1351
|
Prawitt J, Staels B. Bile Acid Sequestrants: Glucose-Lowering Mechanisms. Metab Syndr Relat Disord 2010; 8 Suppl 1:S3-8. [DOI: 10.1089/met.2010.0096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Janne Prawitt
- University of Lille Nord de France, Lille, France
- INSERM, U1011, Lille, France
- UDSL, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Bart Staels
- University of Lille Nord de France, Lille, France
- INSERM, U1011, Lille, France
- UDSL, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
1352
|
Baltzer C, Tiefenböck SK, Frei C. Mitochondria in response to nutrients and nutrient-sensitive pathways. Mitochondrion 2010; 10:589-97. [DOI: 10.1016/j.mito.2010.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 07/16/2010] [Accepted: 07/23/2010] [Indexed: 11/30/2022]
|
1353
|
Meyer Zu Schwabedissen HE, Böttcher K, Chaudhry A, Kroemer HK, Schuetz EG, Kim RB. Liver X receptor α and farnesoid X receptor are major transcriptional regulators of OATP1B1. Hepatology 2010; 52:1797-807. [PMID: 20827719 DOI: 10.1002/hep.23876] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED Organic anion transporting polypeptide 1B1 (OATP1B1) is a liver-enriched transporter involved in the hepatocellular uptake of many endogenous molecules and several structurally divergent drugs in clinical use. Although OATP1B1 coding region polymorphisms are known to make an impact on substrate drug disposition in humans, little is known regarding the mechanisms underlying the transcriptional regulation of this transporter. In this study, we note that messenger RNA (mRNA) expression of OATP1B1 in a large human liver bank exhibited marked interindividual variability that was not associated with coding region polymorphisms. Accordingly, we hypothesized that such variability in expression is reflective of nuclear receptor-mediated transcriptional regulation of this transporter. We tested prototypical ligands for the nuclear receptors pregnane X receptor (PXR), constitutive androstane receptor (CAR), liver X receptor (LXR) α, and farnesoid X receptor (FXR) in a human hepatoma-derived cell line and noted induction of OATP1B1 mRNA when the cells were treated with LXRα or FXR ligands. To confirm a direct role for LXRα and FXR to OATP1B1 expression, we performed detailed promoter analysis and cell-based reporter gene assays resulting in the identification of two functional FXR response elements and one LXRα response element. The direct interaction between nuclear receptors with the identified response elements was assessed using chromatin immunoprecipitation assays. Using isolated primary human hepatocytes, we show that LXRα or FXR agonists, but not PXR or CAR agonists, are capable of OATP1B1 induction. CONCLUSION We note that OATP1B1 transcriptional regulation is under dual nuclear receptor control through the oxysterol sensing LXRα and the bile acid sensor FXR. Accordingly, the interplay between OATP1B1 and nuclear receptors may play an important and heretofore unrecognized role during cholestasis, drug-induced liver injury, and OATP1B1 induction-related drug interactions.
Collapse
|
1354
|
Ishii S. [Bile acids and their pathophysiological role in metabolic disorders]. Nihon Yakurigaku Zasshi 2010; 136:265-269. [PMID: 21079364 DOI: 10.1254/fpj.136.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
1355
|
Genet C, Schmidt C, Strehle A, Schoonjans K, Auwerx J, Saladin R, Wagner A. Redefining the TGR5 Triterpenoid Binding Pocket at the C-3 Position. ChemMedChem 2010; 5:1983-8. [DOI: 10.1002/cmdc.201000329] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
1356
|
Diep TA, Madsen AN, Holst B, Kristiansen MM, Wellner N, Hansen SH, Hansen HS. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB J 2010; 25:765-74. [PMID: 20959516 DOI: 10.1096/fj.10-166595] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study was undertaken to investigate the link between dietary fat content and intestinal levels of anorectic N-acylethanolamines (NAEs), including oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and linoleoylethanolamide (LEA). Male rats were fed high-fat diets (HFDs) with variable percentages of fat [20-45% of total energy (E%)] for 1-7 d; afterward, the jejunums were isolated, and jejunal NAE levels were measured by liquid-chromatography mass spectrometry. Enzyme activities and mRNA expression levels were measured for two synthesizing enzymes, N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and glycerophosphodiesterase (GDE1), and one degrading enzyme, fatty acid amide hydrolase (FAAH). We found a dose-response relation between the quantity/percentage of dietary fat, irrespective of the energy density, and the reduction of intestinal levels of OEA, PEA, and LEA. The reductions were present after 1 d of 45E% HFD. LEA, the major NAE species, was shown to have an anorectic potency slightly less than that of OEA but higher than PEA. Regulation at the enzyme level seems not to explain the changes in NAE levels. The results suggest the presence of a fat sensor, mediating the reduced intestinal NAE levels. The intestinal NAE levels are reduced in a dose- and time-dependent manner in response to dietary fat intake, and this may contribute to the well-known hyperphagic effect of HFDs.
