1351
|
Shrotri M, van Schalkwyk MCI, Post N, Eddy D, Huntley C, Leeman D, Rigby S, Williams SV, Bermingham WH, Kellam P, Maher J, Shields AM, Amirthalingam G, Peacock SJ, Ismail SA. T cell response to SARS-CoV-2 infection in humans: A systematic review. PLoS One 2021; 16:e0245532. [PMID: 33493185 PMCID: PMC7833159 DOI: 10.1371/journal.pone.0245532] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Understanding the T cell response to SARS-CoV-2 is critical to vaccine development, epidemiological surveillance and disease control strategies. This systematic review critically evaluates and synthesises the relevant peer-reviewed and pre-print literature published from 01/01/2020-26/06/2020. METHODS For this systematic review, keyword-structured literature searches were carried out in MEDLINE, Embase and COVID-19 Primer. Papers were independently screened by two researchers, with arbitration of disagreements by a third researcher. Data were independently extracted into a pre-designed Excel template and studies critically appraised using a modified version of the MetaQAT tool, with resolution of disagreements by consensus. Findings were narratively synthesised. RESULTS 61 articles were included. 55 (90%) studies used observational designs, 50 (82%) involved hospitalised patients with higher acuity illness, and the majority had important limitations. Symptomatic adult COVID-19 cases consistently show peripheral T cell lymphopenia, which positively correlates with increased disease severity, duration of RNA positivity, and non-survival; while asymptomatic and paediatric cases display preserved counts. People with severe or critical disease generally develop more robust, virus-specific T cell responses. T cell memory and effector function has been demonstrated against multiple viral epitopes, and, cross-reactive T cell responses have been demonstrated in unexposed and uninfected adults, but the significance for protection and susceptibility, respectively, remains unclear. CONCLUSION A complex pattern of T cell response to SARS-CoV-2 infection has been demonstrated, but inferences regarding population level immunity are hampered by significant methodological limitations and heterogeneity between studies, as well as a striking lack of research in asymptomatic or pauci-symptomatic individuals. In contrast to antibody responses, population-level surveillance of the T cell response is unlikely to be feasible in the near term. Focused evaluation in specific sub-groups, including vaccine recipients, should be prioritised.
Collapse
Affiliation(s)
- Madhumita Shrotri
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom
- National Infection Service, Public Health England, London, United Kingdom
| | - May C. I. van Schalkwyk
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nathan Post
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Danielle Eddy
- National Infection Service, Public Health England, London, United Kingdom
| | - Catherine Huntley
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David Leeman
- National Infection Service, Public Health England, London, United Kingdom
| | - Samuel Rigby
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah V. Williams
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - William H. Bermingham
- Department of Clinical Immunology, University Hospitals Birmingham, Birmingham, United Kingdom
| | - Paul Kellam
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - John Maher
- School of Cancer and Pharmaceutical Studies, King’s College London, London, United Kingdom
- Department of Immunology, Eastbourne Hospital, Eastbourne, United Kingdom
| | - Adrian M. Shields
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Sharon J. Peacock
- National Infection Service, Public Health England, London, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sharif A. Ismail
- National Infection Service, Public Health England, London, United Kingdom
- Department of Primary Care and Public Health, Imperial College London, London, United Kingdom
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
1352
|
Szeto C, Chatzileontiadou DS, Nguyen AT, Sloane H, Lobos CA, Jayasinghe D, Halim H, Smith C, Riboldi-Tunnicliffe A, Grant EJ, Gras S. The presentation of SARS-CoV-2 peptides by the common HLA-A ∗02:01 molecule. iScience 2021; 24:102096. [PMID: 33521593 PMCID: PMC7825995 DOI: 10.1016/j.isci.2021.102096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cells are crucial for anti-viral immunity; however, understanding T cell responses requires the identification of epitopes presented by human leukocyte antigens (HLA). To date, few SARS-CoV-2-specific CD8+ T cell epitopes have been described. Internal viral proteins are typically more conserved than surface proteins and are often the target of CD8+ T cells. Therefore, we have characterized eight peptides derived from the internal SARS-CoV-2 nucleocapsid protein predicted to bind HLA-A∗02:01, the most common HLA molecule in the global population. We determined not all peptides could form a complex with HLA-A∗02:01, and the six crystal structures determined revealed that some peptides adopted a mobile conformation. We therefore provide a molecular understanding of SARS-CoV-2 CD8+ T cell epitopes. Furthermore, we show that there is limited pre-existing CD8+ T cell response toward these epitopes in unexposed individuals. Together, these data show that SARS-CoV-2 nucleocapsid might not contain potent epitopes restricted to HLA-A∗02:01. HLA-A∗02:01 individuals have limited pre-existing immunity to SARS-CoV-2 nucleocapsid High-resolution crystal structures of HLA-A∗02:01 presenting SARS-CoV-2 peptides Structural analysis of pHLA shows stability influences peptide immunogenicity
Collapse
Affiliation(s)
- Christopher Szeto
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Demetra S.M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Christian A. Lobos
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Hanim Halim
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Corey Smith
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Corresponding author
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
- Corresponding author
| |
Collapse
|
1353
|
Tan AT, Linster M, Tan CW, Le Bert N, Chia WN, Kunasegaran K, Zhuang Y, Tham CYL, Chia A, Smith GJD, Young B, Kalimuddin S, Low JGH, Lye D, Wang LF, Bertoletti A. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep 2021; 34:108728. [PMID: 33516277 PMCID: PMC7826084 DOI: 10.1016/j.celrep.2021.108728] [Citation(s) in RCA: 550] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023] Open
Abstract
Virus-specific humoral and cellular immunity act synergistically to protect the host from viral infection. We interrogate the dynamic changes of virological and immunological parameters in 12 patients with symptomatic acute SARS-CoV-2 infection from disease onset to convalescence or death. We quantify SARS-CoV-2 viral RNA in the respiratory tract in parallel with antibodies and circulating T cells specific for various structural (nucleoprotein [NP], membrane [M], ORF3a, and spike) and non-structural (ORF7/8, NSP7, and NSP13) proteins. Although rapid induction and quantity of humoral responses associate with an increase in disease severity, early induction of interferon (IFN)-γ-secreting SARS-CoV-2-specific T cells is present in patients with mild disease and accelerated viral clearance. These findings provide support for the prognostic value of early functional SARS-CoV-2-specific T cells with important implications in vaccine design and immune monitoring.
Collapse
Affiliation(s)
- Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Martin Linster
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Kamini Kunasegaran
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Yan Zhuang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Christine Y L Tham
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Adeline Chia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Barnaby Young
- National Centre for Infectious Diseases, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore; Lee Kong Cian School of Medicine, Singapore, Singapore
| | - Shirin Kalimuddin
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Jenny G H Low
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - David Lye
- National Centre for Infectious Diseases, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore; Lee Kong Cian School of Medicine, Singapore, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore; Singapore Immunology Network, A(∗)STAR, Singapore, Singapore.
| |
Collapse
|
1354
|
Kusnadi A, Ramírez-Suástegui C, Fajardo V, Chee SJ, Meckiff BJ, Simon H, Pelosi E, Seumois G, Ay F, Vijayanand P, Ottensmeier CH. Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8 + T cells. Sci Immunol 2021; 6:eabe4782. [PMID: 33478949 PMCID: PMC8101257 DOI: 10.1126/sciimmunol.abe4782] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The molecular properties of CD8+ T cells that respond to SARS-CoV-2 infection are not fully known. Here, we report on the single-cell transcriptomes of >80,000 virus-reactive CD8+ T cells, obtained using a modified Antigen-Reactive T cell Enrichment (ARTE) assay, from 39 COVID-19 patients and 10 healthy subjects. COVID-19 patients segregated into two groups based on whether the dominant CD8+ T cell response to SARS-CoV-2 was 'exhausted' or not. SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, SARS-CoV-2-reactive cells in the dominant non-exhausted subset from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival NF-κB signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8+ T cell memory responses in patients with severe COVID-19 illness. CD8+ T cells reactive to influenza and respiratory syncytial virus from healthy subjects displayed polyfunctional features and enhanced glycolysis. Cells with such features were largely absent in SARS-CoV-2-reactive cells from both COVID-19 patients and healthy controls non-exposed to SARS-CoV-2. Overall, our single-cell analysis revealed substantial diversity in the nature of CD8+ T cells responding to SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Serena J Chee
- NIHR and CRUK Southampton Experimental Cancer Medicine Center, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Emanuela Pelosi
- Southampton Specialist Virology Centre, Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA 92037.
- Liverpool Head and Neck Center, Institute of Translational Medicine, University of Liverpool & Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
- Department of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA 92037.
