1251
|
Urano J, Tabancay AP, Yang W, Tamanoi F. The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake. J Biol Chem 2000; 275:11198-206. [PMID: 10753927 DOI: 10.1074/jbc.275.15.11198] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The new member of the Ras superfamily of G-proteins, Rheb, has been identified in rat and human, but its function has not been defined. We report here the identification of Rheb homologues in the budding yeast Saccharomyces cerevisiae (ScRheb) as well as in Schizosaccharomyces pombe, Drosophila melanogaster, zebrafish, and Ciona intestinalis. These proteins define a new class of G-proteins based on 1) their overall sequence similarity, 2) high conservation of their effector domain sequence, 3) presence of a unique arginine in their G1 box, and 4) presence of a conserved CAAX farnesylation motif. Characterization of an S. cerevisiae strain deficient in ScRheb showed that it is hypersensitive to growth inhibitory effects of canavanine and thialysine, which are analogues of arginine and lysine, respectively. Accordingly, the uptake of arginine and lysine was increased in the ScRheb-deficient strain. This increased arginine uptake requires the arginine-specific permease Can1p. The function of ScRheb is dependent on having an intact effector domain since mutations in the effector domain of ScRheb are incapable of complementing canavanine hypersensitivity of scrheb disruptant cells. Furthermore, the conserved arginine in the G1 box plays a role in the activity of ScRheb, as a mutation of this arginine to glycine significantly reduced the ability of ScRheb to complement canavanine hypersensitivity of ScRheb-deficient yeast. Finally, a mutation in the C-terminal CAAX farnesylation motif resulted in a loss of ScRheb function. This result, in combination with our finding that ScRheb is farnesylated, suggests that farnesylation plays a key role in ScRheb function. Our findings assign the regulation of arginine and lysine uptake as the first physiological function for this new farnesylated Ras superfamily G-protein.
Collapse
Affiliation(s)
- J Urano
- Department of Microbiology, Molecular Biology Institute, University of California, Los Angeles, California 90095-1489, USA
| | | | | | | |
Collapse
|
1252
|
Springer S, Chen E, Duden R, Marzioch M, Rowley A, Hamamoto S, Merchant S, Schekman R. The p24 proteins are not essential for vesicular transport in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2000; 97:4034-9. [PMID: 10737764 PMCID: PMC18138 DOI: 10.1073/pnas.070044097] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the factors involved in the sorting of cargo proteins into COPII endoplasmic reticulum (ER) to Golgi apparatus transport vesicles, we have created a strain of S. cerevisiae (p24Delta8) that lacks all eight members of the p24 family of transmembrane proteins (Emp24p, Erv25p, and Erp1p to Erp6p). The p24 proteins have been implicated in COPI and COPII vesicle formation, cargo protein sorting, and regulation of vesicular transport in eukaryotic cells. We find that p24Delta8 cells grow identically to wild type and show delays of invertase and Gas1p ER-to-Golgi transport identical to those seen in a single Deltaemp24 deletion strain. Thus, p24 proteins do not have an essential function in the secretory pathway. Instead, they may serve as quality control factors to restrict the entry of proteins into COPII vesicles.
Collapse
Affiliation(s)
- S Springer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, 401 Barker Hall #3202, University of California, Berkeley, CA 94720-3202, USA
| | | | | | | | | | | | | | | |
Collapse
|
1253
|
De Antoni A, Gallwitz D. A novel multi-purpose cassette for repeated integrative epitope tagging of genes in Saccharomyces cerevisiae. Gene 2000; 246:179-85. [PMID: 10767539 DOI: 10.1016/s0378-1119(00)00083-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gene tagging can be achieved by homologous recombination in yeast. The kan(r) marker gene plays an important role in PCR-mediated gene disruption and PCR-mediated epitope tagging experiments. In this paper, new modules containing a tag-loxP-kanMX-loxP cassette are described that allow tagging of different genes by using the kan(r) marker repeatedly.
Collapse
Affiliation(s)
- A De Antoni
- Department of Molecular Genetics, Max-Planck-Institute for Biophysical Chemistry, D-37070, Göttingen, Germany.
| | | |
Collapse
|
1254
|
Lang T, Reiche S, Straub M, Bredschneider M, Thumm M. Autophagy and the cvt pathway both depend on AUT9. J Bacteriol 2000; 182:2125-33. [PMID: 10735854 PMCID: PMC111260 DOI: 10.1128/jb.182.8.2125-2133.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In growing cells of the yeast Saccharomyces cerevisiae, proaminopeptidase I reaches the vacuole via the selective cytoplasm-to-vacuole targeting (cvt) pathway. During nutrient limitation, autophagy is also responsible for the transport of proaminopeptidase I. These two nonclassical protein transport pathways to the vacuole are distinct in their characteristics but in large part use identical components. We expanded our initial screen for aut(-) mutants and isolated aut9-1 cells, which show a defect in both pathways, the vacuolar targeting of proaminopeptidase I and autophagy. By complementation of the sporulation defect of homocygous diploid aut9-1 mutant cells with a genomic library, in this study we identified and characterized the AUT9 gene, which is allelic with CVT7. aut9-deficient cells have no obvious defects in growth on rich media, vacuolar biogenesis, and acidification, but like other mutant cells with a defect in autophagy, they exhibit a reduced survival rate and reduced total protein turnover during starvation. Aut9p is the first putative integral membrane protein essential for autophagy. A biologically active green fluorescent protein-Aut9 fusion protein was visualized at punctate structures in the cytosol of growing cells.
Collapse
Affiliation(s)
- T Lang
- Institut fuer Biochemie, Universitaet Stuttgart, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
1255
|
Lai-Zhang J, Mueller DM. Complementation of deletion mutants in the genes encoding the F1-ATPase by expression of the corresponding bovine subunits in yeast S. cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2409-18. [PMID: 10759867 DOI: 10.1046/j.1432-1327.2000.01253.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The F1F0 ATP synthase is composed of the F1-ATPase which is bound to F0, in the inner membrane of the mitochondrion. Assembly and function of the enzyme is a complicated task requiring the interactions of many proteins for the folding, import, assembly, and function of the enzyme. The F1-ATPase is a multimeric enzyme composed of five subunits in the stoichiometry of alpha3beta3gammadeltaepsilon. This study demonstrates that four of the five bovine subunits of the F1-ATPase can be imported and function in an otherwise yeast enzyme effectively complementing mutations in the genes encoding the corresponding yeast ATPase subunits. In order to demonstrate this, the coding regions of each of the five genes were separately deleted in yeast providing five null mutant strains. All of the strains displayed negative or a slow growth phenotype on medium containing glycerol as the carbon source and strains with a null mutation in the gene encoding the gamma-, delta- or epsilon-gene became completely, or at a high frequency, cytoplasmically petite. The subunits of bovine F1 were expressed individually in the yeast strains with the corresponding null mutations and targeted to the mitochondrion using a yeast mitochondrial leader peptide. Expression of the bovine alpha-, beta-, gamma-, and epsilon-, but not the delta-, subunit complemented the corresponding null mutations in yeast correcting the corresponding negative phenotypes. These results indicate that yeast is able to import, assemble subunits of bovine F1-ATPase in mitochondria and form a functional chimeric yeast/bovine enzyme complex.
Collapse
Affiliation(s)
- J Lai-Zhang
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Chicago, IL 60064, USA
| | | |
Collapse
|
1256
|
Clark-Walker GD, Hansbro PM, Gibson F, Chen XJ. Mutant residues suppressing rho(0)-lethality in Kluyveromyces lactis occur at contact sites between subunits of F(1)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1478:125-37. [PMID: 10719181 DOI: 10.1016/s0167-4838(00)00003-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Characterisation of 35 Kluyveromyces lactis strains lacking mitochondrial DNA has shown that mutations suppressing rho(0)-lethality are limited to the ATP1, 2 and 3 genes coding for the alpha-, beta- and gamma- subunits of mitochondrial F(1)-ATPase. All atp mutations reduce growth on glucose and three alleles, atp1-2, 1-3 and atp3-1, produce a respiratory deficient phenotype that indicates a drop in efficiency of the F(1)F(0)-ATP synthase complex. ATPase activity is needed for suppression as a double mutant containing an atp allele, together with a mutation abolishing catalytic activity, does not suppress rho(0)-lethality. Positioning of the seven amino acids subject to mutation on the bovine F(1)-ATPase structure shows that two residues are found in a membrane proximal region while five amino acids occur at a region suggested to be a molecular bearing. The intriguing juxtaposition of mutable amino acids to other residues subject to change suggests that mutations affect subunit interactions and alter the properties of F(1) in a manner yet to be determined. An explanation for suppressor activity of atp mutations is discussed in the context of a possible role for F(1)-ATPase in the maintenance of mitochondrial inner membrane potential.
