1151
|
Lorkowski S, Kratz M, Wenner C, Schmidt R, Weitkamp B, Fobker M, Reinhardt J, Rauterberg J, Galinski EA, Cullen P. Expression of the ATP-binding cassette transporter gene ABCG1 (ABC8) in Tangier disease. Biochem Biophys Res Commun 2001; 283:821-30. [PMID: 11350058 DOI: 10.1006/bbrc.2001.4863] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several members of the ATP-binding cassette (ABC) transporter family are involved in cholesterol efflux from cells. A defect in one member, ABCA1, results in Tangier disease, a condition characterized by cholesterol accumulation in macrophages and virtual absence of mature circulating high-density lipoproteins. Expression of a second member, ABCG1, is increased by cholesterol-loading in human macrophages. We now show that ABCG1, which we identified by differential display RT-PCR in foamy macrophages, is overexpressed in macrophages from patients with Tangier disease compared to control macrophages. On examination by confocal laser scanning microscopy, ABCG1 was present in perinuclear structures within the cell. In addition, a combination of in situ hybridization and indirect immunofluorescence microscopy revealed that ABCG1 is expressed in foamy macrophages within the atherosclerotic plaque. These data indicate that not only ABCA1 but also ABCG1 may play a role in the cholesterol metabolism of macrophages in vitro and in the atherosclerotic plaque.
Collapse
Affiliation(s)
- S Lorkowski
- Institute of Arteriosclerosis Research, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1152
|
McManus DC, Scott BR, Franklin V, Sparks DL, Marcel YL. Proteolytic degradation and impaired secretion of an apolipoprotein A-I mutant associated with dominantly inherited hypoalphalipoproteinemia. J Biol Chem 2001; 276:21292-302. [PMID: 11292828 DOI: 10.1074/jbc.m100463200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have devised a combined in vivo, ex vivo, and in vitro approach to elucidate the mechanism(s) responsible for the hypoalphalipoproteinemia in heterozygous carriers of a naturally occurring apolipoprotein A-I (apoA-I) variant (Leu(159) to Arg) known as apoA-I Finland (apoA-I(FIN)). Adenovirus-mediated expression of apoA-I(FIN) decreased apoA-I and high density lipoprotein cholesterol concentrations in both wild-type C57BL/6J mice and in apoA-I-deficient mice expressing native human apoA-I (hapoA-I). Interestingly, apoA-I(FIN) was degraded in the plasma, and the extent of proteolysis correlated with the most significant reductions in murine apoA-I concentrations. ApoA-I(FIN) had impaired activation of lecithin:cholesterol acyltransferase in vitro compared with hapoA-I, but in a mixed lipoprotein preparation consisting of both hapoA-I and apoA-I(FIN) there was only a moderate reduction in the activation of this enzyme. Importantly, secretion of apoA-I was also decreased from primary apoA-I-deficient hepatocytes when hapoA-I was co-expressed with apoA-I(FIN) following infection with recombinant adenoviruses, a condition that mimics secretion in heterozygotes. Thus, this is the first demonstration of an apoA-I point mutation that decreases LCAT activation, impairs hepatocyte secretion of apoA-I, and makes apoA-I susceptible to proteolysis leading to dominantly inherited hypoalphalipoproteinemia.
Collapse
Affiliation(s)
- D C McManus
- Lipoprotein and Atherosclerosis Research Group, Department of Pathology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | |
Collapse
|
1153
|
Atp-binding cassette transporter ABC2/ABCA2 in the rat brain: a novel mammalian lysosome-associated membrane protein and a specific marker for oligodendrocytes but not for myelin sheaths. J Neurosci 2001. [PMID: 11157071 DOI: 10.1523/jneurosci.21-03-00849.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We recently cloned a full-length cDNA of the rat ATP-binding cassette transporter 2 (ABC2, or ABCA2) protein, a member of the ABC1 (or ABCA) subfamily (-ABC1/ABCA1 is a causal gene for Tangier disease) and found it to be strongly expressed in the rat brain. In this study, we identified ABC2 as a lysosome-associated membrane protein that is being localized specifically in oligodendrocytes. The ABC2-immunolabeled cells were detected mainly in the white matter but were also scattered in gray matter throughout the whole brain. In addition, these cells were found to be colocalized with 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) immunoreactivity when the marker antibody for oligodendrocytes was used. However, no such colocalization was observed with markers for other kinds of glial cells. Unlike the CNP antibody, which also intensely stains myelin sheaths in the white matter, ABC2 immunoreactivity was detected only in the cell bodies of oligodendrocytes. At the ultrastructural level, ABC2 immunoreactivity was detected mostly around lysosome and partly in Golgi apparatus by electron microscopy. This was confirmed by immunocolocalization of ABC2 and lysosomal markers in a neuroblastoma cell line. Immunoblotting analysis of ABC2 from the whole brain and the ABC2-transfected cell line revealed bands at approximately 260 kDa. The result of in situ hybridization with a riboprobe for ABC2 matched the results obtained from immunostaining. These findings strongly suggest that ABC2 is a specific marker for oligodendrocytes but not for myelinsheaths and that it is as a novel mammalian lysosome-associated membrane protein involved in myelinization or other kinds of metabolism in the CNS.
Collapse
|
1154
|
Stein O, Dabach Y, Hollander G, Ben-Naim M, Halperin G, Stein Y. Effect of atherogenic diet on reverse cholesterol transport in vivo in atherosclerosis susceptible (C57BL/6) and resistant (C3H) mice. Atherosclerosis 2001; 156:307-13. [PMID: 11395026 DOI: 10.1016/s0021-9150(00)00667-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mice susceptible (C57BL/6) or resistant (C3H) to atherosclerosis induced by a high cholesterol-cholate containing diet (A-diet) were used to study reverse cholesterol transport (RCT) in vivo as measured by loss of cholesterol from a depot created by injection of cationized LDL into the rectus femoris muscle. Plasma total and HDL-cholesterol (HDL-C), total and HDL phospholipid (HDL-PL) levels in chow fed C3H male and female mice were higher than in C57BL/6 mice. After one month on A-diet, plasma cholesterol more than doubled in both strains and genders. The decrease in HDL-C and HDL-PL was twice as great in C57BL/6 as in C3H female mice, while in male C3H mice there was no decrease. The loss of exogenous cholesterol mass (ECM) after injection of cationized LDL was more rapid in C3H than in C57BL/6 mice. In chow fed mice, ECM retained in muscle on day 12 was 37% in C57BL/6 and 20% in C3H females; in males it was 39% and 18% in C57BL/6 and C3H, respectively. On A-diet, 76% were retained in C57BL/6 and 28% in C3H females; these values were 59% and 28% in C57BL/6 and C3H males. Thus, the slow clearance of ECM (which represents RCT) in C57BL/6 mice on A-diet, that could be related to a marked decrease of HDL-PL, might contribute towards their susceptibility to atherosclerosis.
Collapse
Affiliation(s)
- O Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
1155
|
Torra IP, Chinetti G, Duval C, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 2001; 12:245-54. [PMID: 11353326 DOI: 10.1097/00041433-200106000-00002] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are lipid-activated transcription factors that control energy homeostasis through genomic actions. Over the past few years significant advances have been made in unravelling the pathways that are modulated by PPARs. Gene targeting experiments in mice and genetic studies in humans have demonstrated a physiological role for these receptors in adipocyte function, glucose homeostasis, and lipid and lipoprotein metabolism. Recent data indicate that PPARs enhance the reverse cholesterol transport pathway by regulating genes that control macrophage cholesterol efflux, cholesterol transport in plasma and bile acid synthesis. Clinical and experimental evidence suggest that PPAR activation decreases the incidence of cardiovascular disease not only by correcting metabolic disorders, but also through direct actions at the level of the vascular wall. Thus, dysregulation of PPAR activity modulates the onset and evolution of metabolic disorders such as dyslipidaemia, obesity and insulin resistance, predisposing to atherosclerosis.
Collapse
Affiliation(s)
- I P Torra
- U.545 INSERM, Département d'Athérosclérose, Institut Pasteur de Lille, and Faculté de Pharmacie, Université de Lille II, Lille, France
| | | | | | | | | |
Collapse
|
1156
|
Schlegel RA, Williamson P. Phosphatidylserine, a death knell. Cell Death Differ 2001; 8:551-63. [PMID: 11536005 DOI: 10.1038/sj.cdd.4400817] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2000] [Revised: 11/13/2000] [Accepted: 11/27/2000] [Indexed: 11/09/2022] Open
Abstract
Virtually every cell in the body restricts phosphatidylserine (PS) to the inner leaflet of the plasma membrane by energy-dependent transport from the outer to the inner leaflet of the bilayer. Apoptotic cells of all types rapidly randomize the asymmetric distribution, bringing PS to the surface where it serves as a signal for phagocytosis. A myriad of phagocyte receptors have been implicated in the recognition of apoptotic cells, among them a PS receptor, yet few ligands other than PS have been identified on the apoptotic cell surface. Since apoptosis and the associated exposure of PS on the cell surface is probably over 600 million years old, it is not surprising that evolution has appropriated aspects of this process for specialized purposes such as blood coagulation, membrane fusion and erythrocyte differentiation. Failure to efficiently remove apoptotic cells may contribute to inflammatory responses and autoimmune diseases resulting from chronic, inappropriate exposure of PS.