- Liverpool Head and Neck Center, Institute of Translational Medicine, University of Liverpool & Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
1355
|
da Silva Antunes R, Pallikkuth S, Williams E, Yu ED, Mateus J, Quiambao L, Wang E, Rawlings SA, Stadlbauer D, Jiang K, Amanat F, Arnold D, Andrews D, Fuego I, Dan JM, Grifoni A, Weiskopf D, Krammer F, Crotty S, Hoffer ME, Pahwa SG, Sette A. Differential T cell reactivity to seasonal coronaviruses and SARS-CoV-2 in community and health care workers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.12.21249683. [PMID: 33469594 PMCID: PMC7814840 DOI: 10.1101/2021.01.12.21249683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Herein we measured CD4+ T cell responses against common cold corona (CCC) viruses and SARS-CoV-2 in high-risk health care workers (HCW) and community controls. We observed higher levels of CCC reactive T cells in SARS-CoV-2 seronegative HCW compared to community donors, consistent with potential higher occupational exposure of HCW to CCC. We further show that SARS-CoV-2 reactivity of seronegative HCW was higher than community controls and correlation between CCC and SARS-CoV-2 responses is consistent with cross-reactivity and not associated with recent in vivo activation. Surprisingly, CCC reactivity was decreased in SARS-CoV-2 infected HCW, suggesting that exposure to SARS-CoV-2 might interfere with CCC responses, either directly or indirectly. This result was unexpected, but consistently detected in independent cohorts derived from Miami and San Diego.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erin Williams
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Lorenzo Quiambao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaijun Jiang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Arnold
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - David Andrews
- Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Irma Fuego
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Michael E. Hoffer
- Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Savita G. Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
1356
|
Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, Kastritis E, Pavlakis GN, Dimopoulos MA. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci 2021; 28:9. [PMID: 33435929 PMCID: PMC7801873 DOI: 10.1186/s12929-020-00703-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gaining further insights into SARS-CoV-2 routes of infection and the underlying pathobiology of COVID-19 will support the design of rational treatments targeting the life cycle of the virus and/or the adverse effects (e.g., multi-organ collapse) that are triggered by COVID-19-mediated adult respiratory distress syndrome (ARDS) and/or other pathologies. MAIN BODY COVID-19 is a two-phase disease being marked by (phase 1) increased virus transmission and infection rates due to the wide expression of the main infection-related ACE2, TMPRSS2 and CTSB/L human genes in tissues of the respiratory and gastrointestinal tract, as well as by (phase 2) host- and probably sex- and/or age-specific uncontrolled inflammatory immune responses which drive hyper-cytokinemia, aggressive inflammation and (due to broad organotropism of SARS-CoV-2) collateral tissue damage and systemic failure likely because of imbalanced ACE/ANGII/AT1R and ACE2/ANG(1-7)/MASR axes signaling. CONCLUSION Here we discuss SARS-CoV-2 life cycle and a number of approaches aiming to suppress viral infection rates or propagation; increase virus antigen presentation in order to activate a robust and durable adaptive immune response from the host, and/or mitigate the ARDS-related "cytokine storm" and collateral tissue damage that triggers the severe life-threatening complications of COVID-19.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784, Athens, Greece.
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Ourania E Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - George N Pavlakis
- Human Retrovirus Section, National Cancer Institute, Frederick, MD, 21702, USA
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528, Athens, Greece.
| |
Collapse
|
1357
|
Silva J, Lucas C, Sundaram M, Israelow B, Wong P, Klein J, Tokuyama M, Lu P, Venkataraman A, Liu F, Mao T, Oh JE, Park A, Casanovas-Massana A, Vogels CBF, Muenker MC, Zell J, Fournier JB, Campbell M, Chiorazzi M, Fuentes ER, Petrone ME, Kalinich CC, Ott IM, Watkins A, Moore AJ, Nakahata M, Yale IMPACT Team, Farhadian S, Cruz CD, Ko AI, Schulz WL, Ring A, Ma S, Omer S, Wyllie AL, Iwasaki A. Saliva viral load is a dynamic unifying correlate of COVID-19 severity and mortality. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.04.21249236. [PMID: 33442706 PMCID: PMC7805468 DOI: 10.1101/2021.01.04.21249236] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While several clinical and immunological parameters correlate with disease severity and mortality in SARS-CoV-2 infection, work remains in identifying unifying correlates of coronavirus disease 2019 (COVID-19) that can be used to guide clinical practice. Here, we examine saliva and nasopharyngeal (NP) viral load over time and correlate them with patient demographics, and cellular and immune profiling. We found that saliva viral load was significantly higher in those with COVID-19 risk factors; that it correlated with increasing levels of disease severity and showed a superior ability over nasopharyngeal viral load as a predictor of mortality over time (AUC=0.90). A comprehensive analysis of immune factors and cell subsets revealed strong predictors of high and low saliva viral load, which were associated with increased disease severity or better overall outcomes, respectively. Saliva viral load was positively associated with many known COVID-19 inflammatory markers such as IL-6, IL-18, IL-10, and CXCL10, as well as type 1 immune response cytokines. Higher saliva viral loads strongly correlated with the progressive depletion of platelets, lymphocytes, and effector T cell subsets including circulating follicular CD4 T cells (cTfh). Anti-spike (S) and anti-receptor binding domain (RBD) IgG levels were negatively correlated with saliva viral load showing a strong temporal association that could help distinguish severity and mortality in COVID-19. Finally, patients with fatal COVID-19 exhibited higher viral loads, which correlated with the depletion of cTfh cells, and lower production of anti-RBD and anti-S IgG levels. Together these results demonstrated that viral load - as measured by saliva but not nasopharyngeal - is a dynamic unifying correlate of disease presentation, severity, and mortality over time.
Collapse
Affiliation(s)
- Julio Silva
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Sundaram
- ICES, Toronto, ON, Canada
- University of Toronto Dalla Lana School of Public Health, Toronto, ON, Canada
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick Wong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Peiwen Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Arvind Venkataraman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ji Eun Oh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Annsea Park
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - M. Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Joseph Zell
- Department of Medicine, Section of Pulmonary and Critical Care Medicine; Yale University School of Medicine, New Haven, CT, USA
| | - John B. Fournier
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Melissa Campbell
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Chiorazzi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Edwin Ruiz Fuentes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mary E Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chaney C. Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Isabel M. Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Annie Watkins
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Adam J. Moore
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Maura Nakahata
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Shelli Farhadian
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Charles Dela Cruz
- Department of Medicine, Section of Pulmonary and Critical Care Medicine; Yale University School of Medicine, New Haven, CT, USA
| | - Albert I. Ko
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Wade L. Schulz
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
| | - Aaron Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, Connecticut, USA
| | - Saad Omer
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
1358
|
Lee WT, Girardin RC, Dupuis AP, Kulas KE, Payne AF, Wong SJ, Arinsburg S, Nguyen FT, Mendu DR, Firpo-Betancourt A, Jhang J, Wajnberg A, Krammer F, Cordon-Cardo C, Amler S, Montecalvo M, Hutton B, Taylor J, McDonough KA. Neutralizing Antibody Responses in COVID-19 Convalescent Sera. J Infect Dis 2021; 223:47-55. [PMID: 33104179 PMCID: PMC7665673 DOI: 10.1093/infdis/jiaa673] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration's (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at moderate (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity significantly increased with time post symptom onset (PSO), reaching a peak at 31-35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was approximately 93% (PRNT50) and approximately 54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (>960 enzyme-linked immunosorbent assay titers) showed maximal activity, but not all high-titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.
Collapse
Affiliation(s)
- William T Lee
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Roxanne C Girardin
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Alan P Dupuis
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Karen E Kulas
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Anne F Payne
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Susan J Wong
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Suzanne Arinsburg
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Freddy T Nguyen
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Damodara Rao Mendu
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo Firpo-Betancourt
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jeffrey Jhang
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ania Wajnberg
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sherlita Amler
- Westchester County Department of Health, White Plains, New York, USA
| | - Marisa Montecalvo
- Westchester County Department of Health, White Plains, New York, USA
| | - Brad Hutton
- New York State Department of Health, Albany, New York, USA
| | - Jill Taylor
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kathleen A McDonough
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| |
Collapse
|
1359
|
Saksena S, Chattopadhyay P. Illuminating the immunopathology of SARS-CoV-2. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 100:33-41. [PMID: 33394568 DOI: 10.1002/cyto.b.21988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Over a remarkably short period of time, a great deal of knowledge about severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection has been acquired, through the focused and cooperative effort of the international scientific community. Much has become known about how the immune response is coordinated to fight infection, and how it becomes dysregulated in severe disease. In this review, we take an in-depth look at the many immune features associated with the host response to SARS-CoV2, as well as those that appear to mark severe disease.