Collapse
Affiliation(s)
- G D Clark-Walker
- Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, PO Box 475, Canberra City, ACT, Australia.
| | | | | | | |
Collapse
|
1257
|
Lillo JA, Andaluz E, Cotano C, Basco R, Cueva R, Correa J, Larriba G. Disruption and phenotypic analysis of six open reading frames from the left arm of Saccharomyces cerevisiae chromosome VII. Yeast 2000; 16:365-75. [PMID: 10669874 DOI: 10.1002/1097-0061(20000315)16:4<365::aid-yea526>3.0.co;2-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Six open reading frames (ORFs) from Saccharomyces cerevisiae chromosome VII were deleted using the kanMX4 module and the long-flanking homology-PCR replacement strategy in at least two different backgrounds. Among these ORFs, two of them (YGL100w and YGL094c) are now known genes which encode well-characterized proteins (Seh1p, a nuclear pore protein, and Pan2p, a component of Pab1p-stimulated poly(A) ribonuclease, respectively). The other four ORFs (YGL101w, YGL099w, YGL098w and YGL096w) code for proteins of unknown function, although the protein encoded by YGL101w has a strong similarity to the hypothetical protein Ybr242p. Gene disruptions were performed in diploid cells using the KanMX4 cassette, and the geneticin (G418)-resistant transformants were checked by PCR. Tetrad analysis of heterozygous deletant strains revealed that YGL098w is an essential gene for vegetative growth in three backgrounds, whereas the other five genes are non-essential, although we have found some phenotypes in one of them. YGL099wDelta strain did not grow at all at 15 degrees C and showed a highly impaired sporulation and a significantly lower mating efficiency. The other three deletants did not reveal any significant differences with respect to their parental strains in our basic phenotypic tests.
Collapse
Affiliation(s)
- J A Lillo
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas, s/n. 06071 Badadajoz, Spain
| | | | | | | | | | | | | |
Collapse
|
1258
|
Fiori A, Bianchi MM, Fabiani L, Falcone C, Francisci S, Palleschi C, Solimando N, Uccelletti D, Frontali L. Disruption of six novel genes from chromosome VII of Saccharomyces cerevisiae reveals one essential gene and one gene which affects the growth rate. Yeast 2000; 16:377-86. [PMID: 10669875 DOI: 10.1002/1097-0061(20000315)16:4<377::aid-yea537>3.0.co;2-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Six ORFs of unknown function located on chromosome VII of Saccharomyces cerevisiae were disrupted in two different genetic backgrounds, and the phenotype of the generated mutants was analysed. Disruptions of ORFs YGR256w, YGR272c, YGR273c, YGR275w and YGR276c were carried out using the disruption marker kanMX4 flanked by short homology regions, whereas ORF YGR255c was inactivated with a long flanking homology (LFH) disruption cassette (Wach et al., 1994). Tetrad analysis of the heterozygous disruptants revealed that ORF YGR255c, previously identified as COQ6 and encoding a protein involved in the biosynthesis of coenzime Q (Tzagoloff and Dieckmann, 1990), is an essential gene. The same analysis also revealed that sporulation of the ygr272cDelta heterozygous diploid produced two small colonies per ascus that were also G418-resistant, indicating that the inactivation of ORF YGR272c could result in a slower growth rate. This result was confirmed by growth tests of the haploid disruptants and by complementation of the phenotype after transformation with a plasmid carrying the cognate gene. No phenotypes could be associated to the inactivation of ORFs YGR256w, YGR273c, YGR275w and YGR276c. Two of these genes have recently been further characterized: ORF YGR255w, renamed RTT102, encodes a regulator of the Ty1-element transposition, whereas ORF YGR276c was found to encode the 70 kDa RNase H activity and was renamed RNH70 (Frank et al., 1999).
Collapse
Affiliation(s)
- A Fiori
- Department of Cell and Developmental Biology, University of Rome 'La Sapienza', Piazzale A. Moro 5, 00185, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
1259
|
Xiao Y, Metzl M, Mueller DM. Partial uncoupling of the mitochondrial membrane by a heterozygous null mutation in the gene encoding the gamma- or delta-subunit of the yeast mitochondrial ATPase. J Biol Chem 2000; 275:6963-8. [PMID: 10702258 DOI: 10.1074/jbc.275.10.6963] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prior genetic studies indicated that the yeast mitochondrial ATP synthase can be assembled into enzyme complexes devoid of the gamma-, delta-, or epsilon-subunits (Lai-Zhang, J., Xiao, Y., and Mueller, D. M. (1999) EMBO J. 18, 58-64). These subunit-deficient complexes were postulated to uncouple the mitochondrial membrane thereby causing negative cellular phenotypes. This study provides biochemical and additional genetic data that support this hypothesis. The genetic data indicate that in a diploid cell, a heterozygous deletion mutation in the gene encoding the gamma- or delta-subunit of the ATPase is semidominant negative due to a decrease in the gene number from 2 to 1. However, the heterozygous atp2Delta mutation is epistatic to the heterozygous mutation in the gene encoding gamma or delta, suggesting that the semidominant negative effect is because of a gain of activity in the cells. Biochemical studies using mitochondria isolated from the yeast strains that are heterozygous for a mutation in gamma or delta indicate that the mitochondria are partially uncoupled. These results support the hypothesis that the negative phenotypes are caused by the formation of a gamma- or delta-less ATP synthase complex that is uncoupled.
Collapse
Affiliation(s)
- Y Xiao
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | |
Collapse
|
1260
|
Costanzo MC, Bonnefoy N, Williams EH, Clark-Walker GD, Fox TD. Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts. Genetics 2000; 154:999-1012. [PMID: 10757749 PMCID: PMC1460983 DOI: 10.1093/genetics/154.3.999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translation of mitochondrially coded mRNAs in Saccharomyces cerevisiae depends on membrane-bound mRNA-specific activator proteins, whose targets lie in the mRNA 5'-untranslated leaders (5'-UTLs). In at least some cases, the activators function to localize translation of hydrophobic proteins on the inner membrane and are rate limiting for gene expression. We searched unsuccessfully in divergent budding yeasts for orthologs of the COX2- and COX3-specific translational activator genes, PET111, PET54, PET122, and PET494, by direct complementation. However, by screening for complementation of mutations in genes adjacent to the PET genes in S. cerevisiae, we obtained chromosomal segments containing highly diverged homologs of PET111 and PET122 from Saccharomyces kluyveri and of PET111 from Kluyveromyces lactis. All three of these genes failed to function in S. cerevisiae. We also found that the 5'-UTLs of the COX2 and COX3 mRNAs of S. kluyveri and K. lactis have little similarity to each other or to those of S. cerevisiae. To determine whether the PET111 and PET122 homologs carry out orthologous functions, we deleted them from the S. kluyveri genome and deleted PET111 from the K. lactis genome. The pet111 mutations in both species prevented COX2 translation, and the S. kluyveri pet122 mutation prevented COX3 translation. Thus, while the sequences of these translational activator proteins and their 5'-UTL targets are highly diverged, their mRNA-specific functions are orthologous.
Collapse
Affiliation(s)
- M C Costanzo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | |
Collapse
|
1261
|
Mullen JR, Kaliraman V, Brill SJ. Bipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae. Genetics 2000; 154:1101-14. [PMID: 10757756 PMCID: PMC1460973 DOI: 10.1093/genetics/154.3.1101] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SGS1 in yeast encodes a DNA helicase with homology to the human BLM and WRN proteins. This group of proteins is characterized by a highly conserved DNA helicase domain homologous to Escherichia coli RecQ and a large N-terminal domain of unknown function. To determine the role of these domains in SGS1 function, we constructed a series of truncation and helicase-defective (-hd) alleles and examined their ability to complement several sgs1 phenotypes. Certain SGS1 alleles showed distinct phenotypes: sgs1-hd failed to complement the MMS hypersensitivity and hyper-recombination phenotypes, but partially complemented the slow-growth suppression of top3 sgs1 strains and the top1 sgs1 growth defect. Unexpectedly, an allele that encodes the amino terminus alone showed essentially complete complementation of the hyper-recombination and top1 sgs1 defects. In contrast, an allele encoding the helicase domain alone was unable to complement any sgs1 phenotype. Small truncations of the N terminus resulted in hyper-recombination and slow-growth phenotypes in excess of the null allele. These hypermorphic phenotypes could be relieved by deleting more of the N terminus, or in some cases, by a point mutation in the helicase domain. Intragenic complementation experiments demonstrate that both the amino terminus and the DNA helicase are required for full SGS1 function. We conclude that the amino terminus of Sgs1 has an essential role in SGS1 function, distinct from that of the DNA helicase, with which it genetically interacts.
Collapse
Affiliation(s)
- J R Mullen
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08855, USA
| | | | | |
Collapse
|
1262
|
Saiardi A, Caffrey JJ, Snyder SH, Shears SB. Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett 2000; 468:28-32. [PMID: 10683435 DOI: 10.1016/s0014-5793(00)01194-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ARGRIII gene of Saccharomyces cerevisiae encodes a transcriptional regulator that also has inositol polyphosphate multikinase (ipmk) activity [Saiardi et al. (1999) Curr. Biol. 9, 1323-1326]. To investigate how inositol phosphates regulate gene expression, we disrupted the ARGRIII gene. This mutation impaired nuclear mRNA export, slowed cell growth, increased cellular [InsP(3)] 170-fold and decreased [InsP(6)] 100-fold, indicating reduced phosphorylation of InsP(3) to InsP(6). Levels of diphosphoinositol polyphosphates were decreased much less dramatically than was InsP(6). Low levels of InsP(6), and considerable quantities of Ins(1,3,4,5)P(4), were synthesized by an ipmk-independent route. Transcriptional control by ipmk reflects that it is a pivotal regulator of nuclear mRNA export via inositol phosphate metabolism.
