1101
|
Fukuyama K, Okada M. Effects of levetiracetam on astroglial release of kynurenine-pathway metabolites. Br J Pharmacol 2018; 175:4253-4265. [PMID: 30153331 DOI: 10.1111/bph.14491] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Several preclinical studies have demonstrated the unique profiles of levetiracetam (LEV), inhibits spontaneous absence epilepsy models but does not affect traditional convulsion models; however, the detailed pharmacological mechanisms of action of LEV remain to be clarified. EXPERIMENTAL APPROACH We determined the interaction between LEV and IFNγ regarding astroglial release of anti-convulsive (kynurenic acid and xanthurenic acid), pro-convulsive (quinolinic acid) and anti-convulsive but pro-absence (cinnabarinic acid) kynurenine-pathway metabolites from rat cortical primary cultured astrocytes using ultra-HPLC equipped with MS. KEY RESULTS IFNγ increased basal astroglial release of cinnabarinic acid and quinolinic acid but decreased that of kynurenic acid and xanthurenic acid. IFNγ enhanced inositol 1,4,5-trisphosphate (IP3 ) receptor agonist (adenophostin A, AdA)-induced astroglial release of kynurenine-pathway metabolites, without affecting AMPA-induced release. LEV increased basal astroglial release of kynurenic acid and xanthurenic acid without affecting cinnabarinic acid or quinolinic acid. Chronic and acute LEV administration inhibited AMPA- and AdA-induced kynurenine-pathway metabolite release. Upon chronic administration, LEV enhanced stimulatory effects of IFNγ on kynurenic acid and xanthurenic acid, and reduced its stimulatory effects on cinnabarinic acid and quinolinic acid. Furthermore, LEV inhibited stimulatory effects of chronic IFNγ on AdA-induced release of kynurenine-pathway metabolites. CONCLUSIONS AND IMPLICATIONS This study demonstrated several mechanisms of LEV: (i) inhibition of AMPA- and AdA-induced astroglial release, (ii) inhibition of IFNγ-induced IP3 receptor activation and (iii) inhibition of release of cinnabarinic acid and quinolinic acid with activation of that of kynurenic acid induced by IFNγ. These combined actions of LEV may contribute to its unique profile.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| |
Collapse
|
1102
|
Ye C, Han K, Lei J, Zeng K, Zeng S, Ju H, Yu L. Inhibition of histone deacetylase 7 reverses concentrative nucleoside transporter 2 repression in colorectal cancer by up-regulating histone acetylation state. Br J Pharmacol 2018; 175:4209-4217. [PMID: 30076612 DOI: 10.1111/bph.14467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/03/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The concentrative nucleoside transporter 2 (CNT2) mediates the uptake of both natural nucleosides and nucleoside-derived drugs. Therefore, it is important both physiologically and pharmacologically. However, CNT2 expression is significantly repressed in colorectal cancer (CRC). Here, we have elucidated the mechanism(s) underlying CNT2 repression in CRC. EXPERIMENTAL APPROACH Repression of CNT2 in tumour samples from patients with CRC was identified using Western blot and RT-qPCR. The histone acetylation state at the CNT2 promoter region was then evaluated with chromatin immunoprecipitation and trichostatin A (TSA) treatment. To find the key enzyme responsible for hypoacetylation at the CNT2 promoter region, siRNA knockdown and RT-qPCR were used. Effects of combining HDAC inhibitors and cladribine were studied in HCT15 and HT29 cells. KEY RESULTS Histone deacetylase 7 was significantly up-regulated in CRC, leading to histone hypoacetylation at the CNT2 promoter region, especially at sites H3K9Ac, H3K18Ac and H4Ac. This hypoacetylation condensed the chromatin structure and reduced CNT2 expression. All these effects were reversed by treatment with TSA, a histone deacetylase inhibitor. In HCT15 and HT29 cells, inhibition of histone deacetylase increased cell uptake and decreased IC50 for cladribine. CONCLUSIONS AND IMPLICATIONS Histone hypoacetylation due to increased levels of histone deacetylase 7 results in CNT2 repression in CRC tumour tissue and could lead to decreased uptake of and consequent resistance to nucleoside anti-cancer agents. Such resistance could be overcome by combining inhibitors of histone deacetylase with the nucleoside anti-cancer agent.
Collapse
Affiliation(s)
- Chaonan Ye
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kun Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jinxiu Lei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Kui Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haixing Ju
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
1103
|
van den Brink WJ, van den Berg D, Bonsel FEM, Hartman R, Wong Y, van der Graaf PH, de Lange ECM. Fingerprints of CNS drug effects: a plasma neuroendocrine reflection of D 2 receptor activation using multi-biomarker pharmacokinetic/pharmacodynamic modelling. Br J Pharmacol 2018; 175:3832-3843. [PMID: 30051461 PMCID: PMC6135786 DOI: 10.1111/bph.14452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Because biological systems behave as networks, multi-biomarker approaches increasingly replace single biomarker approaches in drug development. To improve the mechanistic insights into CNS drug effects, a plasma neuroendocrine fingerprint was identified using multi-biomarker pharmacokinetic/pharmacodynamic (PK/PD) modelling. Short- and long-term D2 receptor activation was evaluated using quinpirole as a paradigm compound. EXPERIMENTAL APPROACH Rats received 0, 0.17 or 0.86 mg·kg-1 of the D2 agonist quinpirole i.v. Quinpirole concentrations in plasma and brain extracellular fluid (brainECF ), as well as plasma concentrations of 13 hormones and neuropeptides, were measured. Experiments were performed at day 1 and repeated after 7-day s.c. drug administration. PK/PD modelling was applied to identify the in vivo concentration-effect relations and neuroendocrine dynamics. KEY RESULTS The quinpirole pharmacokinetics were adequately described by a two-compartment model with an unbound brainECF -to-plasma concentration ratio of 5. The release of adenocorticotropic hormone (ACTH), growth hormone, prolactin and thyroid-stimulating hormone (TSH) from the pituitary was influenced. Except for ACTH, D2 receptor expression levels on the pituitary hormone-releasing cells predicted the concentration-effect relationship differences. Baseline levels (ACTH, prolactin, TSH), hormone release (ACTH) and potency (TSH) changed with treatment duration. CONCLUSIONS AND IMPLICATIONS The integrated multi-biomarker PK/PD approach revealed a fingerprint reflecting D2 receptor activation. This forms the conceptual basis for in vivo evaluation of on- and off-target CNS drug effects. The effect of treatment duration is highly relevant given the long-term use of D2 agonists in clinical practice. Further development towards quantitative systems pharmacology models will eventually facilitate mechanistic drug development.
Collapse
Affiliation(s)
- Willem J van den Brink
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Dirk‐Jan van den Berg
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Floor E M Bonsel
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Robin Hartman
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Yin‐Cheong Wong
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Piet H van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
- Certara QSP, Canterbury Innovation HouseCanterburyUK
| | - Elizabeth C M de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
1104
|
Aranda CJ, Ocón B, Arredondo‐Amador M, Suárez MD, Zarzuelo A, Chazin WJ, Martínez‐Augustin O, Sánchez de Medina F. Calprotectin protects against experimental colonic inflammation in mice. Br J Pharmacol 2018; 175:3797-3812. [PMID: 30007036 PMCID: PMC6135788 DOI: 10.1111/bph.14449] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Calprotectin is a heterodimer composed of two myeloid-related proteins, S100A8 and S100A9, that is abundant in neutrophils and monocytes/macrophages. Faecal levels of calprotectin are used routinely to monitor inflammatory bowel disease activity. EXPERIMENTAL APPROACH We aimed to assess the role of calprotectin in intestinal inflammation, using the dextran sulfate sodium model of colitis in mice. Calprotectin was administered (50 or 100 μg·day-1 ) by the intrarectal or by i.p. injection (50 μg·day-1 only). The condition of the mice was characterized by morphological and biochemical methods. KEY RESULTS Intrarectal calprotectin protected significantly against colitis, as shown by lower levels of macroscopic and microscopic damage, colonic myeloperoxidase activity and decreased expression of TNFα and toll-like receptor 4. IL-17 production by spleen and mesenteric lymph node cells was reduced. Calprotectin had no effect on body weight loss or colonic thickening. There were no effects of calprotectin after i.p. injection. Calprotectin had virtually no effects in control, non-colitic mice. Calprotectin had almost no effect on the colonic microbiota but enhanced barrier function. Treatment of rat IEC18 intestinal epithelial cells in vitro with calprotectin induced output of the chemokines CXL1 and CCL2, involving the receptor for advanced glycation end products- and NFκB. CONCLUSION AND IMPLICATIONS Calprotectin exerted protective effects in experimental colitis when given by the intrarectal route, by actions that appear to involve effects on the epithelium.
Collapse
Affiliation(s)
- Carlos J Aranda
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Borja Ocón
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - María Arredondo‐Amador
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - María Dolores Suárez
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Antonio Zarzuelo
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Walter J Chazin
- Department of Biochemistry and Chemistry, Center for Structural BiologyVanderbilt UniversityNashvilleTNUSA
| | - Olga Martínez‐Augustin
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| |
Collapse
|
1105
|
Walker MJA, Hayes ES, Saint DA, Adaikan G, Abraham S, Goldin AL, Beatch GN, MacLeod BA, Wall RA, Pugsley MK. Pharmacological and toxicological activity of RSD921, a novel sodium channel blocker. Biomed Pharmacother 2018; 106:510-522. [PMID: 29990839 PMCID: PMC6492542 DOI: 10.1016/j.biopha.2018.06.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND RSD921, the R,R enantiomer of the kappa (k) agonist PD117,302, lacks significant activity on opioid receptors. METHODS The pharmacological and toxicological actions were studied with reference to cardiovascular, cardiac, antiarrhythmic, toxic and local anaesthetic activity. RESULTS In rats, dogs and baboons, RSD921 dose-dependently reduced blood pressure and heart rate. In a manner consistent with sodium channel blockade it prolonged the PR and QRS intervals of the ECG. Furthermore, in rats and NHP, RSD921 increased the threshold currents for induction of extra-systoles and ventricular fibrillation (VFt), and prolonged effective refractory period (ERP). In rats, RSD921 was protective against arrhythmias induced by electrical stimulation and coronary artery occlusion. Application of RSD921 to voltage-clamped rat cardiac myocytes blocked sodium currents. RSD921 also blocked transient (ito) and sustained (IKsus) outward potassium currents, albeit with reduced potency relative to sodium current blockade. Sodium channel blockade due to RSD921 in myocytes and isolated hearts was enhanced under ischaemic conditions (low pH and high extracellular potassium concentration). When tested on the cardiac, neuronal and skeletal muscle forms of sodium channels expressed in Xenopus laevis oocytes, RSD921 produced equipotent tonic block of sodium currents, enhanced channel block at reduced pH (6.4) and marked use-dependent block of the cardiac isoform. RSD921 had limited but quantifiable effects in subacute toxicology studies in rats and dogs. Pharmacokinetic analyses were performed in baboons. Plasma concentrations producing cardiac actions in vivo after intravenous administration of RSD921 were similar to the concentrations effective in the in vitro assays utilized. CONCLUSIONS RSD921 primarily blocks sodium currents, and possesses antiarrhythmic and local anaesthetic activity.
Collapse
MESH Headings
- Action Potentials
- Administration, Intravenous
- Anesthetics, Local/administration & dosage
- Anesthetics, Local/pharmacokinetics
- Anesthetics, Local/pharmacology
- Anesthetics, Local/toxicity
- Animals
- Anti-Arrhythmia Agents/administration & dosage
- Anti-Arrhythmia Agents/pharmacokinetics
- Anti-Arrhythmia Agents/pharmacology
- Anti-Arrhythmia Agents/toxicity
- Antihypertensive Agents/pharmacology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Blood Pressure/drug effects
- Disease Models, Animal
- Dogs
- Dose-Response Relationship, Drug
- Female
- Guinea Pigs
- Heart Rate/drug effects
- Humans
- Injections, Intradermal
- Isolated Heart Preparation
- Male
- Mice
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Neural Conduction/drug effects
- Pain Threshold/drug effects
- Papio
- Pyrroles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Sodium Channel Blockers/administration & dosage
- Sodium Channel Blockers/pharmacokinetics
- Sodium Channel Blockers/pharmacology
- Sodium Channel Blockers/toxicity
- Sodium Channels/drug effects
- Sodium Channels/metabolism
- Thiophenes/pharmacology
- Time Factors
- Xenopus laevis
Collapse
Affiliation(s)
- M J A Walker
- Department of Anesthesia, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver BC, V6T 1Z3, Canada.
| | - E S Hayes
- BioCurate Pty Ltd, Parkville, VIC, Australia.
| | - D A Saint
- Department of Physiology, Faculty of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - G Adaikan
- Department of Obstetrics & Gynecology, Faculty of Medicine, National University of Singapore, Singapore.
| | - S Abraham
- Department of Pharmacology, IIBR, Ness Ziona, Israel.
| | - A L Goldin
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, United States.
| | - G N Beatch
- Clinical Science, Xenon Pharmaceuticals, Burnaby, BC, Canada.
| | - B A MacLeod
- Department of Anesthesia, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver BC, V6T 1Z3, Canada
| | - R A Wall
- Department of Anesthesia, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver BC, V6T 1Z3, Canada
| | - M K Pugsley
- Safety Pharmacology/Toxicology Consultant, Fairfield, CT, 06825, United States.
| |
Collapse
|
1106
|
Yan M, Ye L, Yin S, Lu X, Liu X, Lu S, Cui J, Fan L, Kaplowitz N, Hu H. Glycycoumarin protects mice against acetaminophen-induced liver injury predominantly via activating sustained autophagy. Br J Pharmacol 2018; 175:3747-3757. [PMID: 30024038 PMCID: PMC6135785 DOI: 10.1111/bph.14444] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Acetaminophen-induced acute liver injury (AILI) is the most frequent cause of acute liver failure in developed countries. Given the significant limitations associated with N-acetyl cysteine, the only antidote used to treat AILI, the development of novel therapeutic approaches that can offer a wide range of therapeutic time-windows is clearly needed. Glycycoumarin (GCM), a natural coumarin purified from liquorice, has been previously demonstrated to possess potent hepatoprotective effects. In the present study, we aimed to investigate the therapeutic potential of GCM against AILI. EXPERIMENTAL APPROACH Acetaminophen (300 mg·kg-1 ) was administered to male C57BL/6 mice, with and without GCM. Serum transaminases, haematoxylin and eosin staining and Western blot were used to assess hepatic damage. KEY RESULTS GCM (50 mg·kg-1 ) was highly effective against acetaminophen-induced hepatotoxicity. Moreover, GCM was superior to N-acetyl cysteine, in terms of the dosage and the therapeutic time-windows. Further mechanistic investigations revealed that the therapeutic action of GCM was not a result of inhibition of acetaminophen metabolic activation or associated with Nrf2. Instead, the protective effect of GCM appeared to be predominantly dependent on sustained activation of autophagy, which attenuated acetaminophen-induced mitochondrial oxidative stress and JNK activation. CONCLUSIONS AND IMPLICATIONS Collectively, our results indicate that GCM alleviated acetaminophen-induced oxidative stress through activating autophagy, thereby protecting against AILI. Our findings suggest that GCM has potential as a novel therapeutic agent for treating AILI.