Collapse
Affiliation(s)
- Thi Ai Diep
- Department of Pharmacology and Pharmacotheraphy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
1357
|
Rizzo G, Passeri D, De Franco F, Ciaccioli G, Donadio L, Rizzo G, Orlandi S, Sadeghpour B, Wang XX, Jiang T, Levi M, Pruzanski M, Adorini L. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol 2010; 78:617-30. [PMID: 20631053 PMCID: PMC2981390 DOI: 10.1124/mol.110.064501] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 07/14/2010] [Indexed: 12/13/2022] Open
Abstract
Two dedicated receptors for bile acids (BAs) have been identified, the nuclear hormone receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, which represent attractive targets for the treatment of metabolic and chronic liver diseases. Previous work characterized 6α-ethyl-3α,7α-dihydroxy-5β-cholan-24-oic acid (INT-747), a potent and selective FXR agonist, as well as 6α-ethyl-23(S)-methyl-3α,7α,12α-trihydroxy-5β-cholan-24-oic acid (INT-777), a potent and selective TGR5 agonist. Here we characterize 6α-ethyl-3α,7α,23-trihydroxy-24-nor-5β-cholan-23-sulfate sodium salt (INT-767), a novel semisynthetic 23-sulfate derivative of INT-747. INT-767 is a potent agonist for both FXR (mean EC(50), 30 nM by PerkinElmer AlphaScreen assay) and TGR5 (mean EC(50), 630 nM by time resolved-fluorescence resonance energy transfer), the first compound described so far to potently and selectively activate both BA receptors. INT-767 does not show cytotoxic effects in HepG2 cells, does not inhibit cytochrome P450 enzymes, is highly stable to phase I and II enzymatic modifications, and does not inhibit the human ether-a-go-go-related gene potassium channel. In line with its dual activity, INT-767 induces FXR-dependent lipid uptake by adipocytes, with the beneficial effect of shuttling lipids from central hepatic to peripheral fat storage, and promotes TGR5-dependent glucagon-like peptide-1 secretion by enteroendocrine cells, a validated target in the treatment of type 2 diabetes. Moreover, INT-767 treatment markedly decreases cholesterol and triglyceride levels in diabetic db/db mice and in mice rendered diabetic by streptozotocin administration. Collectively, these preclinical results indicate that INT-767 is a safe and effective modulator of FXR and TGR5-dependent pathways, suggesting potential clinical applications in the treatment of liver and metabolic diseases.
Collapse
Affiliation(s)
- Giovanni Rizzo
- Intercept Pharmaceuticals Italia Srl, Via Togliatti, 06073, Corciano, Perugia, Italia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1358
|
Kohli R, Kirby M, Setchell KDR, Jha P, Klustaitis K, Woollett LA, Pfluger PT, Balistreri WF, Tso P, Jandacek RJ, Woods SC, Heubi JE, Tschoep MH, D'Alessio DA, Shroyer NF, Seeley RJ. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. Am J Physiol Gastrointest Liver Physiol 2010; 299:G652-60. [PMID: 20595624 PMCID: PMC2950688 DOI: 10.1152/ajpgi.00221.2010] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 06/23/2010] [Indexed: 01/31/2023]
Abstract
Surgical interposition of distal ileum into the proximal jejunum is a bariatric procedure that improves the metabolic syndrome. Changes in intestinal and hepatic physiology after ileal interposition (transposition) surgery (IIS) are not well understood. Our aim was to elucidate the adaptation of the interposed ileum, which we hypothesized, would lead to early bile acid reabsorption in the interposed ileum, thus short circuiting enterohepatic bile acid recycling to more proximal bowel segments. Rats with diet-induced obesity were randomized to IIS, with 10 cm of ileum repositioned distal to the duodenum, or sham surgery. A subgroup of sham rats was pair-fed to IIS rats. Physiological parameters were measured until 6 wk postsurgery. IIS rats ate less and lost more weight for the first 2 wk postsurgery. At study completion, body weights were not different, but IIS rats had reversed components of the metabolic syndrome. The interposed ileal segment adapted to a more jejunum-like villi length, mucosal surface area, and GATA4/ILBP mRNA. The interposed segment retained capacity for bile acid reabsorption and anorectic hormone secretion with the presence of ASBT and glucagon-like-peptide-1-positive cells in the villi. IIS rats had reduced primary bile acid levels in the proximal intestinal tract and higher primary bile acid levels in the serum, suggesting an early and efficient reabsorption of primary bile acids. IIS rats also had increased taurine and glycine-conjugated serum bile acids and reduced fecal bile acid loss. There was decreased hepatic Cyp27A1 mRNA with no changes in hepatic FXR, SHP, or NTCP expression. IIS protects against the metabolic syndrome through short-circuiting enterohepatic bile acid recycling. There is early reabsorption of primary bile acids despite selective "jejunization" of the interposed ileal segment. Changes in serum bile acids or bile acid enterohepatic recycling may mediate the metabolic benefits seen after bariatric surgery.