Collapse
|
1360
|
Affiliation(s)
- Jennifer Dan
- Division of Infectious Diseases and Global Health, University of California San Diego, La Jolla, CA.,Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA
| | - Sanjay Mehta
- Division of Infectious Diseases and Global Health, University of California San Diego, La Jolla, CA.,Department of Medicine, San Diego Veterans Affairs Medical Center, San Diego, CA
| |
Collapse
|
1361
|
Hasanpourghadi M, Novikov M, Ambrose R, Chekaoui A, Newman D, Zhou XY, Ertl HCJ. T cell responses to adenoviral vectors expressing the SARS-CoV-2 nucleoprotein. CURRENT TRENDS IN MICROBIOLOGY 2021; 15:1-28. [PMID: 35903088 PMCID: PMC9328080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
SARS-CoV-2 vaccines aim to protect against COVID-19 through neutralizing antibodies against the viral spike protein. Mutations within the spike's receptor-binding domain may eventually reduce vaccine efficacy, necessitating periodic updates. Vaccine-induced immunity could be broadened by adding T cell-inducing antigens such as SARS-CoV-2's nucleoprotein (N). Here we describe two replication-defective chimpanzee adenovirus (AdC) vectors from different serotypes expressing SARS-CoV-2 N either in its wild-type form or fused into herpes simplex virus glycoprotein D (gD), an inhibitor of an early T cell checkpoint. The vaccines induce potent and sustained CD8+ T cell responses that are broadened upon inclusion of gD. Depending on the vaccine regimen booster immunizations increase magnitude and breadth of T cell responses. Epitopes that are recognized by the vaccine-induced T cells are highly conserved among global SARS-CoV-2 isolates indicating that addition of N to COVID-19 vaccines may lessen the risk of loss of vaccine-induced protection due to variants.
Collapse
Affiliation(s)
| | - Mikhail Novikov
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, 1-215-898-3863
| | - Robert Ambrose
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, 1-215-898-3863
| | - Arezki Chekaoui
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, 1-215-898-3863
| | - Dakota Newman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, 1-215-898-3863
| | - Xiang Yang Zhou
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, 1-215-898-3863
| | - Hildegund C. J. Ertl
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, 1-215-898-3863
| |
Collapse
|
1362
|
Alon R, Sportiello M, Kozlovski S, Kumar A, Reilly EC, Zarbock A, Garbi N, Topham DJ. Leukocyte trafficking to the lungs and beyond: lessons from influenza for COVID-19. Nat Rev Immunol 2021; 21:49-64. [PMID: 33214719 PMCID: PMC7675406 DOI: 10.1038/s41577-020-00470-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Understanding of the fundamental processes underlying the versatile clinical manifestations of COVID-19 is incomplete without comprehension of how different immune cells are recruited to various compartments of virus-infected lungs, and how this recruitment differs among individuals with different levels of disease severity. As in other respiratory infections, leukocyte recruitment to the respiratory system in people with COVID-19 is orchestrated by specific leukocyte trafficking molecules, and when uncontrolled and excessive it results in various pathological complications, both in the lungs and in other organs. In the absence of experimental data from physiologically relevant animal models, our knowledge of the trafficking signals displayed by distinct vascular beds and epithelial cell layers in response to infection by SARS-CoV-2 is still incomplete. However, SARS-CoV-2 and influenza virus elicit partially conserved inflammatory responses in the different respiratory epithelial cells encountered early in infection and may trigger partially overlapping combinations of trafficking signals in nearby blood vessels. Here, we review the molecular signals orchestrating leukocyte trafficking to airway and lung compartments during primary pneumotropic influenza virus infections and discuss potential similarities to distinct courses of primary SARS-CoV-2 infections. We also discuss how an imbalance in vascular activation by leukocytes outside the airways and lungs may contribute to extrapulmonary inflammatory complications in subsets of patients with COVID-19. These multiple molecular pathways are potential targets for therapeutic interventions in patients with severe COVID-19.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Mike Sportiello
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stav Kozlovski
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ashwin Kumar
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emma C Reilly
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexander Zarbock
- Department of Cellular Immunology, Institute of Experimental Immunology Medical Faculty, University of Bonn, Bonn, Germany
| | - Natalio Garbi
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
1363
|
Srivastava S, Banu S, Singh P, Sowpati DT, Mishra RK. SARS-CoV-2 genomics: An Indian perspective on sequencing viral variants. J Biosci 2021; 46:22. [PMID: 33737495 PMCID: PMC7895735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 04/01/2024]
Abstract
Since its emergence as a pneumonia-like outbreak in the Chinese city of Wuhan in late 2019, the novel coronavirus disease COVID-19 has spread widely to become a global pandemic. The first case of COVID-19 in India was reported on 30 January 2020 and since then it has affected more than ten million people and resulted in around 150,000 deaths in the country. Over time, the viral genome has accumulated mutations as it passes through its human hosts, a common evolutionary mechanism found in all microorganisms. This has implications for disease surveillance and management, vaccines and therapeutics, and the emergence of reinfections. Sequencing the viral genome can help monitor these changes and provides an extraordinary opportunity to understand the genetic epidemiology and evolution of the virus as well as tracking its spread in a population. Here we review the past year in the context of the phylogenetic analysis of variants isolated over the course of the pandemic in India and highlight the importance of continued sequencing-based surveillance in the country.
Collapse
Affiliation(s)
- Surabhi Srivastava
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500 007 India
| | - Sofia Banu
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500 007 India
| | - Priya Singh
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500 007 India
| | - Divya Tej Sowpati
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500 007 India
| | - Rakesh K. Mishra
- CSIR–Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500 007 India
| |
Collapse
|
1364
|
|
1365
|
Predicting the Severity of Disease Progression in COVID-19 at the Individual and Population Level: A Mathematical Model. CLINICAL & EXPERIMENTAL PHARMACOLOGY 2021; 11:283. [PMID: 34367726 PMCID: PMC8343949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The impact of COVID-19 disease on health and economy has been global, and the magnitude of devastation is unparalleled in modern history. Any potential course of action to manage this complex disease requires the systematic and efficient analysis of data that can delineate the underlying pathogenesis. We have developed a mathematical model of disease progression to predict the clinical outcome, utilizing a set of causal factors known to contribute to COVID-19 pathology such as age, comorbidities, and certain viral and immunological parameters. Viral load and selected indicators of a dysfunctional immune response, such as cytokines IL-6 and IFNα which contribute to the cytokine storm and fever, parameters of inflammation D-Dimer and Ferritin, aberrations in lymphocyte number, lymphopenia, and neutralizing antibodies were included for the analysis. The model provides a framework to unravel the multi-factorial complexities of the immune response manifested in SARS-CoV-2 infected individuals. Further, this model can be valuable to predict clinical outcome at an individual level, and to develop strategies for allocating appropriate resources to manage severe cases at a population level.
Collapse
|
1366
|
Kantarcioglu B, Iqbal O, Walenga JM, Lewis B, Lewis J, Carter CA, Singh M, Lievano F, Tafur A, Ramacciotti E, Gerotziafas GT, Jeske W, Fareed J. An Update on the Pathogenesis of COVID-19 and the Reportedly Rare Thrombotic Events Following Vaccination. Clin Appl Thromb Hemost 2021; 27:10760296211021498. [PMID: 34060379 PMCID: PMC8173993 DOI: 10.1177/10760296211021498] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Today the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become a global health problem. After more than a year with the pandemic, although our knowledge has progressed on COVID-19, there are still many unknowns in virological, pathophysiological and immunological aspects. It is obvious that the most efficient solution to end this pandemic are safe and efficient vaccines. This manuscript summarizes the pathophysiological and thrombotic features of COVID-19 and the safety and efficacy of currently approved COVID-19 vaccines with an aim to clarify the recent concerns of thromboembolic events after COVID-19 vaccination. The influx of newer information is rapid, requiring periodic updates and objective assessment of the data on the pathogenesis of COVID-19 variants and the safety and efficacy of currently available vaccines.