Collapse
Affiliation(s)
- Mingzhu Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non‐thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Linhu Ye
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non‐thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non‐thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Xiaotong Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non‐thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Xiaoyi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non‐thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Shangyun Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non‐thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jinling Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non‐thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Lihong Fan
- College of Veterinary MedicineChina Agricultural UniversityBeijingChina
| | - Neil Kaplowitz
- USC Research Center for Liver Disease, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory for Food Non‐thermal Processing, National Engineering Research Centre for Fruit and Vegetable Processing, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
1107
|
Cho R, Yang C, Tseng H, Hsiao L, Lin C, Yang C. Haem oxygenase-1 up-regulation by rosiglitazone via ROS-dependent Nrf2-antioxidant response elements axis or PPARγ attenuates LPS-mediated lung inflammation. Br J Pharmacol 2018; 175:3928-3946. [PMID: 30088830 PMCID: PMC6151343 DOI: 10.1111/bph.14465] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Haem oxygenase-1 (HO-1) is induced by thiazolidinediones including rosiglitazone and exerts anti-inflammatory effects in various models. However, the molecular mechanisms underlying rosiglitazone-induced HO-1 expression remain largely unknown in human pulmonary alveolar epithelial cells (HPAEpiCs). EXPERIMENTAL APPROACH HO-1 expression was determined by real time-PCR, Western blotting and promoter reporter analyses. Signalling pathways were investigated using pharmacological inhibitors or specific siRNAs. Interactions between nuclear factor erythroid-2-related factor (Nrf2) and antioxidant response elements (ARE) binding site of the HO-1 promoter were investigated with chromatin immunoprecipitation assays. KEY RESULTS Up-regulation of HO-1 in HPAEpiCs or in mice by rosiglitazone blunted ICAM-1 expression and monocyte adhesion to HPAEpiCs challenged with LPS. Rosiglitazone-induced HO-1 expression was significantly attenuated by NADPH oxidase (NOX) inhibitors (apocynin and diphenyleneiodonium) or ROS scavenger (N-acetyl cysteine). The involvement of NOX activity and ROS generation in rosiglitazone-induced HO-1 expression was confirmed by transfection with p47phox or NOX2 siRNA. Moreover, pretreatment with the inhibitors of c-Src (c-Srci II), proline-rich tyrosine kinase 2 (Pyk2) (PF431396), Akt (Akti VIII) or PPARγ (GW9662) and transfection with siRNA of c-Src, Pyk2, Akt or PPARγ abolished the rosiglitazone-induced HO-1 expression in HPAEpiCs. Subsequently, Nrf2 was activated by phosphorylation of c-Src, Pyk2 and Akt, which turned on transcription of HO-1 gene by binding to AREs binding site and enhancing ARE promoter activity. CONCLUSIONS AND IMPLICATIONS Rosiglitazone induces HO-1 expression via either NOX/ROS/c-Src/Pyk2/Akt-dependent Nrf2 activation or PPARγ in HPAEpiCs and suppresses LPS-mediated inflammatory responses, suggesting that PPARγ agonists may be useful for protection against pulmonary inflammation.
Collapse
Affiliation(s)
- Rou‐Ling Cho
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of MedicineChang Gung UniversityTao‐YuanTaiwan
| | - Chien‐Chung Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of MedicineChang Gung UniversityTao‐YuanTaiwan
- Department of Traditional Chinese MedicineChang Gung Memorial Hospital at Tao‐YuanTao‐YuanTaiwan
| | - Hui‐Ching Tseng
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of MedicineChang Gung UniversityTao‐YuanTaiwan
| | - Li‐Der Hsiao
- Department of AnestheticsChang Gung Memorial Hospital at Linkuo and Chang Gung UniversityTao‐YuanTaiwan
| | - Chih‐Chung Lin
- Department of AnestheticsChang Gung Memorial Hospital at Linkuo and Chang Gung UniversityTao‐YuanTaiwan
| | - Chuen‐Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of MedicineChang Gung UniversityTao‐YuanTaiwan
- Department of AnestheticsChang Gung Memorial Hospital at Linkuo and Chang Gung UniversityTao‐YuanTaiwan
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human EcologyChang Gung University of Science and TechnologyTao‐YuanTaiwan
| |
Collapse
|
1108
|
del Rio C, Cantarero I, Palomares B, Gómez‐Cañas M, Fernández‐Ruiz J, Pavicic C, García‐Martín A, Luz Bellido M, Ortega‐Castro R, Pérez‐Sánchez C, López‐Pedrera C, Appendino G, Calzado MA, Muñoz E. VCE-004.3, a cannabidiol aminoquinone derivative, prevents bleomycin-induced skin fibrosis and inflammation through PPARγ- and CB 2 receptor-dependent pathways. Br J Pharmacol 2018; 175:3813-3831. [PMID: 30033591 PMCID: PMC6135789 DOI: 10.1111/bph.14450] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid system and PPARγ are important targets for the development of novel compounds against fibrotic diseases such as systemic sclerosis (SSc), also called scleroderma. The aim of this study was to characterize VCE-004.3, a novel cannabidiol derivative, and study its anti-inflammatory and anti-fibrotic activities. EXPERIMENTAL APPROACH The binding of VCE-004.3 to CB1 and CB2 receptors and PPARγ and its effect on their functional activities were studied in vitro and in silico. Anti-fibrotic effects of VCE-004.3 were investigated in NIH-3T3 fibroblasts and human dermal fibroblasts. To assess its anti-inflammatory and anti-fibrotic efficacy in vivo, we used two complementary models of bleomycin-induced fibrosis. Its effect on ERK1/2 phosphorylation induced by IgG from SSc patients and PDGF was also investigated. KEY RESULTS VCE-004.3 bound to and activated PPARγ and CB2 receptors and antagonized CB1 receptors. VCE-004.3 bound to an alternative site at the PPARγ ligand binding pocket. VCE-004.3 inhibited collagen gene transcription and synthesis and prevented TGFβ-induced fibroblast migration and differentiation to myofibroblasts. It prevented skin fibrosis, myofibroblast differentiation and ERK1/2 phosphorylation in bleomycin-induced skin fibrosis. Furthermore, it reduced mast cell degranulation, macrophage activation, T-lymphocyte infiltration, and the expression of inflammatory and profibrotic factors. Topical application of VCE-004.3 also alleviated skin fibrosis. Finally, VCE-004.3 inhibited PDGF-BB- and SSc IgG-induced ERK1/2 activation in fibroblasts. CONCLUSIONS AND IMPLICATIONS VCE-004.3 is a novel semisynthetic cannabidiol derivative that behaves as a dual PPARγ/CB2 agonist and CB1 receptor modulator that could be considered for the development of novel therapies against different forms of scleroderma.
Collapse
MESH Headings
- Animals
- Bleomycin/antagonists & inhibitors
- Cannabidiol/chemical synthesis
- Cannabidiol/chemistry
- Cannabidiol/pharmacology
- Cell Differentiation/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Female
- Fibrosis/chemically induced
- Fibrosis/drug therapy
- Fibrosis/metabolism
- Humans
- Inflammation/chemically induced
- Inflammation/drug therapy
- Inflammation/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Docking Simulation
- Molecular Structure
- NIH 3T3 Cells
- PPAR gamma/agonists
- PPAR gamma/metabolism
- Quinones/chemical synthesis
- Quinones/chemistry
- Quinones/pharmacology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Skin/drug effects
- Skin/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Carmen del Rio
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Irene Cantarero
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Belén Palomares
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - María Gómez‐Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaUniversidad ComplutenseMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | - Javier Fernández‐Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaUniversidad ComplutenseMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | | | | | - Maria Luz Bellido
- Vivacell BiotechnologyCórdobaSpain
- Emerald Health PharmaceuticalsSan DiegoCAUSA
| | - Rafaela Ortega‐Castro
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Carlos Pérez‐Sánchez
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Chary López‐Pedrera
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Giovanni Appendino
- Dipartimento di Scienze del FarmacoUniversità del Piemonte OrientaleNovaraItaly
| | - Marco A Calzado
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of CórdobaUniversity of CórdobaCórdobaSpain
- Department of Cellular Biology, Physiology and ImmunologyUniversity of CórdobaCórdobaSpain
- Reina Sofía University HospitalCórdobaSpain
| |
Collapse
|
1109
|
Raimundo L, Espadinha M, Soares J, Loureiro JB, Alves MG, Santos MMM, Saraiva L. Improving anticancer activity towards colon cancer cells with a new p53-activating agent. Br J Pharmacol 2018; 175:3947-3962. [PMID: 30076608 PMCID: PMC6151341 DOI: 10.1111/bph.14468] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Impairment of the tumour suppressor p53 pathway is a major event in human cancers, making p53 activation one of the most attractive therapeutic strategies to halt cancer. Here, we have identified a new selective p53 activator and investigated its potential as an anticancer agent. EXPERIMENTAL APPROACH Anti-proliferative activity of the (R)-tryptophanol-derived bicyclic lactam SYNAP was evaluated in a range of human cancer cells with different p53 status. The anticancer activity and mechanism of action of SYNAP was studied in two- and three-dimensional models of human colon adenocarcinoma HCT116 cells with wild-type p53 and corresponding p53-null isogenic derivative cells, alone and in combination with known chemotherapeutic agents. KEY RESULTS SYNAP showed anti-proliferative effect in human cancer cells dependent on p53 status. In HCT116 cells, SYNAP caused p53-dependent growth inhibition, associated with cell cycle arrest and apoptosis, anti-migratory activity and regulation of the expression of p53 transcriptional targets. Data also indicated that SYNAP targeted p53, inhibiting its interaction with its endogenous inhibitors, murine double minute (MDM)2 and MDMX. Moreover, SYNAP sensitized colon cancer cells to the cytotoxic effect of known chemotherapeutic agents. SYNAP did not induce acquired or cross-resistance and re-sensitized doxorubicin-resistant colon cancer cells to chemotherapy. Additionally, SYNAP was non-genotoxic and had low cytotoxicity against normal cells. CONCLUSION AND IMPLICATIONS SYNAP revealed encouraging anticancer activity, either alone or in combination with known chemotherapeutic agents, in colon cancer cells. Apart from its promising application in cancer therapy, SYNAP may provide a starting point for improved p53 activators.
Collapse
Affiliation(s)
- Liliana Raimundo
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| | - Margarida Espadinha
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de LisboaLisboaPortugal
| | - Joana Soares
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| | - Joana B Loureiro
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar & UMIB, Unity for Multidisciplinary Research in BiomedicineUniversity of PortoPortoPortugal
| | - Maria M M Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de LisboaLisboaPortugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| |
Collapse
|
1110
|
Dattoli SD, Baiula M, De Marco R, Bedini A, Anselmi M, Gentilucci L, Spampinato S. DS-70, a novel and potent α 4 integrin antagonist, is an effective treatment for experimental allergic conjunctivitis in guinea pigs. Br J Pharmacol 2018; 175:3891-3910. [PMID: 30051467 DOI: 10.1111/bph.14458] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Allergic conjunctivitis is an eye inflammation that involves the infiltration of immune cells into the conjunctiva via cell surface-adhesion receptors, such as integrin α4 β1 . These receptors interact with adhesion molecules expressed on the conjunctival endothelium and may be a target to treat this disease. We synthesized DS-70, a novel α/β-peptidomimetic α4 integrin antagonist, to prevent the conjunctival infiltration of immune cells and clinical symptoms in a model of allergic conjunctivitis. EXPERIMENTAL APPROACH In vitro, DS-70 was pharmacologically characterized using a scintillation proximity procedure to measure its affinity for α4 β1 integrin, and its effect on cell adhesion mediated by different integrins was also evaluated. The effects of DS-70 on vascular cell adhesion molecule-1 (VCAM-1)-mediated degranulation of a human mast cell line and an eosinophilic cell line, which both express α4 β1 , and on VCAM-1-mediated phosphorylation of ERK 1/2 in Jurkat E6.1 cells were investigated. Effects of DS-70 administered in the conjunctival fornix of ovalbumin-sensitized guinea pigs were evaluated. KEY RESULTS DS-70 bound to integrin α4 β1 with nanomolar affinity, prevented the adhesion of α4 integrin-expressing cells, antagonized VCAM-1-mediated degranulation of mast cells and eosinophils and ERK 1/2 phosphorylation. Only 20% was degraded after an 8 h incubation with serum. DS-70 dose-dependently reduced the clinical symptoms of allergic conjunctivitis, conjunctival α4 integrin expression and conjunctival levels of chemokines and cytokines in ovalbumin-sensitized guinea pigs. CONCLUSIONS AND IMPLICATIONS These findings highlight the role of α4 integrin in allergic conjunctivitis and suggest that DS-70 is a potential treatment for this condition.
Collapse
Affiliation(s)
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rossella De Marco
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Andrea Bedini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
1111
|
Langron E, Prins S, Vergani P. Potentiation of the cystic fibrosis transmembrane conductance regulator by VX-770 involves stabilization of the pre-hydrolytic, O 1 state. Br J Pharmacol 2018; 175:3990-4002. [PMID: 30107029 DOI: 10.1111/bph.14475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/05/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Cystic fibrosis (CF) is a debilitating hereditary disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes an anion channel. Wild type-CFTR gating is a non-equilibrium process. After ATP binding, CFTR enters a stable open state (O1 ). ATP hydrolysis leads it to a short-lived post-hydrolytic open state (O2 ), from which channels close. Here, we use mutations to probe the mechanism of VX-770, the first compound directly targeting the CFTR protein approved for treatment of CF. D1370N and K1250R mutations reduce or abolish catalytic activity, simplifying the gating scheme to an equilibrium (C↔O1 ); K464A-CFTR has a destabilized O1 state and rarely closes via hydrolysis. EXPERIMENTAL APPROACH Potentiation by VX-770 was measured using microscopic imaging of HEK293 cells expressing an anion-sensitive YFP-CFTR. A simple mathematical model was used to predict fluorescence quenching following extracellular iodide addition and estimate CFTR conductance. Membrane density of CFTR channels was measured in a parallel assay, using CFTR-pHTomato. KEY RESULTS VX-770 strongly potentiated WT-CFTR, D1370N-CFTR and K1250R-CFTR. K464A-CFTR was also strongly potentiated, regardless of whether it retained catalytic activity or not. CONCLUSIONS AND IMPLICATIONS Similar potentiation of hydrolytic and non-hydrolytic mutants suggests that VX-770 increases CFTR open probability mainly by stabilizing pre-hydrolytic O1 states with respect to closed states. Potentiation of K464A-CFTR channels suggests action of VX-770 did not strongly alter conformational dynamics at site 1. Understanding potentiator mechanism could help develop improved treatment for CF patients. The fluorescence assay presented here is a robust tool for such investigations.