Collapse
Affiliation(s)
- Rohit Kohli
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1359
|
Crook MA. Bile salts and obesity. Ann Clin Biochem 2010; 47:395-6. [DOI: 10.1258/acb.2010.010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- M A Crook
- Department of Clinical Biochemistry and Metabolic Medicine, University Hospital Lewisham, Lewisham, London SE13 6LH, UK
| |
Collapse
|
1360
|
Hov JR, Keitel V, Laerdahl JK, Spomer L, Ellinghaus E, ElSharawy A, Melum E, Boberg KM, Manke T, Balschun T, Schramm C, Bergquist A, Weismüller T, Gotthardt D, Rust C, Henckaerts L, Onnie CM, Weersma RK, Sterneck M, Teufel A, Runz H, Stiehl A, Ponsioen CY, Wijmenga C, Vatn MH, Stokkers PCF, Vermeire S, Mathew CG, Lie BA, Beuers U, Manns MP, Schreiber S, Schrumpf E, Häussinger D, Franke A, Karlsen TH. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS One 2010; 5:e12403. [PMID: 20811628 PMCID: PMC2928275 DOI: 10.1371/journal.pone.0012403] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 07/14/2010] [Indexed: 12/14/2022] Open
Abstract
Background TGR5, the G protein-coupled bile acid receptor 1 (GPBAR1), has been linked to inflammatory pathways as well as bile homeostasis, and could therefore be involved in primary sclerosing cholangitis (PSC) a chronic inflammatory bile duct disease. We aimed to extensively investigate TGR5 sequence variation in PSC, as well as functionally characterize detected variants. Methodology/Principal Findings Complete resequencing of TGR5 was performed in 267 PSC patients and 274 healthy controls. Six nonsynonymous mutations were identified in addition to 16 other novel single-nucleotide polymorphisms. To investigate the impact from the nonsynonymous variants on TGR5, we created a receptor model, and introduced mutated TGR5 constructs into human epithelial cell lines. By using confocal microscopy, flow cytometry and a cAMP-sensitive luciferase assay, five of the nonsynonymous mutations (W83R, V178M, A217P, S272G and Q296X) were found to reduce or abolish TGR5 function. Fine-mapping of the previously reported PSC and UC associated locus at chromosome 2q35 in large patient panels revealed an overall association between the TGR5 single-nucleotide polymorphism rs11554825 and PSC (odds ratio = 1.14, 95% confidence interval: 1.03–1.26, p = 0.010) and UC (odds ratio = 1.19, 95% confidence interval 1.11–1.27, p = 8.5×10−7), but strong linkage disequilibrium precluded demarcation of TGR5 from neighboring genes. Conclusions/Significance Resequencing of TGR5 along with functional investigations of novel variants provided unique insight into an important candidate gene for several inflammatory and metabolic conditions. While significant TGR5 associations were detected in both UC and PSC, further studies are needed to conclusively define the role of TGR5 variation in these diseases.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Sequence
- Animals
- Cattle
- Child
- Cholangitis, Sclerosing/complications
- Cholangitis, Sclerosing/genetics
- Cholangitis, Sclerosing/metabolism
- Chromosomes, Human, Pair 2/genetics
- Colitis, Ulcerative/complications
- DNA Mutational Analysis
- Dogs
- Female
- Gene Expression Regulation
- Humans
- Male
- Mice
- Middle Aged
- Models, Molecular
- Mutation
- Protein Conformation
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Young Adult
Collapse
Affiliation(s)
- Johannes R Hov
- Norwegian PSC Research Center, Clinic for Specialized Medicine and Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1361
|
Hageman J, Herrema H, Groen AK, Kuipers F. A role of the bile salt receptor FXR in atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30:1519-28. [PMID: 20631352 DOI: 10.1161/atvbaha.109.197897] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study reviews current insights into the role of bile salts and bile salt receptors on the progression and regression of atherosclerosis. Bile salts have emerged as important modifiers of lipid and energy metabolism. At the molecular level, bile salts regulate lipid and energy homeostasis mainly via the bile salt receptors FXR and TGR5. Activation of FXR has been shown to improve plasma lipid profiles, whereas Fxr(-/-) mice have increased plasma triglyceride and very-low-density lipoprotein levels. Nevertheless, high-density lipoprotein cholesterol levels are increased in these mice, suggesting that FXR has both anti- and proatherosclerotic properties. Interestingly, there is increasing evidence for a role of FXR in "nonclassical" bile salt target tissues, eg, vasculature and macrophages. In these tissues, FXR has been shown to influence vascular tension and regulate the unloading of cholesterol from foam cells, respectively. Recent publications have provided insight into the antiinflammatory properties of FXR in atherosclerosis. Bile salt signaling via TGR5 might regulate energy homeostasis, which could serve as an attractive target to increase energy expenditure and weight loss. Interventions aiming to increase cholesterol turnover (eg, by bile salt sequestration) significantly improve plasma lipid profiles and diminish atherosclerosis in animal models. Bile salt metabolism and bile salt signaling pathways represent attractive therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jurre Hageman
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, Hanzeplein 1, 9713 EZ Groningen, The Netherlands.
