medicine; Kosice Slovakia
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine of Pavel Jozef Šafárik University Kosice; Kosice Slovakia
| | - John Wei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Institute of Neuroscience, Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary; Newcastle upon Tyne UK
| | - Anthony J. Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
- Section on Nephrology, Wake Forest School of Medicine; Medical Center Blvd.; Winston-Salem North Carolina USA
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Department of Molecular Genetics and McLaughlin Centre; University of Toronto; Toronto Ontario Canada
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| |
Collapse
|
1119
|
Guo Y, Perez AA, Hazelett DJ, Coetzee GA, Rhie SK, Farnham PJ. CRISPR-mediated deletion of prostate cancer risk-associated CTCF loop anchors identifies repressive chromatin loops. Genome Biol 2018; 19:160. [PMID: 30296942 PMCID: PMC6176514 DOI: 10.1186/s13059-018-1531-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent genome-wide association studies (GWAS) have identified more than 100 loci associated with increased risk of prostate cancer, most of which are in non-coding regions of the genome. Understanding the function of these non-coding risk loci is critical to elucidate the genetic susceptibility to prostate cancer. RESULTS We generate genome-wide regulatory element maps and performed genome-wide chromosome confirmation capture assays (in situ Hi-C) in normal and tumorigenic prostate cells. Using this information, we annotate the regulatory potential of 2,181 fine-mapped prostate cancer risk-associated SNPs and predict a set of target genes that are regulated by prostate cancer risk-related H3K27Ac-mediated loops. We next identify prostate cancer risk-associated CTCF sites involved in long-range chromatin loops. We use CRISPR-mediated deletion to remove prostate cancer risk-associated CTCF anchor regions and the CTCF anchor regions looped to the prostate cancer risk-associated CTCF sites, and we observe up to 100-fold increases in expression of genes within the loops when the prostate cancer risk-associated CTCF anchor regions are deleted. CONCLUSIONS We identify GWAS risk loci involved in long-range loops that function to repress gene expression within chromatin loops. Our studies provide new insights into the genetic susceptibility to prostate cancer.
Collapse
Affiliation(s)
- Yu Guo
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT 6503, Los Angeles, CA 90089-9601 USA
| | - Andrew A. Perez
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT 6503, Los Angeles, CA 90089-9601 USA
| | - Dennis J. Hazelett
- Department of Biomedical Sciences and the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | | | - Suhn Kyong Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT 6503, Los Angeles, CA 90089-9601 USA
| | - Peggy J. Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT 6503, Los Angeles, CA 90089-9601 USA
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT G511B, Los Angeles, CA 90089-9601 USA
| |
Collapse
|
1120
|
Venkatesh I, Mehra V, Wang Z, Califf B, Blackmore MG. Developmental Chromatin Restriction of Pro-Growth Gene Networks Acts as an Epigenetic Barrier to Axon Regeneration in Cortical Neurons. Dev Neurobiol 2018; 78:960-977. [PMID: 29786967 PMCID: PMC6204296 DOI: 10.1002/dneu.22605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
Axon regeneration in the central nervous system is prevented in part by a developmental decline in the intrinsic regenerative ability of maturing neurons. This loss of axon growth ability likely reflects widespread changes in gene expression, but the mechanisms that drive this shift remain unclear. Chromatin accessibility has emerged as a key regulatory mechanism in other cellular contexts, raising the possibility that chromatin structure may contribute to the age-dependent loss of regenerative potential. Here we establish an integrated bioinformatic pipeline that combines analysis of developmentally dynamic gene networks with transcription factor regulation and genome-wide maps of chromatin accessibility. When applied to the developing cortex, this pipeline detected overall closure of chromatin in sub-networks of genes associated with axon growth. We next analyzed mature CNS neurons that were supplied with various pro-regenerative transcription factors. Unlike prior results with SOX11 and KLF7, here we found that neither JUN nor an activated form of STAT3 promoted substantial corticospinal tract regeneration. Correspondingly, chromatin accessibility in JUN or STAT3 target genes was substantially lower than in predicted targets of SOX11 and KLF7. Finally, we used the pipeline to predict pioneer factors that could potentially relieve chromatin constraints at growth-associated loci. Overall this integrated analysis substantiates the hypothesis that dynamic chromatin accessibility contributes to the developmental decline in axon growth ability and influences the efficacy of pro-regenerative interventions in the adult, while also pointing toward selected pioneer factors as high-priority candidates for future combinatorial experiments. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
| | - Vatsal Mehra
- Department of Biomedical Sciences, Marquette University, 53201
| | - Zimei Wang
- Department of Biomedical Sciences, Marquette University, 53201
| | | | | |
Collapse
|
1121
|
KLF6 and STAT3 co-occupy regulatory DNA and functionally synergize to promote axon growth in CNS neurons. Sci Rep 2018; 8:12565. [PMID: 30135567 PMCID: PMC6105645 DOI: 10.1038/s41598-018-31101-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/10/2018] [Indexed: 11/26/2022] Open
Abstract
The failure of axon regeneration in the CNS limits recovery from damage and disease. Members of the KLF family of transcription factors can exert both positive and negative effects on axon regeneration, but the underlying mechanisms are unclear. Here we show that forced expression of KLF6 promotes axon regeneration by corticospinal tract neurons in the injured spinal cord. RNA sequencing identified 454 genes whose expression changed upon forced KLF6 expression in vitro, including sub-networks that were highly enriched for functions relevant to axon extension including cytoskeleton remodeling, lipid synthesis, and bioenergetics. In addition, promoter analysis predicted a functional interaction between KLF6 and a second transcription factor, STAT3, and genome-wide footprinting using ATAC-Seq data confirmed frequent co-occupancy. Co-expression of the two factors yielded a synergistic elevation of neurite growth in vitro. These data clarify the transcriptional control of axon growth and point the way toward novel interventions to promote CNS regeneration.