Collapse
Affiliation(s)
- Bulent Kantarcioglu
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Omer Iqbal
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Jeanine M. Walenga
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Bruce Lewis
- Department of Medicine, Cardiology, Loyola University Medical Center, Maywood, IL, USA
| | - Joseph Lewis
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Charles A. Carter
- Department of Clinical Research, Campbell University College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, USA
| | - Meharvan Singh
- Department of Cellular and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Fabio Lievano
- Department of Medical Safety Evaluation, AbbVie Inc., North Chicago, IL, USA
| | - Alfonso Tafur
- Section of Interventional Cardiology and Vascular Medicine, NorthShore University Health System, Evanston, IL, USA
| | - Eduardo Ramacciotti
- Hemostasis & Thrombosis Research Laboratories at Loyola University Medical Center, Maywood, IL, USA
| | - Grigoris T. Gerotziafas
- 5-Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Thrombosis Center, Service D’Hématologie Biologique Hôpital Tenon, Paris, France
| | - Walter Jeske
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| |
Collapse
|
1367
|
Collora JA, Liu R, Albrecht K, Ho YC. The single-cell landscape of immunological responses of CD4+ T cells in HIV versus severe acute respiratory syndrome coronavirus 2. Curr Opin HIV AIDS 2021; 16:36-47. [PMID: 33165008 PMCID: PMC8162470 DOI: 10.1097/coh.0000000000000655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW CD4 T cell loss is the hallmark of uncontrolled HIV-1 infection. Strikingly, CD4 T cell depletion is a strong indicator for disease severity in the recently emerged coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We reviewed recent single-cell immune profiling studies in HIV-1 infection and COVID-19 to provide critical insight in virus-induced immunopathogenesis. RECENT FINDINGS Cytokine dysregulation in HIV-1 leads to chronic inflammation, while severe SARS-CoV-2 infection induces cytokine release syndrome and increased mortality. HIV-1-specific CD4 T cells are dysfunctional, while SARS-CoV-2-specific CD4 T cells exhibit robust Th1 function and correlate with protective antibody responses. In HIV-1 infection, follicular helper T cells (TFH) are susceptible to HIV-1 infection and persist in immune-sanctuary sites in lymphoid tissues as an HIV-1 reservoir. In severe SARS-CoV-2 infection, TFH are absent in lymphoid tissues and are associated with diminished protective immunity. Advancement in HIV-1 DNA, RNA, and protein-based single-cell capture methods can overcome the rarity and heterogeneity of HIV-1-infected cells and identify mechanisms of HIV-1 persistence and clonal expansion dynamics. SUMMARY Single-cell immune profiling identifies a high-resolution picture of immune dysregulation in HIV-1 and SARS-CoV-2 infection and informs outcome prediction and therapeutic interventions.
Collapse
Affiliation(s)
- Jack A Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
1368
|
Castro A, Ozturk K, Zanetti M, Carter H. MHC-II constrains the natural neutralizing antibody response to the SARS-CoV-2 spike RBM in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.26.424449. [PMID: 33398284 PMCID: PMC7781323 DOI: 10.1101/2020.12.26.424449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SARS-CoV-2 antibodies develop within two weeks of infection, but wane relatively rapidly post-infection, raising concerns about whether antibody responses will provide protection upon re-exposure. Here we revisit T-B cooperation as a prerequisite for effective and durable neutralizing antibody responses centered on a mutationally constrained RBM B cell epitope. T-B cooperation requires co-processing of B and T cell epitopes by the same B cell and is subject to MHC-II restriction. We evaluated MHC-II constraints relevant to the neutralizing antibody response to a mutationally-constrained B cell epitope in the receptor binding motif (RBM) of the spike protein. Examining common MHC-II alleles, we found that peptides surrounding this key B cell epitope are predicted to bind poorly, suggesting a lack MHC-II support in T-B cooperation, impacting generation of high-potency neutralizing antibodies in the general population. Additionally, we found that multiple microbial peptides had potential for RBM cross-reactivity, supporting previous exposures as a possible source of T cell memory.
Collapse
Affiliation(s)
- Andrea Castro
- Biomedical Informatics Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Kivilcim Ozturk
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
1369
|
Karaderi T, Bareke H, Kunter I, Seytanoglu A, Cagnan I, Balci D, Barin B, Hocaoglu MB, Rahmioglu N, Asilmaz E, Taneri B. Host Genetics at the Intersection of Autoimmunity and COVID-19: A Potential Key for Heterogeneous COVID-19 Severity. Front Immunol 2020; 11:586111. [PMID: 33414783 PMCID: PMC7783411 DOI: 10.3389/fimmu.2020.586111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
COVID-19 presentation is very heterogeneous across cases, and host factors are at the forefront for the variables affecting the disease manifestation. The immune system has emerged as a key determinant in shaping the outcome of SARS-CoV-2 infection. It is mainly the deleterious unconstrained immune response, rather than the virus itself, which leads to severe cases of COVID-19 and the associated mortality. Genetic susceptibility to dysregulated immune response is highly likely to be among the host factors for adverse disease outcome. Given that such genetic susceptibility has also been observed in autoimmune diseases (ADs), a number of critical questions remain unanswered; whether individuals with ADs have a significantly different risk for COVID-19-related complications compared to the general population, and whether studies on the genetics of ADs can shed some light on the host factors in COVID-19. In this perspective, we discuss the host genetic factors, which have been under investigation in association with COVID-19 severity. We touch upon the intricate link between autoimmunity and COVID-19 pathophysiology. We put forth a number of autoimmune susceptibility genes, which have the potential to be additional host genetic factors for modifying the severity of COVID-19 presentation. In summary, host genetics at the intersection of ADs and COVID-19 may serve as a source for understanding the heterogeneity of COVID-19 severity, and hence, potentially holds a key in achieving effective strategies in risk group identification, as well as effective treatments.
Collapse
Affiliation(s)
- Tugce Karaderi
- Center for Health Data Science, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Halin Bareke
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Imge Kunter
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Adil Seytanoglu
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Ilgin Cagnan
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Deniz Balci
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Burc Barin
- Vaccines and Infectious Diseases Therapeutic Research Area, The Emmes Company, Rockville, MD, United States
| | - Mevhibe B. Hocaoglu
- Cicely Saunders Institute of Palliative Care, Policy & Rehabilitation, Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King’s College London, London, United Kingdom
- Dr Fazil Kucuk Faculty of Medicine, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Esra Asilmaz
- Department of Gastroenterology, Homerton University Hospital, Clapton, United Kingdom
| | - Bahar Taneri
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
- Department of Genetics and Cell Biology, Faculty of Health, Medicine & Life Sciences, Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
1370
|
Leonardi AJ, Proenca RB. Akt-Fas to Quell Aberrant T Cell Differentiation and Apoptosis in Covid-19. Front Immunol 2020; 11:600405. [PMID: 33408715 PMCID: PMC7779612 DOI: 10.3389/fimmu.2020.600405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant T cell differentiation and lymphopenia are hallmarks of severe COVID-19 disease. Since T cells must race to cull infected cells, they are quick to differentiate and achieve cytotoxic function. With this responsiveness, comes hastened apoptosis, due to a coupled mechanism of death and differentiation in both CD4+ and CD8+ lymphocytes via CD95 (Fas) and serine-threonine kinase (Akt). T cell lymphopenia in severe cases may represent cell death or peripheral migration. These facets depict SARS-Cov-2 as a lympho-manipulative pathogen; it distorts T cell function, numbers, and death, and creates a dysfunctional immune response. Whether preservation of T cells, prevention of their aberrant differentiation, and expansion of their population may alter disease course is unknown. Its investigation requires experimental interrogation of the linked differentiation and death pathway by agents known to uncouple T cell proliferation and differentiation in both CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Anthony J. Leonardi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rui B. Proenca
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
1371
|
Abstract
As the SARS-CoV-2 pandemic has progressed, increasing attention has focused on establishing natural and vaccine-induced immunity against this coronavirus and the disease, COVID-19, that it causes. In this Primer, we explain the fundamental features of T cell memory and their potential relevance for effective immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Nicholas N Jarjour
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Masopust
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen C Jameson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
1372
|
Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt S, Frazier A, Nakao C, Rayaprolu V, Rawlings SA, Peters B, Krammer F, Simon V, Saphire EO, Smith DM, Weiskopf D, Sette A, Crotty S. Immunological memory to SARS-CoV-2 assessed for up to eight months after infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.15.383323. [PMID: 33442687 PMCID: PMC7805444 DOI: 10.1101/2020.11.15.383323] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Understanding immune memory to SARS-CoV-2 is critical for improving diagnostics and vaccines, and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥ 6 months post-infection. IgG to the Spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month post symptom onset. SARS-CoV-2-specific CD4 + T cells and CD8 + T cells declined with a half-life of 3-5 months. By studying antibody, memory B cell, CD4 + T cell, and CD8 + T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.