| | | | | | | |
Collapse
|
1362
|
Li T, Owsley E, Matozel M, Hsu P, Novak CM, Chiang JYL. Transgenic expression of cholesterol 7alpha-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. Hepatology 2010; 52:678-90. [PMID: 20623580 PMCID: PMC3700412 DOI: 10.1002/hep.23721] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Cholesterol 7alpha-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway that converts cholesterol into bile acids in the liver. Recent studies have shown that bile acids may play an important role in maintaining lipid, glucose, and energy homeostasis. However, the role of CYP7A1 in the development of obesity and diabetes is currently unclear. In this study, we demonstrated that transgenic mice overexpressing Cyp7a1 in the liver [i.e., Cyp7a1 transgenic (Cyp7a1-tg) mice] were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and insulin resistance. Cyp7a1-tg mice showed increased hepatic cholesterol catabolism and an increased bile acid pool. Cyp7a1-tg mice had increased secretion of hepatic very low density lipoprotein but maintained plasma triglyceride homeostasis. Gene expression analysis showed that the hepatic messenger RNA expression levels of several critical lipogenic and gluconeogenic genes were significantly decreased in HFD-fed Cyp7a1-tg mice. HFD-fed Cyp7a1-tg mice had increased whole body energy expenditure and induction of fatty acid oxidation genes in the brown adipose tissue. CONCLUSION This study shows that Cyp7a1 plays a critical role in maintaining whole body lipid, glucose, and energy homeostasis. The induction of CYP7A1 expression with the expansion of the hydrophobic bile acid pool may be a potential therapeutic strategy for treating metabolic disorders such as fatty liver diseases, obesity, and diabetes in humans.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Integrative Medical Sciences, Northeastern Ohio Universities’ Colleges of Medicine and Pharmacy, Rootstown, OH
| | - Erika Owsley
- Department of Integrative Medical Sciences, Northeastern Ohio Universities’ Colleges of Medicine and Pharmacy, Rootstown, OH
| | - Michelle Matozel
- Department of Integrative Medical Sciences, Northeastern Ohio Universities’ Colleges of Medicine and Pharmacy, Rootstown, OH
| | - Peter Hsu
- Department of Integrative Medical Sciences, Northeastern Ohio Universities’ Colleges of Medicine and Pharmacy, Rootstown, OH
| | - Colleen M. Novak
- Department of Biological Sciences, Kent State University, Kent, OH
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeastern Ohio Universities’ Colleges of Medicine and Pharmacy, Rootstown, OH
| |
Collapse
|
1363
|
Lavoie B, Balemba OB, Godfrey C, Watson CA, Vassileva G, Corvera CU, Nelson MT, Mawe GM. Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of KATP channels. J Physiol 2010; 588:3295-305. [PMID: 20624794 DOI: 10.1113/jphysiol.2010.192146] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hydrophobic bile salts are thought to contribute to the disruption of gallbladder smooth muscle (GBSM) function that occurs in gallstone disease, but their mechanism of action is unknown. The current study was undertaken to determine how hydrophobic bile salts interact with GBSM, and how they reduce GBSM activity. The effect of hydrophobic bile salts on the activity of GBSM was measured by intracellular recording and calcium imaging using wholemount preparations from guinea pig and mouse gallbladder. RT-PCR and immunohistochemistry were used to evaluate expression of the G protein-coupled bile acid receptor, GPBAR1. Application of tauro-chenodeoxycholate (CDC, 50-100 microm) to in situ GBSM rapidly reduced spontaneous Ca(2+) flashes and action potentials, and caused a membrane hyperpolarization. Immunoreactivity and transcript for GPBAR1 were detected in gallbladder muscularis. The GPBAR1 agonist, tauro-lithocholic acid (LCA, 10 microm) mimicked the effect of CDC on GBSM. The actions of LCA were blocked by the protein kinase A (PKA) inhibitor, KT5720 (0.5-1.0 microm) and the K(ATP) channel blocker, glibenclamide (10 microm). Furthermore, LCA failed to disrupt GBSM activity in Gpbar1(/) mice. The findings of this study indicate that hydrophobic bile salts activate GPBAR1 on GBSM, and this leads to activation of the cyclic AMP-PKA pathway, and ultimately the opening of K(ATP) channels, thus hyperpolarizing the membrane and decreasing GBSM activity. This inhibitory effect of hydrophobic bile salt activation of GPBAR1 could be a contributing factor in the manifestation of gallstone disease.