Collapse
Affiliation(s)
- Emily Langron
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Stella Prins
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Paola Vergani
- Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
1112
|
Gobira PH, Oliveira AC, Gomes JS, da Silveira VT, Asth L, Bastos JR, Batista EM, Issy AC, Okine BN, de Oliveira AC, Ribeiro FM, Del Bel EA, Aguiar DC, Finn DP, Moreira FA. Opposing roles of CB 1 and CB 2 cannabinoid receptors in the stimulant and rewarding effects of cocaine. Br J Pharmacol 2018; 176:1541-1551. [PMID: 30101419 DOI: 10.1111/bph.14473] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) bind to CB1 and CB2 cannabinoid receptors in the brain and modulate the mesolimbic dopaminergic pathway. This neurocircuitry is engaged by psychostimulant drugs, including cocaine. Although CB1 receptor antagonism and CB2 receptor activation are known to inhibit certain effects of cocaine, they have been investigated separately. Here, we tested the hypothesis that there is a reciprocal interaction between CB1 receptor blockade and CB2 receptor activation in modulating behavioural responses to cocaine. EXPERIMENTAL APPROACH Male Swiss mice received i.p. injections of cannabinoid-related drugs followed by cocaine, and were then tested for cocaine-induced hyperlocomotion, c-Fos expression in the nucleus accumbens and conditioned place preference. Levels of endocannabinoids after cocaine injections were also analysed. KEY RESULTS The CB1 receptor antagonist, rimonabant, and the CB2 receptor agonist, JWH133, prevented cocaine-induced hyperlocomotion. The same results were obtained by combining sub-effective doses of both compounds. The CB2 receptor antagonist, AM630, reversed the inhibitory effects of rimonabant in cocaine-induced hyperlocomotion and c-Fos expression in the nucleus accumbens. Selective inhibitors of anandamide and 2-AG hydrolysis (URB597 and JZL184, respectively) failed to modify this response. However, JZL184 prevented cocaine-induced hyperlocomotion when given after a sub-effective dose of rimonabant. Cocaine did not change brain endocannabinoid levels. Finally, CB2 receptor blockade reversed the inhibitory effect of rimonabant in the acquisition of cocaine-induced conditioned place preference. CONCLUSION AND IMPLICATIONS The present data support the hypothesis that CB1 and CB2 receptors work in concert with opposing functions to modulate certain addiction-related effects of cocaine. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Pedro H Gobira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana C Oliveira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia S Gomes
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian T da Silveira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laila Asth
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana R Bastos
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Edleusa M Batista
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana C Issy
- Department of Morphology, Stomatology and Basic Pathology, Faculty of Odontology, University of São Paulo, Ribeirão Preto, Brazil
| | - Bright N Okine
- Department of Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Antonio C de Oliveira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiola M Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elaine A Del Bel
- Department of Morphology, Stomatology and Basic Pathology, Faculty of Odontology, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - David P Finn
- Department of Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Fabricio A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
1113
|
Saunders J, Hore Z, Gentry C, McMahon S, Denk F. Negative Evidence for a Functional Role of Neuronal DNMT3a in Persistent Pain. Front Mol Neurosci 2018; 11:332. [PMID: 30258352 PMCID: PMC6143791 DOI: 10.3389/fnmol.2018.00332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/27/2018] [Indexed: 11/13/2022] Open
Abstract
Traditionally, neuroscience has had to rely on mixed tissue analysis to examine transcriptional and epigenetic changes in the context of nervous system function or pathology. However, particularly when studying chronic pain conditions, this approach can be flawed, since it neglects to take into account the shifting contribution of different cell types across experimental conditions. Here, we demonstrate this using the example of DNA methyltransferases (DNMTs) – a group of epigenetic modifiers consisting of Dnmt1, Dnmt3a, and Dnmt3b in mammalian cells. We used sensory neuron-specific knockout mice for Dnmt3a/3b as well as pharmacological blockade of Dnmt1 to study their role in nociception. In contrast to previous analyses on whole tissue, we find that Dnmt3a and 3b protein is not expressed in adult DRG neurons, that none of the DNA methyltransferases are regulated with injury and that interfering with their function has no effect on nociception. Our results therefore currently do not support a role for neuronal DNA methyltransferases in pain processing in adult animals.
Collapse
Affiliation(s)
- Jessica Saunders
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Clive Gentry
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Stephen McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
1114
|
Chen C, Xu B, Shi X, Zhang M, Zhang Q, Zhang T, Zhao W, Zhang R, Wang Z, Li N, Fang Q. GpTx-1 and [Ala 5 , Phe 6 , Leu 26 , Arg 28 ]GpTx-1, two peptide Na V 1.7 inhibitors: analgesic and tolerance properties at the spinal level. Br J Pharmacol 2018; 175:3911-3927. [PMID: 30076786 DOI: 10.1111/bph.14461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The voltage-gated sodium channel NaV 1.7 is considered a therapeutic target for pain treatment based on human genetic evidence. GpTx-1 and its potent analogue [Ala5 , Phe6 , Leu26 , Arg28 ]GpTx-1 (GpTx-1-71) were recently characterized as NaV 1.7 inhibitors in vitro. Furthermore, the present work was conducted to investigate the analgesic properties of these two peptides in different pain models after spinal administration. EXPERIMENTAL APPROACH The antinociceptive activities of both GpTx-1 and GpTx-1-71 were investigated in mouse models of acute, visceral, inflammatory and neuropathic pain. Furthermore, the side effects of GpTx-1 and GpTx-1-71 were evaluated in rotarod, antinociceptive tolerance, acute hyperlocomotion and gastrointestinal transit tests. KEY RESULTS The i.t. administration of both GpTx-1 and GpTx-1-71 dose-dependently produced powerful antinociception in the different pain models. This effect was attenuated by the opioid receptor antagonist naloxone, suggesting the involvement of the opioid system. In this study, repeated administration of these two_peptides produced spinal analgesia without a loss of potency over 8 days in mouse models of acute, inflammatory and neuropathic pain. Moreover, spinal administration of GpTx-1 and GpTx-1-71 did not induce significant effects on motor coordination, evoke acute hyperlocomotion or increase gastrointestinal transit time. CONCLUSIONS AND IMPLICATIONS Our data indicate that the NaV 1.7 peptide inhibitors GpTx-1 and GpTx-1-71 produce powerful, nontolerance-forming analgesia in preclinical pain models, which might be dependent on the endogenous opioid system. In addition, at the spinal level, the limited side effects imply that these NaV 1.7 peptide inhibitors could be potentially developed as GpTx-1-based drugs for pain relief.
Collapse
Affiliation(s)
- Chao Chen
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Weidong Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zilong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
1115
|
Cao Y, Chen S, Liang Y, Wu T, Pang J, Liu S, Zhou P. Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels by β-blocker carvedilol. Br J Pharmacol 2018; 175:3963-3975. [PMID: 30098004 DOI: 10.1111/bph.14469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/02/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Carvedilol is a clinically effective β-blocker broadly used for treating congestive heart failure (CHF), and several clinical trials have demonstrated that it shows a favourable effect compared with other β-blockers in patients with CHF. The mechanism underlying this beneficial effect of carvedilol compared to other β-blockers is not clearly understood. In addition to β-blockers, inhibitors of hyperpolarization-activated cyclic nucleotide (HCN)-gated channels, which play a critical role in spontaneous rhythmic activity in the heart, have also been proposed to be suitable drugs for reducing heart rate and, therefore, beneficial for treating CHF. In the present study, we investigated the effect of carvedilol on HCN channels. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings were used to assess the effect of carvedilol on currents from wild-type and mutant HCN1, HCN2 and HCN4 channels expressed in CHO cells. KEY RESULTS Carvedilol was the only β-blocker tested that showed inhibitory effects on the major sinoatrial HCN channel isoform HCN4. Carvedilol inhibited HCN4 in a concentration-dependent manner with an EC50 of 4.4 μM. In addition, carvedilol also inhibited HCN1 and HCN2 channels. Carvedilol blocked HCN channels by decelerating the rate of channel activation and increasing that of deactivation, and shifted the voltage-dependence of activation leftwards. Our data also showed that carvedilol, unlike other inhibitors of this channel (ivabradine and ZD7288), is not an 'open-channel' inhibitor of HCN4. CONCLUSIONS AND IMPLICATIONS Carvedilol is a negative gating modulator of HCN channels. It represents a novel structure for future drug design of HCN channel inhibitors.
Collapse
Affiliation(s)
- Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shujun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yemei Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
1116
|
Iannotti FA, Pagano E, Moriello AS, Alvino FG, Sorrentino NC, D'Orsi L, Gazzerro E, Capasso R, De Leonibus E, De Petrocellis L, Di Marzo V. Effects of non-euphoric plant cannabinoids on muscle quality and performance of dystrophic mdx mice. Br J Pharmacol 2018; 176:1568-1584. [PMID: 30074247 DOI: 10.1111/bph.14460] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, results in chronic inflammation and irreversible skeletal muscle degeneration. Moreover, the associated impairment of autophagy greatly contributes to the aggravation of muscle damage. We explored the possibility of using non-euphoric compounds present in Cannabis sativa, cannabidiol (CBD), cannabidivarin (CBDV) and tetrahydrocannabidivarin (THCV), to reduce inflammation, restore functional autophagy and positively enhance muscle function in vivo. EXPERIMENTAL APPROACH Using quantitative PCR, western blots and [Ca2+ ]i measurements, we explored the effects of CBD and CBDV on the differentiation of both murine and human skeletal muscle cells as well as their potential interaction with TRP channels. Male dystrophic mdx mice were injected i.p. with CBD or CBDV at different stages of the disease. After treatment, locomotor tests and biochemical analyses were used to evaluate their effects on inflammation and autophagy. KEY RESULTS CBD and CBDV promoted the differentiation of murine C2C12 myoblast cells into myotubes by increasing [Ca2+ ]i mostly via TRPV1 activation, an effect that undergoes rapid desensitization. In primary satellite cells and myoblasts isolated from healthy and/or DMD donors, not only CBD and CBDV but also THCV promoted myotube formation, in this case, mostly via TRPA1 activation. In mdx mice, CBD (60 mg·kg-1 ) and CBDV (60 mg·kg-1 ) prevented the loss of locomotor activity, reduced inflammation and restored autophagy. CONCLUSION AND IMPLICATIONS We provide new insights into plant cannabinoid interactions with TRP channels in skeletal muscle, highlighting a potential opportunity for novel co-adjuvant therapies to prevent muscle degeneration in DMD patients. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | | | | | - Luca D'Orsi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| |
Collapse
|
1117
|
Pozdniakova S, Guitart-Mampel M, Garrabou G, Di Benedetto G, Ladilov Y, Regitz-Zagrosek V. 17β-Estradiol reduces mitochondrial cAMP content and cytochrome oxidase activity in a phosphodiesterase 2-dependent manner. Br J Pharmacol 2018; 175:3876-3890. [PMID: 30051530 DOI: 10.1111/bph.14455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Mitochondria possess their own source of cAMP, that is, soluble adenylyl cyclase (sAC). Activation or expression of mitochondrial sAC promotes mitochondrial function. Oestrogen receptor signalling plays an essential role in the regulation of mitochondrial function. Here we aimed to determine whether 17β-estradiol may affect mitochondrial cAMP signalling. EXPERIMENTAL APPROACH Expression of the intra-mitochondrial proteins (Western blot), mitochondrial cAMP content (FRET-based live imaging and MS assay), mitochondrial membrane potential and cytochrome oxidase activity were analysed in H9C2 and C2C12 cells. KEY RESULTS A 24 h treatment with 17β-estradiol significantly reduced the basal level of mitochondrial cAMP, without affecting the intra-mitochondrial content of sAC, phosphodiesterase 2 (PDE2) or PKA and the activity of the intra-mitochondrial sAC. The effect of 17β-estradiol on mitochondrial cAMP was prevented by inhibition of a cGMP-activated PDE2 or soluble guanylyl cyclase (sGC), suggesting a role of NO signalling. Indeed, 17β-estradiol raised cellular levels of cGMP and the intra-mitochondrial expression of the catalytic subunit β of sGC was found. The 17β-estradiol-induced reduction of the mitochondrial cAMP level was accompanied by decreased cytochrome oxidase activity and mitochondrial membrane potential in a PDE2-dependent manner. CONCLUSIONS AND IMPLICATIONS 17β-estradiol reduced the basal level of mitochondrial cAMP content and cytochrome oxidase activity in a sAC-independent but in a PDE2-dependent manner. The results suggest a role of 17β-estradiol-induced activation of NO signalling in the regulation of mitochondrial cAMP content. Our study adds a new aspect to the complex action of oestrogens on mitochondrial biology, that is relevant to hormone replacement therapy.
Collapse
Affiliation(s)
- Sofya Pozdniakova
- Charité - Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Mariona Guitart-Mampel
- Muscle Research and Mitochondrial Function Laboratory, Cellex - IDIBAPS, Faculty of Medicine and Health Science, University of Barcelona, Internal Medicine Service - Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER, Madrid, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex - IDIBAPS, Faculty of Medicine and Health Science, University of Barcelona, Internal Medicine Service - Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER, Madrid, Spain
| | - Giulietta Di Benedetto
- Neuroscience Institute, Italian National Research Council, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Yury Ladilov
- Charité - Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Charité - Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
1118
|
Hu Y, Tao X, Han X, Xu L, Yin L, Sun H, Qi Y, Xu Y, Peng J. MicroRNA-351-5p aggravates intestinal ischaemia/reperfusion injury through the targeting of MAPK13 and Sirtuin-6. Br J Pharmacol 2018; 175:3594-3609. [PMID: 29952043 PMCID: PMC6086990 DOI: 10.1111/bph.14428] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Intestinal ischaemia-reperfusion (II/R) injury is a serious clinical problem. Here we have investigated novel mechanisms and new drug targets in II/R injury by searching for microRNAs regulating such injury. EXPERIMENTAL APPROACH We used hypoxia/reoxygenation (H/R) of IEC-6 cell cultures and models of II/R models in rats and mice. Microarray assays were used to identify target miRNAs from rat intestinal. Real-time PCR, Western blot and dual luciferase reporter assays, and agomir and antagomir in vitro and in vivo were used to assess the effects of the target miRNA on II/R injury. KEY RESULTS The miR-351-5p was differentially expressed in our models and it targeted MAPK13 and sirtuin-6. This miRNA reduced levels of sirtuin-6 and AMP-activated protein kinase phosphorylation, and activated forkhead box O3 (FoxO3α) phosphorylation to cause oxidative stress. Also, miR-351-5p markedly reduced MAPK13 level, activated polycystic kidney disease 1/NF-κB signal and increased NF-κB (p65). Moreover, miR-351-5p up-regulated levels of Bcl2-associated X, cytochrome c, apoptotic peptidase activating factor 1, cleaved-caspase 3 and cleaved-caspase 9 by reducing sirtuin-6 levels to promote apoptosis. In addition, miR-351-5p mimic in IEC-6 cells and agomir in mice aggravated these effects, and miR-351-5p inhibitor and antagomir in mice alleviated these actions. CONCLUSIONS AND IMPLICATIONS Our data showed that miR-351-5p aggravated II/R injury by promoting intestinal mucosal oxidative stress, inflammation and apoptosis by targeting MAPK13 and sirtuin-6.These data provide new insights into the mechanisms regulating II/R injury, and of miR-351-5p could be considered as a novel therapeutic target for such injury.