Collapse
Affiliation(s)
- R A Schlegel
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | | |
Collapse
|
1157
|
Song C, Hiipakka RA, Liao S. Auto-oxidized cholesterol sulfates are antagonistic ligands of liver X receptors: implications for the development and treatment of atherosclerosis. Steroids 2001; 66:473-9. [PMID: 11182136 DOI: 10.1016/s0039-128x(00)00239-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor superfamily that are involved in regulation of cholesterol transport and metabolism. Expression of cholesterol 7alpha-hydroxylase, cholesteryl ester transfer protein and certain ATP-binding cassette transporters that are responsible for cholesterol efflux from cells is regulated by LXR and its ligands. In this report we show that 5alpha, 6alpha-epoxycholesterol-3-sulfate (ECHS) and 7-ketocholesterol-3-sulfate inhibit transactivation of a reporter gene by LXR. Non-sulfated forms of these compounds, as well as many other steroid sulfates, had no antagonistic activity. Using chimeric receptors, the antagonistic activity of ECHS was dependent on its interaction with the ligand-binding domain of LXR. ECHS disrupts recruitment of the co-activator Grip 1 into a complex with agonist-bound LXR and this may be responsible for the observed antagonistic properties of these compounds. In various cultured cells, these LXR antagonists also promote de novo cholesterol synthesis and apoptosis. 7-Ketocholesterol and 5alpha, 6alpha-epoxycholesterol are present in blood and have been found in atherosclerotic plaques. If sulfated forms of these oxidized sterols are also present, they may have an important role in foam cell formation by inhibiting LXR function. Since LXR agonists can counteract the activity of these antagonists, they may have therapeutic potential against atherosclerosis.
Collapse
Affiliation(s)
- C Song
- Ben May Institute for Cancer Research, Department of Biochemistry and Molecular Biology, Tang Center for Herbal Medicine Research, University of Chicago, MC 6027, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
1158
|
Cavelier LB, Qiu Y, Bielicki JK, Afzal V, Cheng JF, Rubin EM. Regulation and activity of the human ABCA1 gene in transgenic mice. J Biol Chem 2001; 276:18046-51. [PMID: 11279093 DOI: 10.1074/jbc.m100565200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ABCA1 transporter is one of the limiting steps in cellular cholesterol efflux. To study the expression and activity of the human ABCA1 gene in vivo we have examined mice containing two human BAC transgenes with different 5' ends. Mice containing a 255-kilobase (kb) BAC transgene, including 70 kb upstream of the previously defined exon 1, demonstrated a pattern of tissue-specific expression mimicking that of the endogenous mouse gene. Compared with macrophages from control mice, macrophages from these transgenics had increases in apoA-I cholesterol efflux heightened in response to increases in cell cholesterol content. The observed increase in macrophage apoA-I-mediated cholesterol efflux was not accompanied by alterations in plasma high density lipoprotein in the transgenics. Although mice containing a smaller 171-kb human BAC transgene, lacking the previously described exon 1 and ABCA1 promoter, did not express human ABCA1 in macrophages, they did express the human transgene in liver at levels comparable with those of the orthologous mouse gene. Analysis by 5' rapid amplification of cDNA ends of liver mRNA from these animals revealed a new ABCA1 exon 1 (exon 1A) and a previously unrecognized promoter. Analysis of human tissue revealed that exon 1A containing transcripts accounted for a high proportion of the ABCA1 mRNAs present in human liver. This analysis of ABCA1 transgenics showed that the expression of human ABCA1 transgenes can result in increased cholesterol efflux from macrophages, unaccompanied by changes in plasma high density lipoprotein, and identified a new ABCA1 promoter in humans.
Collapse
Affiliation(s)
- L B Cavelier
- Genome Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
1159
|
Bellincampi L, Simone ML, Motti C, Cortese C, Bernardini S, Bertolini S, Calandra S. Identification of an alternative transcript of ABCA1 gene in different human cell types. Biochem Biophys Res Commun 2001; 283:590-7. [PMID: 11341765 DOI: 10.1006/bbrc.2001.4823] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have observed two ABCA1 gene transcripts in human skin fibroblasts. The RT-PCR amplification of the exon 3-exon 8 region generated a normal fragment (740 bp) and an abnormal fragment (600 bp) in a ratio ranging from 3:1 to 8/9:1. These two transcripts were present in other cells such as leukemia T-cells, endothelial and smooth muscle cells as well human hepatoma cells (HepG2). Restriction enzyme analysis and sequencing indicated that in the abnormal fragment exon 3 was followed by exon 5. The complete skipping of exon 4 leads to a premature stop and a predicted translation product of 74 amino acids. The ratio between the normal and alternative transcript is not affected by variation in ABCA1 gene expression induced by incubating cells in serum-free medium and in the presence of cholesterol. It is possible that this alternative splicing represents as mechanism that regulates the ABCA1 content in tissues.
Collapse
Affiliation(s)
- L Bellincampi
- Dipartimento di Medicina Interna, Università di Roma "Tor Vergata,", Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
1160
|
|
1161
|
Neufeld EB, Remaley AT, Demosky SJ, Stonik JA, Cooney AM, Comly M, Dwyer NK, Zhang M, Blanchette-Mackie J, Santamarina-Fojo S, Brewer HB. Cellular localization and trafficking of the human ABCA1 transporter. J Biol Chem 2001; 276:27584-90. [PMID: 11349133 DOI: 10.1074/jbc.m103264200] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
ABCA1, the ATP-binding cassette protein mutated in Tangier disease, mediates the efflux of excess cellular sterol to apoA-I and thereby the formation of high density lipoprotein. The intracellular localization and trafficking of ABCA1 was examined in stably and transiently transfected HeLa cells expressing a functional human ABCA1-green fluorescent protein (GFP) fusion protein. The fluorescent chimeric ABCA1 transporter was found to reside on the cell surface and on intracellular vesicles that include a novel subset of early endosomes, as well as late endosomes and lysosomes. Studies of the localization and trafficking of ABCA1-GFP in the presence of brefeldin A or monensin, agents known to block intracellular vesicular trafficking, as well as apoA-I-mediated cellular lipid efflux, showed that: (i) ABCA1 functions in lipid efflux at the cell surface, and (ii) delivery of ABCA1 to lysosomes for degradation may serve as a mechanism to modulate its surface expression. Time-lapse fluorescence microscopy revealed that ABCA1-GFP-containing early endosomes undergo fusion, fission, and tubulation and transiently interact with one another, late endocytic vesicles, and the cell surface. These studies establish a complex intracellular trafficking pathway for human ABCA1 that may play important roles in modulating ABCA1 transporter activity and cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- E B Neufeld
- NHLBI, National Institutes of Health and the NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1162
|
Fitzgerald ML, Mendez AJ, Moore KJ, Andersson LP, Panjeton HA, Freeman MW. ATP-binding cassette transporter A1 contains an NH2-terminal signal anchor sequence that translocates the protein's first hydrophilic domain to the exoplasmic space. J Biol Chem 2001; 276:15137-45. [PMID: 11328826 DOI: 10.1074/jbc.m100474200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the ATP-binding cassette transporter A1 (ABCA1) transporter are associated with Tangier disease and a defect in cellular cholesterol efflux. The amino terminus of the ABCA1 transporter has two putative in-frame translation initiation sites, 60 amino acids apart. A cluster of hydrophobic amino acids form a potentially cleavable signal sequence in this 60-residue extension. We investigated the functional role of this extension and found that it was required for stable protein expression of transporter constructs containing any downstream transmembrane domains. The extension directed transporter translocation across the ER membrane with an orientation that resulted in glycosylation of amino acids immediately distal to the signal sequence. Neither the native signal sequence nor a green fluorescent protein tag, fused at the amino terminus, was cleaved from ABCA1. The green fluorescent protein fusion protein had efflux activity comparable with wild type ABCA1 and demonstrated a predominantly plasma membrane distribution in transfected cells. These data establish a requirement for the upstream 60 amino acids of ABCA1. This region contains an uncleaved signal anchor sequence that positions the amino terminus in a type II orientation leading to the extracellular presentation of an approximately 600-amino acid loop in which loss-of-function mutations cluster in Tangier disease patients.