Collapse
Affiliation(s)
- Brigitte Lavoie
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington VT 05405, USA
| | | | | | | | | | | | | | | |
Collapse
|
1364
|
Mochida T, Hira T, Hara H. The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-IV activity in rats. Endocrinology 2010; 151:3095-104. [PMID: 20410194 DOI: 10.1210/en.2009-1510] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We previously showed that a hydrolysate prepared from corn zein [zein hydrolysate (ZeinH)] strongly stimulates glucagons-like peptide-1 (GLP-1) secretion from the murine GLP-1-producing enteroendocrine cell line and in the rat small intestine, especially in the ileum. Here, we investigated whether ZeinH administered into the ileum affects glucose tolerance via stimulating GLP-1 secretion. To observe the effect of luminal ZeinH itself on GLP-1 secretion and glycemia, ip glucose tolerance tests were performed in conscious rats with ileal and jugular catheters, and plasma glucose, insulin, and GLP-1 (total and active) were measured. In addition, plasma dipeptidyl peptidase-IV activities in the ileal vein were measured after the administration of ZeinH into the ileal-ligated loop in anesthetized rats. The ileal administration of ZeinH attenuated the glucose-induced hyperglycemia accompanied by the enhancement of insulin secretion, whereas meat hydrolysate (MHY) neither induced insulin secretion nor attenuated hyperglycemia. The antihyperglycemic effect was also demonstrated by the oral administration of ZeinH. From these results, it was predicted that the GLP-1-releasing potency of ZeinH was higher than that of MHY. However, both peptides induced a similar increase in total GLP-1 concentration after the ileal administration. In contrast, active GLP-1 concentration was increased only in ZeinH-treated rats. In anesthetized rats, ileal administration of ZeinH, but not MHY, decreased plasma dipeptidyl peptidase-IV activity in the ileal vein. These results indicate that the ileal administration of a dietary peptide, ZeinH, has the dual functions of inducing GLP-1 secretion and inhibiting GLP-1 degradation, resulting in the enhancement of insulin secretion and the prevention of hyperglycemia in rats.
Collapse
Affiliation(s)
- Taisuke Mochida
- Division of Bio-Systems and Sustainability, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan 0608589
| | | | | |
Collapse
|
1365
|
Abstract
In addition to their classical functions in aiding the digestion and absorption of lipids, bile acids are increasingly gaining appreciation for their roles in regulating intestinal physiology. Bile acids are now widely considered as hormones that exert a wide range of physiological and pathophysiological effects both within and outside the gastrointestinal (GI) tract. The discovery of the bile acid receptor, GpBAR1, represented a major step forward in our understanding of how cells can sense and respond to bile acids. GpBAR1 is a cell surface G protein-coupled receptor expressed on adipose tissue and skeletal muscle where it has been found to be an important regulator of cellular metabolism. In a paper published in the current issue of Neurogastroenterology and Motility, Poole et al. investigated the expression and function of GpBAR1 in mouse intestine. They found the receptor to be expressed throughout the GI tract but predominantly on nerves within the myenteric and submucosal plexuses. Employing in vitro and in vivo techniques they demonstrated that activation of GpBAR1 by bile acids inhibits small and large intestinal motor function and delays intestinal transit. The effects of GpBAR1 activation are mediated through activation of cholinergic and nitrergic interneurons. The data reported by Poole et al. provides novel and exciting insights into how bile acids exert their actions in the intestine. This Editorial Viewpoint aims to further consider the potential physiological and pathophysiological implications of their findings.
Collapse
Affiliation(s)
- S J Keely
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
1366
|
Knop FK. Bile-induced secretion of glucagon-like peptide-1: pathophysiological implications in type 2 diabetes? Am J Physiol Endocrinol Metab 2010; 299:E10-3. [PMID: 20424139 DOI: 10.1152/ajpendo.00137.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During the last decades it has become clear that bile acids not only act as simple fat solubilizers, but additionally represent complex hormonal metabolic integrators. Bile acids activate both nuclear receptors (controlling transcription of genes involved in for example bile acid, cholesterol, and glucose metabolism) and the cell surface G protein-coupled receptor TGR5 (modulating energy expenditure in brown fat and muscle cells). It has been shown that TGR5 is expressed in enteroendocrine L cells, which secrete the potent glucose-lowering incretin hormone glucagon-like peptide-1 (GLP-1). Recently it was shown that bile acid-induced activation of TGR5 results in intestinal secretion of GLP-1 and that enhanced TGR5 signaling improves postprandial glucose tolerance in diet-induced obese mice. This Perspectives article presents these novel findings in the context of prior studies on nutrient-induced GLP-1 secretion and outlines the potential implications of bile acid-induced GLP-1 secretion in physiological, pathophysiological, and pharmacological perspectives.