Collapse
Affiliation(s)
- A Saiardi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
1263
|
Brachat A, Liebundguth N, Rebischung C, Lemire S, Schärer F, Hoepfner D, Demchyshyn V, Howald I, Düsterhöft A, Möstl D, Pöhlmann R, Kötter P, Hall MN, Wach A, Philippsen P. Analysis of deletion phenotypes and GFP fusions of 21 novel Saccharomyces cerevisiae open reading frames. Yeast 2000; 16:241-53. [PMID: 10649453 DOI: 10.1002/(sici)1097-0061(200002)16:3<241::aid-yea517>3.0.co;2-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
As part of EUROFAN (European Functional Analysis Network), we investigated 21 novel yeast open reading frames (ORFs) by growth and sporulation tests of deletion mutants. Two genes (YNL026w and YNL075w) are essential for mitotic growth and three deletion strains (ynl080c, ynl081c and ynl225c) grew with reduced rates. Two genes (YNL223w and YNL225c) were identified to be required for sporulation. In addition we also performed green fluorescent protein (GFP) tagging for localization studies. GFP labelling indicated the spindle pole body (Ynl225c-GFP) and the nucleus (Ynl075w-GFP) as the sites of action of two proteins. Ynl080c-GFP and Ynl081c-GFP fluorescence was visible in dot-shaped and elongated structures, whereas the Ynl022c-GFP signal was always found as one spot per cell, usually in the vicinity of nuclear DNA. The remaining C-terminal GFP fusions did not produce a clearly identifiable fluorescence signal. For 10 ORFs we constructed 5'-GFP fusions that were expressed from the regulatable GAL1 promoter. In all cases we observed GFP fluorescence upon induction but the localization of the fusion proteins remained difficult to determine. GFP-Ynl020c and GFP-Ynl034w strains grew only poorly on galactose, indicating a toxic effect of the overexpressed fusion proteins. In summary, we obtained a discernible GFP localization pattern in five of 20 strains investigated (25%). A deletion phenotype was observed in seven of 21 (33%) and an overexpression phenotype in two of 10 (20%) cases.
Collapse
Affiliation(s)
- A Brachat
- Lehrstuhl für Angewandte Mikrobiologie, Biozentrum, Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1264
|
Juhnke H, Charizanis C, Latifi F, Krems B, Entian KD. The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol 2000; 35:936-48. [PMID: 10692169 DOI: 10.1046/j.1365-2958.2000.01768.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pos9 (Skn7) is an important transcription factor that, together with Yap1, induces the expression of oxidative stress target genes in Saccharomyces cerevisiae. The activation of Pos9 upon an oxidative stress signal occurs post-translationally. In a mutant screen for factors involved in the activation of a Pos9-dependent reporter gene upon oxidative stress, we identified the mutant fap7-1 (for factor activating Pos9). This point mutant failed to activate a Gal4-Pos9 hybrid transcription factor, assayed by hydrogen peroxide-induced GAL1-lacZ reporter gene activities. Additionally, the fap7-1 mutant strain was sensitive to oxidative stress and revealed slow growth on glucose compared with the wild type. The fap7-1 mutation also affected the induction of the Pos9 target gene TPX1 and of a synthetic promoter previously identified to be regulated in a Yap1- and Pos9-dependent manner. This lack of induction was specific as the fap7-1 mutant response to other stresses such as sodium chloride or co-application of both hydrogen peroxide and sodium chloride was not affected, as tested with the Pos9-independent expression pattern of a TPS2-lacZ reporter system. We identified the gene YDL166c to be allelic to the FAP7 gene and to be essential. Fluorescence microscopy of Fap7-GFP fusion proteins indicated a nuclear localization of the Fap7 protein. Our data suggest that Fap7 is a nuclear factor important for Pos9-dependent target gene transcription upon oxidative stress.
Collapse
Affiliation(s)
- H Juhnke
- Institut für Mikrobiologie der Johann Wolfgang Goethe-Universität Frankfurt, Biozentrum, Niederursel, Marie-Curie-Strasse 9, D-60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
1265
|
Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K, Kuhara S, Sakaki Y. Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A 2000; 97:1143-7. [PMID: 10655498 PMCID: PMC15550 DOI: 10.1073/pnas.97.3.1143] [Citation(s) in RCA: 600] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein-protein interactions play pivotal roles in various aspects of the structural and functional organization of the cell, and their complete description is indispensable to thorough understanding of the cell. As an approach toward this goal, here we report a comprehensive system to examine two-hybrid interactions in all of the possible combinations between proteins of Saccharomyces cerevisiae. We cloned all of the yeast ORFs individually as a DNA-binding domain fusion ("bait") in a MATa strain and as an activation domain fusion ("prey") in a MATalpha strain, and subsequently divided them into pools, each containing 96 clones. These bait and prey clone pools were systematically mated with each other, and the transformants were subjected to strict selection for the activation of three reporter genes followed by sequence tagging. Our initial examination of approximately 4 x 10(6) different combinations, constituting approximately 10% of the total to be tested, has revealed 183 independent two-hybrid interactions, more than half of which are entirely novel. Notably, the obtained binary data allow us to extract more complex interaction networks, including the one that may explain a currently unsolved mechanism for the connection between distinct steps of vesicular transport. The approach described here thus will provide many leads for integration of various cellular functions and serve as a major driving force in the completion of the protein-protein interaction map.
Collapse
Affiliation(s)
- T Ito
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
1266
|
Sartori G, Mazzotta G, Stocchetto S, Pavanello A, Carignani G. Inactivation of six genes from chromosomes VII and XIV of Saccharomyces cerevisiae and basic phenotypic analysis of the mutant strains. Yeast 2000; 16:255-65. [PMID: 10649454 DOI: 10.1002/(sici)1097-0061(200002)16:3<255::aid-yea520>3.0.co;2-#] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Within the frame of the EUROFAN project, aimed at the functional analysis of the novel ORFs revealed by the systematic sequencing of the Saccharomyces cerevisiae genome, we have inactivated six ORFs encoding putative proteins with unknown function in the two S. cerevisiae strains FY1679 and W303-1B. Five ORFs are located on chromosome VII (YGR250c, YGR251w, YGR260w, YGR262c, YGR263c) and one on chromosome XIV (YNL234w). The genes have been inactivated in the FY1679 strain by a strategy that makes use of deletion cassettes containing the kanMX4 module, which confers resistance to geneticin to yeast cells, and short flanking regions homologous to the target locus (SFH). Tetrad dissection of heterozygous mutants and basic phenotypic analysis of the spores revealed that ORF YGR251w is an essential gene, while the disruption of YGR262c causes a severe slow-growth phenotype. Deletion of the remaining ORFs did not give rise to a detectable phenotype in the mutant strains. For each ORF we have cloned, in the pUG7 plasmid, a replacement cassette that possesses long flanking regions homologous to the target locus (LFH) and, in the pRS416 plasmid, the cognate wild-type gene. The LFH replacement cassettes were used to inactivate the respective genes in the W303-1B strain. This work has been performed in the framework of the B0 Consortium of the EUROFAN I project.
Collapse
Affiliation(s)
- G Sartori
- Dipartimento di Chimica Biologica, Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
1267
|
Conrad NK, Wilson SM, Steinmetz EJ, Patturajan M, Brow DA, Swanson MS, Corden JL. A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II. Genetics 2000; 154:557-71. [PMID: 10655211 PMCID: PMC1460961 DOI: 10.1093/genetics/154.2.557] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent evidence suggests a role for the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II) in pre-mRNA processing. The yeast NRD1 gene encodes an essential RNA-binding protein that shares homology with mammalian CTD-binding proteins and is thought to regulate mRNA abundance by binding to a specific cis-acting element. The present work demonstrates genetic and physical interactions among Nrd1p, the pol II CTD, Nab3p, and the CTD kinase CTDK-I. Previous studies have shown that Nrd1p associates with the CTD of pol II in yeast two-hybrid assays via its CTD-interaction domain (CID). We show that nrd1 temperature-sensitive alleles are synthetically lethal with truncation of the CTD to 9 or 10 repeats. Nab3p, a yeast hnRNP, is a high-copy suppressor of some nrd1 temperature-sensitive alleles, interacts with Nrd1p in a yeast two-hybrid assay, and coimmunoprecipitates with Nrd1p. Temperature-sensitive alleles of NAB3 are suppressed by deletion of CTK1, a kinase that has been shown to phosphorylate the CTD and increase elongation efficiency in vitro. This set of genetic and physical interactions suggests a role for yeast RNA-binding proteins in transcriptional regulation.
Collapse
Affiliation(s)
- N K Conrad
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
1268
|
Tamaki H, Miwa T, Shinozaki M, Saito M, Yun CW, Yamamoto K, Kumagai H. GPR1 regulates filamentous growth through FLO11 in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 2000; 267:164-8. [PMID: 10623592 DOI: 10.1006/bbrc.1999.1914] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell growth and differentiation are regulated by nutrient availability in the yeast Saccharomyces cerevisiae. Under conditions of nitrogen limitation, diploid cells of S. cerevisiae differentiate to a filamentous growth known as a pseudohyphal growth, while haploid cells produce invasive filaments which penetrate the agar in nutrient-rich medium. We have found that GPR1, which encodes a putative G-protein-coupled receptor, is required for both pseudohyphal and invasive growth. Pseudohyphal growth was defective in Deltagpr1/Deltagpr1 mutant strain and this defect was reversed by addition of cAMP. Also, haploid Deltagpr1 mutant strain was defective in invasive growth. Northern blot analysis revealed that the transcriptional level of FLO11, which encodes a recently identified cell surface flocculin required for pseudohyphal growth, was reduced in Deltagpr1 mutant strain. These results indicate that GPR1 regulates both pseudohyphal and invasive growth by a cAMP-dependent mechanism.