Collapse
Affiliation(s)
- Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Yu Kato
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Caterina E. Faliti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sydney I. Ramirez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Sonya Haupt
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Catherine Nakao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Vamseedhar Rayaprolu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Davey M. Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
1373
|
Wu JJ, Zhao L, Han BB, Hu HG, Zhang BD, Li WH, Chen YX, Li YM. A novel STING agonist for cancer immunotherapy and a SARS-CoV-2 vaccine adjuvant. Chem Commun (Camb) 2020; 57:504-507. [PMID: 33331360 DOI: 10.1039/d0cc06959k] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel STING agonist, CDGSF, ipsilaterally modified with phosphorothioate and fluorine, was synthesized. The phosphorothioate in CDGSF might be a site for covalent conjugation. Injection of CDGSF generated an immunogenic ("hot") tumor microenvironment to suppress melanoma, more efficiently than dithio CDG. In particular, immunization with SARS-CoV-2 spike protein using CDGSF as an adjuvant elicited an exceptionally high antibody titer and a robust T cell response, overcoming the drawbacks of aluminum hydroxide. These results highlighted the therapeutic potential of CDGSF for cancer immunotherapy and the adjuvant potential of the STING agonist in the SARS-CoV-2 vaccine for the first time.
Collapse
Affiliation(s)
- Jun-Jun Wu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
1374
|
Bacher P, Rosati E, Esser D, Martini GR, Saggau C, Schiminsky E, Dargvainiene J, Schröder I, Wieters I, Khodamoradi Y, Eberhardt F, Vehreschild MJGT, Neb H, Sonntagbauer M, Conrad C, Tran F, Rosenstiel P, Markewitz R, Wandinger KP, Augustin M, Rybniker J, Kochanek M, Leypoldt F, Cornely OA, Koehler P, Franke A, Scheffold A. Low-Avidity CD4 + T Cell Responses to SARS-CoV-2 in Unexposed Individuals and Humans with Severe COVID-19. Immunity 2020; 53:1258-1271.e5. [PMID: 33296686 PMCID: PMC7689350 DOI: 10.1016/j.immuni.2020.11.016] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023]
Abstract
CD4+ T cells reactive against SARS-CoV-2 can be found in unexposed individuals, and these are suggested to arise in response to common cold coronavirus (CCCoV) infection. Here, we utilized SARS-CoV-2-reactive CD4+ T cell enrichment to examine the antigen avidity and clonality of these cells, as well as the relative contribution of CCCoV cross-reactivity. SARS-CoV-2-reactive CD4+ memory T cells were present in virtually all unexposed individuals examined, displaying low functional avidity and multiple, highly variable cross-reactivities that were not restricted to CCCoVs. SARS-CoV-2-reactive CD4+ T cells from COVID-19 patients lacked cross-reactivity to CCCoVs, irrespective of strong memory T cell responses against CCCoV in all donors analyzed. In severe but not mild COVID-19, SARS-CoV-2-specific T cells displayed low functional avidity and clonality, despite increased frequencies. Our findings identify low-avidity CD4+ T cell responses as a hallmark of severe COVID-19 and argue against a protective role for CCCoV-reactive T cells in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Petra Bacher
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Gabriela Rios Martini
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany
| | - Esther Schiminsky
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Ina Schröder
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Imke Wieters
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Fabian Eberhardt
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Holger Neb
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Michael Sonntagbauer
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Claudio Conrad
- Department of Internal Medicine, Hospital of Preetz, Preetz, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany; Department of Internal Medicine I, UKSH Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Max Augustin
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Jan Rybniker
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Matthias Kochanek
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Oliver A Cornely
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Clinical Trials Centre Cologne, ZKS Köln, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
1375
|
Peng X, Ouyang J, Isnard S, Lin J, Fombuena B, Zhu B, Routy JP. Sharing CD4+ T Cell Loss: When COVID-19 and HIV Collide on Immune System. Front Immunol 2020; 11:596631. [PMID: 33384690 PMCID: PMC7770166 DOI: 10.3389/fimmu.2020.596631] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a distinctive infection characterized by elevated inter-human transmission and presenting from absence of symptoms to severe cytokine storm that can lead to dismal prognosis. Like for HIV, lymphopenia and drastic reduction of CD4+ T cell counts in COVID-19 patients have been linked with poor clinical outcome. As CD4+ T cells play a critical role in orchestrating responses against viral infections, important lessons can be drawn by comparing T cell response in COVID-19 and in HIV infection and by studying HIV-infected patients who became infected by SARS-CoV-2. We critically reviewed host characteristics and hyper-inflammatory response in these two viral infections to have a better insight on the large difference in clinical outcome in persons being infected by SARS-CoV-2. The better understanding of mechanism of T cell dysfunction will contribute to the development of targeted therapy against severe COVID-19 and will help to rationally design vaccine involving T cell response for the long-term control of viral infection.
Collapse
Affiliation(s)
- Xiaorong Peng
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada.,Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
1376
|
Channappanavar R, Perlman S. Age-related susceptibility to coronavirus infections: role of impaired and dysregulated host immunity. J Clin Invest 2020; 130:6204-6213. [PMID: 33085654 DOI: 10.1172/jci144115] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human coronaviruses (hCoVs) cause severe respiratory illness in the elderly. Age-related impairments in innate immunity and suboptimal virus-specific T cell and antibody responses are believed to cause severe disease upon respiratory virus infections. This phenomenon has recently received increased attention, as elderly patients are at substantially elevated risk for severe COVID-19 disease and experience increased rates of mortality following SARS-CoV-2 infection compared with younger populations. However, the basis for age-related fatal pneumonia following pathogenic hCoVs is not well understood. In this Review, we provide an overview of our current understanding of hCoV-induced fatal pneumonia in the elderly. We describe host immune response to hCoV infections derived from studies of young and aged animal models and discuss the potential role of age-associated increases in sterile inflammation (inflammaging) and virus-induced dysregulated inflammation in causing age-related severe disease. We also highlight the existing gaps in our knowledge about virus replication and host immune responses to hCoV infection in young and aged individuals.
Collapse
Affiliation(s)
- Rudragouda Channappanavar
- Department of Acute and Tertiary Care and.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology and.,Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
1377
|
Breton G, Mendoza P, Hagglof T, Oliveira TY, Schaefer-Babajew D, Gaebler C, Turroja M, Hurley A, Caskey M, Nussenzweig MC. Persistent Cellular Immunity to SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.08.416636. [PMID: 33330867 PMCID: PMC7743071 DOI: 10.1101/2020.12.08.416636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SARS-CoV-2 is responsible for an ongoing pandemic that affected millions of individuals around the globe. To gain further understanding of the immune response in recovered individuals we measured T cell responses in paired samples obtained an average of 1.3 and 6.1 months after infection from 41 individuals. The data indicate that recovered individuals show persistent polyfunctional SARS-CoV-2 antigen specific memory that could contribute to rapid recall responses. In addition, recovered individuals show enduring immune alterations in relative numbers of CD4 + and CD8 + T cells, expression of activation/exhaustion markers, and cell division. SUMMARY We show that SARS-CoV-2 infection elicits broadly reactive and highly functional memory T cell responses that persist 6 months after infection. In addition, recovered individuals show enduring immune alterations in CD4 + and CD8 + T cells compartments.