Collapse
Affiliation(s)
- Filip K Knop
- Department of Internal Medicine F, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, Hellerup, Denmark.
| |
Collapse
|
1367
|
Abstract
TGR5 is a G protein-coupled receptor expressed in brown adipose tissue and muscle, where its activation by bile acids triggers an increase in energy expenditure and attenuates diet-induced obesity. Using a combination of pharmacological and genetic gain- and loss-of-function studies invivo, we show here that TGR5 signaling induces intestinal glucagon-like peptide-1 (GLP-1) release, leading to improved liver and pancreatic function and enhanced glucose tolerance in obese mice. In addition, we show that the induction of GLP-1 release in enteroendocrine cells by 6alpha-ethyl-23(S)-methyl-cholic acid (EMCA, INT-777), a specific TGR5 agonist, is linked to an increase of the intracellular ATP/ADP ratio and a subsequent rise in intracellular calcium mobilization. Altogether, these data show that the TGR5 signaling pathway is critical in regulating intestinal GLP-1 secretion invivo, and suggest that pharmacological targeting of TGR5 may constitute a promising incretin-based strategy for the treatment of diabesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Peter L M Jansen
- Department of Gastrointestinal and Liver Disease, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
1368
|
Abstract
Bile acids have secretory, motility and antimicrobial effects in the intestine. In patients with bile acid malabsorption the amount of primary bile acids in the colon is increased compared to healthy controls. Deoxycholic acid is affecting the intestinal smooth muscle activity. Chenodeoxycholic acid has the highest potency to affect intestinal secretion. Litocholic acid has little effect in the lumen of intestine compared to both deoxycholic acid and chenodeoxycholic acid. There is no firm evidence that clinically relevant concentrations of bile acids induce colon cancer. Alterations in bile acid metabolism may be involved in the pathophysiology of constipation.
Collapse
Affiliation(s)
- Antal Bajor
- Department of Internal Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | |
Collapse
|
1369
|
Abstract
Obesity develops when energy intake exceeds energy expenditure. Although most current obesity therapies are focused on reducing calorific intake, recent data suggest that increasing cellular energy expenditure (bioenergetics) may be an attractive alternative approach. This is especially true for adaptive thermogenesis - the physiological process whereby energy is dissipated in mitochondria of brown fat and skeletal muscle in the form of heat in response to external stimuli. There have been significant recent advances in identifying the factors that control the development and function of these tissues, and in techniques to measure brown fat in human adults. In this article, we integrate these developments in relation to the classical understandings of cellular bioenergetics to explore the potential for developing novel anti-obesity therapies that target cellular energy expenditure.
Collapse
Affiliation(s)
- Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
1370
|
Abstract
The incretin hormone, glucagon-like peptide-1 (GLP-1), is now being used in the clinic to enhance insulin secretion and reduce body weight in patients with type 2 diabetes. Although much is already known about the biology of GLP-1, much remains to be understood. Hence, this review will consider recent findings related to the potential for enhancing endogenous levels of GLP-1 through selective use of secretagogues and the beneficial cardiovascular, neuroprotective, and immunomodulatory effects of GLP-1, as well as the possible effects of GLP-1 to enhance beta-cell growth and/or to induce pancreatitis or thyroid cancer. Finally, the potential for molecular medicine to enhance the success of GLP-1 therapy in the clinic is considered. A better understanding of the fundamental biology of GLP-1 may lead to new therapeutic modalities for the clinical use of this intestinal hormone.
Collapse
|
1371
|
13CO2 breath tests, a tool to assess intestinal and liver function in the ICU? Curr Opin Crit Care 2010; 16:169-75. [DOI: 10.1097/mcc.0b013e3283376739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
1372
|
Reimann F. Molecular mechanisms underlying nutrient detection by incretin-secreting cells. Int Dairy J 2010; 20:236-242. [PMID: 20204054 PMCID: PMC2825293 DOI: 10.1016/j.idairyj.2009.11.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted postprandially from intestinal K- and L-cells, respectively. As incretins, these hormones stimulate insulin secretion from the pancreatic β-cell, and have independently been implicated in the control of food intake and lipid metabolism. Whilst the enteroendocrine cells producing GIP and GLP-1 are therefore attractive targets for the treatment of diabetes and obesity, our understanding of their physiology is fairly limited. The mechanisms employed to sense the arrival of carbohydrate, fat and protein in the gut lumen have been investigated using organ perfusion techniques, primary epithelial cultures and cell line models. The recent development of mice with fluorescently labeled GIP or GLP-1-expressing cells is now enabling the use of single cell techniques to investigate stimulus-secretion coupling mechanisms. This review will focus on the current knowledge of the molecular machinery underlying nutrient sensing within K- and L-cells.