Collapse
Affiliation(s)
- Yupeng Hu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Xufeng Tao
- College of PharmacyDalian Medical UniversityDalianChina
| | - Xu Han
- College of PharmacyDalian Medical UniversityDalianChina
| | - Lina Xu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Lianhong Yin
- College of PharmacyDalian Medical UniversityDalianChina
| | - Huijun Sun
- College of PharmacyDalian Medical UniversityDalianChina
| | - Yan Qi
- College of PharmacyDalian Medical UniversityDalianChina
| | - Youwei Xu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Jinyong Peng
- College of PharmacyDalian Medical UniversityDalianChina
| |
Collapse
|
1119
|
Lin H, Singla B, Ghoshal P, Faulkner JL, Cherian‐Shaw M, O'Connor PM, She J, Belin de Chantemele EJ, Csányi G. Identification of novel macropinocytosis inhibitors using a rational screen of Food and Drug Administration-approved drugs. Br J Pharmacol 2018; 175:3640-3655. [PMID: 29953580 PMCID: PMC6109223 DOI: 10.1111/bph.14429] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Macropinocytosis is involved in many pathologies, including cardiovascular disorders, cancer, allergic diseases, viral and bacterial infections. Unfortunately, the currently available pharmacological inhibitors of macropinocytosis interrupt other endocytic processes and have non-specific endocytosis-independent effects. Here we have sought to identify new, clinically relevant inhibitors of macropinocytosis, using an FDA-approved drug library. EXPERIMENTAL APPROACH In the present study, 640 FDA-approved compounds were tested for their ability to inhibit macropinocytosis. A series of secondary assays were performed to confirm inhibitory activity, determine IC50 values and investigate cell toxicity. The ability of identified hits to inhibit phagocytosis and clathrin-mediated and caveolin-mediated endocytosis was also investigated. Scanning electron microscopy and molecular biology techniques were utilized to examine the mechanisms by which selected compounds inhibit macropinocytosis. KEY RESULTS The primary screen identified 14 compounds that at ~10 μM concentration inhibit >95% of macropinocytotic solute internalization. Three compounds - imipramine, phenoxybenzamine and vinblastine - potently inhibited (IC50 ≤ 131 nM) macropinocytosis without exerting cytotoxic effects or inhibiting other endocytic pathways. Scanning electron microscopy imaging indicated that imipramine inhibits membrane ruffle formation, a critical early step leading to initiation of macropinocytosis. Finally, imipramine has been shown to inhibit macropinocytosis in several cell types, including cancer cells, dendritic cells and macrophages. CONCLUSIONS AND IMPLICATIONS Our results identify imipramine as a new pharmacological tool to study macropinocytosis in cellular and biological systems. This study also suggests that imipramine could be a good candidate for repurposing as a therapeutic agent in pathological processes involving macropinocytosis.
Collapse
Affiliation(s)
- Hui‐Ping Lin
- Vascular Biology CenterAugusta UniversityAugustaGAUSA
| | | | | | | | | | | | - Jin‐Xiong She
- Center for Biotechnology and Genomic MedicineAugusta UniversityAugustaGAUSA
| | | | - Gábor Csányi
- Vascular Biology CenterAugusta UniversityAugustaGAUSA
- Department of Pharmacology and ToxicologyAugusta UniversityAugustaGAUSA
| |
Collapse
|
1120
|
Zeng J, Chen B, Lv X, Sun L, Zeng X, Zheng H, Du Y, Wang G, Ma M, Guan Y. Transmembrane member 16A participates in hydrogen peroxide-induced apoptosis by facilitating mitochondria-dependent pathway in vascular smooth muscle cells. Br J Pharmacol 2018; 175:3669-3684. [PMID: 29968377 PMCID: PMC6109215 DOI: 10.1111/bph.14432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Transmembrane member 16A (TMEM16A), an intrinsic constituent of the Ca2+ -activated Cl- channel, is involved in vascular smooth muscle cell (VSMC) proliferation and hypertension-induced cerebrovascular remodelling. However, the functional significance of TMEM16A for apoptosis in basilar artery smooth muscle cells (BASMCs) remains elusive. Here, we investigated whether and how TMEM16A contributes to apoptosis in BASMCs. EXPERIMENTAL APPROACH Cell viability assay, flow cytometry, Western blot, mitochondrial membrane potential assay, immunogold labelling and co-immunoprecipitation (co-IP) were performed. KEY RESULTS Hydrogen peroxide (H2 O2 ) induced BASMC apoptosis through a mitochondria-dependent pathway, including by increasing the apoptosis rate, down-regulating the ratio of Bcl-2/Bax and potentiating the loss of the mitochondrial membrane potential and release of cytochrome c from the mitochondria to the cytoplasm. These effects were all reversed by the silencing of TMEM16A and were further potentiated by the overexpression of TMEM16A. Endogenous TMEM16A was detected in the mitochondrial fraction. Co-IP revealed an interaction between TMEM16A and cyclophilin D, a component of the mitochondrial permeability transition pore (mPTP). This interaction was up-regulated by H2 O2 but restricted by cyclosporin A, an inhibitor of cyclophilin D. TMEM16A increased mPTP opening, resulting in the activation of caspase-9 and caspase-3. The results obtained with cultured BASMCs from TMEM16A smooth muscle-specific knock-in mice were consistent with those from rat BASMCs. CONCLUSIONS AND IMPLICATIONS These results suggest that TMEM16A participates in H2 O2 -induced apoptosis via modulation of mitochondrial membrane permeability in VSMCs. This study establishes TMEM16A as a target for therapy of several remodelling-related diseases.
Collapse
MESH Headings
- Animals
- Anoctamin-1/physiology
- Apoptosis/drug effects
- Apoptosis/physiology
- Cells, Cultured
- Peptidyl-Prolyl Isomerase F
- Cyclophilins/metabolism
- Cytochromes c/metabolism
- Hydrogen Peroxide/pharmacology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jia‐Wei Zeng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Department of PharmacyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Bao‐Yi Chen
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xiao‐Fei Lv
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Lu Sun
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xue‐Lin Zeng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Department of PharmacyThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Hua‐Qing Zheng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yan‐Hua Du
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Guan‐Lei Wang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ming‐Ming Ma
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yong‐Yuan Guan
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
1121
|
Liu M, Zhang G, Zheng C, Song M, Liu F, Huang X, Bai S, Huang X, Lin C, Zhu C, Hu Y, Mi S, Liu C. Activating the pregnane X receptor by imperatorin attenuates dextran sulphate sodium-induced colitis in mice. Br J Pharmacol 2018; 175:3563-3580. [PMID: 29945292 PMCID: PMC6086988 DOI: 10.1111/bph.14424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of the human pregnane X receptor (PXR; NR1I2) has potential therapeutic uses for inflammatory bowel disease (IBD). Imperatorin (IMP), a naturally occurring coumarin, is the main bioactive ingredient of Angelica dahurica Radix, which is regularly used to treat the common cold and intestinal disorders. However, there are no data on the protective effects of IMP against IBD. EXPERIMENTAL APPROACH The effects of IMP on PXR-modulated cytochrome P450 3A4 (CYP3A4) expression were assessed using a PXR transactivation assay, a mammalian two-hybrid assay, a competitive ligand-binding assay, analysis of CYP3A4 mRNA and protein expression levels and measurement of CYP3A4 activity using a cell-based reporter gene assay and in vitro model. The inhibitory effects of IMP on NF-κB activity were evaluated by a reporter assay and NF-κB p65 nuclear translocation. The anti-IBD effects of IMP were investigated in a dextran sulphate sodium (DSS)-induced colitis mouse model. Colon inflammatory cytokines were assessed by elisa. KEY RESULTS IMP activated CYP3A4 promoter activity, recruited steroid receptor coactivator 1 to the ligand-binding domain of PXR and increased the expression and activity of CYP3A4. PXR knockdown substantially reduced IMP-induced increase in CYP3A4 expression. Furthermore, IMP-mediated PXR activation suppressed the nuclear translocation of NF-κB and down-regulated LPS-induced expression of pro-inflammatory genes. Nevertheless, PXR knockdown partially reduced the IMP-mediated inhibition of NF-κB. IMP ameliorated DSS-induced colitis by PXR/NF-κB signalling. CONCLUSIONS AND IMPLICATIONS IMP acts as a PXR agonist to attenuate DSS-induced colitis by suppression of the NF-κB-mediated pro-inflammatory response in a PXR/NF-κB-dependent manner.
Collapse
Affiliation(s)
- Meijing Liu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Guohui Zhang
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chunge Zheng
- Institute of Tropical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Meng Song
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Fangle Liu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaotao Huang
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Shasha Bai
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xinan Huang
- Institute of Tropical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chaozhan Lin
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chenchen Zhu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yingjie Hu
- Institute of Tropical MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Suiqing Mi
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| | - Changhui Liu
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
1122
|
Zhong L, Tran T, Baguley TD, Lee SJ, Henke A, To A, Li S, Yu S, Grieco FA, Roland J, Schultz PG, Eizirik DL, Rogers N, Chartterjee AK, Tremblay MS, Shen W. A novel inhibitor of inducible NOS dimerization protects against cytokine-induced rat beta cell dysfunction. Br J Pharmacol 2018; 175:3470-3485. [PMID: 29888783 PMCID: PMC6086989 DOI: 10.1111/bph.14388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 05/14/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Beta cell apoptosis is a major feature of type 1 diabetes, and pro-inflammatory cytokines are key drivers of the deterioration of beta cell mass through induction of apoptosis. Mitochondrial stress plays a critical role in mediating apoptosis by releasing cytochrome C into the cytoplasm, directly activating caspase-9 and its downstream signalling cascade. We aimed to identify new compounds that protect beta cells from cytokine-induced activation of the intrinsic (mitochondrial) pathway of apoptosis. EXPERIMENTAL APPROACH Diabetogenic media, composed of IL-1β, IFN-γ and high glucose, were used to induce mitochondrial stress in rat insulin-producing INS1E cells, and a high-content image-based screen of small molecule modulators of Casp9 pathway was performed. KEY RESULTS A novel small molecule, ATV399, was identified from a high-content image-based screen for compounds that inhibit cleaved caspase-9 activation and subsequent beta cell apoptosis induced by a combination of IL-1β, IFN-γ and high glucose, which together mimic the pathogenic diabetic milieu. Through medicinal chemistry optimization, potency was markedly improved (6-30 fold), with reduced inhibitory effects on CYP3A4. Improved analogues, such as CAT639, improved beta cell viability and insulin secretion in cytokine-treated rat insulin-producing INS1E cells and primary dispersed islet cells. Mechanistically, CAT639 reduced the production of NO by allosterically inhibiting dimerization of inducible NOS (iNOS) without affecting its mRNA levels. CONCLUSION AND IMPLICATIONS Taken together, these studies demonstrate a successful phenotypic screening campaign resulting in identification of an inhibitor of iNOS dimerization that protects beta cell viability and function through modulation of mitochondrial stress induced by cytokines.
Collapse
Affiliation(s)
- Linlin Zhong
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Tuan Tran
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Tyler D Baguley
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Sang Jun Lee
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Adam Henke
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Andrew To
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Sijia Li
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Shan Yu
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Fabio A Grieco
- ULB Center for Diabetes ResearchUniversite´ Libre de Bruxelles (ULB)Brussels1070Belgium
| | - Jason Roland
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Peter G Schultz
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
- Department of ChemistryThe Scripps Research InstituteLa JollaCA92037USA
| | - Decio L Eizirik
- ULB Center for Diabetes ResearchUniversite´ Libre de Bruxelles (ULB)Brussels1070Belgium
| | - Nikki Rogers
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | | | | | - Weijun Shen
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| |
Collapse
|
1123
|
Ceuleers H, Hanning N, Heirbaut J, Van Remoortel S, Joossens J, Van Der Veken P, Francque SM, De bruyn M, Lambeir A, De Man JG, Timmermans J, Augustyns K, De Meester I, De Winter BY. Newly developed serine protease inhibitors decrease visceral hypersensitivity in a post-inflammatory rat model for irritable bowel syndrome. Br J Pharmacol 2018; 175:3516-3533. [PMID: 29911328 PMCID: PMC6086981 DOI: 10.1111/bph.14396] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Serine proteases have been re suggested as important mediators of visceral pain. We investigated their effect by using newly developed serine protease inhibitors with a well-characterized inhibitory profile in a rat model of post-inflammatory irritable bowel syndrome (IBS). EXPERIMENTAL APPROACH Colitis was induced in rats receiving intrarectal trinitrobenzenesulphonic acid; controls received 0.9% NaCl. Colonoscopies were performed on day 3, to confirm colitis, and later until mucosal healing. Visceral hypersensitivity was quantified by visceromotor responses (VMRs) to colorectal distension, 30 min after i.p. injection of the serine protease inhibitors nafamostat, UAMC-00050 or UAMC-01162. Serine proteases, protease-activated receptors (PARs) and TRP channels were quantified by qPCR and immunohistochemistry. Proteolytic activity was characterized using fluorogenic substrates. KEY RESULTS VMR was significantly elevated in post-colitis rats. Nafamostat normalized VMRs at the lowest dose tested. UAMC-00050 and UAMC-01162 significantly decreased VMR dose-dependently. Expression of mRNA for tryptase-αβ-1and PAR4, and tryptase immunoreactivity was significantly increased in the colon of post-colitis animals. Trypsin-like activity was also significantly increased in the colon but not in the faeces. PAR2 and TRPA1 immunoreactivity co-localized with CGRP-positive nerve fibres in control and post-colitis animals. CONCLUSIONS AND IMPLICATIONS Increased expression of serine proteases and activity together with increased expression of downstream molecules at the colonic and DRG level and in CGRP-positive sensory nerve fibres imply a role for serine proteases in post-inflammatory visceral hypersensitivity. Our results support further investigation of serine protease inhibitors as an interesting treatment strategy for IBS-related visceral pain.
