101
|
Ruan Y, Zhang L, Zhang L, Zhu K. Therapeutic Approaches Targeting Ferroptosis in Cardiomyopathy. Cardiovasc Drugs Ther 2025; 39:595-613. [PMID: 37930587 DOI: 10.1007/s10557-023-07514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The term cardiomyopathy refers to a group of heart diseases that cause severe heart failure over time. Cardiomyopathies have been proven to be associated with ferroptosis, a non-apoptotic form of cell death. It has been shown that some small molecule drugs and active ingredients of herbal medicine can regulate ferroptosis, thereby alleviating the development of cardiomyopathy. This article reviews recent discoveries about ferroptosis, its role in the pathogenesis of cardiomyopathy, and the therapeutic options for treating ferroptosis-associated cardiomyopathy. The article aims to provide insights into the basic mechanisms of ferroptosis and its treatment to prevent cardiomyopathy and related diseases.
Collapse
Affiliation(s)
- Yanqian Ruan
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Lina Zhang
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Keyang Zhu
- School of Public Health, Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
102
|
Isah MB, Tajuddeen N, Yusuf A, Mohammed A, Ibrahim MA, Melzig M, Zhang X. The antidiabetic properties of lignans: a comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156717. [PMID: 40220408 DOI: 10.1016/j.phymed.2025.156717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic metabolic disease with a high global prevalence. Lignans, a class of plant natural compounds found in commonly consumed foods, are well-tolerated by humans and have demonstrated promising potential in the management of DM. Consumption of lignan-rich foods has been associated with improved overall health and quality of life. PURPOSE The clinical and preclinical evidence on the role of lignans in managing DM are critically examined. METHODS A thorough literature search was conducted across major scientific databases, focusing on studies that reported the effects of individual lignans on key diabetes indicators, such as glucose utilisation and insulin sensitivity, in both human and animal models, as well as in cell-based studies. RESULTS A total of 180 lignans were included in the review. Out of these, only three were investigated in randomised clinical trials in humans and 31 in animal models. The reviewed evidence suggests some beneficial effects of lignans in preventing the development of obesity-related diabetes. Their therapeutic benefits in preventing diabetes-related complications, particularly diabetic nephropathy, in both type 1 and type 2 diabetes, are also supported. Metabolites of various lignans, produced by microbial metabolism in the gut and serum enzymes, appear to be key bioactive forms, highlighting the need for detailed pharmacodynamic studies, optimised dosage designs, and the use of the appropriate lignan molecules for cell-based screening. CONCLUSION Lignans and their microbial metabolites show promise in preventing obesity-related diabetes and mitigating diabetes-related complications such as diabetic nephropathy, though further clinical studies are needed to optimize their therapeutic potential.
Collapse
Affiliation(s)
- Murtala Bindawa Isah
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Department of Biochemistry, Umaru Musa Yar'adua University Katsina, Nigeria.
| | - Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University Zaria, Nigeria
| | - Anas Yusuf
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Aminu Mohammed
- Department of Biochemistry, Ahmadu Bello University Zaria, Nigeria
| | | | - Matthias Melzig
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Freie Universitaet Berlin, Institute of Pharmacy, Berlin, Germany.
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
103
|
Yang T, Luo L, Luo X, Liu X. Metabolic crosstalk and therapeutic interplay between diabetes and hyperuricemia. Diabetes Res Clin Pract 2025; 224:112204. [PMID: 40294652 DOI: 10.1016/j.diabres.2025.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Hyperuricemia and diabetes mellitus (DM) are prevalent metabolic disorders with high comorbidity, imposing a substantial global public health burden. Their coexistence is not merely additive but synergistic, exacerbating metabolic dysregulation through mechanisms such as insulin resistance and β-cell apoptosis, ultimately establishing a vicious cycle. Both disorders induce acute and chronic damage to vital organs, particularly the cardiovascular, renal systems. Hyperuricemia aggravates diabetic complications, notably diabetic cardiomyopathy, nephropathy and retinopathy via oxidative stress, inflammation, and metabolic dysregulation.Current urate-lowering therapies (ULTs), such as xanthine oxidase inhibitors and urate transporter 1 (URAT1, also known as SLC22A12) antagonists, demonstrate potential benefits in ameliorating diabetic complications but face challenges including safety concerns and dose adjustments. Similarly, several glucose-lowering drugs also exhibit the benefits of improving hyperuricemia. This review summarizes the metabolic crosstalk and therapeutic interplay between hyperuricemia and DM, examines the pathogenic role of uric acid in diabetic complications, and discusses the benefits and challenges of existing ULTs and glucose-lowering drugs in disrupting this cycle of metabolic dysregulation and concurrent organ damage. We hope our findings deepen the comprehension of the intricate metabolic crosstalk between glucose and urate homeostasis, providing novel therapeutic insights for patients with comorbid DM and hyperuricemia.
Collapse
Affiliation(s)
- Tianshu Yang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 Hubei, China
| | - Lingyun Luo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030 Hubei, China
| | - Xuelian Luo
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Xiaolei Liu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030 Hubei, China.
| |
Collapse
|
104
|
Sugawara Y, Morinaga H, Chen J, Kitagawa Y, Ogata H, Karim A, Kikuchi M, Khan M, Yasuhara E, Goto T, Martyn JAJ, Yasuhara S. Mito-Kaede photoactivation and chase experiment for mitophagy: mitophagy flux response toward various stimulations. Biotechniques 2025:1-13. [PMID: 40449520 DOI: 10.1080/07366205.2025.2505357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/09/2025] [Indexed: 06/03/2025] Open
Abstract
Mitophagy, a crucial mitochondrial quality control system for cellular stress adaptation, is a key focus in pathophysiology and drug discovery. Developing a simple and versatile mitophagy flux assay is vital for advancing our understanding of cellular responses. Addressing a gap in systematic methods, we employ the photoactivatable fluorescent protein mito-Kaede in C2C12 myocytes, demonstrating its remarkable versatility in quantifying mitophagy flux responses under various stimuli, including carbonyl cyanide m-chlorophenyl hydrazone (CCCP), TNF-α, lipopolysaccharide (LPS), and hypoxia. This study underscores the validity and distinctive advantages of the mito-Kaede assay through comparative analysis with conventional assays including Western blotting (WB), potentially providing valuable insights for both mitophagy flux analysis and drug development.
Collapse
Affiliation(s)
- Yoh Sugawara
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Hiroyuki Morinaga
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
- Department of Trauma and Critical Care Medicine, Kyorin University, Faculty of Medicine
| | - Jingyuan Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yoshinori Kitagawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Hiroki Ogata
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Asiya Karim
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Miu Kikuchi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Maryam Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Erica Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Joseph A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children Boston, and Harvard Medical School, Boston, MS, USA
| |
Collapse
|
105
|
Arnold Z, Dostal C, Szabó PL, Aykac I, Goncalves AIA, Sousa SL, Baydar S, Budde H, Váradi B, Nadasy GL, Szekeres M, Hage C, Lund LH, Costantino S, Abraham D, Zins K, Hallström S, Bilban M, Ágg B, Hamdani N, Ferdinandy P, Paneni F, Kiss A, Podesser BK. Tenascin-C drives cardiovascular dysfunction in a mouse model of diabetic cardiomyopathy. Cardiovasc Diabetol 2025; 24:235. [PMID: 40450269 DOI: 10.1186/s12933-025-02780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 05/08/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a complex condition linked to diabetes, characterized by cardiac and vascular dysfunction, frequently concomitant with heart failure with preserved ejection fraction. The extracellular matrix glycoprotein Tenascin-C (TNC) has been found to be upregulated under diabetic conditions. However, the potential contributory role of TNC in the progression of DCM remains largely unclear. This study was designed to elucidate the role of TNC in the pathogenesis of DCM. METHODS Diabetes was induced in adult male wild-type (WT) and TNC knockout (TNC-KO) mice, through the administration of streptozotocin (50 mg/kg) for five consecutive days. At 18 weeks cardiac and aortic vascular function was evaluated using echocardiography and wire myography. Myocardium and plasma samples were collected for biochemical, histological, and molecular analyses. Cardiomyocytes and cardiac fibroblasts were used to investigate the impact of diabetes on TNC expression, inflammation, myocardial stiffness and function. Additionally, transcriptomic analysis of cardiac tissue by RNA-sequencing was conducted. Plasma TNC levels were assessed by enzyme-linked immunosorbent assay in cohorts of heart failure patients and type 2 diabetes mellitus. RESULTS TNC-KO diabetic mice showed preserved left ventricular systolic and diastolic function, significantly reduced cardiac fibrosis and mitigated endothelial dysfunction compared to WT diabetic animals. Compared with cardiomyocytes of diabetic WT animals, cardiomyocytes of TNC-KO mice developed less stiffness (Fpassive). Additionally, exposing mouse cardiomyocytes and human cardiac fibroblasts to high glucose stress (30 mM) led to a significant increase in TNC expression. Conversely, recombinant human TNC promoted pro-inflammatory and oxidative stress markers in cardiomyocytes. The role of TNC in fibrosis and DCM was found to involve pathways related to p53 signaling and Serpin1k, Ccn1, Cpt1a, and Slc27a1, as identified by RNA sequencing analysis. Additionally, plasma TNC levels were significantly elevated in patients with heart failure, irrespective of diabetes status, compared to healthy individuals. CONCLUSIONS Our findings indicate that in diabetes, TNC contributes to cardiac contractile dysfunction, myocardial fibrosis, oxidative stress, inflammation, and metabolic disturbances in diabetic mouse heart. These results implicate the potential of TNC inhibition as a novel therapeutic approach for treating DCM.