Collapse
Affiliation(s)
- H Tamaki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
1269
|
Schulte F, Wieczorke R, Hollenberg CP, Boles E. The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast. J Bacteriol 2000; 182:540-2. [PMID: 10629208 PMCID: PMC94311 DOI: 10.1128/jb.182.2.540-542.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae HTR1 mutants are severely impaired in the uptake of glucose. We have cloned dominant HTR1 mutant alleles and show that they encode mutant forms of the Mth1 protein. Mth1 is shown to be involved in carbon source-dependent regulation of its own, invertase and hexose transporter gene expression. The mutant forms block the transduction of the Snf3- and Rgt2-mediated glucose signals upstream of the Rgt1 transcriptional regulator.
Collapse
Affiliation(s)
- F Schulte
- Institut für Mikrobiologie, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
1270
|
Burkard KT, Butler JS. A nuclear 3'-5' exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol 2000; 20:604-16. [PMID: 10611239 PMCID: PMC85144 DOI: 10.1128/mcb.20.2.604-616.2000] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inactivation of poly(A) polymerase (encoded by PAP1) in Saccharomyces cerevisiae cells carrying the temperature-sensitive, lethal pap1-1 mutation results in reduced levels of poly(A)(+) mRNAs. Genetic selection for suppressors of pap1-1 yielded two recessive, cold-sensitive alleles of the gene RRP6. These suppressors, rrp6-1 and rrp6-2, as well as a deletion of RRP6, allow growth of pap1-1 strains at high temperature and partially restore the levels of poly(A)(+) mRNA in a manner distinct from the cytoplasmic mRNA turnover pathway and without slowing a rate-limiting step in mRNA decay. Subcellular localization of an Rrp6p-green fluorescent protein fusion shows that the enzyme residues in the nucleus. Phylogenetic analysis and the nature of the rrp6-1 mutation suggest the existence of a highly conserved 3'-5' exonuclease core domain within Rrp6p. As predicted, recombinant Rrp6p catalyzes the hydrolysis of a synthetic radiolabeled RNA in a manner consistent with a 3'-5' exonucleolytic mechanism. Genetic and biochemical experiments indicate that Rrp6p interacts with poly(A) polymerase and with Npl3p, a poly(A)(+) mRNA binding protein implicated in pre-mRNA processing and mRNA nuclear export. These findings suggest that Rrp6p may interact with the mRNA polyadenylation system and thereby play a role in a nuclear pathway for the degradation of aberrantly processed precursor mRNAs.
Collapse
MESH Headings
- Amino Acid Sequence
- Catalytic Domain
- Cell Nucleus/enzymology
- Cell Nucleus/genetics
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Exosome Multienzyme Ribonuclease Complex
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes, Fungal/genetics
- Genes, Fungal/physiology
- Half-Life
- Molecular Sequence Data
- Mutation/genetics
- Nuclear Proteins/metabolism
- Pancreatitis-Associated Proteins
- Polynucleotide Adenylyltransferase/genetics
- Polynucleotide Adenylyltransferase/metabolism
- Protein Binding
- RNA Processing, Post-Transcriptional/genetics
- RNA Stability/genetics
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Heterogeneous Nuclear/genetics
- RNA, Heterogeneous Nuclear/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Sequence Alignment
- Suppression, Genetic/genetics
- Temperature
Collapse
Affiliation(s)
- K T Burkard
- Department of Microbiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14618, USA
| | | |
Collapse
|
1271
|
Abstract
Fus3, the mitogen-activated protein kinase (MAPK) of the mating pheromone response pathway, inhibits a post-translational step of Ty1 retrotransposition. Fus3 also inhibits haploid invasive growth by blocking cross-activation of invasive growth gene expression by the pheromone response signal cascade. Here, we show that Fus3 kinase activity and dosage co-ordinately regulate Ty1 transposition and invasive growth. A chromosomal copy of the kinase-defective fus3-K42R allele fails to inhibit either Ty1 transposition or invasive growth. When overexpressed, kinase-defective Fus3 weakly inhibits both Ty1 transposition and invasive growth, but is much less inhibitory than wild-type Fus3 expressed at the same level. Moreover, increasing the dosage of wild-type Fus3 intensifies the inhibition of both Ty1 transposition and invasive growth. To demonstrate that Fus3 regulates Ty1 transposition via its negative regulation of the invasive growth pathway, we show by epistatic analysis that the invasive growth pathway transcription factors Ste12 and Tec1 are both required for Fus3-mediated inhibition of Ty1 transposition. When haploid invasive growth is stimulated by high-copy expression of TEC1, by expression of the dominant hypermorphic allele STE11-4 or by deletion of HOG1, Ty1 transposition is concomitantly activated. In summary, these results demonstrate that the haploid invasive growth pathway activates Ty1 transposition at both transcriptional and post-transcriptional levels and that Fus3 inhibits Ty1 transposition by inhibiting the invasive growth pathway.
Collapse
Affiliation(s)
- D Conte
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York at Albany, PO Box 22002, Albany, NY 12201-2002, USA
| | | |
Collapse
|
1272
|
Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 1999; 464:123-8. [PMID: 10618490 DOI: 10.1016/s0014-5793(99)01698-1] [Citation(s) in RCA: 453] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The hexose transporter family of Saccharomyces cerevisiae comprises 18 proteins (Hxt1-17, Gal2). Here, we demonstrate that all these proteins, except Hxt12, and additionally three members of the maltose transporter family (Agt1, Ydl247, Yjr160) are able to transport hexoses. In a yeast strain deleted for HXT1-17, GAL2, AGT1, YDL247w and YJR160c, glucose consumption and transport activity were completely abolished. However, as additional deletion of the glucose sensor gene SNF3 partially restored growth on hexoses, our data indicate the existence of even more proteins able to transport hexoses in yeast.
Collapse
Affiliation(s)
- R Wieczorke
- Institut für Mikrobiologie, Heinrich-Heine-Universität, Universitätsstr. 1, Geb. 26.12.01, D-40225, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
1273
|
Sundararajan A, Michaud WA, Qian Q, Stahl G, Farabaugh PJ. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast. Mol Cell 1999; 4:1005-15. [PMID: 10635325 DOI: 10.1016/s1097-2765(00)80229-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Translational frameshifting is a ubiquitous, if rare, form of alternative decoding in which ribosomes spontaneously shift reading frames during translation elongation. In studying +1 frameshifting in Ty retrotransposons of the yeast S. cerevisiae, we previously showed that unusual P site tRNAs induce frameshifting. The frameshift-inducing tRNAs we show here are near-cognates for the P site codon. Their abnormal decoding induces frameshifting in either of two ways: weak codon-anticodon pairing allows the tRNA to disengage from the mRNA and slip +1, or an unusual codon-anticodon structure interferes with cognate in-frame decoding allowing out-of-frame decoding in the A site. We draw parallels between this mechanism and a proposed mechanism of frameshift suppression by mutant tRNAs.
Collapse
Affiliation(s)
- A Sundararajan
- Department of Biological Sciences, University of Maryland, Baltimore County 21250, USA
| | | | | | | | | |
Collapse
|
1274
|
Wolfe D, Reiner T, Keeley JL, Pizzini M, Keil RL. Ubiquitin metabolism affects cellular response to volatile anesthetics in yeast. Mol Cell Biol 1999; 19:8254-62. [PMID: 10567550 PMCID: PMC84909 DOI: 10.1128/mcb.19.12.8254] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the mechanism of action of volatile anesthetics, we are studying mutants of the yeast Saccharomyces cerevisiae that have altered sensitivity to isoflurane, a widely used clinical anesthetic. Several lines of evidence from these studies implicate a role for ubiquitin metabolism in cellular response to volatile anesthetics: (i) mutations in the ZZZ1 gene render cells resistant to isoflurane, and the ZZZ1 gene is identical to BUL1 (binds ubiquitin ligase), which appears to be involved in the ubiquitination pathway; (ii) ZZZ4, which we previously found is involved in anesthetic response, is identical to the DOA1/UFD3 gene, which was identified based on altered degradation of ubiquitinated proteins; (iii) analysis of zzz1Delta zzz4Delta double mutants suggests that these genes encode products involved in the same pathway for anesthetic response since the double mutant is no more resistant to anesthetic than either of the single mutant parents; (iv) ubiquitin ligase (MDP1/RSP5) mutants are altered in their response to isoflurane; and (v) mutants with decreased proteasome activity are resistant to isoflurane. The ZZZ1 and MDP1/RSP5 gene products appear to play important roles in determining effective anesthetic dose in yeast since increased levels of either gene increases isoflurane sensitivity whereas decreased activity decreases sensitivity. Like zzz4 strains, zzz1 mutants are resistant to all five volatile anesthetics tested, suggesting there are similarities in the mechanisms of action of a variety of volatile anesthetics in yeast and that ubiquitin metabolism affects response to all the agents examined.