Collapse
Affiliation(s)
- Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | - Nikita Hanning
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | - Jelena Heirbaut
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | | | - Jurgen Joossens
- Laboratory of Medicinal ChemistryUniversity of AntwerpAntwerpBelgium
| | | | | | - Michelle De bruyn
- Laboratory of Medical BiochemistryUniversity of AntwerpAntwerpBelgium
| | | | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | | | - Koen Augustyns
- Laboratory of Medicinal ChemistryUniversity of AntwerpAntwerpBelgium
| | - Ingrid De Meester
- Laboratory of Medical BiochemistryUniversity of AntwerpAntwerpBelgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
1124
|
Weinsanto I, Laux-Biehlmann A, Mouheiche J, Maduna T, Delalande F, Chavant V, Gabel F, Darbon P, Charlet A, Poisbeau P, Lamshöft M, Van Dorsselaer A, Cianferani S, Parat MO, Goumon Y. Stable isotope-labelled morphine to study in vivo central and peripheral morphine glucuronidation and brain transport in tolerant mice. Br J Pharmacol 2018; 175:3844-3856. [PMID: 30051501 DOI: 10.1111/bph.14454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic administration of medication can significantly affect metabolic enzymes leading to physiological adaptations. Morphine metabolism in the liver has been extensively studied following acute morphine treatment, but such metabolic processes in the CNS are poorly characterized. Long-term morphine treatment is limited by the development of tolerance, resulting in a decrease of its analgesic effect. Whether or not morphine analgesic tolerance affects in vivo brain morphine metabolism and blood-brain barrier (BBB) permeability remains a major question. Here, we have attempted to characterize the in vivo metabolism and BBB permeability of morphine after long-term treatment, at both central and peripheral levels. EXPERIMENTAL APPROACH Male C57BL/6 mice were injected with morphine or saline solution for eight consecutive days in order to induce morphine analgesic tolerance. On the ninth day, both groups received a final injection of morphine (85%) and d3-morphine (morphine bearing three 2 H; 15%, w/w). Mice were then killed and blood, urine, brain and liver samples were collected. LC-MS/MS was used to quantify morphine, its metabolite morphine-3-glucuronide (M3G) and their respective d3-labelled forms. KEY RESULTS We found no significant differences in morphine CNS uptake and metabolism between control and tolerant mice. Interestingly, d3-morphine metabolism was decreased compared to morphine without any interference with our study. CONCLUSIONS AND IMPLICATIONS Our data suggests that tolerance to the analgesic effects of morphine is not linked to increased glucuronidation to M3G or to altered global BBB permeability of morphine.
Collapse
Affiliation(s)
- Ivan Weinsanto
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Alexis Laux-Biehlmann
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Jinane Mouheiche
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Tando Maduna
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - François Delalande
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Virginie Chavant
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,Mass Spectrometry Platform, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Florian Gabel
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Pascal Darbon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Alexandre Charlet
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Pierrick Poisbeau
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Marc Lamshöft
- Institute of Environmental Research, University of Technology Dortmund, Dortmund, Germany
| | - Alain Van Dorsselaer
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Sarah Cianferani
- CNRS UMR7178, Laboratoire de Spectrométrie de Masse BioOrganique, IPHC-DSA, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Marie-Odile Parat
- School of Pharmacy, University of Queensland, Woolloongabba, Australia.,Outcomes Research Consortium, Cleveland, OH, USA
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,Mass Spectrometry Platform, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
1125
|
Neuhäuser M, Ruxton GD. Some comments on the update to BJP guidance on experimental design and analysis. Br J Pharmacol 2018; 175:3638-3639. [PMID: 30144043 DOI: 10.1111/bph.14442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/01/2022] Open
Affiliation(s)
- Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Sciences, Remagen, Germany
| | | |
Collapse
|
1126
|
Sticht MA, Lau DJ, Keenan CM, Cavin JB, Morena M, Vemuri VK, Makriyannis A, Cravatt BF, Sharkey KA, Hill MN. Endocannabinoid regulation of homeostatic feeding and stress-induced alterations in food intake in male rats. Br J Pharmacol 2018; 176:1524-1540. [PMID: 30051485 DOI: 10.1111/bph.14453] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Stress is known to reduce food intake. Many aspects of the stress response and feeding are regulated by the endocannabinoid system, but the roles of anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in stress-induced anorexia are unclear. EXPERIMENTAL APPROACH Effects of acute restraint stress on endocannabinoids were investigated in male Sprague-Dawley rats. Systemic and central pharmacological inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL) was used to assess the effects of elevated AEA and 2-AG on homeostatic feeding and on food consumption after stress. Animals were pretreated with the FAAH inhibitor, PF-04457845, or the MAGL inhibitor, MJN110, before 2 h acute restraint stress or 2 h homecage period without food. KEY RESULTS Restraint stress decreased hypothalamic and circulating AEA, with no effect in the gastrointestinal tract, while 2-AG content in the jejunum (but not duodenum) was reduced. PF-04457845 (30 μg), given i.c.v., attenuated stress-induced anorexia via CB1 receptors, but reduced homeostatic feeding in unstressed animals through an unknown mechanism. On the other hand, systemic administration of MJN110 (10 mg·kg-1 ) reduced feeding, regardless of stress or feeding status and inhibited basal intestinal transit in unstressed rats. The ability of MAGL inhibition to reduce feeding in combination with stress was independent of CB1 receptor signalling in the gut as the peripherally restricted CB1 receptor antagonist, AM6545 did not block this effect. CONCLUSIONS AND IMPLICATIONS Our data reveal diverse roles for 2-AG and AEA in homeostatic feeding and changes in energy intake following stress. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Martin A Sticht
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.,Dept. of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,Dept. of Psychiatry, University of Calgary, Calgary, AB, Canada.,Dept. of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - David J Lau
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.,Dept. of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,Dept. of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Dept. of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Jean-Baptiste Cavin
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Dept. of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.,Dept. of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,Dept. of Psychiatry, University of Calgary, Calgary, AB, Canada
| | | | | | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Dept. of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Keith A Sharkey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Dept. of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.,Dept. of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,Dept. of Psychiatry, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
1127
|
Barretto-de-Souza L, Adami MB, Benini R, Crestani CC. Dual role of nitrergic neurotransmission in the bed nucleus of the stria terminalis in controlling cardiovascular responses to emotional stress in rats. Br J Pharmacol 2018; 175:3773-3783. [PMID: 30007000 DOI: 10.1111/bph.14447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of the present study was to assess the interaction of nitrergic neurotransmission within the bed nucleus of the stria terminalis (BNST) with local glutamatergic and noradrenergic neurotransmission in the control of cardiovascular responses to acute restraint stress in rats. EXPERIMENTAL APPROACH Interaction with local noradrenergic neurotransmission was evaluated using local pretreatment with the selective α1 -adrenoceptor antagonist WB4101 before microinjection of the NO donor NOC-9 into the BNST. Interaction with glutamatergic neurotransmission was assessed by pretreating the BNST with a selective inhibitor of neuronal NOS (nNOS), Nω-propyl-L-arginine (NPLA) before local microinjection of NMDA. The effect of intra-BNST NPLA microinjection in animals locally pretreated with WB4101 was also evaluated. KEY RESULTS NOC-9 reduced the heart rate (HR) and blood pressure increases evoked by restraint stress. These effects of NOC-9 on HR, but not in blood pressure, was inhibited by pretreatment of BNST with WB4101. NMDA enhanced the restraint-evoked HR increase, and this effect was abolished following BNST pretreatment with NPLA. Administration of NPLA to the BNST of animals pretreated locally with WB4101 decreased the HR and blood pressure increases induced by restraint. CONCLUSION AND IMPLICATIONS These results indicate that inhibitory control of stress-evoked cardiovascular responses by nitrergic signalling in the BNST is mediated by a facilitation of local noradrenergic neurotransmission. The present data also provide evidence of an involvement of local nNOS in facilitatory control of tachycardia during stress by NMDA receptors within the BNST.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Mariane B Adami
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| |
Collapse
|
1128
|
Kiso T, Sekizawa T, Uchino H, Tsukamoto M, Kakimoto S. Analgesic effects of ASP3662, a novel 11β-hydroxysteroid dehydrogenase 1 inhibitor, in rat models of neuropathic and dysfunctional pain. Br J Pharmacol 2018; 175:3784-3796. [PMID: 30006998 DOI: 10.1111/bph.14448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Glucocorticoids are a major class of stress hormones known to participate in stress-induced hyperalgesia. Although 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) is a key enzyme in the intracellular regeneration of glucocorticoids in the CNS, its role in pain perception has not been assessed. Here, we examined the effects of ASP3662, a novel 11β-HSD1 inhibitor, on neuropathic and dysfunctional pain. EXPERIMENTAL APPROACH The enzyme inhibitory activities and pharmacokinetics of ASP3662 were examined, and its antinociceptive effects were evaluated in models of neuropathic pain, fibromyalgia and inflammatory pain in Sprague-Dawley rats. KEY RESULTS ASP3662 inhibited human, mouse and rat 11β-HSD1 but not human 11β-HSD2, in vitro. ASP3662 had no significant effect on 87 other possible targets (enzymes, transporters and receptors). ASP3662 inhibited in vitro conversion of glucocorticoid from its inactive to active form in extracts of rat brain and spinal cord. Pharmacokinetic analysis in Sprague-Dawley rats showed that ASP3662 has CNS-penetrability and long-lasting pharmacokinetic properties. Single oral administration of ASP3662 ameliorated mechanical allodynia in spinal nerve ligation (SNL) and streptozotocin-induced diabetic rats and thermal hyperalgesia in chronic constriction nerve injury rats. ASP3662 also restored muscle pressure thresholds in reserpine-induced myalgia rats. Intrathecal administration of ASP3662 was also effective in SNL rats. However, ASP3662 had no analgesic effects in adjuvant-induced arthritis rats. CONCLUSIONS AND IMPLICATIONS ASP3662 is a potent, selective and CNS-penetrable inhibitor of 11β-HSD1. The effects of ASP3662 suggest that selective inhibition of 11β-HSD1 may be an attractive approach for the treatment of neuropathic and dysfunctional pain, as observed in fibromyalgia.
Collapse
Affiliation(s)
- Tetsuo Kiso
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Toshihiro Sekizawa
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Hiroshi Uchino
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Mina Tsukamoto
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Shuichiro Kakimoto
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
1129
|
Tham M, Yilmaz O, Alaverdashvili M, Kelly MEM, Denovan-Wright EM, Laprairie RB. Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors. Br J Pharmacol 2018; 176:1455-1469. [PMID: 29981240 DOI: 10.1111/bph.14440] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE We sought to understand why (-)-cannabidiol (CBD) and (-)-cannabidiol-dimethylheptyl (CBD-DMH) exhibit distinct pharmacology, despite near identical structures. EXPERIMENTAL APPROACH HEK293A cells expressing either human type 1 cannabinoid (CB1 ) receptors or CB2 receptors were treated with CBD or CBD-DMH with or without the CB1 and CB2 receptor agonist CP55,940, CB1 receptor allosteric modulator Org27569 or CB2 receptor inverse agonist SR144528. Ligand binding, cAMP levels and βarrestin1 recruitment were measured. CBD and CBD-DMH binding was simulated with models of human CB1 or CB2 receptors, based on the recently published crystal structures of agonist-bound (5XRA) or antagonist-bound (5TGZ) human CB1 receptors. KEY RESULTS At CB1 receptors, CBD was a negative allosteric modulator (NAM), and CBD-DMH was a mixed agonist/positive allosteric modulator. CBD and Org27569 shared multiple interacting residues in the antagonist-bound model of CB1 receptors (5TGZ) but shared a binding site with CP55,940 in the agonist-bound model of CB1 receptors (5XRA). The binding site for CBD-DMH in the CB1 receptor models overlapped with CP55,940 and Org27569. At CB2 receptors, CBD was a partial agonist, and CBD-DMH was a positive allosteric modulator of cAMP modulation but a NAM of βarrestin1 recruitment. CBD, CP55,940 and SR144528 shared a binding site in the CB2 receptor models that was separate from CBD-DMH. CONCLUSION AND IMPLICATIONS The pharmacological activity of CBD and CBD-DMH in HEK293A cells and their modelled binding sites at CB1 and CB2 receptors may explain their in vivo effects and illuminates the difficulties associated with the development of allosteric modulators for CB1 and CB2 receptors. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Mylyne Tham
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Orhan Yilmaz
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mariam Alaverdashvili
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Opthamology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | | | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
1130
|
Bussey CE, Withers SB, Saxton SN, Bodagh N, Aldous RG, Heagerty AM. β 3 -Adrenoceptor stimulation of perivascular adipocytes leads to increased fat cell-derived NO and vascular relaxation in small arteries. Br J Pharmacol 2018; 175:3685-3698. [PMID: 29980164 PMCID: PMC6109217 DOI: 10.1111/bph.14433] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/04/2018] [Accepted: 06/19/2018] [Indexed: 01/13/2023] Open
Abstract
Background and Purpose In response to noradrenaline, healthy perivascular adipose tissue (PVAT) exerts an anticontractile effect on adjacent small arterial tissue. Organ bath solution transfer experiments have demonstrated the release of PVAT‐derived relaxing factors that mediate this function. The present studies were designed to investigate the mechanism responsible for the noradrenaline‐induced PVAT anticontractile effect. Experimental Approach In vitro rat small arterial contractile function was assessed using wire myography in the presence and absence of PVAT and the effects of sympathomimetic stimulation on the PVAT environment explored using Western blotting and assays of organ bath buffer. Key Results PVAT elicited an anticontractile effect in response to noradrenaline but not phenylephrine stimulation. In arteries surrounded by intact PVAT, the β3‐adrenoceptor agonist, CL‐316243, reduced the vasoconstrictor effect of phenylephrine but not noradrenaline. Kv7 channel inhibition using XE 991 reversed the noradrenaline‐induced anticontractile effect in exogenously applied PVAT studies. Adrenergic stimulation of PVAT with noradrenaline and CL‐316243, but not phenylephrine, was associated with increased adipocyte‐derived NO production, and the contractile response to noradrenaline was augmented following incubation of exogenous PVAT with L‐NMMA. PVAT from eNOS−/− mice had no anticontractile effect. Assays of adipocyte cAMP demonstrated an increase with noradrenaline stimulation implicating Gαs signalling in this process. Conclusions and Implications We have shown that adipocyte‐located β3‐adrenoceptor stimulation leads to activation of Gαs signalling pathways with increased cAMP and the release of adipocyte‐derived NO. This process is dependent upon Kv7 channel function. We conclude that adipocyte‐derived NO plays a central role in anticontractile activity when rodent PVAT is stimulated by noradrenaline.
Collapse
Affiliation(s)
- Charlotte E Bussey
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Sarah B Withers
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK.,Environment and Life Sciences, University of Salford, Salford, UK
| | - Sophie N Saxton
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Neil Bodagh
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Robert G Aldous
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Anthony M Heagerty
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
1131
|
Melancia F, Schiavi S, Servadio M, Cartocci V, Campolongo P, Palmery M, Pallottini V, Trezza V. Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br J Pharmacol 2018; 175:3699-3712. [PMID: 29968249 DOI: 10.1111/bph.14435] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Autism spectrum disorder (ASD) is more commonly diagnosed in males than in females. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is an environmental risk factor of ASD. Male rats prenatally exposed to VPA show socio-emotional autistic-like dysfunctions that have been related to changes in the activity of the endocannabinoid anandamide. Here, we have investigated if prenatal VPA induced sex-specific autistic endophenotypes involving anandamide signalling. EXPERIMENTAL APPROACH We studied sex-specific differences in the ASD-like socio-emotional, cognitive and repetitive symptoms displayed during development of Wistar rats of both sexes, prenatally exposed to VPA. The involvement of anandamide was followed by Western blotting of cannabinoid CB1 receptors and by inhibiting its metabolism. KEY RESULTS Female rats were less vulnerable to the deleterious effects of prenatal VPA exposure on social communication, emotional reactivity and cognitive performance than male rats. Conversely, as observed in male rats, prenatal VPA exposure induced selective deficits in social play behaviour and stereotypies in the female rat offspring. At the neurochemical level, prenatal VPA exposure altered phosphorylation of CB1 receptors in a sex-specific, age-specific and tissue-specific manner. Enhancing anandamide signalling through inhibition of its degradation reversed the behavioural deficits displayed by VPA-exposed animals of both sexes. CONCLUSIONS AND IMPLICATIONS These findings highlight sexually dimorphic consequences of prenatal VPA exposure that may be related to sex-specific effects of VPA on endocannabinoid neurotransmission in the course of development and introduce a new therapeutic target for reversing autistic-like symptoms in both sexes.