Collapse
MESH Headings
- Animals
- Tenascin/genetics
- Tenascin/metabolism
- Tenascin/deficiency
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/etiology
- Male
- Mice, Knockout
- Ventricular Function, Left
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/chemically induced
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Humans
- Mice, Inbred C57BL
- Fibrosis
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Ventricular Remodeling
- Cells, Cultured
- Signal Transduction
- Vascular Stiffness
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/genetics
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Failure/genetics
- Oxidative Stress
- Case-Control Studies
Collapse
Affiliation(s)
- Zsuzsanna Arnold
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Wahringer Gürtel 18-20, 1090, Vienna, Austria
| | - Christopher Dostal
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Wahringer Gürtel 18-20, 1090, Vienna, Austria
| | - Petra Lujza Szabó
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Wahringer Gürtel 18-20, 1090, Vienna, Austria
| | - Ibrahim Aykac
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Wahringer Gürtel 18-20, 1090, Vienna, Austria
| | - Ana Isabel Antunes Goncalves
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Wahringer Gürtel 18-20, 1090, Vienna, Austria
| | - Silva Laura Sousa
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Wahringer Gürtel 18-20, 1090, Vienna, Austria
| | - Simge Baydar
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Wahringer Gürtel 18-20, 1090, Vienna, Austria
| | - Heidi Budde
- Cellular and Translational Physiology Department, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Barnabás Váradi
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| | - György L Nadasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mária Szekeres
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Camilla Hage
- Division of Cardiology, Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars H Lund
- Division of Cardiology, Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, Zurich, Switzerland
- University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dietmar Abraham
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Karin Zins
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Seth Hallström
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Wahringer Gürtel 18-20, 1090, Vienna, Austria
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facilities (M.B.), Medical University of Vienna, Vienna, Austria
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Nazha Hamdani
- Cellular and Translational Physiology Department, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, University Maastricht, Maastricht, The Netherlands
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Center for Pharmacology and Drug Research and Development, Semmelweis University, 1089, Budapest, Hungary
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, Zurich, Switzerland
- University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Wahringer Gürtel 18-20, 1090, Vienna, Austria.
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Wahringer Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
106
|
Xu J, Hu H, Jiang H, Wei Q, Zhang H, Lu Q. The therapeutic mechanisms of quercetin on inflammatory diseases: an update. Inflammopharmacology 2025:10.1007/s10787-025-01795-x. [PMID: 40448820 DOI: 10.1007/s10787-025-01795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 05/12/2025] [Indexed: 06/02/2025]
Abstract
Bioactive compounds derived from medicinal plants have become a significant source of drugs for inflammatory diseases treatment, particularly those caused by immune system abnormalities. Quercetin, a flavonol found in a wide variety of herbs, fruits, and vegetables, has garnered attention for its diverse biological properties, including anti-inflammatory, anticancer, and antiviral activities. Numerous in vivo and ex vivo studies have validated quercetin's role in treating inflammatory diseases through multiple pathways, mainly involving anti-oxidative stress, modulation of metabolism, intestinal flora, apoptosis, endoplasmic reticulum stress, and macrophage polarization, indicating it a promising pharmaceutical candidate for managing inflammatory and autoimmune conditions. We aimed to systematically review quercetin's anti-inflammatory activity and the mechanisms of action across various inflammatory diseases in the digestive, respiratory, endocrine, neurological, and osteoarticular systems. By summarizing the therapeutic potential of quercetin in these multifaceted conditions, this review seeks to provide a solid foundation for future clinical research and application strategies involving quercetin.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haixu Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honglin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
107
|
Marsh NM, MacEwen MJS, Chea J, Kenerson HL, Kwong AA, Locke TM, Miralles FJ, Sapre T, Gozali N, Hart ML, Bammler TK, MacDonald JW, Sullivan LB, Atilla-Gokcumen GE, Ong SE, Scott JD, Yeung RS, Sancak Y. Mitochondrial calcium signaling regulates branched-chain amino acid catabolism in fibrolamellar carcinoma. SCIENCE ADVANCES 2025; 11:eadu9512. [PMID: 40435263 PMCID: PMC12118637 DOI: 10.1126/sciadv.adu9512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/23/2025] [Indexed: 06/01/2025]
Abstract
Metabolic adaptations are essential for survival. The mitochondrial calcium uniporter plays a key role in coordinating metabolic homeostasis by regulating mitochondrial metabolic pathways and calcium signaling. However, a comprehensive analysis of uniporter-regulated mitochondrial pathways has remained unexplored. Here, we investigate consequences of uniporter loss and gain of function using uniporter knockout cells and fibrolamellar carcinoma (FLC), which we demonstrate to have elevated mitochondrial calcium levels. We find that branched-chain amino acid (BCAA) catabolism and the urea cycle are uniporter-regulated pathways. Reduced uniporter function boosts expression of BCAA catabolism genes and the urea cycle enzyme ornithine transcarbamylase. In contrast, high uniporter activity in FLC suppresses their expression. This suppression is mediated by the transcription factor KLF15, a master regulator of liver metabolism. Thus, the uniporter plays a central role in FLC-associated metabolic changes, including hyperammonemia. Our study identifies an important role for the uniporter in metabolic adaptation through transcriptional regulation of metabolism and elucidates its importance for BCAA and ammonia metabolism.
Collapse
Affiliation(s)
- Nicole M. Marsh
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | - Jane Chea
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Heidi L. Kenerson
- Department of Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Albert A. Kwong
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Timothy M. Locke
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Natasha Gozali
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Madeleine L. Hart
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Lucas B. Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| |
Collapse
|
108
|
Stegmuller C, Ramón A, Bhuiyan KM, Berk N, Han R, Salami F, D'Angelo M, Lippman-Bell JJ. Targeting MMP-9 activation after early-life seizures reduces seizure susceptibility and memory deficits in a larval zebrafish model. Neurobiol Dis 2025; 212:106978. [PMID: 40449606 DOI: 10.1016/j.nbd.2025.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/19/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025] Open
Abstract
One in 26 Americans experience seizures, with a high incidence occurring in the first years of life. Chronic consequences of prolonged early-life seizures (ELS) in humans and rodent models vary, but can include the development of epilepsy (spontaneous, recurrent seizures) and cognitive impairment. Because it is not clear how seizures might lead to these consequences, no therapeutic strategy exists to prevent or predict them. Here, we optimized a larval zebrafish ELS model to assess a therapeutic approach targeting post-ELS sequelae. Using increased seizure susceptibility as a readout of the epileptogenic process and a novel object recognition task to assess memory, we found that two weeks after a three-day ELS induction paradigm, zebrafish were significantly more susceptible to seizures and showed a significant memory deficit. Therefore, we next used this model to identify and target underlying mechanisms. After observing an acute post-ELS increase in mmp9 gene expression, we pharmacologically inhibited the conversion of pro-MMP-9 to active MMP-9 after ELS using JNJ0966, and tested subsequent seizure susceptibility and memory two weeks later. Preventing formation of active MMP-9 for the first hour post-ELS was sufficient to return memory and seizure susceptibility readouts to that of clutch mate controls. This study provides novel insight into the development of ELS sequelae and presents a promising model for moving ELS research forward, demonstrating seizure susceptibility, memory assessment, therapeutic targeting, and pharmacological testing in a simplified model.
Collapse
Affiliation(s)
- Christopher Stegmuller
- Philadelphia College of Osteopathic Medicine, Department of Bio-Medical Sciences and Division of Research, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - Alfonsina Ramón
- Philadelphia College of Osteopathic Medicine, Department of Bio-Medical Sciences and Division of Research, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - Kasulul Melissa Bhuiyan
- Philadelphia College of Osteopathic Medicine, Department of Bio-Medical Sciences and Division of Research, 4170 City Avenue, Philadelphia, PA 19131, USA
| | - Nat Berk
- Philadelphia College of Osteopathic Medicine, Department of Bio-Medical Sciences and Division of Research, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - Rebecca Han
- Philadelphia College of Osteopathic Medicine, Department of Bio-Medical Sciences and Division of Research, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - Faisha Salami
- Philadelphia College of Osteopathic Medicine, Department of Bio-Medical Sciences and Division of Research, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - Marina D'Angelo
- Philadelphia College of Osteopathic Medicine, Department of Bio-Medical Sciences and Division of Research, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | - Jocelyn J Lippman-Bell
- Philadelphia College of Osteopathic Medicine, Department of Bio-Medical Sciences and Division of Research, 4170 City Avenue, Philadelphia, PA 19131, USA.