Collapse
|
1122
|
Yi K, Ju YS. Patterns and mechanisms of structural variations in human cancer. Exp Mol Med 2018; 50:1-11. [PMID: 30089796 PMCID: PMC6082854 DOI: 10.1038/s12276-018-0112-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022] Open
Abstract
Next-generation sequencing technology has enabled the comprehensive detection of genomic alterations in human somatic cells, including point mutations, chromosomal rearrangements, and structural variations (SVs). Using sophisticated bioinformatics algorithms, unbiased catalogs of SVs are emerging from thousands of human cancer genomes for the first time. Via careful examination of SV breakpoints at single-nucleotide resolution as well as local DNA copy number changes, diverse patterns of genomic rearrangements are being revealed. These "SV signatures" provide deep insight into the mutational processes that have shaped genome changes in human somatic cells. This review summarizes the characteristics of recently identified complex SVs, including chromothripsis, chromoplexy, microhomology-mediated breakage-induced replication (MMBIR), and others, to provide a holistic snapshot of the current knowledge on genomic rearrangements in somatic cells.
Collapse
Affiliation(s)
- Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
1123
|
Quinn JP, Savage AL, Bubb VJ. Non-coding genetic variation shaping mental health. Curr Opin Psychol 2018; 27:18-24. [PMID: 30099302 PMCID: PMC6624474 DOI: 10.1016/j.copsyc.2018.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Gene expression determined by the genome mediating a response to cell environment. Genetic variation results in distinct individual response in gene expression. Non-coding DNA is an important site for such functional genetic variation. Gene expression is a major modulator of brain chemistry and thus behavior.
Over 98% of our genome is non-coding and is now recognised to have a major role in orchestrating the tissue specific and stimulus inducible gene expression pattern which underpins our wellbeing and mental health. The non-coding genome responds functionally to our environment at all levels, encompassing the span from psychological to physiological challenge. The gene expression pattern, termed the transcriptome, ultimately gives us our neurochemistry. Therefore a major modulator of mental wellbeing is how our genes are regulated in response to life experiences. Superimposed on the aforementioned non-coding DNA framework is a vast body of genetic variation in the elements that control response to challenges. These differences, termed polymorphisms, allow for a differential response from a specific DNA element to the same challenge thus potentially allowing ‘individuality’ in the modulation of our transcriptome. This review will focus on a fundamental mechanism defining our psychological and psychiatric wellbeing, namely how genetic variation can be correlated with differential gene expression in response to specific challenges, thus resulting in altered neurochemistry which consequently may shape behaviour.
Collapse
Affiliation(s)
- John P Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK.
| | - Abigail L Savage
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| | - Vivien J Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
1124
|
Abstract
The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences.