Collapse
Affiliation(s)
- Francesca Melancia
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Michela Servadio
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Veronica Cartocci
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - Valentina Pallottini
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| |
Collapse
|
1132
|
Shimizu S, Shimizu T, Nakamura K, Higashi Y, Saito M. Angiotensin II, a stress-related neuropeptide in the CNS, facilitates micturition reflex in rats. Br J Pharmacol 2018; 175:3727-3737. [PMID: 29981238 DOI: 10.1111/bph.14439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE We investigated the effects of centrally administered stress-related neuropeptide, angiotensin II, on the micturition reflex and the downstream signalling pathways in rats. EXPERIMENTAL APPROACH Male Wistar rats were anaesthetized with urethane for cystometry before and after i.c.v. administration of vehicle or angiotensin II (30 pmol). Muscimol (a GABAA receptor agonist) or baclofen (a GABAB receptor agonist) was i.c.v. administered 30 min before or 15 min after central angiotensin II administration. Telmisartan [an angiotensin II type 1 (AT1 ) receptor antagonist], valsartan (an AT1 receptor antagonist), PD123319 (an AT2 receptor antagonist), U-73122 (a PLC inhibitor), chelerythrine chloride (a PKC inhibitor), apocynin (a NADPH oxidase inhibitor) or tempol (an antioxidant) was centrally administered 30 min before central angiotensin II administration. KEY RESULTS Centrally administered angiotensin II significantly shortened the intercontraction interval and decreased the voided volume and bladder capacity without altering the maximum voiding pressure, post-voiding residual urine volume or voiding efficacy. Muscimol, baclofen, telmisartan, valsartan, U-73122, chelerythrine chloride, apocynin or tempol pretreatment significantly suppressed the reduction in intercontraction interval induced by central angiotensin II. Post-treatment with muscimol or baclofen also ameliorated the decrease in intercontraction interval induced by central angiotensin II. CONCLUSIONS AND IMPLICATIONS Angiotensin II in the CNS facilitates micturition reflex by inhibiting central GABAergic activity and activating the AT1 receptor/PLC/PKC/NADPH oxidase/superoxide anion pathway.
Collapse
Affiliation(s)
- Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Kumiko Nakamura
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
1133
|
Nagy CT, Koncsos G, Varga ZV, Baranyai T, Tuza S, Kassai F, Ernyey AJ, Gyertyán I, Király K, Oláh A, Radovits T, Merkely B, Bukosza N, Szénási G, Hamar P, Mathé D, Szigeti K, Pelyhe C, Jelemenský M, Onódi Z, Helyes Z, Schulz R, Giricz Z, Ferdinandy P. Selegiline reduces adiposity induced by high-fat, high-sucrose diet in male rats. Br J Pharmacol 2018; 175:3713-3726. [PMID: 29971762 DOI: 10.1111/bph.14437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Incidence and severity of obesity are increasing worldwide, however, efficient and safe pharmacological treatments are not yet available. Certain MAO inhibitors reduce body weight, although their effects on metabolic parameters have not been investigated. Here, we have assessed effects of a widely used, selective MAO-B inhibitor, selegiline, on metabolic parameters in a rat model of diet-induced obesity. EXPERIMENTAL APPROACH Male Long-Evans rats were given control (CON) or a high-fat (20%), high-sucrose (15%) diet (HFS) for 25 weeks. From week 16, animals were injected s.c. with 0.25 mg·kg-1 selegiline (CON + S and HFS + S) or vehicle (CON, HFS) once daily. Whole body, subcutaneous and visceral fat was measured by CT, and glucose and insulin tolerance were tested. Expression of glucose transporters and chemokines was assessed by quantitative RT-PCR. KEY RESULTS Selegiline decreased whole body fat, subcutaneous- and visceral adiposity, measured by CT and epididymal fat weight in the HFS group, compared with HFS placebo animals, without influencing body weight. Oral glucose tolerance and insulin tolerance tests showed impaired glucose homeostasis in HFS and HFS + S groups, although insulin levels in plasma and pancreas were unchanged. HFS induced expression of Srebp-1c, Glut1 and Ccl3 in adipose tissue, which were alleviated by selegiline. CONCLUSIONS AND IMPLICATIONS Selegiline reduced adiposity, changes in adipose tissue energy metabolism and adipose inflammation induced by HFS diet without affecting the increased body weight, impairment of glucose homeostasis, or behaviour. These results suggest that selegiline could mitigate harmful effects of visceral adiposity.
Collapse
Affiliation(s)
- Csilla Terézia Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Koncsos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Baranyai
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sebestyén Tuza
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Kassai
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Aliz Judit Ernyey
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Gyertyán
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Nóra Bukosza
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Szénási
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hamar
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Clinical Experimental Research Institute, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Translational Medicine Institute, Faculty of Medicine, Pécs University, Pécs, Hungary
| | - Domokos Mathé
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Csilla Pelyhe
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Marek Jelemenský
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Germany
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
1134
|
Sébert M, Denadai-Souza A, Quaranta M, Racaud-Sultan C, Chabot S, Lluel P, Monjotin N, Alric L, Portier G, Kirzin S, Bonnet D, Ferrand A, Vergnolle N. Thrombin modifies growth, proliferation and apoptosis of human colon organoids: a protease-activated receptor 1- and protease-activated receptor 4-dependent mechanism. Br J Pharmacol 2018; 175:3656-3668. [PMID: 29959891 PMCID: PMC6109216 DOI: 10.1111/bph.14430] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/24/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Thrombin is massively released upon tissue damage associated with bleeding or chronic inflammation. The effects of this thrombin on tissue regrowth and repair has been scarcely addressed and only in cancer cell lines. Hence, the purpose of the present study was to determine thrombin's pharmacological effects on human intestinal epithelium growth, proliferation and apoptosis, using three-dimensional cultures of human colon organoids. EXPERIMENTAL APPROACH Crypts were isolated from human colonic resections and cultured for 6 days, forming human colon organoids. Cultured organoids were exposed to 10 and 50 mU·mL-1 of thrombin, in the presence or not of protease-activated receptor (PAR) antagonists. Organoid morphology, metabolism, proliferation and apoptosis were followed. KEY RESULTS Thrombin favoured organoid maturation leading to a decreased number of immature cystic structures and a concomitant increased number of larger structures releasing cell debris and apoptotic cells. The size of budding structures, metabolic activity and proliferation were significantly reduced in organoid cultures exposed to thrombin, while apoptosis was dramatically increased. Both PAR1 and PAR4 antagonists inhibited apoptosis regardless of thrombin doses. Thrombin-induced inhibition of proliferation and metabolic activity were reversed by PAR4 antagonist for thrombin's lowest dose and by PAR1 antagonist for thrombin's highest dose. CONCLUSIONS AND IMPLICATIONS Overall, our data suggest that the presence of thrombin in the vicinity of human colon epithelial cells favours their maturation at the expense of their regenerative capacities. Our data point to thrombin and its two receptors PAR1 and PAR4 as potential molecular targets for epithelial repair therapies.
Collapse
Affiliation(s)
- Morgane Sébert
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Muriel Quaranta
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | | | | | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, CHU Purpan, Toulouse, France
| | - Guillaume Portier
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sylvain Kirzin
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Delphine Bonnet
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
1135
|
El‐Hashim AZ, Mathews S, Al‐Shamlan F. Central adenosine A 1 receptors inhibit cough via suppression of excitatory glutamatergic and tachykininergic neurotransmission. Br J Pharmacol 2018; 175:3162-3174. [PMID: 29767468 PMCID: PMC6031887 DOI: 10.1111/bph.14360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The adenosine A1 receptor is reported to mediate several excitatory effects in the airways and has inhibitory effects in the CNS. In this study, we investigated the role of peripheral and central A1 receptors in regulating cough and airway obstruction. EXPERIMENTAL APPROACH Drugs were administered to guinea pigs via inhalation or i.c.v. infusion. Following the administration of different drugs, cough was induced by exposing guinea pigs to aerosolized 0.4 M citric acid. An automated analyser recorded both cough and airway obstruction simultaneously using whole-body plethysmography. KEY RESULTS The A1 receptor agonist, cyclopentyladenosine (CPA, administered by inhalation), dose-dependently inhibited cough and also inhibited airway obstruction. Similarly, CPA, administered i.c.v., inhibited both the citric acid-induced cough and airway obstruction; this was prevented by pretreatment with the A1 receptor antagonist DPCPX (i.c.v.). Treatment with DPCPX alone dose-dependently enhanced the citric acid-induced cough and airway obstruction. This effect was reversed following treatment with either the glutamate GluN1 receptor antagonist D-AP5 or the neurokinin NK1 receptor antagonist FK-888. CONCLUSIONS AND IMPLICATIONS These findings suggest that activation of either peripheral or central adenosine A1 receptors inhibits citric acid-induced cough and airway obstruction. The data also suggest that tonic activation of central adenosine A1 receptors serves as a negative regulator of cough and airway obstruction, secondary to inhibition of excitatory glutamatergic and tachykininergic neurotransmission.
Collapse
Affiliation(s)
- Ahmed Z El‐Hashim
- Department of Pharmacology and Therapeutics, Faculty of PharmacyKuwait UniversityKuwait
| | - Seena Mathews
- Department of Pharmacology and Therapeutics, Faculty of PharmacyKuwait UniversityKuwait
| | - Fajer Al‐Shamlan
- Department of Pharmacology and Therapeutics, Faculty of PharmacyKuwait UniversityKuwait
| |
Collapse
|
1136
|
Rennhack A, Schiffer C, Brenker C, Fridman D, Nitao ET, Cheng Y, Tamburrino L, Balbach M, Stölting G, Berger TK, Kierzek M, Alvarez L, Wachten D, Zeng X, Baldi E, Publicover SJ, Benjamin Kaupp U, Strünker T. A novel cross-species inhibitor to study the function of CatSper Ca 2+ channels in sperm. Br J Pharmacol 2018; 175:3144-3161. [PMID: 29723408 PMCID: PMC6031884 DOI: 10.1111/bph.14355] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Sperm from many species share the sperm-specific Ca2+ channel CatSper that controls the intracellular Ca2+ concentration and, thereby, the swimming behaviour. A growing body of evidence suggests that the mechanisms controlling the activity of CatSper and its role during fertilization differ among species. A lack of suitable pharmacological tools has hampered the elucidation of the function of CatSper. Known inhibitors of CatSper exhibit considerable side effects and also inhibit Slo3, the principal K+ channel of mammalian sperm. The compound RU1968 was reported to suppress Ca2+ signaling in human sperm by an unknown mechanism. Here, we examined the action of RU1968 on CatSper in sperm from humans, mice, and sea urchins. EXPERIMENTAL APPROACH We resynthesized RU1968 and studied its action on sperm from humans, mice, and the sea urchin Arbacia punctulata by Ca2+ fluorimetry, single-cell Ca2+ imaging, electrophysiology, opto-chemistry, and motility analysis. KEY RESULTS RU1968 inhibited CatSper in sperm from invertebrates and mammals. The compound lacked toxic side effects in human sperm, did not affect mouse Slo3, and inhibited human Slo3 with about 15-fold lower potency than CatSper. Moreover, in human sperm, RU1968 mimicked CatSper dysfunction and suppressed motility responses evoked by progesterone, an oviductal steroid known to activate CatSper. Finally, RU1968 abolished CatSper-mediated chemotactic navigation in sea urchin sperm. CONCLUSION AND IMPLICATIONS We propose RU1968 as a novel tool to elucidate the function of CatSper channels in sperm across species.
Collapse
Affiliation(s)
- Andreas Rennhack
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Christian Schiffer
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Christoph Brenker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Dmitry Fridman
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Elis T Nitao
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Yi‐Min Cheng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Lara Tamburrino
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | - Melanie Balbach
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Gabriel Stölting
- Institute of Complex Systems – Zelluläre Biophysik 4, Forschungszentrum JülichJülichGermany
| | - Thomas K Berger
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Michelina Kierzek
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Luis Alvarez
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Dagmar Wachten
- Max‐Planck Research Group of Molecular Physiology, Center of Advanced European Studies and ResearchBonnGermany
- Institute of Innate ImmunityUniversity Hospital, University of BonnBonnGermany
| | - Xu‐Hui Zeng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | | | - U Benjamin Kaupp
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Timo Strünker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| |
Collapse
|
1137
|
Wei B, Lin Q, Ji Y, Zhao Y, Ding L, Zhou W, Zhang L, Gao C, Zhao W. Luteolin ameliorates rat myocardial ischaemia-reperfusion injury through activation of peroxiredoxin II. Br J Pharmacol 2018; 175:3315-3332. [PMID: 29782637 PMCID: PMC6057904 DOI: 10.1111/bph.14367] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/08/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Antioxidants provide a promising therapeutic effect for the cardiovascular disease. Luteolin, a polyphenolic bioflavonoid, is known to confer cardioprotection, although the underlying mechanisms, especially the role of luteolin on the antioxidant enzymes, such as the peroxiredoxin family, remain unknown. EXPERIMENTAL APPROACH We measured the effects of luteolin on myocardial ischaemia/reperfusion (MI/R) injury in vivo (Sprague-Dawley rats) and in vitro, together with the underlying mechanisms, with a focus on signalling by peroxiredoxins. H9c2 cells were used to assess the changes in peroxiredoxins and the other antioxidant enzymes. Oxidative stress, cardiac function, LDH release, ROS and infarct size were also assayed. KEY RESULTS Luteolin exerted significant cardioprotective effects in vivo and in vitro via improving cardiac function, increasing the expression of anti-apoptotic protein Bcl-2 and decreasing the pro-apoptotic protein Bax and active caspases 3 and 9, associated with MI/R. Mechanistically, luteolin markedly enhanced expression of peroxiredoxin II, without significant effects on other forms of peroxiredoxin, catalase or SOD1. Molecular docking showed that luteolin could indeed bind to the enzymic active pocket of peroxiredoxin II. Furthermore, down-regulation of peroxiredoxin II by peroxiredoxin II-antisense, administered by adenovirus infection of H9c2 cardiomyocytes, and inhibition of peroxiredoxin II in vivo significantly reversed the cardioprotective effects of luteolin. CONCLUSIONS AND IMPLICATIONS Our findings, for the first time, demonstrate that luteolin protects against MI/R injury through promoting signalling through the endogenous antioxidant enzyme, peroxiredoxin II, indicating the important beneficial role of this antioxidant system in the heart.