Collapse
Affiliation(s)
- M L Fitzgerald
- Lipid Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
1163
|
Safi W, Maiorano JN, Davidson WS. A proteolytic method for distinguishing between lipid-free and lipid-bound apolipoprotein A-I. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31649-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
1164
|
Asztalos BF, Brousseau ME, McNamara JR, Horvath KV, Roheim PS, Schaefer EJ. Subpopulations of high density lipoproteins in homozygous and heterozygous Tangier disease. Atherosclerosis 2001; 156:217-25. [PMID: 11369017 DOI: 10.1016/s0021-9150(00)00643-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tangier disease (TD) is characterized by severe high-density lipoproteins (HDL) deficiency, hypercatabolism of HDL constituents, impaired cellular cholesterol efflux, and mutations in the gene of ATP-binding cassette 1 (ABC-1). In the present study, we determined plasma lipid and apolipoprotein levels, and HDL subpopulations, in 110 subjects from a large TD kindred in which the proband was homozygous for an A-->C missense mutation at nucleotide 5338 of the ABC-1 transcript. In the proband HDL-C, apoA-I, and apoA-II concentrations were 2, 1, and 2 mg/dl, respectively, apoA-I was present only in prebeta(1), while apoA-II was found free of apoA-I in two distinct alpha mobility subpopulations with different sizes. The smaller size particles contained only apoA-II while the larger one contained apoA-II and apo(a). Relative to unaffected male relatives (n=30), male heterozygotes (n=21) had significant reductions (P<0.001) in plasma HDL-C (-45%), apoA-I (-34%), apoA-II (-59%), apoA-IV (-40%), Lp(a) (-62%), and apoB (-55%) concentrations, and a significant increase (P<0.05, +33%) in plasma apoC-III levels. Female heterozygotes (n=11) similarly had significant reductions (P<0.001) in the concentrations of plasma HDL-C (-42%), apoA-I (-27%), apoA-II (-52%), Lp(a) (-27%), and (P<0.01) apoA-IV (-28%), apoB (-13%), and a significant increase (P<0.05) in plasma apoE levels (+29%) as compared to unaffected female relatives (n=41). Large size HDL subpopulations, especially the two LpA-I particles: alpha(1) and prealpha(1) were dramatically reduced in both male and female heterozygotes relative to their unaffected family members. Since apoA-II decreased more than apoA-I in both male and female heterozygotes, the ratios of apoA-I/apoA-II were significantly (P<0.01) increased. The prevalence of CHD was 60% higher in the 32 heterozygotes than in the 71 unaffected relatives even though the latter group was on average 7 years older. We conclude that TD homozygotes have only prebeta(1) apoA-I-containing HDL subpopulations, while heterozygotes have HDL that is selectively depleted in the large alpha(1), prealpha(1), and alpha(2), prealpha(2) subpopulations, resulting in HDL particles that are small in size, poor in cholesterol, but relatively enriched in apoA-I compared to those of their unaffected relatives. These abnormalities appear to result in a higher risk of CHD in heterozygotes than in unaffected controls.
Collapse
Affiliation(s)
- B F Asztalos
- Lipid Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, New England Medical Center, 711 Washington Street, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
1165
|
Tanaka AR, Ikeda Y, Abe-Dohmae S, Arakawa R, Sadanami K, Kidera A, Nakagawa S, Nagase T, Aoki R, Kioka N, Amachi T, Yokoyama S, Ueda K. Human ABCA1 Contains a Large Amino-Terminal Extracellular Domain Homologous to an Epitope of Sjögren's Syndrome. Biochem Biophys Res Commun 2001; 283:1019-25. [PMID: 11355874 DOI: 10.1006/bbrc.2001.4891] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABCA1 has been suggested to play a key role in cellular lipid release from peripheral cells. In order to study structure-function relationship of this protein, the protein product of a full-length human ABCA1 cDNA was examined for its functions and topological orientation. The electrophoretic mobilities of human ABCA1 expressed in transfected cells increased when treated with N-glycosidase F, suggesting that ABCA1 is highly glycosylated. The ABCA1 was photoaffinity-labeled with ATP and mediated the apoA-I-dependent-release of cholesterol and phospholipid. The influenza hemagglutinin (HA) epitope was introduced into the amino-terminus (N-HA) or between the residues 207 and 208 (207-HA) of the protein. While an antibody against the C-terminus peptide of ABCA1 detected both fusion proteins, an anti-HA antibody did not react with the N-HA fusion protein. Confocal microscopy demonstrated strong cell surface signal with the anti-HA antibody of nonpermeabilized HEK293 cells expressing the 207-HA fusion protein. The results suggested that the signal peptide in the amino-terminal region is cleaved off in its mature form and that the following large hydrophilic region is exposed to outside of cells unlike previously proposed models. We found that this amino-terminal extracellular domain contains a segment homologous to the autoantigen SS-N, an epitope of Sjögren's syndrome, and further identified that ABCA7 codes for the autoantigen SS-N.
Collapse
Affiliation(s)
- A R Tanaka
- Laboratory of Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1166
|
Frank PG, Galbiati F, Volonte D, Razani B, Cohen DE, Marcel YL, Lisanti MP. Influence of caveolin-1 on cellular cholesterol efflux mediated by high-density lipoproteins. Am J Physiol Cell Physiol 2001; 280:C1204-14. [PMID: 11287334 DOI: 10.1152/ajpcell.2001.280.5.c1204] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caveolin-1 is a principal structural component of caveolae membranes. These membrane microdomains participate in the regulation of signaling, transcytosis, and cholesterol homeostasis at the plasma membrane. In the present study, we determined the effect of caveolin-1 expression on cellular cholesterol efflux mediated by high-density lipoprotein (HDL). We evaluated this effect in parental NIH/3T3 cells as well as in two transformed NIH/3T3 cell lines in which caveolin-1 protein levels are dramatically downregulated. Compared with parental NIH/3T3 cells, these two transformed cell lines effluxed cholesterol more rapidly to HDL. In addition, NIH/3T3 cells harboring caveolin-1 antisense also effluxed cholesterol more rapidly to HDL. However, this effect was not due to changes in total cellular cholesterol content. We further showed that chronic HDL exposure reduced caveolin-1 protein expression in NIH/3T3 cells. HDL exposure also inhibited caveolin-1 promoter activity, suggesting a direct negative effect of HDL on caveolin-1 gene transcription. Moreover, we showed that HDL-induced downregulation of caveolin-1 prevents the uptake of oxidized low-density lipoprotein in human endothelial cells. These data suggest a novel proatherogenic role for caveolin-1, i.e., regarding the uptake and/or transcytosis of modified lipoproteins.
Collapse
Affiliation(s)
- P G Frank
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
1167
|
Gotto AM. Low high-density lipoprotein cholesterol as a risk factor in coronary heart disease: a working group report. Circulation 2001; 103:2213-8. [PMID: 11331265 DOI: 10.1161/01.cir.103.17.2213] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A M Gotto
- Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
1168
|
Panousis CG, Evans G, Zuckerman SH. TGF-β increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells: opposing the effects of IFN-γ. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31648-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
1169
|
Abstract
New insights into the regulation of hepatobiliary transport proteins have provided the basis for a better understanding of the pathogenesis of cholestatic liver diseases. Mutations of transporter genes can cause hereditary cholestatic syndromes, the study of which has shed much light on the basic mechanisms of bile secretion and cholestasis. Important new studies have been published about the pathogenesis, clinical features, and treatment of primary biliary cirrhosis, primary sclerosing cholangitis, cholestasis of pregnancy, total parenteral nutrition-induced cholestasis, and drug-induced cholestasis.
Collapse
Affiliation(s)
- M Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl Franzens University School of Medicine, Graz, Austria
| | | |
Collapse
|
1170
|
Oliver WR, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, Lewis MC, Winegar DA, Sznaidman ML, Lambert MH, Xu HE, Sternbach DD, Kliewer SA, Hansen BC, Willson TM. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A 2001; 98:5306-11. [PMID: 11309497 PMCID: PMC33205 DOI: 10.1073/pnas.091021198] [Citation(s) in RCA: 805] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of the fibrate drugs and the antidiabetic effects of the glitazone drugs in humans are due to activation of the alpha (NR1C1) and gamma (NR1C3) subtypes, respectively. By contrast, the therapeutic potential of the delta (NR1C2) subtype is unknown, due in part to the lack of selective ligands. We have used combinatorial chemistry and structure-based drug design to develop a potent and subtype-selective PPARdelta agonist, GW501516. In macrophages, fibroblasts, and intestinal cells, GW501516 increases expression of the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux. When dosed to insulin-resistant middle-aged obese rhesus monkeys, GW501516 causes a dramatic dose-dependent rise in serum high density lipoprotein cholesterol while lowering the levels of small-dense low density lipoprotein, fasting triglycerides, and fasting insulin. Our results suggest that PPARdelta agonists may be effective drugs to increase reverse cholesterol transport and decrease cardiovascular disease associated with the metabolic syndrome X.