Collapse
Affiliation(s)
- Frank Reimann
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
1373
|
Targeting the TGR5-GLP-1 pathway to combat type 2 diabetes and non-alcoholic fatty liver disease. ACTA ACUST UNITED AC 2010; 34:270-3. [DOI: 10.1016/j.gcb.2010.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 01/22/2023]
|
1374
|
Abstract
PURPOSE OF REVIEW Human fat consists of white and brown adipose tissue (WAT and BAT). Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. This review evaluates the recent discoveries regarding the identification of functional BAT in adult humans and its potential as a therapy for obesity and diabetes. RECENT FINDINGS Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT) imaging, immunohistochemistry, and gene and protein expression assays to prove conclusively that adult humans have functional BAT. This has occurred against a backdrop of basic studies defining the origins of BAT, new components of its transcriptional regulation, and the role of hormones in stimulation of BAT growth and differentiation. SUMMARY Adult humans have functional BAT, a new target for antiobesity and antidiabetes therapies focusing on increasing energy expenditure. Future studies will refine the methodologies used to measure BAT mass and activity, expand our knowledge of critical-control points in BAT regulation, and focus on testing pharmacological agents that increase BAT thermogenesis and help achieve long-lasting weight loss and an improved metabolic profile.
Collapse
Affiliation(s)
- Aaron M Cypess
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, Massachusetts, 02215, USA
| | | |
Collapse
|
1375
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:177-85. [PMID: 20190584 DOI: 10.1097/med.0b013e3283382286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
1376
|
Abstract
Bile acids are generated in the liver and are traditionally recognized for their regulatory role in multiple metabolic processes including bile acid homeostasis, nutrient absorption, and cholesterol homeostasis. Recently, bile acids emerged as signaling molecules that, as ligands for the bile acid receptors farnesoid X receptor (FXR) and TGR5, activate and integrate multiple complex signaling pathways involved in lipid and glucose metabolism. Bile acid sequestrants are pharmacologic molecules that bind to bile acids in the intestine resulting in the interruption of bile acid homeostasis and, consequently, reduction in low-density lipoprotein cholesterol levels in hypercholesterolemia. Bile acid sequestrants also reduce glucose levels and improve glycemic control in persons with type 2 diabetes mellitus (T2DM). This article examines the mechanisms by which bile acid-mediated activation of FXR and TGR5 signaling pathways regulate lipid and glucose metabolism and the potential implications for bile acid sequestrant-mediated regulation of lipid and glucose levels in T2DM.
Collapse
Affiliation(s)
- Bart Staels
- Institut Pasteur de Lille, 1 rue Calmette BP245, 59019 Lille cedex, France
| | - Yehuda Handelsman
- Metabolic Institute of America, 18372 Clark Street, #212, Tarzana, CA 91356 USA
| | - Vivian Fonseca
- Tulane University Health Sciences Center, 1430 Tulane Avenue, SL53, New Orleans, LA 70118 USA
| |
Collapse
|
1377
|
Pellicciari R, Gioiello A, Macchiarulo A, Thomas C, Rosatelli E, Natalini B, Sardella R, Pruzanski M, Roda A, Pastorini E, Schoonjans K, Auwerx J. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem 2010; 52:7958-61. [PMID: 20014870 DOI: 10.1021/jm901390p] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the framework of the design and development of TGR5 agonists, we reported that the introduction of a C(23)(S)-methyl group in the side chain of bile acids such as chenodeoxycholic acid (CDCA) and 6-ethylchenodeoxycholic acid (6-ECDCA, INT-747) affords selectivity for TGR5. Herein we report further lead optimization efforts that have led to the discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a novel potent and selective TGR5 agonist with remarkable in vivo activity.
Collapse
Affiliation(s)
- Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco, Universita di Perugia, 06123 Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1378
|
Yoder SM, Kindel TL, Tso P. Using the lymph fistula rat model to study incretin secretion. VITAMINS AND HORMONES 2010; 84:221-49. [PMID: 21094902 DOI: 10.1016/b978-0-12-381517-0.00008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The past several decades have witnessed a flourish of interest in the field of incretin biology. The importance of the two incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), in health and disease is becoming more apparent as the prevalence of type 2 diabetes and other metabolic disorders escalates. Rodent models have become indispensable in the study of the physiological function of GIP and GLP-1; however, investigators have run into several roadblocks when untangling the regulation of incretin secretion in these systems. The low circulating levels of the incretin hormones combined with sensitivity of the currently available assays require substantial amounts of blood to be removed from an animal if the hormones are to be analyzed over a period of time. Because of these limitations, continuous monitoring of GIP and GLP-1 secretion becomes difficult. A more effective means of studying incretin secretion in small animal models is therefore desirable. This chapter evaluates the use of the lymph fistula rat as a model to study the secretion of incretins. Lymph fistula models, in a variety of animals, have been used for decades to study the absorption and transport of lipid and lipophilic compounds; however, only recently has the value of this model been appreciated as a tool to explore incretin secretion.