| |
Collapse
|
109
|
Cai YY, Zhu XM, Noman M, Wang J, Hao ZN, Wang YL, Li L, Liu XH, Lu JP, Wang JY, Lin FC. Nuclear basket nucleoporin MoNup50 is essential for fungal development, pathogenicity, and autophagy in Magnaporthe oryzae. Cell Commun Signal 2025; 23:249. [PMID: 40442711 PMCID: PMC12121117 DOI: 10.1186/s12964-025-02219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/26/2025] [Indexed: 06/02/2025] Open
Abstract
Autophagy is crucial for appressorium development and host invasion by phytopathogenic fungi, including Magnaporthe oryzae. During appressorium maturation, many organelles, such as nuclei, in the conidia need to be degraded through autophagy to be recycled in appressorium. However, the interplay between autophagy and nuclear membrane systems remains poorly understood. In this study, we functionally characterized MoNup50, a nuclear pore-associated protein. Despite sharing limited sequence identity with human and yeast Nup proteins, MoNup50 contains conserved domains typical of nuclear pore complex proteins. Observation under fluorescence microscopy revealed that MoNup50 localizes at the nuclear membrane in M. oryzae. Deletion of MoNUP50 resulted in reduced hyphal growth, spore production, appressorium formation, and pathogenicity, while increasing sensitivity to osmotic stress and cell wall disruption. Notably, MoNup50 interacts with the key autophagy protein MoAtg7, which regulates MoAtg8-PE synthesis during autophagy. Moreover, MoNUP50 deletion led to elevated autophagy levels and increased phosphorylation of the MAPKs Osm1 and Mps1. These findings suggest that MoNup50 is involved in appressorium morphogenesis and pathogenicity by modulating autophagy and MAPK pathways, highlighting the critical role of nuclear pore proteins in M. oryzae pathogenicity and their potential cross-talk with autophagic and MAPK signaling.
Collapse
Affiliation(s)
- Ying-Ying Cai
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Agricultural Microbiome (MARA), Key Laboratory of Agricultural Microbiomes of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Agricultural Microbiome (MARA), Key Laboratory of Agricultural Microbiomes of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Muhammad Noman
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Agricultural Microbiome (MARA), Key Laboratory of Agricultural Microbiomes of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing Wang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Agricultural Microbiome (MARA), Key Laboratory of Agricultural Microbiomes of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhong-Na Hao
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Agricultural Microbiome (MARA), Key Laboratory of Agricultural Microbiomes of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yan-Li Wang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Agricultural Microbiome (MARA), Key Laboratory of Agricultural Microbiomes of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lin Li
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Agricultural Microbiome (MARA), Key Laboratory of Agricultural Microbiomes of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Hong Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiomics of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiao-Yu Wang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Agricultural Microbiome (MARA), Key Laboratory of Agricultural Microbiomes of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Fu-Cheng Lin
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Agricultural Microbiome (MARA), Key Laboratory of Agricultural Microbiomes of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiomics of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
110
|
Gao T, Liu Y, Li J, Zhang Y, Wu B. Function of manchette and intra-manchette transport in spermatogenesis and male fertility. Cell Commun Signal 2025; 23:250. [PMID: 40442757 PMCID: PMC12123824 DOI: 10.1186/s12964-025-02213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
The manchette is a transient skirt-like structure consisting of microtubules (MTs) and filamentous actin (F-actin) surrounding the elongating sperm head during spermiogenesis. It is pivotal in sperm head shaping controlled by the acrosome-acroplaxome-manchette complex, acrosome formation, and flagellar assembly by microtubular-based protein delivery. Defects in the manchette frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying manchette function and its role in male infertility remain poorly understood. In this review, we systematically described the assembly and disassembly of the manchette, intra-manchette transport (IMT) and its regulatory model, the function and mechanism of manchette and IMT in regulating sperm head shaping and flagellar assembly during spermatogenesis; summarized the research progress of manchette-related genes related to male infertility; and listed the manchette-related proteins in knockout mouse models and clinical cases, which provide the theoretical basis for an in-depth understanding of the molecular mechanism of manchette involved in spermatogenesis and male fertility for understanding the potentially developing treatments for infertility and reproductive disorders.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Liu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Li
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yvxia Zhang
- The First People's Hospital of Kunshan, Suzhou, China
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
111
|
Cai L, Zhao Y, Li Z, Xiao L, Wu Y, Wang S, Liu Q, Ye Y, Guo Y, Zhang D. A Human Engineered Heart Tissue-Derived Lipotoxic Diabetic Cardiomyopathy Model Revealed Early Benefits of Empagliflozin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e03173. [PMID: 40433797 DOI: 10.1002/advs.202503173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/21/2025] [Indexed: 05/29/2025]
Abstract
Diabetic cardiomyopathy (DbCM) is increasingly prevalent, but intervention targets remain unclear due to the lack of appropriate models and the complexity of risk factors. Here, this work establishes an in vitro assessment system for DbCM function using cardiomyocytes derived from human pluripotent stem cells and engineered heart tissue. This work finds high-fat status in complex diabetes risk factors majorly contributes most to cardiomyocyte death and contractile dysfunction. Notably, PA induced early electrophysiological abnormalities, and lately is associated with cardiac fibrosis, mitochondrial fission, and systolic and diastolic dysfunction at tissue level. Using this in vitro assessment system, this work finds that empagliflozin (EMPA), a first-line glucose-lowering drug, effectively alleviated early PA-induced cardiomyocyte injury. Treatment with EMPA enhanced abnormal diastolic and electrophysiological functions in the PA-hEHT model and significantly reduced endoplasmic reticulum stress, and apoptosis. Furthermore, these promising results are confirmed in a type 2 diabetes mellitus mouse model, reinforcing the potential of EMPA as a therapeutic option to alleviate cardiomyocyte injury under diabetic conditions. These findings suggest that this work has developed an engineered model of diabetic cardiomyopathy that mimics the various stages of lipotoxic myocardial injury and support the use of EMPA as a potential therapeutic option for diabetic or lipotoxic cardiomyopathy.
Collapse
Affiliation(s)
- Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuxin Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan, 430023, China
| | - Zilong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Liping Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yifan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shiya Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qian Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yida Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuxuan Guo
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
112
|
Li J, Qiu H, Wu Y, Su L. Identification of metabolic pathways and serum biomarkers in diabetic cardiomyopathy using untargeted metabolomics. Sci Rep 2025; 15:18718. [PMID: 40437131 PMCID: PMC12119909 DOI: 10.1038/s41598-025-98753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/14/2025] [Indexed: 06/01/2025] Open
Abstract
Diabetic cardiomyopathy represents a significant and irreversible chronic cardiovascular complication among diabetic patients. The condition is characterised by early diastolic dysfunction, myocardial fibrosis, cardiac hypertrophy, systolic dysfunction, and other complex pathophysiological events that ultimately lead to heart failure. Untargeted metabolomic analysis represents a powerful tool for the discovery of novel biomarkers. It can not only reveal the metabolic disorder model of diabetic cardiomyopathy, and find specific biomarkers, but also help analyse its pathogenesis and provide new clues for developing treatment strategies. Nevertheless, the precise mechanisms that give rise to diabetic cardiomyopathy remain unclear. In this study, we established a rat model of diabetic cardiomyopathy. We evaluated the model using various established methods, including fasting glucose, glycated hemoglobin, insulin resistance index, cardiac histopathology, and cardiac ultrasound. We then proceeded to identify diabetic cardiomyopathy serum biomarkers by untargeted metabolomics. The potential metabolic pathways of the multiple metabolic differentials were mainly related to amino acid metabolism and arachidonic acid metabolism. Two common metabolites, 5-OxoETE and D-Glutamine, were identified through various cross-comparisons. These two metabolites have good diagnostic ability, especially between DCM vs. CTR, DCM vs. NDCM, and NDCM vs. CTR. These findings may provide new insights into the study of DCM.
Collapse
Affiliation(s)
- Jialong Li
- Department of Cardiology, The Second Afffliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Cardiovascular Medicine, The Affiliated Hospital of Sichuan Nursing Vocational College, The Third People's Hospital of Sichuan Province, Sichuan Province, Chengdu, China
| | - Huaming Qiu
- Guizhou University of Traditional Chinese Medicine, Guizhou, Guiyang, China
- Department of Acupuncture and moxibustion, Pengzhou Hospital of Traditional Chinese Medicine, Sichuan Province, Chengdu, China
| | - Yanjun Wu
- Guizhou University of Traditional Chinese Medicine, Guizhou, Guiyang, China
| | - Li Su
- Department of Cardiology, The Second Afffliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
113
|
Ali M, Irfan HM, Alamgeer, Ullah A, Abdellattif MH, Elodemi M, Zubair M, Khan A, Al-Harrasi A. Therapeutic role of Crateva religiosa in diabetic nephropathy: Insights into key signaling pathways. PLoS One 2025; 20:e0324028. [PMID: 40435181 PMCID: PMC12118869 DOI: 10.1371/journal.pone.0324028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/16/2025] [Indexed: 06/01/2025] Open
Abstract
Crateva religiosa, a plant used in traditional medicine, is valued for its bioactive properties. Traditional approaches are more accepted worldwide as a cost effective alternatives being used in network pharmacology to explore the complex interactions of drug targets among molecular pathways. The study investigated the potential of Crateva religiosa's phytoconstituents using meticulous computational analysis and empirical confirmation. The IMPPAT, GeneCards and DisGeNET data bases were used to obtain the active moieties and disease targets respectively. Crateva phytoconstituent's DN-target network and protein-protein interaction (PPI) network were developed and analyzed using the STRING online platform and Cytoscape software. GO and KEGG analyses were conducted using the g: profiler databases while the process of molecular docking involved the use of MOE software. The screening process identified dillapiole (CR-C1), beta ionone (CR-C2) 10-epi-γ-eudesmol (CR-C3), cis/trans linalool oxide (CR-C4/5) and nerolidol (CR-C6), as potential active phytoconstituents of C. religiosa and AKT1, PPARG, PTGS2, EGFR, ESR1, JAK2, MAPK1, PARP1, GSK3B, and PPARA as matching targets in DN. The enrichment analysis revealed that the common targets were primarily linked to inflammatory response, oxidative stress, immunological modulation, and cell death. The main signal pathways suggested were PI3K-Akt, AGE-RAGE, and IL-17. Moreover, molecular docking analysis determined that the AKT1, PPARG and PTGS2 are the essential targets that had a good affinity for their respective active molecules.