Collapse
Affiliation(s)
- W R Oliver
- Metabolic Diseases Drug Discovery and Nuclear Receptor Discovery Research, GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1171
|
Porsch-Ozcurumez M, Langmann T, Heimerl S, Borsukova H, Kaminski WE, Drobnik W, Honer C, Schumacher C, Schmitz G. The zinc finger protein 202 (ZNF202) is a transcriptional repressor of ATP binding cassette transporter A1 (ABCA1) and ABCG1 gene expression and a modulator of cellular lipid efflux. J Biol Chem 2001; 276:12427-33. [PMID: 11279031 DOI: 10.1074/jbc.m100218200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc finger gene 202 (ZNF202) located within a hypoalphalipoproteinemia susceptibility locus on chromosome 11q23 is a transcriptional repressor of various genes involved in lipid metabolism. To provide further evidence for a functional linkage between ZNF202 and hypoalphalipoproteinemia, we investigated the effect of ZNF202 expression on ATP binding cassette transporter A1 (ABCA1) and ABCG1. ABCA1 is a key regulator of the plasma high density lipoprotein pool size, whereas ABCG1 is another mediator of cellular cholesterol and phospholipid efflux in human macrophage. We demonstrate here that the full-length ZNF202m1 isoform binds to GnT repeats within the promotors of ABCA1 (-229/-210) and ABCG1 (-572/-552). ZNF202m1 expression in HepG2 cells dose-dependently repressed the promotor activities of ABCA1 and ABCG1. This transcriptional effect required the presence of the SCAN domain in ZNF202 and the functional integrity of a TATA box at position -24 of ABCA1, whereas the presence of GnT binding motifs was nonessential. The state of ZNF202 SCAN domain oligomerization affected the ability of the adjacent ZNF202 Krüppel-associated box domain to recruit the transcriptional corepressor KAP1. Overexpression of ZNF202m1 in RAW264.7 macrophages prevented the induction of ABCA1 gene expression by 20(S)OH-cholesterol and 9-cis-retinoic acid, further substantiating the interference of ZNF202 in critical elements of transcriptional activation. Finally, HDL and apoAImediated lipid efflux was significantly reduced in RAW264.7 cells stably expressing ZNF202m1. In conclusion, we have identified ABCA1 and ABCG1 as target genes for ZNF202-mediated repression and thus, provide evidence for a functional linkage between ZNF202 and hypoalphalipoproteinemia.
Collapse
|
1172
|
Abstract
Cholesterol and bile acid metabolism is tightly controlled by nuclear receptors. The liver X receptor, an oxysterol-activated nuclear receptor, limits cholesterol accumulation in the body both by stimulating reverse cholesterol transport and by inhibiting intestinal cholesterol absorption. The liver X receptor stimulates the adenosine triphosphate binding cassette transporter (types 1 and 8)-mediated cholesterol efflux from peripheral tissues to apolipoprotein AI and the expression of the cholesterol ester transfer protein, hence facilitating cholesterol transfer to the liver. In the liver, the liver X receptor alpha induces the cholesterol 7alpha-hydroxylase (CYP7A1) gene, which controls the rate-limiting step in bile acid synthesis, the major cholesterol excretion pathway. The liver X receptor also limits cholesterol entry in the body by promoting cholesterol efflux from enterocytes into the intestinal lumen, again via an adenosine triphosphate binding cassette transporter type-mediated process. Whereas the liver X receptor is a master controller of cholesterol metabolism, the farnesol X receptor, a bile acid-activated receptor, coordinates bile acid homeostasis. Bile acids facilitate the solubilization of dietary lipids and their subsequent absorption. Bile acids enter the enterocyte through the ileal bile acid transporter and activate the farnesol X receptor, which upregulates the ileal bile acid binding protein, a carrier protein facilitating their re-uptake by the gut. Bile acids are then delivered into the portal blood and taken up in the hepatocytes by the sodium taurocholate co-transporting polypeptide. Inside the hepatocytes, activated farnesol X receptor will decrease further bile acid uptake by reducing the levels of sodium taurocholate co-transporting polypeptide, and stimulating the export of bile acid by increasing the expression of the bile salt export pump. Furthermore, the farnesol X receptor induces the small heterodimer partner, an atypical nuclear receptor, which attenuates bile acid synthesis by inhibiting the action of the orphan nuclear receptor, liver receptor homolog-1, which is a competence factor for CYP7A1 transcription. The farnesol X receptor hence stimulates bile acid re-uptake and controls bile acid production through a regulatory circuit involving both a nuclear receptor regulatory cascade and a number of specific transporter proteins.
Collapse
Affiliation(s)
- E Fayard
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, 67404 Illkirch, France
| | | | | |
Collapse
|
1173
|
Huuskonen J, Olkkonen VM, Jauhiainen M, Ehnholm C. The impact of phospholipid transfer protein (PLTP) on HDL metabolism. Atherosclerosis 2001; 155:269-81. [PMID: 11254896 DOI: 10.1016/s0021-9150(01)00447-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-density lipoproteins (HDL) play a major protective role against the development of coronary artery disease. Phospholipid transfer protein (PLTP) is a main factor regulating the size and composition of HDL in the circulation and plays an important role in controlling plasma HDL levels. This is achieved via both the phospholipid transfer activity of PLTP and its capability to cause HDL conversion. The present review focuses on the impact of PLTP on HDL metabolism. The basic characteristics and structure of the PLTP protein are described. The two main functions of PLTP, PLTP-mediated phospholipid transfer and HDL conversion are reviewed, and the mechanisms and control, as well as the physiological significance of these processes are discussed. The relationship between PLTP and the related cholesteryl ester transfer protein (CETP) is reviewed. Thereafter other functions of PLTP are recapitulated: the ability of PLTP to transfer cholesterol, alpha-tocopherol and lipopolysaccharide (LPS), and the suggested involvement of PLTP in cellular cholesterol traffic. The discussion on PLTP activity and mass in (patho)physiological settings includes new data on the presence of two forms of PLTP in the circulation, one catalytically active and the other inactive. Finally, future directions for PLTP research are outlined.
Collapse
Affiliation(s)
- J Huuskonen
- Department of Biochemistry, National Public Health Institute, Mannerheimintie 166, 00300, Helsinki, Finland
| | | | | | | |
Collapse
|
1174
|
Drobnik W, Lindenthal B, Lieser B, Ritter M, Christiansen Weber T, Liebisch G, Giesa U, Igel M, Borsukova H, Büchler C, Fung-Leung WP, Von Bergmann K, Schmitz G. ATP-binding cassette transporter A1 (ABCA1) affects total body sterol metabolism. Gastroenterology 2001; 120:1203-11. [PMID: 11266384 DOI: 10.1053/gast.2001.23250] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND AIMS Members of the family of ABC transporters are involved in different processes of sterol metabolism, and ABCA1 was recently identified as a key regulator of high-density lipoprotein (HDL) metabolism. Our aim was to further analyze the role of ABCA1 in cholesterol metabolism. METHODS ABCA1-deficient mice (ABCA1-/-) and wild-type mice were compared for different aspects of sterol metabolism. Intestinal cholesterol absorption was determined by a dual stable isotope technique, and analysis of fecal, plasma, and tissue sterols was performed by gas chromatography/mass spectrometry. Key regulators of sterol metabolism were investigated by Northern and Western blot analyses or enzyme activity assays. RESULTS ABCA1-disrupted sv129/C57BL/6 hybrid mice showed a significant reduction in intestinal cholesterol absorption. The decrease in cholesterol absorption was followed by an enhanced fecal loss of neutral sterols, whereas fecal bile acid excretion was not affected. Total body cholesterol synthesis was significantly increased, with enhanced 3-hydroxy-3-methyglutaryl-coenzyme A (HMG-CoA) reductase observed in adrenals and spleen. In addition, ABCA1-/- mice showed markedly increased concentrations of cholesterol precursors in the plasma, lung, intestine, and feces. Reduced HMG-CoA reductase messenger RNA and enzyme activity in the liver suggest that enhanced cholesterol synthesis in ABCA1-/- mice occurs in peripheral tissues rather than the liver. CONCLUSIONS The metabolism of cholesterol and cholesterol precursors is markedly affected by a lack of ABCA1 function.
Collapse
Affiliation(s)
- W Drobnik
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1175
|
Abstract
There is considerable evidence that the antioxidant activity of high density lipoprotein (HDL) is largely due to the paraoxonase-1 (PON1) located on it. Experiments with transgenic PON1 knockout mice indicate the potential for PON1 to protect against atherogenesis. This protective effect of HDL against low density lipoprotein (LDL) lipid peroxidation is maintained longer than is the protective effect of antioxidant vitamins and could thus be more important. There is evidence that the genetic polymorphisms of PON1 least able to protect LDL against lipid peroxidation are overrepresented in coronary heart disease, particularly in association with diabetes. However, these polymorphisms explain only part of the variation in serum PON1 activity; thus, a more critical test of the hypothesis is likely to be whether low serum PON1 activity is associated with coronary heart disease. Preliminary case-control evidence suggests that this is indeed the case and, thus, that the quest for dietary and pharmacological means of modifying serum PON1 activity may allow the oxidant model of atherosclerosis to be tested in clinical trials.
Collapse
Affiliation(s)
- P N Durrington
- University of Manchester Department of Medicine, Manchester Royal Infirmary, Manchester, England.
| | | | | |
Collapse
|
1176
|
Pomorski T, Hrafnsdóttir S, Devaux PF, van Meer G. Lipid distribution and transport across cellular membranes. Semin Cell Dev Biol 2001; 12:139-48. [PMID: 11292380 DOI: 10.1006/scdb.2000.0231] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, the membranes of different intracellular organelles have different lipid composition, and various biomembranes show an asymmetric distribution of lipid types across the membrane bilayer. Membrane lipid organization reflects a dynamic equilibrium of lipids moving across the bilayer in both directions. In this review, we summarize data supporting the role of specific membrane proteins in catalyzing transbilayer lipid movement, thereby controlling and regulating the distribution of lipids over the leaflets of biomembranes.