Collapse
Affiliation(s)
- D Wolfe
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania, 17033-2390, USA
| | | | | | | | | |
Collapse
|
1275
|
Flikweert MT, Kuyper M, van Maris AJ, Kötter P, van Dijken JP, Pronk JT. Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Biotechnol Bioeng 1999; 66:42-50. [PMID: 10556793 DOI: 10.1002/(sici)1097-0290(1999)66:1<42::aid-bit4>3.0.co;2-l] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pyruvate decarboxylase is a key enzyme in the production of low-molecular-weight byproducts (ethanol, acetate) in biomass-directed applications of Saccharomyces cerevisiae. To investigate whether decreased expression levels of pyruvate decarboxylase can reduce byproduct formation, the PDC2 gene, which encodes a positive regulator of pyruvate-decarboxylase synthesis, was inactivated in the prototrophic strain S. cerevisiae CEN. PK113-7D. This caused a 3-4-fold reduction of pyruvate-decarboxylase activity in glucose-limited, aerobic chemostat cultures grown at a dilution rate of 0.10 h(-1). Upon exposure of such cultures to a 50 mM glucose pulse, ethanol and acetate were the major byproducts formed by the wild type. In the pdc2Delta strain, formation of ethanol and acetate was reduced by 60-70%. In contrast to the wild type, the pdc2Delta strain produced substantial amounts of pyruvate after a glucose pulse. Nevertheless, its overall byproduct formation was ca. 50% lower. The specific rate of glucose consumption after a glucose pulse to pdc2Delta cultures was about 40% lower than in wild-type cultures. This suggests that, at reduced pyruvate-decarboxylase activities, glycolytic flux is controlled by NADH reoxidation. In aerobic, glucose-limited chemostat cultures, the wild type exhibited a mixed respiro-fermentative metabolism at dilution rates above 0.30 h(-1). Below this dilution rate, sugar metabolism was respiratory. At dilution rates up to 0.20 h(-1), growth of the pdc2Delta strain was respiratory and biomass yields were similar to those of wild-type cultures. Above this dilution rate, washout occurred. The low micro(max) of the pdc2Delta strain in glucose-limited chemostat cultures indicates that occurrence of respiro-fermentative metabolism in wild-type cultures is not solely caused by competition of respiration and fermentation for pyruvate. Furthermore, it implies that inactivation of PDC2 is not a viable option for reducing byproduct formation in industrial fermentations.
Collapse
Affiliation(s)
- M T Flikweert
- Kluyver Institute of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
1276
|
Casalone E, Barberio C, Cavalieri D, Ceccarelli I, Riparbelli M, Ugolini S, Polsinelli M. Disruption and phenotypic analysis of six novel genes from chromosome IV of Saccharomyces cerevisiae reveal YDL060w as an essential gene for vegetative growth. Yeast 1999; 15:1691-701. [PMID: 10572265 DOI: 10.1002/(sici)1097-0061(199911)15:15<1691::aid-yea489>3.0.co;2-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The disruption of six novel genes (YDL059c, YDL060w, YDL063c, YDL065c, YDL070w and YDL110c), localized on the left arm of chromosome IV in Saccharomyces cerevisiae, is reported. A PCR-based strategy was used to construct disruption cassettes in which the kanMX4 dominant marker was introduced between two long flanking homology regions, homologous to the promoter and terminator sequences of the target gene (Wach et al., 1994). The disruption cassettes were used to generate homologous recombinants in two diploid strains with different genetic backgrounds (FY1679 and CEN. PK2), selecting for geneticin (G418) resistance conferred by the presence of the dominant marker kanMX4. The correctness of the cassette integration was tested by PCR. After sporulation and tetrad analysis of the heterozygous deletant diploids, geneticin-resistant haploids carrying the disrupted allele were isolated. YDL060w was shown to be an essential gene for vegetative growth. A more detailed phenotypic analysis of the non-lethal haploid deletant strains was performed, looking at cell and colony morphology, growth capability on different media at different temperatures, and ability to conjugate. Homozygous deletant diploids were also constructed and tested for sporulation. Only minor differences between parental and mutant strains were found for some deletant haploids.
Collapse
Affiliation(s)
- E Casalone
- Department of Biomedical Science, University 'G. D'Annunzio' of Chieti, via dei Vestini 31, I-66100 Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|
1277
|
Hänninen AL, Simola M, Saris N, Makarow M. The cytoplasmic chaperone hsp104 is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum. Mol Biol Cell 1999; 10:3623-32. [PMID: 10564260 PMCID: PMC25649 DOI: 10.1091/mbc.10.11.3623] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Severe heat stress causes protein denaturation in various cellular compartments. If Saccharomyces cerevisiae cells grown at 24 degrees C are preconditioned at 37 degrees C, proteins denatured by subsequent exposure to 48-50 degrees C can be renatured when the cells are allowed to recover at 24 degrees C. Conformational repair of vital proteins is essential for survival, because gene expression is transiently blocked after the thermal insult. Refolding of cytoplasmic proteins requires the Hsp104 chaperone, and refolding of lumenal endoplasmic reticulum (ER) proteins requires the Hsp70 homologue Lhs1p. We show here that conformational repair of heat-damaged glycoproteins in the ER of living yeast cells required functional Hsp104. A heterologous enzyme and a number of natural yeast proteins, previously translocated and folded in the ER and thereafter denatured by severe heat stress, failed to be refolded to active and secretion-competent structures in the absence of Hsp104 or when an ATP-binding site of Hsp104 was mutated. During recovery at 24 degrees C, the misfolded proteins persisted in the ER, although the secretory apparatus was fully functional. Hsp104 appears to control conformational repair of heat-damaged proteins even beyond the ER membrane.
Collapse
Affiliation(s)
- A L Hänninen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
1278
|
Sil AK, Alam S, Xin P, Ma L, Morgan M, Lebo CM, Woods MP, Hopper JE. The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP. Mol Cell Biol 1999; 19:7828-40. [PMID: 10523671 PMCID: PMC84853 DOI: 10.1128/mcb.19.11.7828] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gal3, Gal80, and Gal4 proteins of Saccharomyces cerevisiae comprise a signal transducer that governs the galactose-inducible Gal4p-mediated transcription activation of GAL regulon genes. In the absence of galactose, Gal80p binds to Gal4p and prohibits Gal4p from activating transcription, whereas in the presence of galactose, Gal3p binds to Gal80p and relieves its inhibition of Gal4p. We have found that immunoprecipitation of full-length Gal4p from yeast extracts coprecipitates less Gal80p in the presence than in the absence of Gal3p, galactose, and ATP. We have also found that retention of Gal80p by GSTG4AD (amino acids [aa] 768 to 881) is markedly reduced in the presence compared to the absence of Gal3p, galactose, and ATP. Consistent with these in vitro results, an in vivo two-hybrid genetic interaction between Gal80p and Gal4p (aa 768 to 881) was shown to be weaker in the presence than in the absence of Gal3p and galactose. These compiled results indicate that the binding of Gal3p to Gal80p results in destabilization of a Gal80p-Gal4p complex. The destabilization was markedly higher for complexes consisting of G4AD (aa 768 to 881) than for full-length Gal4p, suggesting that Gal80p relocated to a second site on full-length Gal4p. Congruent with the idea of a second site, we discovered a two-hybrid genetic interaction involving Gal80p and the region of Gal4p encompassing aa 225 to 797, a region of Gal4p linearly remote from the previously recognized Gal80p binding peptide within Gal4p aa 768 to 881.
Collapse
Affiliation(s)
- A K Sil
- Department of Biochemistry, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
1279
|
Gardner RG, Hampton RY. A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes. J Biol Chem 1999; 274:31671-8. [PMID: 10531376 DOI: 10.1074/jbc.274.44.31671] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sterol synthesis by the mevalonate pathway is modulated, in part, through feedback-regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). In both mammals and yeast, a non-sterol isoprenoid signal positively regulates the rate of HMGR degradation. To define more precisely the molecule that serves as the source of this signal, we have conducted both pharmacological and genetic manipulations of the mevalonate pathway in yeast. We now demonstrate that farnesyl diphosphate (FPP) is the source of the positive signal for Hmg2p degradation in yeast. This FPP-derived signal does not act by altering the endoplasmic reticulum degradation machinery in general. Rather, the FPP-derived signal specifically modulates Hmg2p stability. In mammalian cells, an FPP-derived molecule also serves as a positive signal for HMGR degradation. Thus, both yeast and mammalian cells employ the same strategy for regulation of HMGR degradation, perhaps by conserved molecular processes.