Collapse
Affiliation(s)
- Amos Bairoch
- Computer and Laboratory Investigation of Proteins of Human Origin Group, Faculty of Medicine, Swiss Institute of Bioinformatics, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
1125
|
Drapkin BJ, George J, Christensen CL, Mino-Kenudson M, Dries R, Sundaresan T, Phat S, Myers DT, Zhong J, Igo P, Hazar-Rethinam MH, Licausi JA, Gomez-Caraballo M, Kem M, Jani KN, Azimi R, Abedpour N, Menon R, Lakis S, Heist RS, Büttner R, Haas S, Sequist LV, Shaw AT, Wong KK, Hata AN, Toner M, Maheswaran S, Haber DA, Peifer M, Dyson N, Thomas RK, Farago AF. Genomic and Functional Fidelity of Small Cell Lung Cancer Patient-Derived Xenografts. Cancer Discov 2018; 8:600-615. [PMID: 29483136 DOI: 10.1158/2159-8290.cd-17-0935] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 11/16/2022]
Abstract
Small cell lung cancer (SCLC) patient-derived xenografts (PDX) can be generated from biopsies or circulating tumor cells (CTC), though scarcity of tissue and low efficiency of tumor growth have previously limited these approaches. Applying an established clinical-translational pipeline for tissue collection and an automated microfluidic platform for CTC enrichment, we generated 17 biopsy-derived PDXs and 17 CTC-derived PDXs in a 2-year timeframe, at 89% and 38% efficiency, respectively. Whole-exome sequencing showed that somatic alterations are stably maintained between patient tumors and PDXs. Early-passage PDXs maintain the genomic and transcriptional profiles of the founder PDX. In vivo treatment with etoposide and platinum (EP) in 30 PDX models demonstrated greater sensitivity in PDXs from EP-naïve patients, and resistance to EP corresponded to increased expression of a MYC gene signature. Finally, serial CTC-derived PDXs generated from an individual patient at multiple time points accurately recapitulated the evolving drug sensitivities of that patient's disease. Collectively, this work highlights the translational potential of this strategy.Significance: Effective translational research utilizing SCLC PDX models requires both efficient generation of models from patients and fidelity of those models in representing patient tumor characteristics. We present approaches for efficient generation of PDXs from both biopsies and CTCs, and demonstrate that these models capture the mutational landscape and functional features of the donor tumors. Cancer Discov; 8(5); 600-15. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
| | - Julie George
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ruben Dries
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tilak Sundaresan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sarah Phat
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - David T Myers
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Jun Zhong
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Peter Igo
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Joseph A Licausi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Marina Kem
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Roxana Azimi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Nima Abedpour
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | | | - Rebecca S Heist
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Reinhard Büttner
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - Stefan Haas
- Computational Molecular Biology Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kwok-Kin Wong
- Department of Hematology and Oncology, New York University Langone Medical School, New York, New York
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Mehmet Toner
- Harvard Medical School, Boston, Massachusetts.,Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts.,Shriners Hospital for Children, Boston, Massachusetts
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Martin Peifer
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Nicholas Dyson
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany. .,Department of Pathology, University Hospital Cologne, Cologne, Germany.,German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anna F Farago
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
1126
|
Kim H, Wang X, Jin P. Developing DNA methylation-based diagnostic biomarkers. J Genet Genomics 2018; 45:87-97. [PMID: 29496486 DOI: 10.1016/j.jgg.2018.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
An emerging paradigm shift for disease diagnosis is to rely on molecular characterization beyond traditional clinical and symptom-based examinations. Although genetic alterations and transcription signature were first introduced as potential biomarkers, clinical implementations of these markers are limited due to low reproducibility and accuracy. Instead, epigenetic changes are considered as an alternative approach to disease diagnosis. Complex epigenetic regulation is required for normal biological functions and it has been shown that distinctive epigenetic disruptions could contribute to disease pathogenesis. Disease-specific epigenetic changes, especially DNA methylation, have been observed, suggesting its potential as disease biomarkers for diagnosis. In addition to specificity, the feasibility of detecting disease-associated methylation marks in the biological specimens collected noninvasively, such as blood samples, has driven the clinical studies to validate disease-specific DNA methylation changes as a diagnostic biomarker. Here, we highlight the advantages of DNA methylation signature for diagnosis in different diseases and discuss the statistical and technical challenges to be overcome before clinical implementation.
Collapse
Affiliation(s)
- Hyerim Kim
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xudong Wang
- Department of Gastroenterological Surgery, The Second Hospital, Jilin University, Changchun 130041, China.
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
1127
|
Loftus SK. The next generation of melanocyte data: Genetic, epigenetic, and transcriptional resource datasets and analysis tools. Pigment Cell Melanoma Res 2018; 31:442-447. [DOI: 10.1111/pcmr.12687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/09/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Stacie K. Loftus
- Genetic Disease Research Branch; National Human Genome Research Institute; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
1128
|
Rigden DJ, Fernández XM. The 2018 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res 2018; 46:D1-D7. [PMID: 29316735 PMCID: PMC5753253 DOI: 10.1093/nar/gkx1235] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
The 2018 Nucleic Acids Research Database Issue contains 181 papers spanning molecular biology. Among them, 82 are new and 84 are updates describing resources that appeared in the Issue previously. The remaining 15 cover databases most recently published elsewhere. Databases in the area of nucleic acids include 3DIV for visualisation of data on genome 3D structure and RNArchitecture, a hierarchical classification of RNA families. Protein databases include the established SMART, ELM and MEROPS while GPCRdb and the newcomer STCRDab cover families of biomedical interest. In the area of metabolism, HMDB and Reactome both report new features while PULDB appears in NAR for the first time. This issue also contains reports on genomics resources including Ensembl, the UCSC Genome Browser and ENCODE. Update papers from the IUPHAR/BPS Guide to Pharmacology and DrugBank are highlights of the drug and drug target section while a number of proteomics databases including proteomicsDB are also covered. The entire Database Issue is freely available online on the Nucleic Acids Research website (https://academic.oup.com/nar). The NAR online Molecular Biology Database Collection has been updated, reviewing 138 entries, adding 88 new resources and eliminating 47 discontinued URLs, bringing the current total to 1737 databases. It is available at http://www.oxfordjournals.org/nar/database/c/.
Collapse
Affiliation(s)
- Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | |
Collapse
|