Collapse
Affiliation(s)
- T Pomorski
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
1177
|
Heng CK, Low PS, Saha N. Variations in the promoter region of the apolipoprotein A-1 gene influence plasma lipoprotein(a) levels in Asian Indian neonates from Singapore. Pediatr Res 2001; 49:514-8. [PMID: 11264435 DOI: 10.1203/00006450-200104000-00013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We studied the influence of two DNA polymorphisms (-75 bp G/A and +83 bp C/T) in the promoter region of the apolipoprotein A-1 (apoA1) gene on cord plasma level of lipoprotein(a) [Lp(a)] in 1076 newborns of both genders from the three major ethnic groups in Singapore-Chinese, Malays, and Asian Indians. The frequency of the A: allele at -75 bp in the Indians was significantly lower than the Chinese and Malays. There was no linkage disequilibrium between the two sites studied. Both polymorphic sites were not significantly associated with any lipid factors except for Lp(a) levels in the Asian Indians. The AA and CC homozygotes were significantly associated with lower Lp(a) levels. These associations were specific only to the male Indian neonates. The genetic variations at the -75 and +83 bp explained 6.9% and 7.2%, respectively, of the total variability of plasma Lp(a) levels at birth in the Asian Indians. The Lp(a) levels were also significantly different between composite genotypes in the order GG/TT > GA/CT > GG/CT > GA/CC > GG/CC > AA/CC. The effects of the two polymorphisms seem to be additive as the composite genotypes were able to explain 14% of the Lp(a) variance, equivalent to the sum of the two constituent sites. Our results showed that there is significant ethnic- and gender-specific influence of the apoA1 gene on plasma Lp(a) levels at birth that is inherent and independent of known gene-environment interactions.
Collapse
Affiliation(s)
- C K Heng
- Department of Paediatrics, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074
| | | | | |
Collapse
|
1178
|
Abstract
The role of the ATP-binding cassette transporter 1 (ABCA1) in cellular lipid efflux and high density lipoprotein metabolism has been recently documented by mutations in genetic HDL deficiency syndromes such as classical Tangier disease. Analysis of ABCA1 knockout mice and overexpression studies have established the importance of ABCA1 as a major determinant of HDL cholesterol in plasma. These studies also indicate that ABCA1 is critically involved in cellular trafficking of cholesterol and choline-phospholipids and in total body lipid homeostasis, such as intestinal cholesterol and fat-soluble vitamin absorption and in the modulation of steroidogenesis. First insights into the upregulation of ABCA1 gene expression by cellular cholesterol and cAMP have identified critical ABCA1 promoter elements, which bind the transcription factors liver X receptor, retinoid X receptor, Sp1 and E-box proteins. The finding that a lipid sensitive subgroup of ABC transporters is able to translocate cholesterol and phospholipids supports the concept that in ABCA1 deficiency, compensatory mechanisms possibly involving MDR1, MDR3 and MRP-family members could be active. This suggests that a network of ABC transporters involved in cellular lipid transport exists, which is under the tight control of energy pathways directly linked to high density lipoprotein metabolism and atherogenesis.
Collapse
Affiliation(s)
- G Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
1179
|
Affiliation(s)
- K Berg
- Institute of Medical Genetics, University of Oslo, and Department of Medical Genetics, Ullevål University Hospital, Oslo, Norway.
| |
Collapse
|
1180
|
Chambenoit O, Hamon Y, Marguet D, Rigneault H, Rosseneu M, Chimini G. Specific docking of apolipoprotein A-I at the cell surface requires a functional ABCA1 transporter. J Biol Chem 2001; 276:9955-60. [PMID: 11150301 DOI: 10.1074/jbc.m010265200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identification of defects in ABCA1 as the molecular basis of Tangier disease has highlighted its crucial role in the loading with phospholipids and cholesterol of nascent apolipoprotein particles. Indeed the expression of ABCA1 affects apolipoprotein A-I (apoA-I)-mediated removal of lipids from cell membranes, and the possible role of ABCA1 as an apoA-I surface receptor has been recently suggested. In the present study, we have investigated the role of the ABCA1 transporter as an apoA-I receptor with the analysis of a panel of transfectants expressing functional or mutant forms of ABCA1. We provide experimental evidence that the forced expression of a functional ABCA1 transporter confers surface competence for apoA-I binding. This, however, appears to be dependent on ABCA1 function. Structurally intact but ATPase-deficient forms of the transporter fail to elicit a specific cell association of the ligand. In addition the diffusion parameters of membrane-associated apoA-I indicate an interaction with membrane lipids rather than proteins. These results do not support a direct molecular interaction between ABCA1 and apoA-I, but rather suggest that the ABCA1-induced modification of the lipid distribution in the membrane, evidenced by the phosphatidylserine exofacial flopping, generates a biophysical microenvironment required for the docking of apoA-I at the cell surface.
Collapse
Affiliation(s)
- O Chambenoit
- Centre d'Immunologie INSERM-CNRS de Marseille Luminy, Parc Scientifique de Luminy 13288 Marseille, France
| | | | | | | | | | | |
Collapse
|
1181
|
Brouillette CG, Anantharamaiah GM, Engler JA, Borhani DW. Structural models of human apolipoprotein A-I: a critical analysis and review. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1531:4-46. [PMID: 11278170 DOI: 10.1016/s1388-1981(01)00081-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human apolipoprotein (apo) A-I has been the subject of intense investigation because of its well-documented anti-atherogenic properties. About 70% of the protein found in high density lipoprotein complexes is apo A-I, a molecule that contains a series of highly homologous amphipathic alpha-helices. A number of significant experimental observations have allowed increasing sophisticated structural models for both the lipid-bound and the lipid-free forms of the apo A-I molecule to be tested critically. It seems clear, for example, that interactions between amphipathic domains in apo A-I may be crucial to understanding the dynamic nature of the molecule and the pathways by which the lipid-free molecule binds to lipid, both in a discoidal and a spherical particle. The state of the art of these structural studies is discussed and placed in context with current models and concepts of the physiological role of apo A-I and high-density lipoprotein in atherosclerosis and lipid metabolism.
Collapse
Affiliation(s)
- C G Brouillette
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, AL 35294-0005, USA.
| | | | | | | |
Collapse
|
1182
|
Breslow JL. Genetics of lipoprotein abnormalities associated with coronary artery disease susceptibility. Annu Rev Genet 2001; 34:233-254. [PMID: 11092828 DOI: 10.1146/annurev.genet.34.1.233] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coronary heart disease is a complex genetic disease with many genes involved, environmental influences, and important gene-environment interactions. This review discusses the genetic basis of the principal lipoprotein abnormalities associated with coronary heart disease susceptibility in the general population. Individual sections discuss genes regulating LDL cholesterol, HDL cholesterol, and triglyceride levels. A section is included on the effects of the common apo E genetic variation on lipoprotein levels, as well as sections on the genetic regulation of lipoprotein(a) levels, genes regulating the inverse relationship between triglyceride-rich lipoproteins and HDL cholesterol levels, and our current understanding of the genetic basis of familial combined hyperlipidemia. It is clear that the field has progressed, with early studies focused mainly on the association of candidate gene RFLPs with phenotypes, later studies of candidate genes in both parametric and nonparametric linkage studies, and now more and more studies combining linkage analysis with genome scans to identify new loci that influence lipoprotein phenotypes. The future should provide us with the capability to perform reasonable genetic profiling for lipoprotein abnormalities associated with coronary heart disease susceptibility.
Collapse
Affiliation(s)
- J L Breslow
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
1183
|
Clee SM, Zwinderman AH, Engert JC, Zwarts KY, Molhuizen HO, Roomp K, Jukema JW, van Wijland M, van Dam M, Hudson TJ, Brooks-Wilson A, Genest J, Kastelein JJ, Hayden MR. Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease. Circulation 2001; 103:1198-205. [PMID: 11238261 DOI: 10.1161/01.cir.103.9.1198] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Low plasma HDL cholesterol (HDL-C) is associated with an increased risk of coronary artery disease (CAD). We recently identified the ATP-binding cassette transporter 1 (ABCA1) as the major gene underlying the HDL deficiency associated with reduced cholesterol efflux. Mutations within the ABCA1 gene are associated with decreased HDL-C, increased triglycerides, and an increased risk of CAD. However, the extent to which common variation within this gene influences plasma lipid levels and CAD in the general population is unknown. METHODS AND RESULTS We examined the phenotypic effects of single nucleotide polymorphisms in the coding region of ABCA1. The R219K variant has a carrier frequency of 46% in Europeans. Carriers have a reduced severity of CAD, decreased focal (minimum obstruction diameter 1.81+/-0.35 versus 1.73+/-0.35 mm in noncarriers, P:=0.001) and diffuse atherosclerosis (mean segment diameter 2.77+/-0.37 versus 2.70+/-0.37 mm, P:=0.005), and fewer coronary events (50% versus 59%, P:=0.02). Atherosclerosis progresses more slowly in carriers of R219K than in noncarriers. Carriers have decreased triglyceride levels (1.42+/-0.49 versus 1.84+/-0.77 mmol/L, P:=0.001) and a trend toward increased HDL-C (0.91+/-0.22 versus 0.88+/-0.20 mmol/L, P:=0.12). Other single nucleotide polymorphisms in the coding region had milder effects on plasma lipids and atherosclerosis. CONCLUSIONS These data suggest that common variation in ABCA1 significantly influences plasma lipid levels and the severity of CAD.