Collapse
Affiliation(s)
- Muhammad Ali
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Hafiz M. Irfan
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Alamgeer
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Aman Ullah
- Department of Pharmacy, Saba Medical Centre, Abu Dhabi, United Arab Emirates
| | - Magda H. Abdellattif
- Chemistry Department, College of Sciences, University College of Taraba, Taif University, Taif, Saudi Arabia
| | - Mahmoud Elodemi
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
114
|
Liao T, Xu X, Wang G, Yan J. p53-mediated suppression of the SLC7 A11/GPX4 signaling pathway promotes trophoblast ferroptosis in preeclampsia. BMC Biol 2025; 23:141. [PMID: 40437575 PMCID: PMC12121027 DOI: 10.1186/s12915-025-02240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/09/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Ferroptosis is an iron-dependent form of non-apoptotic cell death that occurs through increased plasma membrane phospholipid peroxidation in the context of impaired plasma membrane phospholipid peroxide repair systems. It has been reported that p53 can inhibit the expression of cysteine/glutamate reverse transporter solute carrier family 7, member 11 (SLC7A11), a key component of system Xc-, thus inhibiting cysteine uptake and promoting reactive oxygen species (ROS) accumulation as an important part of cell ferroptosis. Preeclampsia (PE) is an idiopathic hypertensive disease of pregnancy. Spiral artery insufficiency and impaired placental development are present at all stages, leading to placental hypoperfusion, ischemia, and hypoxia. However, the role of ferroptosis, particularly p53-mediated trophoblast ferroptosis, in placental dysfunction during PE remains unclear. RESULTS In PE placental tissues, malondialdehyde (MDA) and total iron levels were elevated, and trophoblasts exhibited typical ferroptosis-associated morphological changes. Additionally, p53 mRNA and protein expression and the percentage of p53-positive cells were increased, while SLC7A11 and GPX4 mRNA and protein expression and the percentage of positive cells were decreased. VEGFR1 protein expression was upregulated, whereas VEGFA and PLGF protein expression was downregulated. p53 protein expression was negatively correlated with the expression of proteins in the SLC7A11/GPX4 signaling pathway, VEGFA, and PLGF. Conversely, there was a positive correlation between p53 expression and MDA, total iron concentration, and VEGFR1. In vitro, the ferroptosis inducer erastin increased ROS levels in trophoblast cells. The ferroptosis inhibitor Fer-1, the apoptosis inhibitor Z-VAD-FMK, and the necrosis inhibitor Nec-1 failed to prevent erastin-induced ROS elevation. In p53 + / + trophoblasts, erastin-induced ROS elevation was more pronounced than that in p53 - / - and control cells, and angiogenesis was impaired. In pregnant rats, p53 + / + placentas exhibited increased MDA and total iron levels, ferroptosis-like morphological changes in trophoblasts, and reduced CD34 expression. p53 protein expression was negatively correlated with CD34 expression. CONCLUSION This study confirmed that trophoblast ferroptosis occurs in the pathological state of PE and that trophoblast are specifically sensitive to ferroptosis. p53 can mediate the SLC7A11/GPX4 signaling pathway to promote ferroptosis of trophoblast cells in the pathogenesis of PE. It is also speculated that increased p53 reactivity may mediate impaired angiogenesis in placental tissues.
Collapse
Affiliation(s)
- Tingting Liao
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, Fujian Clinical Research Center for Maternal-Fetal Medicine, Laboratory of Maternal-Fetal Medicine, Fujian Maternity and Child Health Hospital, National Key Obstetric Clinical Specialty Construction Institution of China, No. 18, Daoshan Road, Gulou District, Fuzhou, Fujian Province, China
| | - Xia Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, Fujian Clinical Research Center for Maternal-Fetal Medicine, Laboratory of Maternal-Fetal Medicine, Fujian Maternity and Child Health Hospital, National Key Obstetric Clinical Specialty Construction Institution of China, No. 18, Daoshan Road, Gulou District, Fuzhou, Fujian Province, China
| | - Guiying Wang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, Fujian Clinical Research Center for Maternal-Fetal Medicine, Laboratory of Maternal-Fetal Medicine, Fujian Maternity and Child Health Hospital, National Key Obstetric Clinical Specialty Construction Institution of China, No. 18, Daoshan Road, Gulou District, Fuzhou, Fujian Province, China
| | - Jianying Yan
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fujian Maternity and Child Health Hospital, Fujian Clinical Research Center for Maternal-Fetal Medicine, Laboratory of Maternal-Fetal Medicine, Fujian Maternity and Child Health Hospital, National Key Obstetric Clinical Specialty Construction Institution of China, No. 18, Daoshan Road, Gulou District, Fuzhou, Fujian Province, China.
| |
Collapse
|
115
|
Cai Z, Sun F, Wang Q, Li S, Wang L, Li H, Su Y, Yang H, Dong B. Icariin alleviates cardiomyocyte pyroptosis through AMPK-NLRP3 pathway to ameliorates diabetic cardiomyopathy. Int Immunopharmacol 2025; 156:114690. [PMID: 40262250 DOI: 10.1016/j.intimp.2025.114690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Among the multitude of pressing global health concerns, diabetes mellitus stands out as a significant issue. An alarming consequence of this condition is diabetic cardiomyopathy (DCM), which represents a critical contributor to mortality in individuals with diabetes. Recently, research has unveiled the pivotal role that pyroptosis plays in the progression of myocardial fibrosis associated with DCM. An epimedial flavonoid monomer, Icariin (ICA), primarily sourced from Epimedium genus plants, has shown a safeguarding influence on cardiac health through various means, encompassing anti-inflammatory actions and its capacity against oxidative stress. Our research endeavor focuses on elucidating the beneficial impacts alongside the underlying physiological processes triggered by ICA within the context of DCM. An animal model representative of DCM was developed through intraperitoneal administration of streptozotocin (STZ). In parallel, in vitro experiments utilized H9C2 cardiomyocytes to mimic hyperglycemic environments relevant to disease states. In vivo experiments found that ICA improved cardiac function, alleviated myocardial fibrosis, and reduced NLRP3-mediated pyroptosis in heart tissue of DCM mice. Under in vitro settings characterized by elevated glucose concentrations, there was a notable elevation in both NLRP3 pyroptosis-associated proteins and oxidative stress markers within the heart muscle cells. ICA treatment attenuated pyroptosis and oxidative stress caused by high glucose in cardiomyocytes. Further studies revealed that when treated with an AMPK inhibitor, the shielding benefits conferred by ICA on cardiomyocytes were negated, suggesting that the regulatory effects of ICA on cardiomyocyte pyroptosis may be achieved through the AMPK-NLRP3 pathway. In conclusion, ICA exerts protective effects in DCM by inhibiting cardiomyocyte pyroptosis, alleviating myocardial fibrosis, and improving cardiac function via the AMPK-NLRP3 pathway.
Collapse
Affiliation(s)
- Zhenhao Cai
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxiao Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengnan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huixin Li
- Binhai New Area Hospital of TCM, Tianjin, China
| | - Yudong Su
- Tongnan District Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hongbo Yang
- Weifang Rehabilitation Hospital, Weifang, China
| | - Bo Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China; Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
116
|
Nowacka A, Śniegocki M, Smuczyński W, Ziółkowska E. Therapeutic Potential of Infrared and Related Light Therapies in Metabolic Diseases. Int J Mol Sci 2025; 26:5134. [PMID: 40507946 PMCID: PMC12154360 DOI: 10.3390/ijms26115134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/24/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025] Open
Abstract
Infrared and related light therapies are gaining increasing interest due to their potential therapeutic properties in treating various health conditions, particularly metabolic diseases such as insulin resistance and type 2 diabetes. These diseases often coexist with dyslipidemia, obesity, non-alcoholic fatty liver disease, and cardiovascular complications. This review paper analyzes the impact, primarily of far-infrared light therapy (FIR), on improving endothelial function, reducing oxidative stress, and modulating inflammatory responses-key factors in metabolic diseases. Preliminary studies suggest that FIR may improve blood circulation, increase the secretion of VEGF, and enhance insulin sensitivity by alleviating inflammatory states and oxidative damage commonly associated with these diseases. In addition, FIR has been associated with potential benefits in blood pressure regulation and lipid metabolism, which could contribute to reduced cardiovascular risk. However, it is important to acknowledge that most current evidence is derived from preclinical models and small-scale clinical trials, limiting direct applicability to broader patient populations. Moreover, significant variability exists in exposure parameters and treatment protocols across studies. While FIR therapy holds potential as a complementary approach to the conventional management of metabolic diseases, careful monitoring is essential to mitigate potential adverse effects. Further well-designed, large-scale clinical trials are necessary to validate the therapeutic efficacy, optimize treatment parameters, and comprehensively assess the safety profile of FIR interventions in metabolic health.