Collapse
Affiliation(s)
- R G Gardner
- Department of Biology, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
1280
|
Ansari K, Martin S, Farkasovsky M, Ehbrecht IM, Küntzel H. Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae. J Biol Chem 1999; 274:30052-8. [PMID: 10514491 DOI: 10.1074/jbc.274.42.30052] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hormone receptor-like protein Gpr1p physically interacts with phosphatidylinositol-specific phospholipase C (Plc1p) and with the Galpha protein Gpa2p, as shown by two-hybrid assays and co-immune precipitation of epitope-tagged proteins. Plc1p binds to Gpr1p in either the presence or absence of Gpa2, whereas the Gpr1p/Gpa2p association depends on the presence of Plc1p. Genetic interactions between the null mutations plc1Delta, gpr1Delta, gpa2Delta, and ras2Delta suggest that Plc1p acts together with Gpr1p and Gpa2p in a growth control pathway operating in parallel to the Ras2p function. Diploid cells lacking Gpr1p, Plc1p, or Gpa2p fail to form pseudohyphae upon nitrogen depletion, and the filamentation defect of gpr1Delta and plc1Delta strains is rescued by activating a mitogen-activated protein kinase pathway via STE11-4 or by activating a cAMP pathway via overexpressed Tpk2p. Plc1p is also required for efficient expression of the FG(TyA)::lacZ reporter gene under nitrogen depletion. In conclusion, we have identified two physically interacting proteins, Gpr1p and Plc1p, as novel components of a nitrogen signaling pathway controlling the developmental switch from yeast-like to pseudohyphal growth. Our data suggest that phospholipase C modulates the interaction of the putative nutrient sensor Gpr1p with the Galpha protein Gpa2p as a downstream effector of filamentation control.
Collapse
Affiliation(s)
- K Ansari
- Max-Planck-Institut für Experimentelle Medizin, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|
1281
|
Pei Y, Ho CK, Schwer B, Shuman S. Mutational analyses of yeast RNA triphosphatases highlight a common mechanism of metal-dependent NTP hydrolysis and a means of targeting enzymes to pre-mRNAs in vivo by fusion to the guanylyltransferase component of the capping apparatus. J Biol Chem 1999; 274:28865-74. [PMID: 10506129 DOI: 10.1074/jbc.274.41.28865] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Cet1p is the prototype of a family of metal-dependent RNA 5'-triphosphatases/NTPases encoded by fungi and DNA viruses; the family is defined by conserved sequence motifs A, B, and C. We tested the effects of 12 alanine substitutions and 16 conservative modifications at 18 positions of the motifs. Eight residues were identified as important for triphosphatase activity. These were Glu-305, Glu-307, and Phe-310 in motif A (IELEMKF); Arg-454 and Lys-456 in motif B (RTK); Glu-492, Glu-494, and Glu-496 in motif C (EVELE). Four acidic residues, Glu-305, Glu-307, Glu-494, and Glu-496, may comprise the metal-binding site(s), insofar as their replacement by glutamine inactivated Cet1p. E492Q retained triphosphatase activity. Basic residues Arg-454 and Lys-456 in motif B are implicated in binding to the 5'-triphosphate. Changing Arg-454 to alanine or glutamine resulted in a 30-fold increase in the K(m) for ATP, whereas substitution with lysine increased K(m) 6-fold. Changing Lys-456 to alanine or glutamine increased K(m) an order of magnitude; ATP binding was restored when arginine was introduced. Alanine in lieu of Phe-310 inactivated Cet1p, whereas Tyr or Leu restored function. Alanine mutations at aliphatic residues Leu-306, Val-493, and Leu-495 resulted in thermal instability in vivo and in vitro. A second S. cerevisiae RNA triphosphatase/NTPase (named Cth1p) containing motifs A, B, and C was identified and characterized. Cth1p activity was abolished by E87A and E89A mutations in motif A. Cth1p is nonessential for yeast growth and, by itself, cannot fulfill the essential role played by Cet1p in vivo. Yet, fusion of Cth1p in cis to the guanylyltransferase domain of mammalian capping enzyme allowed Cth1p to complement growth of cet1Delta yeast cells. This finding illustrates that mammalian guanylyltransferase can be used as a vehicle to deliver enzymes to nascent pre-mRNAs in vivo, most likely through its binding to the phosphorylated CTD of RNA polymerase II.
Collapse
Affiliation(s)
- Y Pei
- Molecular Biology Program, Sloan-Kettering Institute, New York, USA
| | | | | | | |
Collapse
|
1282
|
Vandenbol M, Portetelle D. Disruption of six ORFs on Saccharomyces cerevisiae chromosome X: the YJL069c gene of unknown function is essential to cell viability. Yeast 1999; 15:1411-7. [PMID: 10509023 DOI: 10.1002/(sici)1097-0061(19990930)15:13<1411::aid-yea463>3.0.co;2-m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The short flanking homology PCR strategy (Wach et al., 1994) was used to disrupt six open reading frames (ORFs) on chromosome X of diploid strains (FY1679 and W303) of the yeast Saccharomyces cerevisiae. Two of the six ORFs analysed (YJL069c and YJL066c) display no similarity to known sequences. Three others (YJL065c, YJL068c, and YJL070c) are similar to those respectively encoding the DNA polymerase epsilon subunit c, human esterase D and rat AMP deaminase 1. YJL071w has recently been identified as the ARG2 gene coding for acetylglutamate synthase. Inactivation of the YJL069c gene proved lethal and the yjl071w haploid disruptants were auxotrophic for arginine. For the four other gene inactivations, neither the heterozygous deletion diploids nor the corresponding haploid deletion mutants displayed any special phenotype when grown on rich glycerol or glucose medium or on synthetic minimal medium at three different temperatures, or on media containing compounds interfering with nucleic acid or protein synthesis. Mating and sporulation efficiencies were the same for the viable disruptants as for wild-type cells. The six kanMX4 disruption cassettes were cloned into the pUG7 vector and each of the cognate wild-type genes was inserted into the pRS416 centromeric plasmid. All strains and plasmids have been deposited in the EUROFAN collection (EUROSCARF, K. -D. Entian, Frankfurt, Germany).
Collapse
Affiliation(s)
- M Vandenbol
- Unité de Microbiologie, Faculté Universitaire des Sciences Agronomiques de Gembloux, 6 Avenue Maréchal Juin, B-5030 Gembloux, Belgium.
| | | |
Collapse
|
1283
|
Andaluz E, Ciudad A, Rubio Coque J, Calderone R, Larriba G. Cell cycle regulation of a DNA ligase-encoding gene (CaLIG4) from Candida albicans. Yeast 1999; 15:1199-210. [PMID: 10487922 DOI: 10.1002/(sici)1097-0061(19990915)15:12<1199::aid-yea447>3.0.co;2-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A DNA ligase (CaLIG4) (formerly CaCDC9) of the human pathogen, Candida albicans, has been characterized. The encoded protein displayed a significant similarity to ligase IV from both Saccharomyces cerevisiae and humans. In addition, whereas CaLIG4 did not complement a S. cerevisiae cdc9 mutant, it re-established non-homologous end-joining of DNA double-strand breaks in a S. cerevisiae lig4 deletant. CaLIG4 was assigned to chromosome 2. Several cis-acting effector sequences were identified in the promoter region of the CaLIG4, including the DNA sequence element ACGNG, which is required for periodic transcription of several DNA-replicating genes in S. cerevisiae. The level of transcription of CaLIG4 in C. albicans varies during the yeast cell cycle. Newly formed cells contained basal levels of transcript which increased to a maximum level when cells were in late G(1). Thereafter, levels of transcript dropped as DNA replication was initiated. Our results suggest that CaLIG4 may perform an important role during the mitotic cycle of C. albicans.
Collapse
Affiliation(s)
- E Andaluz
- Departamento de Microbiología, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz, Spain
| | | | | | | | | |
Collapse
|
1284
|
Muda M, Manning ER, Orth K, Dixon JE. Identification of the human YVH1 protein-tyrosine phosphatase orthologue reveals a novel zinc binding domain essential for in vivo function. J Biol Chem 1999; 274:23991-5. [PMID: 10446167 DOI: 10.1074/jbc.274.34.23991] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A human orthologue of the Saccharomyces cerevisiae YVH1 protein-tyrosine phosphatase is able to rescue the slow growth defect caused by the disruption of the S. cerevisiae YVH1 gene. The human YVH1 gene is located on chromosome 1q21-q22, which falls in a region amplified in human liposarcomas. The evolutionary conserved COOH-terminal noncatalytic domain of human YVH1 is essential for in vivo function. The cysteine-rich COOH-terminal domain is capable of coordinating 2 mol of zinc/mol of protein, defining it as a novel zinc finger domain. Human YVH1 is the first protein-tyrosine phosphatase that contains and is regulated by a zinc finger domain.
Collapse
Affiliation(s)
- M Muda
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
1285
|
Wittke S, Lewke N, Müller S, Johnsson N. Probing the molecular environment of membrane proteins in vivo. Mol Biol Cell 1999; 10:2519-30. [PMID: 10436009 PMCID: PMC25484 DOI: 10.1091/mbc.10.8.2519] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The split-Ubiquitin (split-Ub) technique was used to map the molecular environment of a membrane protein in vivo. Cub, the C-terminal half of Ub, was attached to Sec63p, and Nub, the N-terminal half of Ub, was attached to a selection of differently localized proteins of the yeast Saccharomyces cerevisiae. The efficiency of the Nub and Cub reassembly to the quasi-native Ub reflects the proximity between Sec63-Cub and the Nub-labeled proteins. By using a modified Ura3p as the reporter that is released from Cub, the local concentration between Sec63-Cub-RUra3p and the different Nub-constructs could be translated into the growth rate of yeast cells on media lacking uracil. We show that Sec63p interacts with Sec62p and Sec61p in vivo. Ssh1p is more distant to Sec63p than its close sequence homologue Sec61p. Employing Nub- and Cub-labeled versions of Ste14p, an enzyme of the protein isoprenylation pathway, we conclude that Ste14p is a membrane protein of the ER. Using Sec63p as a reference, a gradient of local concentrations of different t- and v-SNARES could be visualized in the living cell. The RUra3p reporter should further allow the selection of new binding partners of Sec63p and the selection of molecules or cellular conditions that interfere with the binding between Sec63p and one of its known partners.