Collapse
Affiliation(s)
- S M Clee
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1184
|
Wu JV, Joo NS, Krouse ME, Wine JJ. Cystic fibrosis transmembrane conductance regulator gating requires cytosolic electrolytes. J Biol Chem 2001; 276:6473-8. [PMID: 11112782 DOI: 10.1074/jbc.m009305200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), which causes cystic fibrosis when nonfunctional, is an anion channel and a member of the ATP binding cassette superfamily. After phosphorylation, CFTR gates by binding and hydrolyzing ATP. We show that CFTR open probability (P(o)) also depends on the electrolyte concentration of the cytosol. Inside-out patches from Calu-3 cells were transiently exposed to solutions of 160 mm salt or solutions in which up to 90% of the salt was replaced by nonionic osmolytes such as sucrose. In lowered salt solutions, CFTR P(o) declined within 1 s to a stable lower value that depended on the electrolyte concentration, (K(1/2) approximately 80 mm NaCl). P(o) was rapidly restored in normal salt concentrations without regard to the electrolyte species. Reducing external electrolytes did not affect CFTR P(o). The same results were obtained when CFTR was stably phosphorylated with adenosine 5'-O-(thiotriphosphate). The decrease in P(o) resulted entirely from an increase in mean closed time. Increasing ATP levels up to 20-fold did not counteract the effect of low electrolytes. The same effect was observed for CFTR expressed in C127 cells but not for a different species of anion channel. Cytosolic electrolytes are an unsuspected, essential cofactor for CFTR gating.
Collapse
Affiliation(s)
- J V Wu
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California 94305-2130, USA
| | | | | | | |
Collapse
|
1185
|
Tomimoto S, Tsujita M, Okazaki M, Usui S, Tada T, Fukutomi T, Ito S, Itoh M, Yokoyama S. Effect of probucol in lecithin-cholesterol acyltransferase-deficient mice: inhibition of 2 independent cellular cholesterol-releasing pathways in vivo. Arterioscler Thromb Vasc Biol 2001; 21:394-400. [PMID: 11231919 DOI: 10.1161/01.atv.21.3.394] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular cholesterol release takes place by at least 2 distinct mechanisms: the lecithin-cholesterol acyltransferase (LCAT)-driven net efflux by cholesterol diffusion and the generation of high density lipoprotein (HDL) with cellular cholesterol and phospholipid on the cell-apolipoprotein interaction. Therefore, LCAT deficiency impairs the former pathway, and the latter can be inhibited by probucol, which interferes with the apolipoprotein-cell interaction. Hence, probucol was given to the LCAT-deficient mice in the attempt to suppress both of these pathways. The mice were fed low (0.2%) and high (1.2%) cholesterol diets containing 0.5% probucol for 2 weeks. LCAT deficiency and probucol markedly decreased plasma HDL, and the effects were synergistic. Tissue cholesterol content was lower in the adrenal glands and ovaries in the LCAT-deficient mice and in the probucol-treated mice, suggesting that HDL is a main cholesterol provider for these organs. It was also moderately decreased in the spleen of the low cholesterol-fed female mice and in the thyroid gland of the low cholesterol-fed male mice. On the other hand, the esterified cholesterol content in the liver was substantially increased by the probucol treatment with a high cholesterol diet in the LCAT-deficient mice but not in the wild-type mice. Among the groups, there was no significant difference in the tissue cholesterol levels in other organs, such as the liver, spleen, thymus, brain, erythrocytes, thyroid gland, testis, and aorta, resulting from either LCAT deficiency or probucol. Thus, the apolipoprotein-mediated mechanism plays a significant role in the export of cellular cholesterol in the liver, indicating that the liver is a major site of the HDL assembly. Otherwise, tissue cholesterol homeostasis can largely be maintained in mice even when the assembly of new HDL is inhibited by probucol in the absence of LCAT. Nonspecific diffusion of cholesterol perhaps adequately maintains the homeostasis in the experimental condition.
Collapse
Affiliation(s)
- S Tomimoto
- Department of Biochemistry, School of Nursing, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1186
|
Lawn RM, Wade DP, Couse TL, Wilcox JN. Localization of human ATP-binding cassette transporter 1 (ABC1) in normal and atherosclerotic tissues. Arterioscler Thromb Vasc Biol 2001; 21:378-85. [PMID: 11231917 DOI: 10.1161/01.atv.21.3.378] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study examines the expression of ATP-binding cassette transporter 1 (ABC1) mRNA in normal and atherosclerotic tissues by using in situ hybridization in an effort to better understand the function of this cholesterol transport protein. Samples of normal baboon tissues as well as human normal and atherosclerotic aortas were hybridized with (35)S-labeled ABC1 sense and antisense riboprobes. Widespread expression of ABC1 was observed generally in tissues containing inflammatory cells and lymphocytes. Other noninflammatory cells that were also sites of ABC1 synthesis included the ductal cells of the kidney medulla, Leydig cells in the testis, and glial cells in the baboon cerebellum. Although normal veins and arteries did not express ABC1 mRNA, it was found to be upregulated in the setting of atherosclerosis, where widespread expression was found in macrophages within atherosclerotic lesions. These results are consistent with the proposed role of ABC1 in cholesterol transport in inflammatory cells. The specific upregulation of ABC1 mRNA in the setting of atherosclerosis probably reflects the response of leukocytes to cholesterol loading. However, the presence of ABC1 in ductal cells of the kidney medulla and in the small intestine suggest a more general role for this protein in cholesterol transport in other cell types.
Collapse
Affiliation(s)
- R M Lawn
- Winship Cancer Institute, Division of Hematology/Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
1187
|
Affiliation(s)
- C K Glass
- Specialized Center of Research on Molecular Medicine and Atherosclerosis, University of California, San Diego, 9500 Gilman Drive, 92093 USA.
| | | |
Collapse
|
1188
|
Kaminski WE, Piehler A, Püllmann K, Porsch-Ozcürümez M, Duong C, Bared GM, Büchler C, Schmitz G. Complete coding sequence, promoter region, and genomic structure of the human ABCA2 gene and evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun 2001; 281:249-58. [PMID: 11178988 DOI: 10.1006/bbrc.2001.4305] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the human ABC transporter A subfamily have gained considerable attention based on the recent findings that ABCA1 and ABCR (ABCA4) cause familial HDL-deficiency syndromes and distinct forms of hereditary retinopathies, respectively. Here we report the complete cDNA and the genomic organization of ABCA2, another member of the human ABC A transporter subfamily. The ABCA2 coding region is 7.3 kb in size and codes for a 2436 amino acid polypeptide that bears the typical features of a full-size ABC transporter. Among the known members of the ABC A subfamily ABCA2 shares highest homology with the cholesterol-responsive transporters ABCA1 (50%) and the recently cloned ABCA7 (44%). The ABCA2 gene comprises 48 exons which are localized within a genomic region of only 21 kb. Analysis of the putative ABCA2 promoter sequence revealed potential binding sites for transcription factors that are involved in the differentiation of myeloid and neural cells. Gene expression analysis in human macrophages showed that ABCA2 mRNA is induced during cholesterol import indicating that ABCA2 is a cholesterol-responsive gene. Our results suggest a potential role for ABCA2 in macrophage lipid metabolism and neural development.
Collapse
Affiliation(s)
- W E Kaminski
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, 93042, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1189
|
Brousseau ME, Bodzioch M, Schaefer EJ, Goldkamp AL, Kielar D, Probst M, Ordovas JM, Aslanidis C, Lackner KJ, Bloomfield Rubins H, Collins D, Robins SJ, Wilson PW, Schmitz G. Common variants in the gene encoding ATP-binding cassette transporter 1 in men with low HDL cholesterol levels and coronary heart disease. Atherosclerosis 2001; 154:607-11. [PMID: 11257261 DOI: 10.1016/s0021-9150(00)00722-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HDL cholesterol (HDL-C) deficiency is the most common lipid abnormality observed in patients with premature coronary heart disease (CHD). Recently, our laboratory and others demonstrated that mutations in the ATP-binding cassette transporter 1 (ABCA1) gene are responsible for Tangier disease, a rare genetic disorder characterized by severely diminished plasma HDL-C concentrations and a predisposition for CHD. To address the question of whether common variants within the coding sequence of ABCA1 may affect plasma HDL-C levels and CHD risk in the general population, we determined the frequencies of three common ABCA1 variants (G596A, A2589G and G3456C) in men participating in the Veterans Affairs Cooperative HDL Cholesterol Intervention Trial (VA-HIT), a study designed to examine the benefits of HDL raising in men having low HDL-C (< or =40 mg/dl) and established CHD, as well as in CHD-free men from the Framingham Offspring Study (FOS). Allele frequencies (%) in VA-HIT were 31, 16, and 4 for the G596A, A2589G, and G3456C variants, respectively, versus 27, 12, and 2 in FOS (P<0.03). None of the variants were significantly associated with plasma HDL-C concentrations in either population; however, in VA-HIT, the G3456C variant was associated with a significantly increased risk for CHD end points, suggesting a role for this variant in the premature CHD observed in this population.