Collapse
Affiliation(s)
- Agnieszka Nowacka
- Department of Neurosurgery, Collegium Medicum in Bydgoszcz, Nicolas Copernicus University in Toruń, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.N.); (M.Ś.)
| | - Maciej Śniegocki
- Department of Neurosurgery, Collegium Medicum in Bydgoszcz, Nicolas Copernicus University in Toruń, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.N.); (M.Ś.)
| | - Wojciech Smuczyński
- Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolas Copernicus University in Toruń, ul. Techników 3, 85-801 Bydgoszcz, Poland;
| | - Ewa Ziółkowska
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
117
|
Mohyadini M, Fahimi A, Bathaie SZ, Yaghooti H. Ranolazine as a therapeutic agent for diabetic cardiomyopathy: reducing endoplasmic reticulum stress and inflammation in type 2 diabetic rat model. BMC Pharmacol Toxicol 2025; 26:111. [PMID: 40426266 PMCID: PMC12117744 DOI: 10.1186/s40360-025-00945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a significant cardiovascular complication of diabetes, characterized by structural and functional heart muscle dysfunction. Oxidative stress, endoplasmic reticulum (ER) stress, and inflammation are pivotal in the pathogenesis of DCM. Ranolazine, primarily used for angina, has demonstrated potential cardioprotective effects. This study investigates the effects of ranolazine on oxidative stress, ER stress, and inflammation in the heart tissue of type 2 diabetic rats. METHODS Diabetes was induced in male Wistar rats using Nicotinamide (110 mg/kg) and Streptozotocin (60 mg/kg). The rats were then divided into control and diabetic groups, with further subdivision into ranolazine-treated and untreated subgroups. Ranolazine was administered via gavage for eight weeks. Various parameters, including body weight, heart weight, serum glucose, troponin-I levels, oxidative stress markers, ER stress markers, and inflammatory markers, were assessed. RESULTS Diabetic rats showed increased heart weight and decreased body weight over eight weeks. Ranolazine treatment improved body weight but didn't affect serum glucose levels. The treatment significantly lowered serum troponin-I and oxidative stress markers, increased superoxide dismutase (SOD) and glutathione (GSH) levels, and decreased malondialdehyde (MDA) concentrations. Additionally, ranolazine reduced the expression of stress-related genes (GRP78, XBP1, and NLRP3) and lowered serum IL1β levels. CONCLUSIONS The results indicate that ranolazine protects against DCM by attenuating oxidative stress, ER stress, and inflammation. Its potential as a therapeutic agent for DCM warrants further investigation.
Collapse
Affiliation(s)
- Matin Mohyadini
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Ale-ahmad Ave., Tehran, Iran
| | - Aghele Fahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Ale-ahmad Ave., Tehran, Iran
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Ale-ahmad Ave., Tehran, Iran
- Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran
| | - Hamid Yaghooti
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), P.O. Box: 14155-331, Ale-ahmad Ave., Tehran, Iran.
| |
Collapse
|
118
|
Barros D, Ferreira BH, Garcia-Gonzalez P, Carbone F, Luka M, Leite-Pinheiro F, Machado MD, Nikolaou T, Pilotti A, Goguet E, Antas P, Mendes A, Zhang L, Cresci M, Galliot L, Gigan JP, Reverendo M, Su B, Narita M, Paton AW, Paton JC, Rocchi S, Rieux-Laucat F, Argüello RJ, Nal B, Liang Y, Ménager M, Gatti E, Almeida CR, Pierre P. Induction of the ISR by AB5 subtilase cytotoxin drives type-I IFN expression in pDCs via STING activation. Proc Natl Acad Sci U S A 2025; 122:e2421258122. [PMID: 40388626 DOI: 10.1073/pnas.2421258122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/17/2025] [Indexed: 05/21/2025] Open
Abstract
We demonstrate that exposure to the AB5 subtilase cytotoxin (SubAB) induces the unfolded protein response (UPR) in human peripheral blood mononuclear cells, concomitant with a proinflammatory response across distinct cell subsets. Notably, SubAB selectively induces type-I interferon (IFN) expression in plasmacytoid dendritic cells, acting synergistically with Toll-like receptor 7 stimulation. The induction of type-I IFN in response to SubAB relies on stimulator of interferon genes (STING) activation, coupled with protein synthesis inhibition mediated by protein kinase R-like endoplasmic reticulum kinase (PERK) and phosphorylation of the eukaryotic translation initiation factor 2 subunit-alpha. By impeding mRNA translation through the integrated stress response, SubAB precipitates the downregulation of the negative innate signaling feedback regulator Tax1-binding protein 1. This downregulation is necessary to unleash TANK-binding kinase 1 signaling associated with STING activation. These findings shed light on how UPR-inducing conditions may regulate the immune system during infection or pathogenesis.
Collapse
Affiliation(s)
- Daniela Barros
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Beatriz H Ferreira
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
- Centre for Research in Ceramics and Composite Materials (CICECO)-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Paulina Garcia-Gonzalez
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Francesco Carbone
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM U1163, Paris F-75015, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM, Paris F-75015, France
| | - Marine Luka
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM U1163, Paris F-75015, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM, Paris F-75015, France
| | - Fátima Leite-Pinheiro
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Mariana D Machado
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Theopisti Nikolaou
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Angelo Pilotti
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Eliot Goguet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Paulo Antas
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Andreia Mendes
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Lichen Zhang
- School of Medical Technology, Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Marina Cresci
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Lou Galliot
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Julien P Gigan
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Marisa Reverendo
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Miwako Narita
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata 951-8518, Japan
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Frédéric Rieux-Laucat
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris 75015, France
| | - Rafael J Argüello
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Béatrice Nal
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Yinming Liang
- School of Medical Technology, Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Mickaël Ménager
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM U1163, Paris F-75015, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM, Paris F-75015, France
| | - Evelina Gatti
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
| | - Catarina R Almeida
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Philippe Pierre
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), U2, UMR7280 and U1104, Marseille 13288 Cedex 9, France
- School of Medical Technology, Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| |
Collapse
|
119
|
Grandin-Courbet A, Morvan-Bertrand A, Dehail M, Hennequart F, Prud'homme MP. Laminaria digitata Extract Improved Leaf Meristem Protection Under Drought and Nitrogen Uptake After Rehydration Through Hormesis-Based Chemical Priming in Lolium perenne. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40421759 DOI: 10.1111/pce.15646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/23/2025] [Accepted: 05/18/2025] [Indexed: 05/28/2025]
Abstract
Drought is among the most damaging stress for plants, impacting crop yield and grassland sustainability. This study aimed to evaluate the biostimulant effect of an algal extract from Laminaria digitata on Lolium perenne cultivated in a growth chamber. Leaves were sprayed at different concentrations 7 days before stopping irrigation. This priming period was followed by fourteen days of drought and ten days of recovery. Algal extract supplied at 2 and 5 L.ha-1 stimulated nitrogen uptake during recovery, while higher doses were deleterious. During drought, algal extract 2 L.ha-1 increased water content in leaves and shoot 0-3 cm housing the leaf meristems. The improvement in water content arose from the smaller decline in leaf relative water content (RWC), suggesting better osmotic adjustment. Cell membrane stability was less impaired during drought and quickly returned to pre-drought levels during recovery, indicating better membrane protection. The higher fructan content may contribute to osmotic adjustment and membrane protection. The results show that algal extract improved leaf meristem protection under drought and N uptake after rehydration through hormesis-based chemical priming. The treatment limited sucrose accumulation during drought, so that sucrose content can be used as an indicator of biostimulation together with RWC and cell membrane stability.
Collapse
Affiliation(s)
- Antoine Grandin-Courbet
- Normandie Université, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Caen, France
- Algaia SAS, Saint-Lô, France
| | - Annette Morvan-Bertrand
- Normandie Université, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Caen, France
| | | | | | - Marie-Pascale Prud'homme
- Normandie Université, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Caen, France
| |
Collapse
|
120
|
Shehab MJ, Al-Mofarji ST, Mahdi BM, Ameen RS, Al-Zubaidi MM. The correlation between obesity and leptin signaling pathways. Cytokine 2025; 192:156970. [PMID: 40424747 DOI: 10.1016/j.cyto.2025.156970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025]
Abstract
Obesity is a global epidemic associated with increased morbidity and mortality. It is a major risk factor for the development of chronic diseases such as type 2 diabetes mellitus, cardiovascular diseases, and certain cancers, primarily due to excessive fat accumulation in the body. Both environmental and genetic factors contribute to the development of obesity. A key pathophysiological feature of obesity is resistance to the metabolic hormones leptin and ghrelin, which play critical roles in neuroendocrine regulation of energy homeostasis. Leptin, a proinflammatory peptide hormone encoded by the obese (ob) gene, is primarily secreted by white adipose tissue. It functions as an anti-obesity hormone by suppressing appetite, reducing food intake, and increasing energy expenditure. Leptin resistance, resulting from altered expression of leptin (LEP) and its receptor (LEP-R), impairs its regulatory effects on energy balance. Additionally, aberrant leptin signaling and genetic mutations in the leptin gene or its receptor are associated with morbid obesity and other related diseases. The treatment of obesity using leptin-based therapeutics may be one of the methods to treat obesity. The present review aimed to explore the molecular mechanisms of leptin signaling, leptin resistance in obesity, and the potential of leptin-based therapies as novel interventions in obesity management.