Collapse
Affiliation(s)
- Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co‐innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmace utical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Qiao Lin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co‐innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmace utical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Ya‐Ge Ji
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co‐innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmace utical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yi‐Can Zhao
- Department of Internal Medicine‐CardiologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP.R. China
| | - Li‐Na Ding
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co‐innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmace utical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Wen‐Juan Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co‐innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmace utical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Li‐Hua Zhang
- Department of Internal Medicine‐CardiologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP.R. China
| | - Chuan‐Yu Gao
- Department of Internal Medicine‐CardiologyHenan Provincial People's Hospital of Zhengzhou UniversityZhengzhouHenanP.R. China
| | - Wen Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co‐innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmace utical SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
1138
|
Bao L, Yin J, Gao W, Wang Q, Yao W, Gao X. A long-acting FGF21 alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis partly through an FGF21-adiponectin-IL17A pathway. Br J Pharmacol 2018; 175:3379-3393. [PMID: 29859019 PMCID: PMC6057909 DOI: 10.1111/bph.14383] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic steatohepatitis (NASH) is the most severe form of non-alcoholic fatty liver disease and is a serious public health problem around the world. There are currently no approved treatments for NASH. FGF21 has recently emerged as a promising drug candidate for metabolic diseases. However, the disadvantages of FGF21 as a clinically useful medicine include its short plasma half-life and poor drug-like properties. Here, we have explored the effects of PsTag600-FGF21, an engineered long-acting FGF21 fusion protein, in mice with NASH and describe some of the underlying mechanisms. EXPERIMENTAL APPROACH A long-acting FGF21 was prepared by genetic fusion with a 600 residues polypeptide (PsTag600). We used a choline-deficient high-fat diet-induced model of NASH in mice. The effects on body weight, insulin sensitivity, inflammation and levels of hormones and metabolites were studied first. We further investigated whether PsTag600-FGF21 attenuated inflammation through the Th17-IL17A axis and the associated mechanisms. KEY RESULTS PsTag600-FGF21 dose-dependently reduced body weight, blood glucose, and insulin and lipid levels and reversed hepatic steatosis. PsTag600-FGF21 enhanced fatty acid activation and mitochondrial β-oxidation in the liver. The profound reduction in hepatic inflammation in NASH mice following PsTag600-FGF21 was associated with inhibition of IL17A expression in Th17 cells. Furthermore, PsTag600-FGF21 depended on adiponectin to exert its suppression of Th17 cell differentiation and IL17A expression. CONCLUSIONS AND IMPLICATIONS Our data have uncovered some of the mechanisms by which PsTag600-FGF21 suppresses hepatic inflammation and further suggest that PsTag600-FGF21 could be an effective approach in NASH treatment.
Collapse
Affiliation(s)
- Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Wen Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
1139
|
Nahon JE, Groeneveldt C, Geerling JJ, van Eck M, Hoekstra M. Inhibition of protein arginine methyltransferase 3 activity selectively impairs liver X receptor-driven transcription of hepatic lipogenic genes in vivo. Br J Pharmacol 2018; 175:3175-3183. [PMID: 29774529 PMCID: PMC6031883 DOI: 10.1111/bph.14361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Agonists for the liver X receptor (LXR) are considered promising therapeutic moieties in cholesterol-driven diseases by promoting cellular cholesterol efflux pathways. However, current clinical application of these agents is hampered by concomitant LXR-induced activation of a lipogenic transcriptional network, leading to hepatic steatosis. Recent studies have suggested that protein arginine methyltransferase 3 (PRMT3) may act as a selective co-activator of LXR activity. Here, we verified the hypothesis that PRMT3 inhibition selectively disrupts the ability of LXR to stimulate lipogenesis while maintaining its capacity to modulate macrophage cholesterol homeostasis. EXPERIMENTAL APPROACH A combination of the LXR agonist T0901317 and palm oil was administered to C57BL/6 mice to maximally stimulate LXR and PRMT3 activity. PRMT3 activity was inhibited using the allosteric inhibitor SGC707. KEY RESULTS Treatment with SGC707 did not negatively influence the T0901317/palm oil-induced up-regulation of the cholesterol efflux ATP-binding cassette transporter genes, ABCA1 and ABCG1, in peritoneal cells. In contrast, SGC707 treatment was associated with a significant decrease in the hepatic expression of the lipogenic gene fatty acid synthase (-64%). A similar trend was observed for stearoyl-coenzyme A desaturase and acetyl CoA carboxylase expression (-43%; -56%). This obstruction of lipogenic gene transcription coincided with a significant 2.3-fold decrease in liver triglyceride content as compared with the T0901317 and palm oil-treated control group. CONCLUSION AND IMPLICATIONS We showed that inhibition of PRMT3 activity by SGC707 treatment selectively impairs LXR-driven transcription of hepatic lipogenic genes, while the positive effect of LXR stimulation on macrophage cholesterol efflux pathways is maintained.
Collapse
Affiliation(s)
- Joya E Nahon
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Christianne Groeneveldt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Janine J Geerling
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Miranda van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| |
Collapse
|
1140
|
Oh JY, Suh HN, Choi GE, Lee HJ, Jung YH, Ko SH, Kim JS, Chae CW, Lee CK, Han HJ. Modulation of sonic hedgehog-induced mouse embryonic stem cell behaviours through E-cadherin expression and integrin β1-dependent F-actin formation. Br J Pharmacol 2018; 175:3548-3562. [PMID: 29933500 DOI: 10.1111/bph.14423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The sonic hedgehog pathway (Shh) plays a central role in maintaining stem cell function and behaviour in various processes related to self-renewal and tissue regeneration. However, the therapeutic effect of Shh on mouse embryonic stem cells (mESCs) has not yet been clearly elucidated. Thus, we investigated the effect of Shh on the regulation of mESC behaviour as well as the effect of Shh-pretreated mESCs in skin wound healing. EXPERIMENTAL APPROACH The underlying mechanisms of Shh signalling pathway in growth and motility of mESCs were investigated using Western blot analysis, a cell proliferation assay and cell migration assay. In addition, the effect of Shh-pretreated mESCs in skin wound healing was determined using a mouse excisional wound splinting model. KEY RESULTS Shh disrupted the adherens junction through proteolysis by activating MMPs. In addition, the release of β-catenin from adherens junctions mediated by Shh led to cell cycle-dependent mESC proliferation. Shh-mediated Gli1 expression led to integrin β1 up-regulation, followed by FAK and Src phosphorylation. Furthermore, among the Rho-GTPases, Rac1 and Cdc42 were activated in a Shh-dependent manner while F-actin expression was suppressed by Rac1 and Cdc42 siRNA transfection. Consistent with the in vitro results, the skin wound healing assay revealed that Shh-treated mESCs increased angiogenesis and skin wound repair compared to that in Shh-treated mESCs transfected with integrin β1 siRNA in vivo. CONCLUSIONS AND IMPLICATIONS Our results imply that Shh induces adherens junction disruption and integrin β1-dependent F-actin formation by a mechanism involving FAK/Src and Rac1/Cdc42 signalling pathways in mESCs.
Collapse
Affiliation(s)
- Ji Young Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea.,Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Han Na Suh
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea.,Minipig Model Group, Animal Model Center, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - So Hee Ko
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang, Kangwon do, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| |
Collapse
|
1141
|
Aversa D, Martini A, Guatteo E, Pisani A, Mercuri NB, Berretta N. Reversal of dopamine-mediated firing inhibition through activation of the dopamine transporter in substantia nigra pars compacta neurons. Br J Pharmacol 2018; 175:3534-3547. [PMID: 29933497 DOI: 10.1111/bph.14422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE One of the hallmarks of ventral midbrain dopamine-releasing neurons is membrane hyperpolarization in response to stimulation of somato-dendritic D2 receptors. At early postnatal age, under sustained dopamine, this inhibitory response is followed by a slow recovery, resulting in dopamine inhibition reversal (DIR). In the present investigation, we aimed to get a better insight into the cellular mechanisms underlying DIR. EXPERIMENTAL APPROACH We performed single-unit extracellular recordings with a multi-electrode array device and conventional patch-clamp recordings on midbrain mouse slices. KEY RESULTS While continuous dopamine (100 μM) perfusion gave rise to firing inhibition that recovered in 10 to 15 min, the same effect was not obtained with the D2 receptor agonist quinpirole (100 nM). Moreover, firing inhibition caused by the GABAB receptor agonist baclofen (300 nM) was reversed by dopamine (100 μM), albeit D2 receptors had been blocked by sulpiride (10 μM). Conversely, the block of the dopamine transporter (DAT) with cocaine (30 μM) prevented firing recovery by dopamine under GABAB receptor stimulation. Accordingly, in whole-cell recordings from single cells, the baclofen-induced outward current was counteracted by dopamine (100 μM) in the presence of sulpiride (10 μM), and this effect was prevented by the DAT antagonists cocaine (30 μM) and GBR12909 (2 μM). CONCLUSIONS AND IMPLICATIONS Our results indicate that the DAT plays a major role in DIR, mediating it under conditions of sustained dopamine exposure, and point to DAT as an important target for pharmacological therapies leading to prolonged enhancement of the dopaminergic signal.
Collapse
Affiliation(s)
- Daniela Aversa
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata, Rome, Italy
| | - Alessandro Martini
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata, Rome, Italy
| | - Ezia Guatteo
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università 'Parthenope', Naples, Italy
| | - Antonio Pisani
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata, Rome, Italy
| | | |
Collapse
|
1142
|
Dong J, Olaleye OE, Jiang R, Li J, Lu C, Du F, Xu F, Yang J, Wang F, Jia W, Li C. Glycyrrhizin has a high likelihood to be a victim of drug-drug interactions mediated by hepatic organic anion-transporting polypeptide 1B1/1B3. Br J Pharmacol 2018; 175:3486-3503. [PMID: 29908072 DOI: 10.1111/bph.14393] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/11/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Intravenous glycyrrhizin, having anti-inflammatory and hepatoprotective properties, is incorporated into the management of liver diseases in China. This investigation was designed to elucidate the molecular mechanism underlying hepatobiliary excretion of glycyrrhizin and to investigate its potential for drug-drug interactions on organic anion-transporting polypeptide (OATP)1B. EXPERIMENTAL APPROACH Human transporters mediating hepatobiliary excretion of glycyrrhizin were characterized at the cellular and vesicular levels and compared with rat hepatic transporters. The role of Oatp1b2 in glycyrrhizin's elimination and pharmacokinetics was evaluated in rats using the inhibitor rifampin. A physiologically based pharmacokinetic (PBPK) model for glycyrrhizin, incorporating transporter-mediated hepatobiliary excretion, was established and applied to predict potential drug-drug interactions related to glycyrrhizin in humans. KEY RESULTS Hepatobiliary excretion of glycyrrhizin involved human OATP1B1/1B3 (Oatp1b2 in rats)-mediated hepatic uptake from blood and human multidrug resistance-associated protein (MRP)2/breast cancer resistance protein (ABCP)/bile salt export pump (BSEP)/multidrug resistance protein 1 (Mrp2/Abcp/Bsep in rats)-mediated hepatic efflux into bile. In rats, rifampin impaired hepatic uptake of glycyrrhizin significantly increasing its systemic exposure. Glomerular-filtration-based renal excretion of glycyrrhizin was slow due to extensive protein binding in plasma. Quantitative analysis using the PBPK model demonstrated that OATP1B1/1B3 have critical roles in the pharmacokinetics of glycyrrhizin, which is highly likely to be a victim of drug-drug interactions when co-administered with potent dual inhibitors of these transporters. CONCLUSIONS AND IMPLICATIONS Transporter-mediated hepatobiliary excretion governs glycyrrhizin's elimination and pharmacokinetics. Understanding glycyrrhizin's potential drug-drug interactions on OATP1B1/1B3 should enhance the therapeutic outcome of glycyrrhizin-containing drug combinations on liver diseases.
Collapse
Affiliation(s)
- Jiajia Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Olajide E Olaleye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rongrong Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chuang Lu
- Department of DMPK, Sanofi, Cambridge, MA, USA
| | - Feifei Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fang Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junling Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fengqing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
1143
|
Okada JI, Yoshinaga T, Kurokawa J, Washio T, Furukawa T, Sawada K, Sugiura S, Hisada T. Arrhythmic hazard map for a 3D whole-ventricle model under multiple ion channel block. Br J Pharmacol 2018; 175:3435-3452. [PMID: 29745425 PMCID: PMC6086978 DOI: 10.1111/bph.14357] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 03/12/2018] [Accepted: 04/20/2018] [Indexed: 01/05/2023] Open
Abstract
Background and Purpose To date, proposed in silico models for preclinical cardiac safety testing are limited in their predictability and usability. We previously reported a multi‐scale heart simulation that accurately predicts arrhythmogenic risk for benchmark drugs. Experimental Approach We created a comprehensive hazard map of drug‐induced arrhythmia based on the electrocardiogram (ECG) waveforms simulated under wide range of drug effects using the multi‐scale heart simulator described here, implemented with cell models of human cardiac electrophysiology. Key Results A total of 9075 electrocardiograms constitute the five‐dimensional hazard map, with coordinates representing the extent of the block of each of the five ionic currents (rapid delayed rectifier potassium current (IKr), fast (INa) and late (INa,L) components of the sodium current, L‐type calcium current (ICa,L) and slow delayed rectifier current (IKs)), involved in arrhythmogenesis. Results of the evaluation of arrhythmogenic risk based on this hazard map agreed well with the risk assessments reported in the literature. ECG databases also suggested that the interval between the J‐point and the T‐wave peak is a superior index of arrhythmogenicity when compared to the QT interval due to its ability to characterize the multi‐channel effects compared with QT interval. Conclusion and Implications Because concentration‐dependent effects on electrocardiograms of any drug can be traced on this map based on in vitro current assay data, its arrhythmogenic risk can be evaluated without performing costly and potentially risky human electrophysiological assays. Hence, the map serves as a novel tool for use in pharmaceutical research and development.