Collapse
Affiliation(s)
- Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Hagglof
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Arlene Hurley
- Hospital Program Direction, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
1378
|
Rodriguez Martin RR, Gonzalez Gonzalez O, Rodriguez Gonzalez C, Rodriguez Gonzalez RR. Biomodulina T (InmunyVital ®) Restores T Cells and Helps Contain COVID-19. Front Immunol 2020; 11:606447. [PMID: 33362793 PMCID: PMC7756009 DOI: 10.3389/fimmu.2020.606447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
|
1379
|
Taefehshokr N, Taefehshokr S, Heit B. Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathogens 2020; 9:E1027. [PMID: 33302366 PMCID: PMC7762606 DOI: 10.3390/pathogens9121027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, a disease caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), was first identified in December 2019 in China, and has led to thousands of mortalities globally each day. While the innate immune response serves as the first line of defense, viral clearance requires activation of adaptive immunity, which employs B and T cells to provide sanitizing immunity. SARS-CoV-2 has a potent arsenal of mechanisms used to counter this adaptive immune response through processes, such as T cells depletion and T cell exhaustion. These phenomena are most often observed in severe SARS-CoV-2 patients, pointing towards a link between T cell function and disease severity. Moreover, neutralizing antibody titers and memory B cell responses may be short lived in many SARS-CoV-2 patients, potentially exposing these patients to re-infection. In this review, we discuss our current understanding of B and T cells immune responses and activity in SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada;
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada;
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
1380
|
Alexandrova R, Beykov P, Vassilev D, Jukić M, Podlipnik Č. The virus that shook the world: questions and answers about SARS-CoV-2 and COVID-19. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1847683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Radostina Alexandrova
- Department of Pathology Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Pencho Beykov
- Department of Pathology Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, Sofa, Bulgaria
| | - Dobrin Vassilev
- “Alexandrovska” University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Marko Jukić
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Maribor, Slovenia
- Natural Sciences and Information Technologies, Faculty of Mathematics, University of Primorska, Koper, Slovenia
| | - Črtomir Podlipnik
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
1381
|
Karlsson AC, Humbert M, Buggert M. The known unknowns of T cell immunity to COVID-19. Sci Immunol 2020; 5:5/53/eabe8063. [PMID: 33208380 DOI: 10.1126/sciimmunol.abe8063] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Tremendous progress has been made in understanding the role of T cell immunity in acute and convalescent COVID-19 infection. Here we shed light on the "known unknowns" of pre-existing and acquired T cell responses in relation to acute and convalescent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Annika C Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Marion Humbert
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
1382
|
Young MK, Kornmeier C, Carpenter RM, Natale NR, Sasson JM, Solga MD, Mathers AJ, Poulter MD, Qiang X, Petri WA. IgG Antibodies against SARS-CoV-2 Correlate with Days from Symptom Onset, Viral Load and IL-10. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.05.20244541. [PMID: 33330878 PMCID: PMC7743087 DOI: 10.1101/2020.12.05.20244541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a pandemic of the respiratory disease coronavirus disease 2019 (COVID-19). Antibody testing is essential to identify persons exposed to the virus and potentially in predicting disease immunity. 183 COVID-19 patients (68 of whom required mechanical ventilation) and 41 controls were tested for plasma IgG, IgA and IgM against the SARS-CoV-2 S1, S2, receptor binding domain (RBD) and N proteins using the MILLIPLEX® SARS-CoV-2 Antigen Panel. Plasma cytokines were concurrently measured using the MILLIPLEX® MAP Human Cytokine/Chemokine/Growth Factor Panel A. As expected the 183 COVID-19 positive patients had high levels of IgG, IgA and IgM anti-SARS-CoV-2 antibodies against each of the viral proteins. Sensitivity of anti-S1 IgG increased from 60% to 93% one week after symptom onset. S1-IgG and S1-IgA had specificities of 98% compared to the 41 COVID-19 negative patients. The 68 ventilated COVID-19 positive patients had higher antibody levels than the 115 COVID-19 positive patients who were not ventilated. IgG antibody levels against S1 protein had the strongest positive correlation to days from symptom onset. There were no statistically significant differences in IgG, IgA and IgM antibodies against S1 based on age. We found that patients with the highest levels of anti-SARS-CoV-2 antibodies had the lowest viral load in the nasopharynx. Finally there was a correlation of high plasma IL-10 with low anti-SARS-CoV-2 antibodies. Anti-SARS-CoV-2 antibody levels, as measured by a novel antigen panel, increased within days after symptom onset, achieving > 90% sensitivity and specificity within one week, and were highest in patients who required mechanical ventilation. Antibody levels were inversely associated with viral load but did not differ as a function of age. The correlation of high IL-10 with low antibody response suggests a potentially suppressive role of this cytokine in the humoral immune response in COVID-19.
Collapse
Affiliation(s)
- Mary K Young
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | | | - Rebecca M Carpenter
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Nick R Natale
- Department of Neuroscience, University of Virginia Health System, Charlottesville, VA, 22908, SA
| | - Jennifer M Sasson
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Michael D Solga
- UVA Flow Cytometry Core, University of Virginia, Charlottesville, VA, 22908, USA
| | - Amy J Mathers
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Melinda D Poulter
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Xiao Qiang
- MilliporeSigma, St. Louis, MO, 63103, USA
| | - William A Petri
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health stem, Charlottesville, VA, 22908, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| |
Collapse
|
1383
|
Shi Y, Zhou G, Li Q. Asynchronous actions of immune responses in COVID-19 patients. Signal Transduct Target Ther 2020; 5:284. [PMID: 33277465 PMCID: PMC7716109 DOI: 10.1038/s41392-020-00424-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yufang Shi
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, the Second People's Hospital of Changshu, the Affiliated Changshu Hospital of Xuzhou Medical University, 68 Haiyu Road, Changshu, 215500, China.
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
| |
Collapse
|
1384
|
Yu KK, Fischinger S, Smith MT, Atyeo C, Cizmeci D, Wolf CR, Layton ED, Logue JK, Aguilar MS, Shuey K, Loos C, Yu J, Franko N, Choi RY, Wald A, Barouch DH, Koelle DM, Lauffenburger D, Chu HY, Alter G, Seshadri C. T cell and antibody functional correlates of severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.11.25.20235150. [PMID: 33269369 PMCID: PMC7709190 DOI: 10.1101/2020.11.25.20235150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Comorbid medical illnesses, such as obesity and diabetes, are associated with more severe COVID-19, hospitalization, and death. However, the role of the immune system in mediating these clinical outcomes has not been determined. We used multi-parameter flow cytometry and systems serology to comprehensively profile the functions of T cells and antibodies targeting spike, nucleocapsid, and envelope proteins in a convalescent cohort of COVID-19 subjects who were either hospitalized (n=20) or not hospitalized (n=40). To avoid confounding, subjects were matched by age, sex, ethnicity, and date of symptom onset. Surprisingly, we found that the magnitude and functional breadth of virus-specific CD4 T cell and antibody responses were consistently higher among hospitalized subjects, particularly those with medical comorbidities. However, an integrated analysis identified more coordination between polyfunctional CD4 T-cells and antibodies targeting the S1 domain of spike among subjects that were not hospitalized. These data reveal a functionally diverse and coordinated response between T cells and antibodies targeting SARS-CoV-2 which is reduced in the presence of comorbid illnesses that are known risk factors for severe COVID-19. Our data suggest that isolated measurements of the magnitudes of spike-specific immune responses are likely insufficient to anticipate vaccine efficacy in high-risk populations.
Collapse
Affiliation(s)
- Krystle K.Q. Yu
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- PhD program in Immunology and Virology, University of Duisburg-Essen, Essen, Germany
| | - Malisa T. Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- PhD program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caitlin R. Wolf
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Erik D. Layton
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer K. Logue
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Melissa S. Aguilar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Kiel Shuey
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Carolin Loos
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas Franko
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Anna Wald
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dan H. Barouch
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David M. Koelle
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helen Y. Chu
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
1385
|
McCoy K, Peterson A, Tian Y, Sang Y. Immunogenetic Association Underlying Severe COVID-19. Vaccines (Basel) 2020; 8:E700. [PMID: 33233531 PMCID: PMC7711778 DOI: 10.3390/vaccines8040700] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
SARS-CoV2 has caused the current pandemic of new coronavirus disease 2019 (COVID-19) worldwide. Clinical outcomes of COVID-19 illness range broadly from asymptotic and mild to a life-threatening situation. This casts uncertainties for defining host determinants underlying the disease severity. Recent genetic analyses based on extensive clinical sample cohorts using genome-wide association studies (GWAS) and high throughput sequencing curation revealed genetic errors and gene loci associated with about 20% of life-threatening COVID-19 cases. Significantly, most of these critical genetic loci are enriched in two immune signaling pathways, i.e., interferon-mediated antiviral signaling and chemokine-mediated/inflammatory signaling. In line with these genetic profiling studies, the broad spectrum of COVID-19 illness could be explained by immuno-pathological regulation of these critical immunogenetic pathways through various epigenetic mechanisms, which further interconnect to other vital components such as those in the renin-angiotensin-aldosterone system (RAAS) because of its direct interaction with the virus causing COVID-19. Together, key genes unraveled by genetic profiling may provide targets for precisely early risk diagnosis and prophylactic design to relieve severe COVID-19. The confounding epigenetic mechanisms may be key to understanding the clinical broadness of COVID-19 illness.
Collapse
Affiliation(s)
- Kendall McCoy
- Department of Biology, College of Life and Physical Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (K.M.); (A.P.)
| | - Autumn Peterson
- Department of Biology, College of Life and Physical Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (K.M.); (A.P.)
| | - Yun Tian
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA;
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA;
| |
Collapse
|
1386
|
De Wals P, Menzies D, Divangahi M. Can BCG be useful to mitigate the COVID-19 pandemic? A Canadian perspective. Canadian Journal of Public Health 2020; 111:939-944. [PMID: 33211246 PMCID: PMC7676406 DOI: 10.17269/s41997-020-00439-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
There is ample evidence from in vitro, animal and human studies that the Bacillus Calmette-Guerin (BCG) vaccine epigenetically reprograms innate immunity to provide “off target” protection against pathogens other than mycobacteria. This process has been termed “trained immunity”. Although recent ecological studies suggested an association between BCG policies and the frequency or severity of COVID-19 in different countries, the interpretation of these results is challenging. For this reason, a case-control study aiming to test this hypothesis has been initiated in Quebec. Several phase III clinical trials are underway, including one in Canada, to assess the efficacy of BCG against SARS-CoV-2 infection (results expected in 2021). In the past, BCG has been widely used in Canada but current indications are restricted to high-risk individuals and communities experiencing TB outbreaks as well as for the treatment of bladder cancer. The potential implication of BCG as an interim measure to mitigate COVID-19 is the subject of widespread discussion in the scientific community and can be considered for the vulnerable population in Canada. To conclude, BCG vaccination should be placed on the agenda of research funding agencies, scientific advisory committees on immunization and federal/provincial/territorial public health authorities.