Collapse
Affiliation(s)
- S Wittke
- Max-Delbrück-Laboratorium, D-50829 Köln, Germany
| | | | | | | |
Collapse
|
1286
|
Fujita A, Tonouchi A, Hiroko T, Inose F, Nagashima T, Satoh R, Tanaka S. Hsl7p, a negative regulator of Ste20p protein kinase in the Saccharomyces cerevisiae filamentous growth-signaling pathway. Proc Natl Acad Sci U S A 1999; 96:8522-7. [PMID: 10411908 PMCID: PMC17549 DOI: 10.1073/pnas.96.15.8522] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the budding yeast, Saccharomyces cerevisiae, protein kinases Ste20p (p21(Cdc42p/Rac)-activated kinase), Ste11p [mitogen-activated protein kinase (MAPK) kinase kinase], Ste7p (MAPK kinase), Fus3p, and Kss1p (MAPKs) are utilized for haploid mating, invasive growth, and diploid filamentous growth. Members of the highly conserved Ste20p/p65(PAK) protein kinase family regulate MAPK signal transduction pathways from yeast to man. We describe here a potent negative regulator of Ste20p in the yeast filamentous growth-signaling pathway. We identified a mutant, hsl7, that exhibits filamentous growth on rich medium. Hsl7p belongs to a highly conserved protein family in eukaryotes. Hsl7p associates with the noncatalytic region within the amino-terminal half of Ste20p as well as Cdc42p. Deletions of HSL7 in haploid and diploid strains led to cell elongation and enhancement of both haploid invasive growth and diploid pseudohyphal growth. However, deletions of STE20 in haploid and diploid greatly diminished these hsl7-associated phenotypes. In addition, overexpression of HSL7 inhibited pseudohyphal growth. Thus, Hsl7p may inhibit the activity of Ste20p in the S. cerevisiae filamentous growth-signaling pathway. Our genetic analyses suggest the possibility that Cdc42p and Hsl7p compete for binding to Ste20p for pseudohyphal development when starved for nitrogen.
Collapse
Affiliation(s)
- A Fujita
- National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, 1-1 Higashi, Tsukuba 305-8566, Japan.
| | | | | | | | | | | | | |
Collapse
|
1287
|
Abstract
Twelve different ORFs have been deleted from the right arm of Saccharomyces cerevisiae chromosome II; namely YBR193c, YBR194w, YBR197c, YBR198c, YBR201w, YBR203w, YBR207w, YBR209w, YBR210w, YBR211c, YBR217w and YBR228w. Tetrad analysis of heterozygous deletant strains revealed that YBR193c, YBR198c and YBR211c are essential genes for vegetative growth. No effects were detected in any of the haploid deletion mutants for the rest of the ORFs with respect to growth, gross morphology or mating.
Collapse
Affiliation(s)
- S Rodríguez-Navarro
- Departament de Bioquímica i Biología Molecular, Facultat de Ciències Biològiques, Universitat de València, Spain.
| | | | | |
Collapse
|
1288
|
Hegemann JH, Klein S, Heck S, Güldener U, Niedenthal RK, Fleig U. A fast method to diagnose chromosome and plasmid loss in Saccharomyces cerevisiae strains. Yeast 1999; 15:1009-19. [PMID: 10407280 DOI: 10.1002/(sici)1097-0061(199907)15:10b<1009::aid-yea396>3.0.co;2-i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have developed a simple, fast and reliable method for the analysis of genetic stability in budding yeast strains. The assay relies on our previous finding that cells expressing the green fluorescent protein (GFP) can be detected and counted by flow cytometric analysis (FACS) (Niedenthal et al., 1996). Expression of a gfp-carrying CEN-plasmid in a wild-type strain resulted in the emission of strong fluorescence from 80% of the cell population. Strong fluorescence and presence of the plasmid, determined by the presence of the URA3 genetic marker, was strictly correlated. Expression of this plasmid in 266 yeast strains, each carrying a complete deletion of a novel, non-essential gene identified in the S. cerevisiae sequencing project, pinpointed 12 strains with an increased level of mitotic plasmid loss. Finally we have shown that measurement of mitotic loss of artificial chromosome fragments equipped with the gfp expression cassette can be performed quantitatively using FACS.
Collapse
Affiliation(s)
- J H Hegemann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 107, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
1289
|
Abstract
We have constructed S. cerevisiae strains carrying genomic deletions of six ORFs from the left arm of chromosome II (YBL018c, YBL019w, YBL024w, YBL042c, YBL043w and YBL046w) in both FY1679 and W303 backgrounds. We have found that YBL018c is an essential gene in yeast, whereas the other five genes are non-essential. We have developed plasmids carrying deletion cassettes that can be used to delete any of the six genes in S. cerevisiae by transforming to G418-resistance, as well as centromeric plasmids containing the cognate genes.
Collapse
Affiliation(s)
- F Malagón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla 41012 Sevilla, Spain
| | | |
Collapse
|
1290
|
Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 1999; 17:676-82. [PMID: 10404161 DOI: 10.1038/10890] [Citation(s) in RCA: 1545] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a rapid, sensitive process for comprehensively identifying proteins in macromolecular complexes that uses multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) to separate and fragment peptides. The SEQUEST algorithm, relying upon translated genomic sequences, infers amino acid sequences from the fragment ions. The method was applied to the Saccharomyces cerevisiae ribosome leading to the identification of a novel protein component of the yeast and human 40S subunit. By offering the ability to identify >100 proteins in a single run, this process enables components in even the largest macromolecular complexes to be analyzed comprehensively.
Collapse
Affiliation(s)
- A J Link
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
1291
|
Abstract
We report the disruption and functional analysis of six open reading frames (ORFs) from chromosome XV, namely YOL155c, YOL154w, YOL119c, YOL118c, YOR301w and YOR306c, in FY1679 and CEN.PK2 backgrounds. We constructed replacement cassettes and cloned each ORF into the pRS416 centromeric plasmid. No obvious phenotype was observed for the corresponding deleted strains with respect to growth, mating or sporulation. YOL155c encodes a protein with a secretion signal and putative GPI-anchor recognition site and is possibly a cell wall protein, although its deletion did not present morphogenetic defects under any of the conditions tested. Although YOL119c and YOR306c are members of the monocarboxylate permease family, the growth of the double disruptant in acetate, lactate and pyruvate was similar to that of the parental strains.
Collapse
Affiliation(s)
- M J Lafuente
- Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C., E-28029 Madrid, Spain
| | | |
Collapse
|
1292
|
Zúñiga S, Boskovic J, Jiménez A, Ballesta JP, Remacha M. Disruption of six Saccharomyces cerevisiae novel genes and phenotypic analysis of the deletants. Yeast 1999; 15:945-53. [PMID: 10407274 DOI: 10.1002/(sici)1097-0061(199907)15:10b<945::aid-yea394>3.0.co;2-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As a part of the EUROFAN programme, six open reading frames from Saccharomyces cerevisiae (YNL083w, YNL086w, YNL087w, YNL097c, YDL100c and YOR086c) were disrupted in two genetic backgrounds, FY1679 and W303. Individual deletions in diploid strains and tetrad analysis of heterozygous deletants revealed that none of them is essential. Basic phenotypic analysis did not reveal any significant difference between the parental and mutant strains. Although YNL087w and YOR086c are 55% identical, the double disruptant also behaves the same as the parental cells. Ydl100p seems to be involved in metal detoxification, the phenotype of the null mutants being enhanced when the assays are performed at 37 degrees C.
Collapse
Affiliation(s)
- S Zúñiga
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Cantoblanco, 28049-Madrid, Spain
| | | | | | | | | |
Collapse
|
1293
|
|
1294
|
Mrsa V, Tanner W. Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast 1999; 15:813-20. [PMID: 10407261 DOI: 10.1002/(sici)1097-0061(199907)15:10a<813::aid-yea421>3.0.co;2-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae cell wall contains more than 20 identified mannoproteins. Some of them can be released from the wall by hot SDS/mercaptoethanol treatment and are, therefore, considered as disulphide-linked or non-covalently attached to wall structural components. A number of covalently linked cell wall proteins are released after SDS extraction. They can be divided into these extractable by glucanases and those which can be released with 30 mM NaOH. The SDS-extractable proteins either possess enzymatic activities or are homologues of enzymes, mainly glucanases. Nothing is known, however, about the function of covalently linked proteins. In order to investigate the role of NaOH-extractable cell wall proteins, genes encoding all four identified members of this family of Pir proteins, CCW5, CCW6, CCW7 and CCW8, were disrupted and the phenotype of the mutants obtained was examined. They grew somewhat more slowly, were larger and irregularly shaped, and showed pronounced susceptibility to cell wall synthesis inhibitors like Calcofluor white and Congo red. In addition, the triple and the quadruple deletants had a decreased mating ability. All these properties were more obvious the more of these genes were disrupted, indicating that probably all members of this protein family are at least functionally equivalent in the cell wall.