Collapse
Affiliation(s)
- M E Brousseau
- The Lipid Metabolism Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1190
|
Bertolini S, Pisciotta L, Seri M, Cusano R, Cantafora A, Calabresi L, Franceschini G, Ravazzolo R, Calandra S. A point mutation in ABC1 gene in a patient with severe premature coronary heart disease and mild clinical phenotype of Tangier disease. Atherosclerosis 2001; 154:599-605. [PMID: 11257260 DOI: 10.1016/s0021-9150(00)00587-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The proband is a 50 year-old woman born from a consanguineous marriage. She has been suffering from angina pectoris since the age of 38 and underwent coronary bypass surgery for three-vessel disease at 48. The presence of low plasma levels of total cholesterol and high density lipoprotein (HDL) cholesterol (2.4 and 0.1 mmol/l) and apo AI (<15 mg/dl), associated with corneal lesions and a mild splenomegaly suggested the diagnosis of Tangier disease. However, none of the other features of Tangier disease, including hepatomegaly, anemia and peripheral neuropathy, were present. The analysis of the dinucleotide microsatellites located in chromosome 9q31 region demonstrated that the proband was homozygous for the alleles of D9S53, D9S1784 and D9S1832. The mother and son of the proband, both with low levels of HDL cholesterol, shared one of the proband's haplotypes, whereas neither of these haplotypes was present in the normolipidemic proband's sister. The sequence of ATP-binding cassette transporter 1 (ABC1-1) cDNA obtained by reverse transcription-PCR (RT-PCR) of total RNA isolated from cultured fibroblasts showed that the proband was homozygous for a C>T transition in exon 13, which caused a tryptophane for arginine substitution (R527W). This mutation was confirmed by direct sequencing of exon 13 amplified from genomic DNA. It can be easily screened, as the nucleotide change introduces a restriction site for the enzyme Afl III. R527W substitution occurs in a highly conserved region of the NH2 cytoplasmic domain of ABC1 protein. R527W co-segregates with the low HDL phenotype in the family and was not found in 200 chromosomes from normolipidemic individuals.
Collapse
Affiliation(s)
- S Bertolini
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV no. 6, I-16132 Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
1191
|
Mendez AJ, Lin G, Wade DP, Lawn RM, Oram JF. Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J Biol Chem 2001; 276:3158-66. [PMID: 11073951 DOI: 10.1074/jbc.m007717200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains.
Collapse
Affiliation(s)
- A J Mendez
- University of Miami School of Medicine, Diabetes Research Institute, Miami, Florida 33101, USA.
| | | | | | | | | |
Collapse
|
1192
|
Cellular cholesterol efflux is modulated by phospholipid-derived signaling molecules in familial HDL deficiency/Tangier disease fibroblasts. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31686-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
1193
|
Hooiveld GJ, van Montfoort JE, Meijer DK, Müller M. Function and regulation of ATP-binding cassette transport proteins involved in hepatobiliary transport. Eur J Pharm Sci 2001; 12:525-43. [PMID: 11231121 DOI: 10.1016/s0928-0987(01)00101-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatobiliary transport of endogenous and exogenous compounds is mediated by the coordinated action of multiple transport systems present at the sinusoidal (basolateral) and canalicular (apical) membrane domains of hepatocytes. During the last few years many of these transporters have been cloned and functionally characterized. In addition, the molecular bases of several forms of cholestatic liver disease have been defined. Combined, this has greatly expanded our understanding of the normal physiology of bile formation, the pathophysiology of intrahepatic cholestasis, as well as of drug elimination and disposition processes. In this review recent advances, with respect to function and regulation of ATP binding cassette transport proteins expressed in liver, are summarized and discussed.
Collapse
Affiliation(s)
- G J Hooiveld
- Groningen University Institute for Drug Exploration, Department of Pharmacokinetics and Drug Delivery, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
1194
|
Voshol PJ, Koopen NR, de Vree JM, Havinga R, Princen HM, Elferink RP, Groen AK, Kuipers F. Dietary cholesterol does not normalize low plasma cholesterol levels but induces hyperbilirubinemia and hypercholanemia in Mdr2 P-glycoprotein-deficient mice. J Hepatol 2001; 34:202-9. [PMID: 11281547 DOI: 10.1016/s0168-8278(00)00021-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS Mdr2 P-glycoprotein deficiency in mice (Mdr2(-/-) leads to formation of cholesterol/cholesterol-depleted bile and reduced plasma HDL cholesterol. We addressed the questions: (1) does HDL in Mdr2(-/-) mice normalize upon phospholipid and/or cholesterol feeding, and (2): is the Mdr2(-/-) liver capable of handling excess dietary cholesterol. METHODS Male and female Mdr2(-/-) and Mdr2(+/+) mice were fed diets with or without additional phosphatidylcholine and/or cholesterol. Plasma, hepatic and biliary lipids as well as liver function parameters and expression of transport proteins involved in bile formation were analyzed. RESULTS Feeding excess phospholipids and/or cholesterol did not affect lipoprotein levels in Mdr2(+/+) or Mdr2(-/+) mice. Dietary cholesterol caused hyperbilirubinemia (male +100%; female +500%) and elevated plasma bile salts (male +200%; female +1250%) in Mdr2(-/-) mice only, independent of phospholipids. Bile flow nor biliary bile salt and bilirubin secretion were affected in cholesterol-fed Mdr2(-/-) mice. Elevated plasma bile salts may be related to cholesterol-induced reduction of hepatic Na+-taurocholate cotransporting protein expression in Mdr2(-/-) mice. CONCLUSION Excess dietary phospholipids and cholesterol do not normalize low HDL associated with Mdr2 P-glycoprotein-deficiency. Induction of hyperbilirubinemia and hypercholanemia by dietary cholesterol in Mdr2(-/-) mice delineates the important role of biliary lipid secretion in normal hepatic functioning.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP-Binding Cassette Transporters/genetics
- Animals
- Base Sequence
- Bile/chemistry
- Bile/metabolism
- Bile Acids and Salts/blood
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cholesterol/blood
- Cholesterol/metabolism
- Cholesterol, Dietary/administration & dosage
- DNA Primers/genetics
- Female
- Gene Expression
- Hyperbilirubinemia/etiology
- Liver/metabolism
- Male
- Membrane Proteins
- Membrane Transport Proteins
- Mice
- Mice, Knockout
- Organic Anion Transporters, Sodium-Dependent
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic
- Receptors, Lipoprotein
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Symporters
Collapse
Affiliation(s)
- P J Voshol
- Groningen University Institute for Drug Exploration, Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Hospital Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
1195
|
Remaley AT, Stonik JA, Demosky SJ, Neufeld EB, Bocharov AV, Vishnyakova TG, Eggerman TL, Patterson AP, Duverger NJ, Santamarina-Fojo S, Brewer HB. Apolipoprotein specificity for lipid efflux by the human ABCAI transporter. Biochem Biophys Res Commun 2001; 280:818-23. [PMID: 11162594 DOI: 10.1006/bbrc.2000.4219] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABCAI, a member of the ATP binding cassette family, mediates the efflux of excess cellular lipid to HDL and is defective in Tangier disease. The apolipoprotein acceptor specificity for lipid efflux by ABCAI was examined in stably transfected Hela cells, expressing a human ABCAI-GFP fusion protein. ApoA-I and all of the other exchangeable apolipoproteins tested (apoA-II, apoA-IV, apoC-I, apoC-II, apoC-III, apoE) showed greater than a threefold increase in cholesterol and phospholipid efflux from ABCAI-GFP transfected cells compared to control cells. Expression of ABCAI in Hela cells also resulted in a marked increase in specific binding of both apoA-I (Kd = 0.60 microg/mL) and apoA-II (Kd = 0.58 microg/mL) to a common binding site. In summary, ABCAI-mediated cellular binding of apolipoproteins and lipid efflux is not specific for only apoA-I but can also occur with other apolipoproteins that contain multiple amphipathic helical domains.