Collapse
Affiliation(s)
- Philippe De Wals
- Département de Médecine sociale et préventive, Université Laval, CRIUCPQ, 2725, Chemin Sainte-Foy, Québec, QC, G1G 4G5, Canada. .,Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, Québec, Canada. .,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada.
| | - Dick Menzies
- Montreal Chest Institute and Respiratory Epidemiology Unit, McGill University, Montreal, Quebec, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
1387
|
Poland GA, Ovsyannikova IG, Kennedy RB. SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet 2020; 396:1595-1606. [PMID: 33065034 PMCID: PMC7553736 DOI: 10.1016/s0140-6736(20)32137-1] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Understanding immune responses to severe acute respiratory syndrome coronavirus 2 is crucial to understanding disease pathogenesis and the usefulness of bridge therapies, such as hyperimmune globulin and convalescent human plasma, and to developing vaccines, antivirals, and monoclonal antibodies. A mere 11 months ago, the canvas we call COVID-19 was blank. Scientists around the world have worked collaboratively to fill in this blank canvas. In this Review, we discuss what is currently known about human humoral and cellular immune responses to severe acute respiratory syndrome coronavirus 2 and relate this knowledge to the COVID-19 vaccines currently in phase 3 clinical trials.
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
1388
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
1389
|
Abstract
SARS-CoV2 infection or COVID-19 has created panic around the world since its first origin in December 2019 in Wuhan city, China. The COVID-19 pandemic has infected more than 46.4 million people, with 1,199,727 deaths. The immune system plays a crucial role in the severity of COVID-19 and the development of pneumonia-induced acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Along with providing protection, both innate and T cell-based adaptive immune response dysregulate during severe SARS-CoV2 infection. This dysregulation is more pronounced in older population and patients with comorbidities (Diabetes, hypertension, obesity, other pulmonary and autoimmune diseases). However, COVID-19 patients develop protective antibodies (Abs) against SARS-CoV2, but they do not long for last. The induction of the immune response against the pathogen also requires metabolic energy that generates through the process of immunometabolism. The change in the metabolic stage of immune cells from homeostasis to an inflammatory or infectious environment is called immunometabolic reprogramming. The article describes the cellular immunology (macrophages, T cells, B cells, dendritic cells, NK cells and pulmonary epithelial cells (PEC) and vascular endothelial cells) and the associated immune response during COVID-19. Immunometabolism may serve as a cell-specific therapeutic approach to target COVID-19.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
1390
|
Liang Z, Zhu H, Wang X, Jing B, Li Z, Xia X, Sun H, Yang Y, Zhang W, Shi L, Zeng H, Sun B. Adjuvants for Coronavirus Vaccines. Front Immunol 2020; 11:589833. [PMID: 33240278 PMCID: PMC7677582 DOI: 10.3389/fimmu.2020.589833] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Vaccine development utilizing various platforms is one of the strategies that has been proposed to address the coronavirus disease 2019 (COVID-19) pandemic. Adjuvants are critical components of both subunit and certain inactivated vaccines because they induce specific immune responses that are more robust and long-lasting. A review of the history of coronavirus vaccine development demonstrates that only a few adjuvants, including aluminum salts, emulsions, and TLR agonists, have been formulated for the severe acute respiratory syndrome-associated coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and currently the SARS-CoV-2 vaccines in experimental and pre-clinical studies. However, there is still a lack of evidence regarding the effects of the adjuvants tested in coronavirus vaccines. This paper presents an overview of adjuvants that have been formulated in reported coronavirus vaccine studies, which should assist with the design and selection of adjuvants with optimal efficacy and safety profiles for COVID-19 vaccines.
Collapse
Affiliation(s)
- Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Haoru Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xin Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Bo Jing
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zifan Li
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xinyu Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Hongwu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Weiting Zhang
- NCPC Genetech Biotechnology Co., Ltd., Shijiazhuang, China
| | - Li Shi
- Basic Research Department, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
1391
|
Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat Immunol 2020; 22:25-31. [PMID: 33154590 DOI: 10.1038/s41590-020-00826-9] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022]
Abstract
Clinical manifestations of COVID-19 caused by the new coronavirus SARS-CoV-2 are associated with age1,2. Adults develop respiratory symptoms, which can progress to acute respiratory distress syndrome (ARDS) in the most severe form, while children are largely spared from respiratory illness but can develop a life-threatening multisystem inflammatory syndrome (MIS-C)3-5. Here, we show distinct antibody responses in children and adults after SARS-CoV-2 infection. Adult COVID-19 cohorts had anti-spike (S) IgG, IgM and IgA antibodies, as well as anti-nucleocapsid (N) IgG antibody, while children with and without MIS-C had reduced breadth of anti-SARS-CoV-2-specific antibodies, predominantly generating IgG antibodies specific for the S protein but not the N protein. Moreover, children with and without MIS-C had reduced neutralizing activity as compared to both adult COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children independent of whether they develop MIS-C, with implications for developing age-targeted strategies for testing and protecting the population.
Collapse
|
1392
|
Riou C, Schäfer G, du Bruyn E, Goliath RT, Stek C, Mou H, Hung D, Wilkinson KA, Wilkinson RJ. Rapid, simplified whole blood-based multiparameter assay to quantify and phenotype SARS-CoV-2 specific T cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33173918 DOI: 10.1101/2020.10.30.20223099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rapid tests to evaluate SARS-CoV-2-specific T cell responses are urgently needed to decipher protective immunity and aid monitoring vaccine-induced immunity. Using a rapid whole blood assay requiring minimal amount of blood, we measured qualitatively and quantitatively SARS-CoV-2-specific CD4 T cell responses in 31 healthcare workers, using flow cytometry. 100% of COVID-19 convalescent participants displayed a detectable SARS-CoV-2-specific CD4 T cell response. SARS-CoV-2-responding cells were also detected in 40.9% of participants with no COVID-19-associated symptoms or who tested PCR negative. Phenotypic assessment indicated that, in COVID-19 convalescent participants, SARS-CoV-2 CD4 responses displayed an early differentiated memory phenotype with limited capacity to produce IFNγ. Conversely, in participants with no reported symptoms, SARS-CoV-2 CD4 responses were enriched in late differentiated cells, co-expressing IFNγ and TNFα and also Granzyme B. This proof of concept study presents a scalable alternative to PBMC-based assays to enumerate and phenotype SARS-CoV-2-responding T cells, thus representing a practical tool to monitor adaptive immunity in vaccine trials. Summary In this proof of concept study, we show that SARS-CoV-2 T cell responses are easily detectable using a rapid whole blood assay requiring minimal blood volume. Such assay could represent a suitable tool to monitor adaptive immunity in vaccine trials.
Collapse
|
1393
|
Lipsitch M, Grad YH, Sette A, Crotty S. Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat Rev Immunol 2020; 20:709-713. [PMID: 33024281 PMCID: PMC7537578 DOI: 10.1038/s41577-020-00460-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 11/12/2022]
Abstract
Immunity is a multifaceted phenomenon. For T cell-mediated memory responses to SARS-CoV-2, it is relevant to consider their impact both on COVID-19 disease severity and on viral spread in a population. Here, we reflect on the immunological and epidemiological aspects and implications of pre-existing cross-reactive immune memory to SARS-CoV-2, which largely originates from previous exposure to circulating common cold coronaviruses. We propose four immunological scenarios for the impact of cross-reactive CD4+ memory T cells on COVID-19 severity and viral transmission. For each scenario, we discuss its implications for the dynamics of herd immunity and on projections of the global impact of SARS-CoV-2 on the human population, and assess its plausibility. In sum, we argue that key potential impacts of cross-reactive T cell memory are already incorporated into epidemiological models based on data of transmission dynamics, particularly with regard to their implications for herd immunity. The implications of immunological processes on other aspects of SARS-CoV-2 epidemiology are worthy of future study.