Collapse
Affiliation(s)
- V Mrsa
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Regensburg, Germany
| | | |
Collapse
|
1295
|
Kucharczyk R, Gromadka R, Migdalski A, Slonimski PP, Rytka J. Disruption of six novel yeast genes located on chromosome II reveals one gene essential for vegetative growth and two required for sporulation and conferring hypersensitivity to various chemicals. Yeast 1999; 15:987-1000. [PMID: 10407278 DOI: 10.1002/(sici)1097-0061(199907)15:10b<987::aid-yea403>3.0.co;2-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A PCR-based method for targeted gene deletion by kanMX4 module was used to construct complete deletion mutants of six individual open reading frames from chromosome II: YBR128c, YBR131w, YBR133c, YBR137w, YBR138c and YBR142w. The ORFs were deleted in two diploid strains, FY1679 and W303. Sporulation and tetrad analysis revealed that only one ORF, YBR142w, encoding a putative DEAD-box RNA helicase, is an essential gene. A systematic phenotypic analysis of the deleted mutants was carried out. Homozygous diploids ybr128cDelta/ybr128cDelta and ybr131wDelta/ybr131wDelta did not sporulate. The ybr131cDelta mutant whether haploid or homozygous diploid, in addition displayed an increased sensitivity to Caffeine, Calcium and Zinc, and to emphasize this phenotype we named the gene CCZ1. ORF YBR133c was independently reported by others as Histone Synthetic Lethal (HSL7) (Ma et al., 1996). We found that the aberrant morphology characteristic for ybr133cDelta (hsl7Delta) cells was observed in W303 but not in FY1679 genetic background. Furthermore, we observed that deletion of YBR133c had a pleiotropic effect under a wide range of conditions, including increased sensitivity to calcium, caffeine, calcofluor white, vanadate and verapamil. The effects of the deletion were reinforced in W303 background. We found no phenotypic effects of the two remaining deletions, ybr137wDelta and ybr138cDelta.
Collapse
Affiliation(s)
- R Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Science, 5a Pawińskiego, Warsaw, Poland
| | | | | | | | | |
Collapse
|
1296
|
Plourde-Owobi L, Durner S, Parrou JL, Wieczorke R, Goma G, François J. AGT1, encoding an alpha-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae. J Bacteriol 1999; 181:3830-2. [PMID: 10368160 PMCID: PMC93863 DOI: 10.1128/jb.181.12.3830-3832.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trehalose content in Saccharomyces cerevisiae can be significantly manipulated by including trehalose at an appropriate level in the growth medium. Its uptake is largely dependent on the expression of AGT1, which encodes an alpha-glucoside transporter. The trehalose found in a tps1 mutant of trehalose synthase may therefore largely reflect its uptake from the enriched medium that was employed.
Collapse
Affiliation(s)
- L Plourde-Owobi
- Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504, LA INRA, Institut National des Sciences Appliquées, 31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
1297
|
Jacoby JJ, Kirchrath L, Gengenbacher U, Heinisch JJ. Characterization of KLBCK1, encoding a MAP kinase kinase kinase of Kluyveromyces lactis. J Mol Biol 1999; 288:337-52. [PMID: 10329146 DOI: 10.1006/jmbi.1999.2682] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cellular integrity and response to hypoosmotic conditions in the yeast Saccharomyces cerevisiae are ensured by a MAP kinase signal transduction pathway mediated by the yeast homolog of mammalian protein kinase C. Bck1p functions as the MAP kinase kinase kinase of this pathway. Here we report on the cloning and analysis of the BCK1 homolog from the milk yeast Kluyveromyces lactis (KlBCK1). The deduced protein sequences display three highly conserved domains with the serine/threonine kinase domain containing 89 % identical amino acid residues. Interestingly, a region identified in KlBck1p as a putative SAM domain, mediating protein-protein interactions, is also conserved in ScBck1p. Yet, two-hybrid analyses indicate that this region may not be involved in dimerization of KlBck1p in contrast to its S. cerevisiae counterpart. Expression of KlBCK1 fully complements the defects in a Scbck1 null mutant and is capable of activating the pathway as indicated by a reporter system based on the transcription factor Rlm1p. However, deletion from the haploid K. lactis genome does not result in a loss of cellular integrity under a variety of conditions tested. Thus, despite the functional conservation in this component of the MAP kinase pathway in both yeast, cellular integrity in K. lactis may depend at least in part on different signalling mechanisms when compared with S. cerevisiae.
Collapse
Affiliation(s)
- J J Jacoby
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr.1 Geb.: 26.12, Düsseldorf, D-40225, FRG
| | | | | | | |
Collapse
|
1298
|
Magrath C, Hyman LE. A mutation in GRS1, a glycyl-tRNA synthetase, affects 3'-end formation in Saccharomyces cerevisiae. Genetics 1999; 152:129-41. [PMID: 10224248 PMCID: PMC1460614 DOI: 10.1093/genetics/152.1.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
3'-end formation is a complex and incompletely understood process involving both cis-acting and trans-acting factors. As part of an effort to examine the mechanisms of transcription termination by RNA polymerase II, a mutant hunt for strains defective in 3'-end formation was conducted. Following random mutagenesis, a temperature-sensitive strain exhibiting several phenotypes consistent with a role in transcription termination was isolated. First, readthrough of a terminator increases significantly in the mutant strain. Accordingly, RNA analysis indicates a decrease in the level of terminated transcripts, both in vivo and in vitro. Moreover, a plasmid stability assay in which high levels of readthrough lead to high levels of plasmid loss and transcription run-on analysis also demonstrate defective termination of transcription. Examination of polyadenylation and cleavage by the mutant strain indicates these processes are not affected. These results represent the first example of a transcription termination factor in Saccharomyces cerevisiae that affects transcription termination independent of 3'-end processing of mRNA. Complementation studies identified GRS1, an aminoacyl-tRNA synthetase, as the complementing gene. Sequence analysis of grs1-1 in the mutant strain revealed that nucleotides 1656 and 1657 were both C to T transitions, resulting in a single amino acid change of proline to phenylalanine. Further studies revealed GRS1 is essential, and the grs1-1 allele confers the temperature-sensitive growth defect associated with the mutant strain. Finally, we observed structures with some similarity to tRNA molecules within the 3'-end of various yeast genes. On the basis of our results, we suggest Grs1p is a transcription termination factor that may interact with the 3'-end of pre-mRNA to promote 3'-end formation.
Collapse
Affiliation(s)
- C Magrath
- Interdisciplinary Program in Molecular and Cellular Biology, Tulane University, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
1299
|
Dueñas E, Vazquez de Aldana CR, de Cos T, Castro C, Henar Valdivieso M. Generation of null alleles for the functional analysis of six genes from the right arm of Saccharomyces cerevisiae chromosome II. Yeast 1999; 15:615-23. [PMID: 10341424 DOI: 10.1002/(sici)1097-0061(199905)15:7<615::aid-yea385>3.0.co;2-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using PCR-ligated long flanking homology cassettes, null alleles of six open reading frames (ORFs) from chromosome II have been created in Saccharomyces cerevisiae. Deletants were constructed in three genetic backgrounds: FY1679, W303 and CEN.PK2. Tetrad analysis of heterozygous deletants revealed that none of the ORFs is essential for vegetative growth. Basic phenotypic analysis of haploid deletants showed that deletion of the YBR283c ORF causes a slight growth defect at 30 degrees C and 37 degrees C on glycerol-complete, glucose-complete, and glucose-minimal media only in the FY1679 and W303 backgrounds. Transformation of these deletants with the corresponding cognate gene in a centromeric plasmid complements the defects. Deletion of the YBR287w ORF leads to poor growth on glucose-minimal medium at 15 degrees C in the FY 1679 background. None of the six ORFs seems to be involved in mating or sporulation.
Collapse
Affiliation(s)
- E Dueñas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
| | | | | | | | | |
Collapse
|
1300
|
Bahr A, Hankeln T, Fiedler T, Hegemann J, Schmidt ER. Molecular analysis of METTL1, a novel human methyltransferase-like gene with a high degree of phylogenetic conservation. Genomics 1999; 57:424-8. [PMID: 10329009 DOI: 10.1006/geno.1999.5780] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel human gene, METTL1, has been identified by its sequence similarity to the yeast ORF YDL201w. The human cDNA and the genomic structure of METTL1 have been analyzed. The transcript contains 1292 nucleotides and codes for a protein of 276 amino acids. The gene consists of seven exons and extends over 3.5 kb. The six introns vary in length between 93 and 1137 nucleotides. The gene is transcribed in a large variety of organs and tissues and shows differential splicing of two exons, giving rise to at least three different transcripts. The METTL1 gene was assigned to chromosome 12q13 by radiation hybrid mapping. The METTL1 gene product shows high sequence similarities to putative proteins from mouse, Drosophila melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, and yeast (39.8% identity between all six species). Computer analyses of the deduced protein sequence reveal two highly conserved amino acid motifs, one of which is typical for methyltransferases. Both motifs are also present in hypothetical proteins from eubacteria. Disruption of the homologous yeast ORF YDL201w shows that the gene is at least not essential for vegetative growth in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- A Bahr
- Gentechnologische Sicherheitsforschung und Beratung, Johannes Gutenberg-Universität Mainz, Mainz, D-55099, Germany
| | | | | | | | | |
Collapse
|