Collapse
Affiliation(s)
- Miriam Jasim Shehab
- Department of Forensic Biology, Higher Institute of Forensic Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq.
| | - Sarah T Al-Mofarji
- Department of Forensic Biology, Higher Institute of Forensic Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq
| | - Batool Mutar Mahdi
- Consultant Clinical Immunology/ Head of HLA Research Unit, Al-Kindy College of Medicine/ Department of Microbiology, Baghdad University, Baghdad, Iraq
| | - Rasha Sadeq Ameen
- Department of Forensic Biology, Higher Institute of Forensic Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq
| | - Mohammed Mahdi Al-Zubaidi
- Department of Forensic Biology, Higher Institute of Forensic Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq
| |
Collapse
|
121
|
Chrenko D, Pereckova J, Zatloukalová M, Vacek J, Pospíšil J, Perecko T. Regio- and Stereoselective Synthesis of Nitro-fatty Acids as NRF2 Pathway Activators Working under Ambient or Hypoxic Conditions. J Med Chem 2025. [PMID: 40419458 DOI: 10.1021/acs.jmedchem.5c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Nitro-fatty acids (NO2FAs) are endogenously produced electrophiles and NRF2 activators with therapeutic potential. We developed a synthetic protocol combining a Henry reaction and base-promoted β-elimination, yielding ultrapure regio/stereoisomers of nitro-stearic (NO2SA), nitro-oleic (NO2OA), and conjugated/bis-allylic nitro-linoleic (NO2LA) acids. These were tested for NRF2 pathway activation in bone marrow cells under different oxygen conditions. We observed that 9- and 10-NO2OA, and 10-NO2LA increased NRF2 stabilization under hypoxia, while 9- and 10-NO2OA significantly upregulated Hmox1 and Gclm at all oxygen levels. 9- and 10-NO2OA enhanced HO-1 and GCLM proteins independently of oxygen, while 10-NO2LA was oxygen-dependent, boosting HO-1 under hypoxia and GCLM under ambient conditions. Moreover, 10-NO2OA and 10-NO2LA induced NRF2 nuclear translocation. In contrast, the saturated 10-NO2SA, which has lower electron-acceptor ability, was inactive. In summary, these findings suggest the biological activity of NO2FAs is dependent on oxygen level, which could be used in future research of other oxidative stress-dependent pathways.
Collapse
Affiliation(s)
- Daniel Chrenko
- Department of Chemical Biology, Faculty of Science, Palacky University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Jana Pereckova
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jiří Pospíšil
- Department of Chemical Biology, Faculty of Science, Palacky University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany AS CR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Tomas Perecko
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic
| |
Collapse
|
122
|
Chen Z, Dou J, Zhang X. Chinese medicine targets cellular autophagy against cardiovascular diseases: research progress and future prospects. Front Cardiovasc Med 2025; 12:1585407. [PMID: 40491718 PMCID: PMC12146376 DOI: 10.3389/fcvm.2025.1585407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/08/2025] [Indexed: 06/11/2025] Open
Abstract
Cardiovascular diseases (CVDs) pose a serious threat to human health and represent one of the leading causes of death worldwide. Cellular autophagy, an essential intracellular self-degradation and homeostasis maintenance mechanism, plays a pivotal role in the pathogenesis of cardiovascular diseases. Traditional Chinese Medicine (TCM), with its unique theoretical framework and therapeutic principles, has demonstrated remarkable efficacy in CVDs management, garnering increasing scientific attention. In recent years, growing research attention has focused on TCM's autophagy regulation for CVDs treatment. However, most studies remain limited to cellular and animal models, with insufficient clinical data and unclear specific metabolic pathways and targets. Therefore, it is imperative to (1) investigate autophagy mechanisms in depth (2), explore methods for autophagy balance, and (3) clarify drug interactions to establish a foundation for clinical applications. This article comprehensively summarizes relevant research findings, provides an in-depth discussion of TCM's mechanisms in autophagy regulation for CVDs treatment, reviews current research status, and outlines future development trends, aiming to offer valuable theoretical foundations and therapeutic strategies for clinical CVDs management.
Collapse
Affiliation(s)
- Zhengyu Chen
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The Fourth Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
123
|
Bruno F, Miller A, Bruschetta G, Nava V, Rifici C, Zappalà S, Licata P. Levels of Mineral Elements in Different Organs of Dogs from the Ionian-Etnean Volcanic Area. Animals (Basel) 2025; 15:1545. [PMID: 40509011 PMCID: PMC12153546 DOI: 10.3390/ani15111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
Mineral elements can either be pollutants or essential dietary components. Monitoring their levels in the environment and living organisms is crucial because excessive amounts can become toxic. Dogs, due to their proximity to humans, shared habitats, and similar organ structures, can be effective indicators of environmental pollution by toxic elements. This study aimed to assess the levels of 11 mineral elements in 80 dog carcasses (49 males and 31 females), aged between 2 and 16 years, from the Ionian-Etnean volcanic region of the province of Catania, where the dogs had died under unknown circumstances. A direct mercury analyzer (DMA-80) was used to measure Hg, and an inductively coupled plasma mass spectrometer (ICP-MS) was used for the other elements. A one-way ANOVA, followed by Bonferroni's multiple comparison for post hoc analysis, was conducted to evaluate significant differences between the organ samples and different minerals and between the weight and metal levels. The statistical significance was set at p < 0.05. The study indicates that high concentrations of metals like cadmium, mercury, lead, and chromium are present in the liver, kidneys, and other organs. These elevated concentrations suggest that the local volcanic emissions contribute to soil, water, and atmospheric contamination. The data showed differences in the metal concentrations between the sexes, which could be attributed to biological and environmental factors.
Collapse
Affiliation(s)
- Fabio Bruno
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy (G.B.)
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy (G.B.)
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy (G.B.)
| | - Vincenzo Nava
- Department of Biomedical and Dental Sciences and of Morphological and Functional Imagines (BIOMORF), University of Messina, 98168 Messina, Italy
| | - Claudia Rifici
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy (G.B.)
| | - Sebastiano Zappalà
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy (G.B.)
| | - Patrizia Licata
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy (G.B.)
| |
Collapse
|
124
|
Lee YZ, Kow ASF, Lee QL, Lim LWC, Yusof R, Tham CL, Ho YC, Lee MT. Antidiabetic potentials of gypenosides: A review on the preclinical effects in glucose and insulin modulation as well as diabetes-related complications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04265-x. [PMID: 40411617 DOI: 10.1007/s00210-025-04265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/03/2025] [Indexed: 05/26/2025]
Abstract
PURPOSE Diabetes mellitus is a significant public health issue. Despite the emergence of promising anti-hyperglycemic drugs, treatment outcomes for diabetic patients continue to be inadequate. Gypenosides are the major bioactive compounds isolated from Gynostemma pentaphyllum (Thunb.) Makino. Gynostemma pentaphyllum has longstanding history of usage in traditional oriental medicine, particularly for the treatment of diabetes mellitus. Gypenosides were found to exhibit antidiabetic effects. This review outlined the advancements in the preclinical studies of gypenosides' pharmacological properties on diabetes mellitus and their potential mechanism of action, while also noting the lack of clinical evidence for gypenosides' efficacy. METHODS Literatures search was done using scientific databases PubMed, Web of Science, Scopus and Google Scholar up to November 2024 utilizing keywords such as "Gynostemma pentaphyllum", "gypenoside*", and "diabet*". RESULTS Research has shown that gypenosides possess therapeutic properties in mitigating diabetes mellitus by regulating blood glucose levels and insulin production. Gypenosides can modulate various key pathways associated with diabetes pathogenesis, including PI3K/Akt, PPARγ, NF-κB, AMPK and PDX1, hence contributing to their antidiabetic properties. Nevertheless, there is a paucity of research on gypenosides in clinical settings, with existing studies being mainly conducted on animal models and in vitro. Future studies with the focus on the isolation and purification of specific gypenosides, as well as the exploration on the probable pharmacological effect and molecular mechanisms behind the biological actions are necessary. CONCLUSION The findings presented may establish a foundation for subsequent clinical trials for the development of specific gypenosides as antidiabetic therapies for the betterment of human health.
Collapse
Affiliation(s)
- Yu Zhao Lee
- Faculty of Medicine and Health Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | | | - Qi Long Lee
- School of Health Sciences, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Luis Wei Cheng Lim
- School of Health Sciences, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 , Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, 56000, Kuala Lumpur, Malaysia.