Collapse
Affiliation(s)
- Marc Lipsitch
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
1394
|
Szabo PA, Dogra P, Gray JI, Wells SB, Connors TJ, Weisberg SP, Krupska I, Matsumoto R, Poon MM, Idzikowski E, Morris SE, Pasin C, Yates AJ, Ku A, Chait M, Davis-Porada J, Zhou J, Steinle M, Mackay S, Saqi A, Baldwin M, Sims PA, Farber DL. Analysis of respiratory and systemic immune responses in COVID-19 reveals mechanisms of disease pathogenesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.15.20208041. [PMID: 33106817 PMCID: PMC7587837 DOI: 10.1101/2020.10.15.20208041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Immune responses to respiratory viruses like SARS-CoV-2 originate and function in the lung, yet assessments of human immunity are often limited to blood. Here, we conducted longitudinal, high-dimensional profiling of paired airway and blood samples from patients with severe COVID-19, revealing immune processes in the respiratory tract linked to disease pathogenesis. Survival from severe disease was associated with increased CD4 + T cells and decreased monocyte/macrophage frequencies in the airway, but not in blood. Airway T cells and macrophages exhibited tissue-resident phenotypes and activation signatures, including high level expression and secretion of monocyte chemoattractants CCL2 and CCL3 by airway macrophages. By contrast, monocytes in blood expressed the CCL2-receptor CCR2 and aberrant CD163 + and immature phenotypes. Extensive accumulation of CD163 + monocyte/macrophages within alveolar spaces in COVID-19 lung autopsies suggested recruitment from circulation. Our findings provide evidence that COVID-19 pathogenesis is driven by respiratory immunity, and rationale for site-specific treatment and prevention strategies.
Collapse
|
1395
|
Casciola-Rosen L, Thiemann DR, Andrade F, Trejo Zambrano MI, Hooper JE, Leonard EK, Spangler JB, Cox AL, Machamer CE, Sauer L, Laeyendecker O, Garibaldi BT, Ray SC, Mecoli CA, Christopher-Stine L, Gutierrez-Alamillo L, Yang Q, Hines D, Clarke WA, Rothman R, Pekosz A, Fenstermacher KJ, Wang Z, Zeger SL, Rosen A. IgM autoantibodies recognizing ACE2 are associated with severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.13.20211664. [PMID: 33083808 PMCID: PMC7574257 DOI: 10.1101/2020.10.13.20211664] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 infection induces severe disease in a subpopulation of patients, but the underlying mechanisms remain unclear. We demonstrate robust IgM autoantibodies that recognize angiotensin converting enzyme-2 (ACE2) in 18/66 (27%) patients with severe COVID-19, which are rare (2/52; 3.8%) in hospitalized patients who are not ventilated. The antibodies do not undergo class-switching to IgG, suggesting a T-independent antibody response. Purified IgM from anti-ACE2 patients activates complement. Pathological analysis of lung obtained at autopsy shows endothelial cell staining for IgM in blood vessels in some patients. We propose that vascular endothelial ACE2 expression focuses the pathogenic effects of these autoantibodies on blood vessels, and contributes to the angiocentric pathology observed in some severe COVID-19 patients. These findings may have predictive and therapeutic implications.
Collapse
Affiliation(s)
- Livia Casciola-Rosen
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David R. Thiemann
- Department of Medicine, Divisioin of Cardiology, Jhohns Hopkins University School of Medicine, Baltimore, Maryland
| | - Felipe Andrade
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria Isabel Trejo Zambrano
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jody E. Hooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elissa K. Leonard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea L. Cox
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carolyn E. Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren Sauer
- Johns Hopkins Hospital, Adult Emergency Department, Baltimore, Maryland
| | - Oliver Laeyendecker
- Division of Intramural Medicine, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian T. Garibaldi
- Johns Hopkins Biocontainment Unit, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stuart C. Ray
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher A. Mecoli
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa Christopher-Stine
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Gutierrez-Alamillo
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qingyuan Yang
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Hines
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William A. Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard Rothman
- Johns Hopkins Hospital, Adult Emergency Department, Baltimore, Maryland
| | - Andrew Pekosz
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Katherine J. Fenstermacher
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Zitong Wang
- Department of Bioistatistics, Bloomberg School of Public Health, Baltimore, Maryland
| | - Scott L. Zeger
- Department of Bioistatistics, Bloomberg School of Public Health, Baltimore, Maryland
| | - Antony Rosen
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
1396
|
Stamper CT, Dugan HL, Li L, Asby NW, Halfmann PJ, Guthmiller JJ, Zheng NY, Huang M, Stovicek O, Wang J, Madariaga ML, Shanmugarajah K, Jansen MO, Amanat F, Stewart I, Changrob S, Utset HA, Huang J, Nelson CA, Dai YN, Hall PD, Jedrzejczak RP, Joachimiak A, Krammer F, Fremont DH, Kawaoka Y, Wilson PC. Distinct B cell subsets give rise to antigen-specific antibody responses against SARS-CoV-2. RESEARCH SQUARE 2020:rs.3.rs-80476. [PMID: 32995763 PMCID: PMC7523131 DOI: 10.21203/rs.3.rs-80476/v1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovery of durable memory B cell (MBC) subsets against neutralizing viral epitopes is critical for determining immune correlates of protection from SARS-CoV-2 infection. Here, we identified functionally distinct SARS-CoV-2-reactive B cell subsets by profiling the repertoire of convalescent COVID-19 patients using a high-throughput B cell sorting and sequencing platform. Utilizing barcoded SARS-CoV-2 antigen baits, we isolated thousands of B cells that segregated into discrete functional subsets specific for the spike, nucleocapsid protein (NP), and open reading frame (ORF) proteins 7a and 8. Spike-specific B cells were enriched in canonical MBC clusters, and monoclonal antibodies (mAbs) from these cells were potently neutralizing. By contrast, B cells specific to ORF8 and NP were enriched in naïve and innate-like clusters, and mAbs against these targets were exclusively non-neutralizing. Finally, we identified that B cell specificity, subset distribution, and affinity maturation were impacted by clinical features such as age, sex, and symptom duration. Together, our data provide a comprehensive tool for evaluating B cell immunity to SARS-CoV-2 infection or vaccination and highlight the complexity of the human B cell response to SARS-CoV-2.
Collapse
Affiliation(s)
- Christopher T. Stamper
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- These authors contributed equally
| | - Haley L. Dugan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- These authors contributed equally
| | - Lei Li
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
- These authors contributed equally
| | - Nicholas W. Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Jenna J. Guthmiller
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Nai-Ying Zheng
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Min Huang
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Olivia Stovicek
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Jiaolong Wang
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | | | | | - Maud O. Jansen
- University of Chicago Department of Medicine, Chicago, IL 60637, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Isabelle Stewart
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Siriruk Changrob
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Henry A. Utset
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
| | - Jun Huang
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Christopher A. Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Paige D. Hall
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Robert P. Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63130, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 108-8639 Tokyo, Japan
| | - Patrick C. Wilson
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- University of Chicago Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA
- Lead Contact
| |
Collapse
|
1397
|
Abstract
SARS-CoV-2, the virus that causes COVID-19, emerged in late 2019, and was declared a global pandemic on March 11th 2020. With over 50 million cases and 1.2 million deaths around the world, to date, this pandemic represents the gravest global health crisis of our times. Thus, the race to develop a COVID-19 vaccine is an urgent global imperative. At the time of writing, there are over 165 vaccine candidates being developed, with 33 in various stages of clinical testing. In this review, we discuss emerging insights about the human immune response to SARS-CoV-2, and their implications for vaccine design. We then review emerging knowledge of the immunogenicity of the numerous vaccine candidates that are currently being tested in the clinic and discuss the range of immune defense mechanisms that can be harnessed to develop novel vaccines that confer durable protection against SARS-CoV-2. Finally, we conclude with a discussion of the potential role of a systems vaccinology approach in accelerating the clinical testing of vaccines, to meet the urgent needs posed by the pandemic.
Collapse
Affiliation(s)
- Lilit Grigoryan
- Institute for Immunology, Transplantation and Infectious Diseases, Department of Pathology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Bali Pulendran
- Institute for Immunology, Transplantation and Infectious Diseases, Department of Pathology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, United States.
| |
Collapse
|
1398
|
[Pathology and Immunology of COVID-19]. Uirusu 2020; 70:167-174. [PMID: 34544931 DOI: 10.2222/jsv.70.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Since the first case of COVID-19 was reported from Wuhan, China in December 2019, SARS-CoV-2 has been spreading globally and has become major public health concern. At present, development of specific treatment for COVID-19 is in progress and several countermeasures have been subjected to clinical trials. However, efficacy of these countermeasures is limited. For development of effective medicines or vaccines against infectious diseases, it is mandatory to elucidate its etiology and pathogenesis by means of pathological analysis. Pathological studies revealed that the COVID-19 mainly affects respiratory tracts although other organs are also involved. In addition, immunological studies demonstrated that host immune response may exacerbates COVID-19 through systemic inflammation. In this review, we would like to overview pathology and immunology of COVID-19.
Collapse
|