Collapse
Affiliation(s)
- Stephanie M Yoder
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
1379
|
Iguchi Y, Yamaguchi M, Sato H, Kihira K, Nishimaki-Mogami T, Une M. Bile alcohols function as the ligands of membrane-type bile acid-activated G protein-coupled receptor. J Lipid Res 2009; 51:1432-41. [PMID: 20023205 DOI: 10.1194/jlr.m004051] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TGR5 is a G protein-coupled receptor that is activated by bile acids, resulting in an increase in cAMP levels and the subsequent modulation of energy expenditure in brown adipose tissue and muscle. Therefore, the development of a TGR5-specific agonist could lead to the prevention and treatment of various metabolic disorders related to obesity. In the present study, we evaluated the ability of bile alcohols, which are structurally and physiologically similar to bile acids and are produced as the end products of cholesterol catabolism in evolutionarily primitive vertebrates, to act as TGR5 agonists. In a cell-based reporter assay and a cAMP production assay performed in vitro, most bile alcohols with a side chain containing hydroxyl group(s) were highly efficacious agonists for TGR5 comparable to its most potent ligand in the naturally occurring bile acid, lithocholic acid. However, the abilities of the bile alcohols to activate TGR5 varied with the position and number of the hydroxyl substituent in the side chain. Additionally, the conformation of the steroidal nucleus of bile alcohols is also important for its activity as a TGR5 agonist. Thus, we have provided new insights into the structure-activity relationships of bile alcohols as TGR5 agonists.
Collapse
Affiliation(s)
- Yusuke Iguchi
- Laboratory of Organic and Bio-molecular Chemistry, Faculty of Pharmaceutical Science, Hiroshima International University, Kure, Japan.
| | | | | | | | | | | |
Collapse
|
1380
|
Fiorucci S, Cipriani S, Baldelli F, Mencarelli A. Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Prog Lipid Res 2009; 49:171-85. [PMID: 19932133 DOI: 10.1016/j.plipres.2009.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/05/2009] [Accepted: 11/09/2009] [Indexed: 12/11/2022]
Abstract
Dyslipidemia is a metabolic disorder that constitutes a major risk factor for cardiovascular diseases and stroke and is often associated with diabetes mellitus and atherosclerosis. In recent years a number of ligand-activated receptors have been found to exert a role in integrating essential steps of lipid and glucose metabolism. Bile acid-activated receptors are a defined subset of nuclear and G-protein coupled receptors mainly expressed in entero-hepatic tissues for which bile acids function as signaling molecules. Primary bile acids (chenodeoxycholic acid and cholic acid) are physiological ligands/activators of farnesoid-X-receptor (FXR), pregnane-X-receptor (PXR) and constitutive androstane receptor (CAR), while litocholic acid is a ligand for the Vitamin D receptor (VDR) and the G-protein coupled receptor TGR5. Despite FXR demonstrates a high selectivity for bile acids, PXR and CAR are relatively promiscuous receptors integrating lipid homeostasis with xenobiotic metabolism. FXR, PXR, CAR and TGR exert synergistic activities in regulating lipid and glucose homeostasis and energy expenditure and liver and peripheral insulin sensitivity. Ligands for these receptors hold promise in the treatment of dyslipidemic conditions as revealed by results of a number of preclinical models but carry a defined risk for potential side effects.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Università Degli Studi di Perugia, Perugia, Italy.
| | | | | | | |
Collapse
|
1381
|
Affiliation(s)
- Debbie C Thurmond
- Departments of Pediatrics,Basic Diabetes Group of the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
1382
|
Research highlights. Nat Chem Biol 2009. [DOI: 10.1038/nchembio.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1383
|
Dual benefit of bile acid receptor agonist. Nat Rev Drug Discov 2009. [DOI: 10.1038/nrd3032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
1384
|
Abstract
In this issue of Cell Metabolism, Thomas et al. (2009) show that specific activation of the bile-acid-activated G protein-coupled receptor TGR5 improves pancreatic and hepatic function and impairs the development of obesity following administration of a high-fat diet.
Collapse
Affiliation(s)
- Thomas Quad de Aguiar Vallim
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, BSRB Room 310, Los Angeles, CA 90095, USA
| | | |
Collapse
|
1385
|
Kim BJ. Stimulation of Glucagon Like Peptide-1 Secretion in Enteroendocrine L cells. KOREAN DIABETES JOURNAL 2009. [DOI: 10.4093/kdj.2009.33.6.458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Byung Joon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konyang University School of Medicine, Daejeon, Korea
| |
Collapse
|