- UCSI Wellbeing Research Centre, UCSI University, No 1, Jalan Menara Gading, Cheras, 56000, Kuala Lumpur, Malaysia.
- Office of Postgraduate Studies, UCSI University, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
125
|
Bae H, Nguyen CM, Ruiz-Orera J, Mills NL, Snyder MP, Jang C, Shah SH, Hübner N, Seldin M. Emerging Technologies and Future Directions in Interorgan Crosstalk Cardiometabolic Research. Circ Res 2025; 136:1494-1506. [PMID: 40403107 PMCID: PMC12101523 DOI: 10.1161/circresaha.125.325515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 05/24/2025]
Abstract
The heart does not work in isolation, with cardiac health and disease occurring through complex interactions between the heart with multiple organs. Furthermore, the integration of organ-specific lipid metabolism, blood pressure, insulin sensitivity, and inflammation involves a complex network of signaling pathways between many organs. Dysregulation in these communications is now recognized as a key contributor to many manifestations of cardiovascular disease. Mechanistic characterization of specific molecules mediating interorgan signaling has been pivotal in advancing our understanding of cardiovascular disease. The discovery of insulin, glucagon, and other hormones in the early 20th century illustrated the importance of communication between organs in maintaining physiological homeostasis. For example, elegant studies evaluating insulin signaling and its role in regulating glucose metabolism have shed light on its broader impact on cardiovascular health, hypertension, atherosclerosis, and other cardiovascular disease risks. Recent technological advances have revolutionized our understanding of interorgan signaling. Global approaches such as proteomics and metabolomics applications to blood have enabled the simultaneous profiling of thousands of circulating factors, revealing previously unknown signaling molecules and pathways. These large-scale studies have identified biomarkers linked to early stages of heart disease and offered new therapeutic targets. By understanding how specific cells in the heart interact with cells in other organs, such as the kidney or liver, researchers can identify key pathways that, when disrupted, lead to cardiovascular pathology. The ability to capture a more holistic view of the cardiovascular system positions interorgan signaling at the forefront of cardiovascular research. As we continue to refine our tools for mapping these complex networks, the insights gained hold the potential to not only improve early diagnosis but also to develop more targeted and effective treatments for cardiovascular disease. In this review, we discuss current approaches used to enhance our understanding of organ crosstalk with a specific emphasis on cardiac and cardiovascular physiology.
Collapse
Affiliation(s)
- Hosung Bae
- Department of Biological Chemistry and Center of Epigenetics and Metabolism, School of Medicine, University of California Irvine School of Medicine (H.B., C.M.N., C.J., M.S.)
| | - Christy M Nguyen
- Department of Biological Chemistry and Center of Epigenetics and Metabolism, School of Medicine, University of California Irvine School of Medicine (H.B., C.M.N., C.J., M.S.)
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (J.R.-O., N.H.)
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science (N.L.M.), The University of Edinburgh, United Kingdom
- Usher Institute (N.L.M.), The University of Edinburgh, United Kingdom
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, CA (M.P.S.)
| | - Cholsoon Jang
- Department of Biological Chemistry and Center of Epigenetics and Metabolism, School of Medicine, University of California Irvine School of Medicine (H.B., C.M.N., C.J., M.S.)
| | - Svati H Shah
- Duke Center for Precision Health (S.H.S.), Duke University School of Medicine, Durham, NC
- Duke Molecular Physiology Institute (S.H.S.), Duke University School of Medicine, Durham, NC
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (J.R.-O., N.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (N.H.)
- Charité-Universitätsmedizin, Berlin, Germany (N.H.)
- Helmholtz Institute for Translational AngioCardioScience, MDC, Heidelberg University, Germany (N.H.)
| | - Marcus Seldin
- Department of Biological Chemistry and Center of Epigenetics and Metabolism, School of Medicine, University of California Irvine School of Medicine (H.B., C.M.N., C.J., M.S.)
| |
Collapse
|
126
|
Caller T, Moore KJ, Lehmann LH, Wu SM, Leor J. Insights Into Heart-Tumor Interactions in Heart Failure. Circ Res 2025; 136:1262-1285. [PMID: 40403117 DOI: 10.1161/circresaha.124.325490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 05/24/2025]
Abstract
Heart failure (HF) often coexists with cancer. Beyond the known cardiotoxicity of some cancer treatments, HF itself has been associated with increased cancer incidence. The 2 conditions share common risk factors, mechanisms, and interactions that can worsen patient outcomes. The bidirectional relationship between HF and cancer presents a complex interplay of factors that are not fully understood. Recent preclinical evidence suggests that HF may promote tumor growth via the release of protumorigenic factors from the injured heart, revealing HF as a potentially protumorigenic condition. Our review discusses the biological crosstalk between HF and cancer, emphasizing the impact of HF on tumor growth, with inflammation, and modulating the immune system as central mechanisms. We further explore the clinical implications of this connection and propose future research directions. Understanding the mechanistic overlap and interactions between HF and cancer could lead to new biomarkers and therapies, addressing the growing prevalence of both conditions and enhancing approaches to diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Tal Caller
- Neufeld and Tamman Cardiovascular Research Institutes, Faculty of Medical and Health Sciences, Tel Aviv University, Israel (T.C., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center, Sheba Medical Center, Tel Hashomer, Israel (T.C., J.L.)
| | - Kathryn J Moore
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine (K.J.M.)
| | - Lorenz H Lehmann
- Department of Cardiology, University Hospital Heidelberg, Germany (L.H.L.)
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg/Mannheim, Germany (L.H.L.)
- German Cancer Research Center (DKFZ), Heidelberg, Germany (L.H.L.)
| | - Sean M Wu
- Stanford Cardiovascular Institute (S.M.W.), Stanford University School of Medicine, CA
- Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), Stanford University School of Medicine, CA
| | - Jonathan Leor
- Neufeld and Tamman Cardiovascular Research Institutes, Faculty of Medical and Health Sciences, Tel Aviv University, Israel (T.C., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center, Sheba Medical Center, Tel Hashomer, Israel (T.C., J.L.)
| |
Collapse
|
127
|
Abd El-Zaher EHF, Tousson EM, Mostafa AA, El-Gaar EM, Yahya G, Mahmoud YAG. Revitalizing Pleurotus eryngii polysaccharides: gamma irradiation boosts antidiabetic and antioxidant potential. BIORESOUR BIOPROCESS 2025; 12:44. [PMID: 40404997 PMCID: PMC12098236 DOI: 10.1186/s40643-025-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 11/25/2024] [Accepted: 02/21/2025] [Indexed: 05/24/2025] Open
Abstract
Polysaccharides derived from Pleurotus eryngii possess various bioactive properties, including antioxidant, antidiabetic, anti-inflammatory, and immunomodulatory effects. In this study, polysaccharides were extracted from P. eryngii fruiting bodies and exposed to gamma irradiation at doses of 50 and 100 kGy, with a dose rate of 5 kGy/h. The surface morphology of the polysaccharide irradiated at 100 kGy exhibited numerous pores and a smaller flake structure compared to those irradiated at 50 kGy and the non-irradiated sample. 1H and 13C NMR spectra of all samples indicated that both irradiated and non-irradiated polysaccharides exhibited α- and β-configurations, with signals corresponding to C1-C5 clearly observed. HPLC analysis of the polysaccharides revealed that glucose (75.23%), galactose (4.96%), glucuronic acid (1.38%), ribose (0.94%), rhamnose (2.35%), and mannose (3.87%) are the main components. All polysaccharides demonstrated antioxidant activity, which increased with concentration. Both non-irradiated and irradiated polysaccharides exhibited antidiabetic effects, significantly reducing blood glucose levels, and restoring insulin level with superiority of irradiated polysaccharides. Additionally, they significantly elevated body weight, slightly reduced MDA levels, and markedly enhanced catalase activity in treated rats compared to diabetic controls. The antidiabetic effects of the polysaccharides were further confirmed by histopathological examination of the pancreas and liver sections from polysaccharide-treated diabetic rats. This suggests that irradiation, by reducing the molecular weight of polysaccharides, enhances their bioavailability and efficacy in modulating glucose metabolism.
Collapse
Affiliation(s)
- Eman H F Abd El-Zaher
- Microbiology Unit, Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ehab M Tousson
- Cell Biology and Histology, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Azza A Mostafa
- Biological and Environmental Department, Faculty of Home Economics, Al Azhar University, Tanta, Egypt
| | - Enas M El-Gaar
- Microbiology Unit, Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Molecular Biology Institute of Barcelona, Spanish National Research Council Catalonia, Barcelona, Spain.
| | - Yehia A-G Mahmoud
- Microbiology Unit, Botany Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
128
|
Yang X, Wang L, Wang R, Ding N, He Y, Wang F. Homocysteine induces endometrial ferroptosis via MAPK pathway in recurrent pregnancy loss. Placenta 2025; 165:148-161. [PMID: 40279813 DOI: 10.1016/j.placenta.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) with complex etiology and elevated homocysteinemia (HCY) has been recognized one of the risk factors, however the mechanism of HCY participation in RPL are not fully elucidated. METHODS Samples from RPL_HHCY, RPL_NHCY and controls were used to metabolomics and proteomic analysis. Cell counting kit-8 assay, EdU assay kit, wound healing assay and induced decidualization were performed to observe the HCY induced dysfunction of human endometrial stromal cells (hESCs). Intracellular ROS, lipid peroxidation, MDA, GSH and Fe2+ were examined. Western blotting was used to measure protein expression. RESULTS We found differential metabolites were enriched in glutathione metabolism, and differentially protein expression were enriched in the ferroptosis. In vitro, ferrostatin-1 (Fer-1) could improve the decrease of HCY induced cell viability, proliferation, migration and decidualization of hESCs, and reverse ROS, lipid peroxidation, MDA, GSH and Fe2+ levels. Also, Fer-1 enhanced GPX4 and SLC3A2, lightened ACSL4 protein expression. Gene Set Variation Analysis (GSVA) found MAPK is an important pathway for ferroptosis, and inhibition MAPK signaling pathway reversed the phosphor-ERK (p-ERK), p-JNK and p-P38 amplified by HCY. CONCLUSIONS Our findings implicate that HCY disturbs the function of hESCs by activation of the MAPK signaling pathway induced ferroptosis and may contribute to RPL. This provides a theoretical basis for the relationship between high HCY and RPL.