Collapse
Affiliation(s)
- Jun-Ichi Okada
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,UT-Heart Inc., Tokyo, Japan
| | | | - Junko Kurokawa
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takumi Washio
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,UT-Heart Inc., Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Sawada
- Global CV Assessment, Eisai Co., Ltd., Ibaraki, Japan
| | - Seiryo Sugiura
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,UT-Heart Inc., Tokyo, Japan
| | | |
Collapse
|
1144
|
Cheng Y, Vanhoutte PM, Leung SWS. Apolipoprotein E favours the blunting by high-fat diet of prostacyclin receptor activation in the mouse aorta. Br J Pharmacol 2018; 175:3453-3469. [PMID: 29859010 DOI: 10.1111/bph.14386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE NO-mediated, endothelium-dependent relaxations of isolated arteries are blunted by ageing and high-fat diets, as well as by apolipoprotein E deletion. The present study was designed to test the hypothesis that apolipoprotein E deletion impairs endothelium-dependent responses to prostacyclin (IP) receptor activation. EXPERIMENTAL APPROACH Five-week-old ApoE+/+ and ApoE-/- mice were fed normal chow or high-fat diet for 29 weeks. The aortae were isolated for the measurements of isometric tension in Halpern-Mulvany myographs. Levels of proteins were assessed by Western blotting and immunofluorescence, and cyclic nucleotide levels by elisa. KEY RESULTS The IP receptor agonist, iloprost, induced endothelium-, NO-synthase- and IP-dependent relaxations in aortae of young ApoE+/+ mice. High-fat diet favoured activation of thromboxane receptors by iloprost, causing contraction. Apolipoprotein E was present in aortae of ApoE+/+ mice, especially in endothelium. Its presence was augmented by high-fat diet. Its deletion potentiated iloprost-induced relaxations in aortae of young mice and prevented the blunting of this response by high-fat diet. Levels of cAMP were higher, but those of cGMP were lower in the aorta of ApoE-/- than in ApoE+/+ mice of the same age. The levels of IP receptor protein were not different between ApoE+/+ and ApoE-/- mice. CONCLUSIONS AND IMPLICATIONS Iloprost induced an endothelium-dependent relaxation in the aorta of young healthy mice which involved both the cGMP and cAMP pathways. This response was blunted by prolonged exposure to a high-fat diet. Apolipoprotein E deletion potentiated relaxations to IP receptor activation, independently of age and diet.
Collapse
Affiliation(s)
- Yanhua Cheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, SAR, China
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, SAR, China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
1145
|
Pfalzgraff A, Bárcena-Varela S, Heinbockel L, Gutsmann T, Brandenburg K, Martinez-de-Tejada G, Weindl G. Antimicrobial endotoxin-neutralizing peptides promote keratinocyte migration via P2X7 receptor activation and accelerate wound healing in vivo. Br J Pharmacol 2018; 175:3581-3593. [PMID: 29947028 DOI: 10.1111/bph.14425] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Wound healing is a complex process that is essential to provide skin homeostasis. Infection with pathogenic bacteria such as Staphylococcus aureus can lead to chronic wounds, which are challenging to heal. Previously, we demonstrated that the antimicrobial endotoxin-neutralizing peptide Pep19-2.5 promotes artificial wound closure in keratinocytes. Here, we investigated the mechanism of peptide-induced cell migration and if Pep19-2.5 accelerates wound closure in vivo. EXPERIMENTAL APPROACH Cell migration was examined in HaCaT keratinocytes and P2X7 receptor-overexpressing HEK293 cells using the wound healing scratch assay. The protein expression of phosphorylated ERK1/2, ATP release, calcium influx and mitochondrial ROS were analysed to characterize Pep19-2.5-mediated signalling. For in vivo studies, female BALB/c mice were wounded and infected with methicillin-resistant S. aureus (MRSA) or left non-infected and treated topically with Pep19-2.5 twice daily for 6 days. KEY RESULTS Specific P2X7 receptor antagonists inhibited Pep19-2.5-induced cell migration and ERK1/2 phosphorylation in keratinocytes and P2X7 receptor-transfected HEK293 cells. ATP release was not increased by Pep19-2.5; however, ATP was required for cell migration. Pep19-2.5 increased cytosolic calcium and mitochondrial ROS, which were involved in peptide-induced migration and ERK1/2 phosphorylation. In both non-infected and MRSA-infected wounds, the wound diameter was reduced already at day 2 post-wounding in the Pep19-2.5-treated groups compared to vehicle, and remained decreased until day 6. CONCLUSIONS AND IMPLICATIONS Our data suggest the potential application of Pep19-2.5 in the treatment of non-infected and S. aureus-infected wounds and provide insights into the mechanism involved in Pep19-2.5-induced wound healing.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Sergio Bárcena-Varela
- Department of Microbiology and Parasitology, Universidad de Navarra, Pamplona, Spain
| | - Lena Heinbockel
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Klaus Brandenburg
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | | | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
1146
|
Liu X, Shen T, Mooers BHM, Hilberg F, Wu J. Drug resistance profiles of mutations in the RET kinase domain. Br J Pharmacol 2018; 175:3504-3515. [PMID: 29908090 DOI: 10.1111/bph.14395] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Alterations in the tyrosine kinase enzyme RET are found in thyroid and lung cancer. While RET TK inhibitors (TKIs) are used to treat thyroid cancer and are in clinical trials for RET fusion-positive non-small cell lung cancer, the impact of mutations in the RET kinase domain on drug sensitivity is largely uncharacterized. EXPERIMENTAL APPROACH We identified and analysed mutations in the RET kinase domain that conferred resistance to the TKIs cabozantinib, lenvatinib, vandetanib and nintedanib using RET kinase-dependent BaF3/KIF5B-RET (BaF3/KR) cells. We also examined the sensitivity of RET (M918T), a RET mutation prevalent in aggressive multiple endocrine neoplasia type 2B, to these TKIs in the context of BaF3/KR cells. KEY RESULTS Fourteen mutations were analysed. Pan resistance to the four TKIs was found in six RET kinase domain mutations (L730I, V738A, V804L/M, Y806N, G810S). Seven RET kinase domain mutations (L730V, E732K, A807V, G810A, V871I, M918T, F998V) displayed selective resistance to one or more of these drugs. L730I/V and G810A/S had different drug resistance profiles. V871I, M918T and F998V mutations are located at distant sites away from the TKI binding pocket. CONCLUSIONS AND IMPLICATIONS A panel of TKI-resistant RET mutations were identified, and their drug sensitivities were cross-profiled. The results provide a reference for selecting appropriate TKIs to inhibit RET kinase domain mutants. Besides changes in the drug-interacting residues, mutations at distant sites could exert long-range effects resulting in TKI resistance. Among the four TKIs analysed here, nintedanib remained unaffected by mutations at the three distant sites.
Collapse
Affiliation(s)
- Xuan Liu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tao Shen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Blaine H M Mooers
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Frank Hilberg
- Department of Pharmacology, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
1147
|
Rea K, McGowan F, Corcoran L, Roche M, Finn DP. The prefrontal cortical endocannabinoid system modulates fear-pain interactions in a subregion-specific manner. Br J Pharmacol 2018; 176:1492-1505. [PMID: 29847859 DOI: 10.1111/bph.14376] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The emotional processing and coordination of top-down responses to noxious and conditioned aversive stimuli involves the medial prefrontal cortex (mPFC). Evidence suggests that subregions of the mPFC [infralimbic (IfL), prelimbic (PrL) and anterior cingulate (ACC) cortices] differentially alter the expression of contextually induced fear and nociceptive behaviour. We investigated the role of the endocannabinoid system in the IfL, PrL and ACC in formalin-evoked nociceptive behaviour, fear-conditioned analgesia (FCA) and conditioned fear in the presence of nociceptive tone. EXPERIMENTAL APPROACH FCA was modelled in male Lister-hooded rats by assessing formalin-evoked nociceptive behaviour in an arena previously paired with footshock. The effects of intra-mPFC administration of AM251 [cannabinoid type 1 (CB1 ) receptor antagonist/inverse agonist], URB597 [fatty acid amide hydrolase (FAAH) inhibitor] or URB597 + AM251 on FCA and freezing behaviour were assessed. KEY RESULTS AM251 attenuated FCA when injected into the IfL or PrL and reduced contextually induced freezing behaviour when injected intra-IfL but not intra-PrL or intra-ACC. Intra-ACC administration of AM251 alone or in combination with URB597 had no effect on FCA or freezing. URB597 attenuated FCA and freezing behaviour when injected intra-IfL, prolonged the expression of FCA when injected intra-PrL and had no effect on these behaviours when injected intra-ACC. CONCLUSIONS AND IMPLICATIONS These results suggest important and differing roles for FAAH substrates or CB1 receptors in the PrL, IfL and ACC in the expression of FCA and conditioned fear in the presence of nociceptive tone. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Kieran Rea
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Fiona McGowan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Louise Corcoran
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
1148
|
Lecca D, Janda E, Mulas G, Diana A, Martino C, Angius F, Spolitu S, Casu MA, Simbula G, Boi L, Batetta B, Spiga S, Carta AR. Boosting phagocytosis and anti-inflammatory phenotype in microglia mediates neuroprotection by PPARγ agonist MDG548 in Parkinson's disease models. Br J Pharmacol 2018; 175:3298-3314. [PMID: 29570770 DOI: 10.1111/bph.14214] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Microglial phenotype and phagocytic activity are deregulated in Parkinson's disease (PD). PPARγ agonists are neuroprotective in experimental PD, but their role in regulating microglial phenotype and phagocytosis has been poorly investigated. We addressed it by using the PPARγ agonist MDG548. EXPERIMENTAL APPROACH Murine microglial cell line MMGT12 was stimulated with LPS and/or MDG548, and their effect on phagocytosis of fluorescent microspheres or necrotic neurons was investigated by flow cytometry. Cytokines and markers of microglia phenotype, such as mannose receptor C type 1; MRC1), Ym1 and CD68 were measured by elisa and fluorescent immunohistochemistry. Levels of Beclin-1, which plays a role in microglial phagocytosis, were measured by Western blotting. In the in vivo MPTP-probenecid (MPTPp) model of PD in mice, MDG548 was tested on motor impairment, nigral neurodegeneration, microglial activation and phenotype. KEY RESULTS In LPS-stimulated microglia, MDG548 increased phagocytosis of both latex beads and necrotic cells, up-regulated the expression of MRC1, CD68 and to a lesser extent IL-10, while blocking the LPS-induced increase of TNF-α and iNOS. MDG548 also induced Beclin-1. Chronic MPTPp treatment in mice down-regulated MRC1 and TGF-β and up-regulated TNF-α and IL-1β immunoreactivity in activated CD11b-positive microglia, causing the death of nigral dopaminergic neurons. MDG548 arrested MPTPp-induced cell death, enhanced MRC1 and restored cytokine levels. CONCLUSIONS AND IMPLICATIONS This study adds a novel mechanism for PPARγ-mediated neuroprotection in PD and suggests that increasing phagocytic activity and anti-inflammatory markers may represent an effective disease-modifying approach.
Collapse
Affiliation(s)
- Daniela Lecca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Concetta Martino
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Fabrizio Angius
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefano Spolitu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Gabriella Simbula
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Laura Boi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Barbara Batetta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
1149
|
Zhang L, Seo JH, Li H, Nam G, Yang HO. The phosphodiesterase 5 inhibitor, KJH-1002, reverses a mouse model of amnesia by activating a cGMP/cAMP response element binding protein pathway and decreasing oxidative damage. Br J Pharmacol 2018; 175:3347-3360. [PMID: 29847860 DOI: 10.1111/bph.14377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhibition of PDE5 improves synaptic plasticity and memory via enhancing cGMP expression, thus activating the cGMP/cAMP response element binding protein (CREB) signalling pathway. This study investigated the effects of a PDE5 inhibitor on scopolamine-induced cognitive dysfunction, using memory-related behavioural tests and biochemical assays. EXPERIMENTAL APPROACH In mice were pretreated with PDE5 inhibitor, amnesia was induced by scopolamine. The learning and memory abilities of mice were tested using the Morris water maze test, the Y-maze test, the passive avoidance test and the novel object recognition test in sequence. Expression of memory-related bio-molecules and oxidative stress parameters in brain tissue were measured using Western blot and spectrophotometry respectively. KEY RESULTS KJH-1002, a novel and potent inhibitor of PDE5 (IC50 0.059 ± 0.04 nmol·L-1 ), was synthesized. In the behavioural tests, it markedly improved the memory performance impaired by scopolamine, indicating a restoration of cognitive function in the mice. Moreover, KJH-1002 increased cGMP levels in the cortex and the scopolamine-reduced expression of phosphorylated CREB, Levels of ERK 1/2, Akt and brain-derived neurotrophic factor in the cortex and hippocampus were restored by KJH-1002 treatment. In addition, KJH-1002 administration increased the activities of SOD, glutathione peroxidase and glutathione reductase, and decreased the level of malondialdehyde. CONCLUSION AND IMPLICATIONS KJH-1002 restored cognitive function in scopolamine-induced amnesia mice by activating the cGMP/CREB signalling pathway and attenuating oxidative stress. The beneficial effects of KJH-1002 on cognition indicate its potential as a therapeutic candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Lijun Zhang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Korea.,Division of Bio-medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Jae Hong Seo
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - Huan Li
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Korea.,Division of Bio-medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ghilsoo Nam
- Division of Bio-medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea.,Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Hyun Ok Yang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Korea.,Division of Bio-medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
1150
|
Xiao GS, Zhang YH, Wang Y, Sun HY, Baumgarten CM, Li GR. Noradrenaline up-regulates volume-regulated chloride current by PKA-independent cAMP/exchange protein activated by cAMP pathway in human atrial myocytes. Br J Pharmacol 2018; 175:3422-3432. [PMID: 29900525 DOI: 10.1111/bph.14392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Adrenergic regulation of cell volume-regulated chloride current (ICl.vol ) is species-dependent. The present study investigates the mechanism underlying adrenergic regulation of ICl.vol in human atrial myocytes. EXPERIMENTAL APPROACH Conventional whole-cell patch voltage-clamp techniques were used to record membrane current in human atrial myocytes. ICl.vol was evoked by hyposmotic bath solution (0.6 times isosmotic, 0.6 T). KEY RESULTS ICl.vol was augmented by noradrenaline (1 μM) during cell swelling in 0.6 T but not under isosmotic (1 T) conditions. Up-regulation of ICl.vol in 0.6 T was blocked by the β-adrenoceptor antagonist propranolol (2 μM), but not by the α1 -adrenoceptor antagonist prazosin (2 μM). This β-adrenergic response involved cAMP but was independent of PKA; the protein kinase inhibitor H-89 (2 μM) or PKI (10 μM in pipette solution) failed to prevent ICl.vol up-regulation by noradrenaline. Moreover, the PI3K/PKB inhibitor LY294002 (50 μM) and the PKG inhibitor KT5823 (10 μM) did not affect noradrenaline-induced increases in ICl.vol . Interestingly, the exchange protein directly activated by cAMP (Epac) agonist 8-pCPT-2'-O-Me-cAMP (50 μM) also up-regulated ICl.vol , and the noradrenaline-induced increase of ICl.vol in 0.6 T was reversed or prevented by the Epac inhibitor ESI-09 (10 μM). CONCLUSION AND IMPLICATIONS These data show that ICl.vol evoked by cell swelling of human atrial myocytes is up-regulated by noradrenaline via a PKA-independent cAMP/Epac pathway in human atrial myocytes. cAMP/Epac-induced ICl.vol is expected to shorten action potential duration during human atrial myocytes swelling and may be involved in abnormal cardiac electrical activity during cardiac pathologies that evoke β-adrenoceptor signalling.
Collapse
Affiliation(s)
- Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yan-Hui Zhang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Clive M Baumgarten
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| |
Collapse
|