Collapse
Affiliation(s)
- A T Remaley
- National Heart, Lung and Blood Institute, Bethesda, Maryland 20982, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1196
|
Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ, Tontonoz P. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci U S A 2001; 98:507-12. [PMID: 11149950 PMCID: PMC14617 DOI: 10.1073/pnas.98.2.507] [Citation(s) in RCA: 427] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apolipoprotein E (apoE) secreted by macrophages in the artery wall exerts an important protective effect against the development of atherosclerosis, presumably through its ability to promote lipid efflux. Previous studies have shown that increases in cellular free cholesterol levels stimulate apoE transcription in macrophages and adipocytes; however, the molecular basis for this regulation is unknown. Recently, Taylor and colleagues [Shih, S. J., Allan, C., Grehan, S., Tse, E., Moran, C. & Taylor, J. M. (2000) J. Biol. Chem. 275, 31567-31572] identified two enhancers from the human apoE gene, termed multienhancer 1 (ME.1) and multienhancer 2 (ME.2), that direct macrophage- and adipose-specific expression in transgenic mice. We demonstrate here that the nuclear receptors LXRalpha and LXRbeta and their oxysterol ligands are key regulators of apoE expression in both macrophages and adipose tissue. We show that LXR/RXR heterodimers regulate apoE transcription directly, through interaction with a conserved LXR response element present in both ME.1 and ME.2. Moreover, we demonstrate that the ability of oxysterols and synthetic ligands to regulate apoE expression in adipose tissue and peritoneal macrophages is reduced in Lxralpha-/- or Lxrbeta-/- mice and abolished in double knockouts. Basal expression of apoE is not compromised in Lxr null mice, however, indicating that LXRs mediate lipid-inducible rather than tissue-specific expression of this gene. Together with our previous work, these findings support a central role for LXR signaling pathways in the control of macrophage cholesterol efflux through the coordinate regulation of apoE, ABCA1, and ABCG1 expression.
Collapse
MESH Headings
- 3T3 Cells
- ATP Binding Cassette Transporter 1
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/physiology
- Adipocytes/metabolism
- Animals
- Anticholesteremic Agents/pharmacology
- Apolipoproteins E/biosynthesis
- Apolipoproteins E/genetics
- Arteriosclerosis/genetics
- Arteriosclerosis/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Differentiation
- Cells, Cultured
- Cholesterol/metabolism
- DNA-Binding Proteins
- Diet, Atherogenic
- Dimerization
- Enhancer Elements, Genetic
- Gene Expression Regulation/physiology
- Humans
- Hydrocarbons, Fluorinated
- Hydroxycholesterols/pharmacology
- Ligands
- Lipids/pharmacology
- Liver Neoplasms/pathology
- Liver X Receptors
- Lovastatin/analogs & derivatives
- Lovastatin/pharmacology
- Macrophages, Peritoneal/metabolism
- Male
- Mevalonic Acid/pharmacology
- Mice
- Mice, Knockout
- Organic Chemicals
- Orphan Nuclear Receptors
- RNA, Messenger/biosynthesis
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/physiology
- Recombinant Fusion Proteins/metabolism
- Retinoid X Receptors
- Sulfonamides
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/chemistry
- Transcription Factors/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- B A Laffitte
- Howard Hughes Medical Institute, Department of Pathology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
1197
|
LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11149950 PMCID: PMC14617 DOI: 10.1073/pnas.021488798] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Apolipoprotein E (apoE) secreted by macrophages in the artery wall exerts an important protective effect against the development of atherosclerosis, presumably through its ability to promote lipid efflux. Previous studies have shown that increases in cellular free cholesterol levels stimulate apoE transcription in macrophages and adipocytes; however, the molecular basis for this regulation is unknown. Recently, Taylor and colleagues [Shih, S. J., Allan, C., Grehan, S., Tse, E., Moran, C. & Taylor, J. M. (2000) J. Biol. Chem. 275, 31567-31572] identified two enhancers from the human apoE gene, termed multienhancer 1 (ME.1) and multienhancer 2 (ME.2), that direct macrophage- and adipose-specific expression in transgenic mice. We demonstrate here that the nuclear receptors LXRalpha and LXRbeta and their oxysterol ligands are key regulators of apoE expression in both macrophages and adipose tissue. We show that LXR/RXR heterodimers regulate apoE transcription directly, through interaction with a conserved LXR response element present in both ME.1 and ME.2. Moreover, we demonstrate that the ability of oxysterols and synthetic ligands to regulate apoE expression in adipose tissue and peritoneal macrophages is reduced in Lxralpha-/- or Lxrbeta-/- mice and abolished in double knockouts. Basal expression of apoE is not compromised in Lxr null mice, however, indicating that LXRs mediate lipid-inducible rather than tissue-specific expression of this gene. Together with our previous work, these findings support a central role for LXR signaling pathways in the control of macrophage cholesterol efflux through the coordinate regulation of apoE, ABCA1, and ABCG1 expression.
Collapse
|
1198
|
Li L, Pownall HJ. Effects of high-density lipoprotein(2) on cholesterol transport and acyl-coenzyme A:cholesterol acyltransferase activity in P388D1 macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:111-22. [PMID: 11341963 DOI: 10.1016/s1388-1981(00)00173-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High-density lipoproteins are the putative vehicles for cholesterol removal from monocyte-derived macrophages, which are an important cell type in all stages of atherosclerosis. The role of HDL(2), an HDL subclass that accounts for most variation in plasma HDL-cholesterol concentration, in cholesterol metabolism in monocyte-derived macrophages is not known. In this study, the dose-dependent effects of HDL(2) on cellular cholesterol mass, efflux, and esterification, and on cellular cholesteryl ester (CE) hydrolysis using the mouse macrophage P388D1 cell line was investigated. HDL(2) at low concentrations (40 microg protein/ml) decreased CE content without affecting cellular free cholesterol content (FC), CE hydrolysis, or cholesterol biosynthesis. In addition, HDL(2) at low concentrations reduced cellular acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and increased FC efflux from macrophages. Thus, HDL(2) has two potential roles in reverse cholesterol transport. In one, HDL(2) is an acceptor of macrophage FC. In the other, more novel role, HDL(2) increases the availability of macrophage FC through the inhibition of ACAT. Elucidation of the mechanism by which HDL(2) inhibits ACAT could identify new therapeutic targets that enhance the transfer of cholesterol from macrophages to the liver.
Collapse
Affiliation(s)
- L Li
- Department of Medicine and the Cardiovascular Sciences Graduate Program of the DeBakey Heart Center, Baylor College of Medicine and The Methodist Hospital, Houston, TX 77030, USA
| | | |
Collapse
|
1199
|
Lorkowski S, Rust S, Engel T, Jung E, Tegelkamp K, Galinski EA, Assmann G, Cullen P. Genomic sequence and structure of the human ABCG1 (ABC8) gene. Biochem Biophys Res Commun 2001; 280:121-31. [PMID: 11162488 DOI: 10.1006/bbrc.2000.4089] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The human ATP-binding cassette half transporter G1 (hABCG1) may play a role in cholesterol transport in macrophages. Using RACE assays we determined the structure of this gene. The hABCG1 gene spans more than 97 kb comprising 20 exons, 20 kb and 5 exons more than hitherto described. Four of the novel exons are upstream and one is downstream of previous exon 1, and they are predicted to encode at least five novel transcripts. We also detected two separate promoters, upstream of exons 1 and 5, respectively. The region 650 bp upstream of exon 1 was predicted to contain putative binding sites for SP1 and nuclear factor kappaB (NF-kappaB), but no sterol response elements (SREs) or retinoid X receptor (RXR) binding sites. The region 650 bp upstream of exon 5 contained 19 possible SP1 binding sites, one possible SRE, two possible NF-kappaB, and two putative RXR binding sites. Nevertheless, both promoters responded in macrophages to stimulation by hydroxycholesterol and retinoic acid.
Collapse
Affiliation(s)
- S Lorkowski
- Institut für Arterioskleroseforschung, Westfälische Wilhelms-Universität Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1200
|
Utech M, Höbbel G, Rust S, Reinecke H, Assmann G, Walter M. Accumulation of RhoA, RhoB, RhoG, and Rac1 in fibroblasts from Tangier disease subjects suggests a regulatory role of Rho family proteins in cholesterol efflux. Biochem Biophys Res Commun 2001; 280:229-36. [PMID: 11162504 DOI: 10.1006/bbrc.2000.4061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tangier disease (TD) is an inherited disorder of lipid metabolism characterized by very low high density lipoprotein (HDL) plasma levels, cellular cholesteryl ester accumulation and reduced cholesterol excretion in response to HDL apolipoproteins. Molecular defects in the ATP binding cassette transporter 1 (ABCA1) have recently been identified as the cause of TD. ABCA1 plays a key role in the translocation of cholesterol across the plasma membrane, and defective ABCA1 causes cholesterol storage in TD cells. However, the exact relationship of many of the biochemical and morphological abnormalities in TD to ABCA1 is unknown. Since small GTP-binding proteins are important regulators of many cellular functions, we characterized these proteins in normal and TD fibroblasts using the [alpha-32P]GTP overlay technique and Western blotting of SDS and isoelectric focusing gels. Our results indicate that GTP-binding proteins of the Rho family (RhoA, RhoB, RhoG, Rac-1) are enriched in fibroblasts from TD patients. The accumulation of small G proteins may have potential implications for the TD phenotype and the regulation of cholesterol excretion in TD cells.
Collapse
Affiliation(s)
- M Utech
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universität Munster, Albert-Schweitzer-Str. 33, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|