Collapse
Affiliation(s)
- Xin Yang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Lijie Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China; Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Ruifang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Nan Ding
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yajun He
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Fang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
129
|
Ranjana M, Shrilaxmi MS, Nag P, Mitra PK, Sunil D, Dastidar SG, Sudhakar YN, Vennapusa SR, Raju R, Tittonen I, Upadhya D. A versatile electrochemical, colorimetric, and visible light excitable turn-on fluorescent probe for stress-induced H 2S detection. Photochem Photobiol Sci 2025:10.1007/s43630-025-00739-2. [PMID: 40402359 DOI: 10.1007/s43630-025-00739-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Hydrogen sulfide (H2S) holds a distinct role in cell biology. Its level is intricately linked to the homeostasis of the biological environment, underscoring the significance of developing techniques capable of detecting H2S in biological systems. A single probe that offers versatility across different detection techniques opens opportunities for advancements in sensing H2S in various fields. A nitronaphthalimide derivative, NMO prepared using a simple synthetic protocol, has been studied as an electrochemical, colorimetric, and turn-on fluorescence probe for H2S. NMO displayed a detection limit of 9.95 mM and 4.36 mM in the UV-visible and colorimetric studies, respectively, whereas the fluorometric and square wave techniques confirmed lower detection limits of 98.4 μM and 1.24 mM, correspondingly. Further, the real-time imaging of HEK293T cells using NMO during stress-induced autophagy is demonstrated.
Collapse
Affiliation(s)
- M Ranjana
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - M S Shrilaxmi
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695016, India
| | - Prajoy Kumar Mitra
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695016, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Y N Sudhakar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695016, India
| | - Ramesh Raju
- Department of Electronics and Nanoengineering, Aalto University, P O Box 13500, 00076, Espoo, Finland
| | - Ilkka Tittonen
- Department of Electronics and Nanoengineering, Aalto University, P O Box 13500, 00076, Espoo, Finland
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
130
|
Xiao L, Gu Y, Guo S, Liu Y, Cai X, Ji X, Zheng Z, Li Y, Du Y, Wang X, Gao L. STRA13 exacerbates T2DM-induced diabetic cardiomyopathy by regulating the RXRα/UCP-1 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167903. [PMID: 40412731 DOI: 10.1016/j.bbadis.2025.167903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/05/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
STRA13, a basic helix-loop-helix protein superfamily member, is a CLOCK gene. Previous studies have reported the role of STRA13 in regulating blood pressure. However, the role of STRA13 in diabetic cardiomyopathy (DCM) has not been fully elucidated. In this study, STRA13 full knockout mice were subjected to a high-fat diet (HFD) to induce DCM. We found that STRA13 was upregulated in both heart tissue and cardiomyocytes undergoing metabolic disorders. STRA13 knockout ameliorated HFD-induced cardiac dysfunction, fibrosis, mitochondrial dysfunction and cell apoptosis. STRA13 deficiency also protected against HFD-induced glucose and lipid metabolism disorders. STRA13 overexpression in mice worsened HFD-induced cardiac dysfunction, fibrosis, and injury. STRA13 overexpression in cardiomyocytes worsened high glucose-induced cell injury, mitochondrial dysfunction and oxidative stress. STRA13 silencing in cardiomyocytes protected against the high glucose (HG)-induced alterations described above. Moreover, STRA13 was found to downregulate retinoid X receptor alpha (RXRα), resulting in reduced expression of uncoupling protein 1 (UCP-1). Co-IP confirmed that STRA13 interacted with RXRα. A luciferase assay confirmed that RXRα regulated the transcription of UCP-1. Silencing of STRA13 did not protect cardiomyocytes from HG-induced injury caused by RXRα or UCP-1 knockdown. Cardiac overexpression of UCP-1 also blunted the deteriorating effects of STRA13. However, STRA13 inhibited RXRα nuclear expression, which hampered the protective effects of RXRα overexpression in vivo. Taken together, our findings demonstrate that STRA13 exacerbates diabetic cardiomyopathy by impairing mitochondrial function through the disruption of RXRα-UCP-1 signaling. Therefore, targeting the STRA13-RXRα-UCP-1 axis may represent a promising therapeutic strategy for mitigating mitochondrial dysfunction and cardiac injury in the context of DCM.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yang Gu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Sen Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xintong Cai
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoyang Ji
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhe Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Youyou Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Xiaofang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
131
|
Ren Q, Zhu X, Wang N, Yu K, Lv W, Wang L, Zang Y, Ma D, Zhou X, Yao J, Shen M, Yu L, Li T. MiR-133a-5p Facilitates Cuproptosis in Hepatocellular Carcinoma Through Targeting of ATP7B. J Inflamm Res 2025; 18:6607-6622. [PMID: 40433054 PMCID: PMC12106915 DOI: 10.2147/jir.s515647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Purpose We explored the effects of miR-133a-5p and ATP7B on cuproptosis in hepatocellular carcinoma. Methods Initially, we assessed the impact of miR-133a-5p on hepatocellular carcinoma (HCC) using CCK-8 assays, cell scratch assays, and flow cytometry. Subsequently, we utilized elesclomol in combination with copper ions to induce cuproptosis in the HCC cell lines PLC/PRF/5 and Huh-7. We evaluated the influence of miR-133a-5p on cuproptosis using CCK-8 assays, cell scratch assays, flow cytometry, and Western blotting. To elucidate the underlying mechanisms, we employed bioinformatics to identify potential downstream target genes of miR-133a-5p and conducted dual-luciferase reporter assays to confirm the binding sites. Finally, we validated the regulatory effect of miR-133a-5p on ATP7B by modulating miR-133a-5p expression through cell transfection experiments. Results The results from the CCK-8 assay, cell scratch assay, and flow cytometry demonstrated that miR-133a-5p significantly inhibits the proliferation and migration of HCC cells while promoting their apoptosis. Furthermore, Elesclomol in combination with copper ions induces cuproptosis in HCC cells. Compared to the cuproptosis observed in HCC as a control, miR-133a-5p further suppresses the proliferation and migration of HCC cells, enhances their death, and increases the expression of cuproptosis-related proteins more prominently. Bioinformatics analysis suggested that ATP7B might be a downstream target gene of miR-133a-5p. This was confirmed by dual luciferase assays, which identified a binding site between miR-133a-5p and ATP7B. Additionally, the expression levels of ATP7B were found to decrease or increase in response to the regulation by miR-133a-5p. Conclusion MiR-133a-5p facilitates cuproptosis in hepatocellular carcinoma through targeting of ATP7B.
Collapse
Affiliation(s)
- Qiaohui Ren
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xinyue Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Nannan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Kang Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Wei Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Lianzi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Yan Zang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Dongyue Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xinyi Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Junxiao Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Mengjiao Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Li Yu
- Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
132
|
Kiani M, Mehranjani MS, Shariatzadeh MA. Myoinositol improves sperm parameters in diabetic rats by reducing oxidative stress and regulating apoptosis-related genes. J Mol Histol 2025; 56:165. [PMID: 40397159 DOI: 10.1007/s10735-025-10451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 05/03/2025] [Indexed: 05/22/2025]
Abstract
Diabetes disrupts spermatogenesis and leads to low-quality sperm by causing oxidative stress, inducing apoptosis and reducing testosterone level. Myoinositol has antiglycemic, antioxidant, anti-apoptotic, and testosterone-regulating properties. This study aimed to evaluate the potential of myoinositol in improving sperm production and sperm quality in diabetic rats. Eighteen rats were divided into three groups (n = 6 per group): control, diabetic (Streptozotocin + Nicotinamide), and diabetic + myoinositol supplementation (300 mg/kg, for 56 days). Sperm parameters, including count, total motility, viability, and morphology, were evaluated. Additionally, several biochemical and molecular markers were measured including serum malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant capacity (TAC), testosterone, Follicle-stimulating hormone (FSH), Luteinizing hormone (LH), and Bax/Bcl2 gene expression ratio, Bax and Bcl2 protein expression, germinal epithelium apoptosis. In the diabetic group, sperm count, viability, and normal morphology significantly decreased, along with lower levels of SOD, TAC, testosterone, FSH, and LH. Conversely, MDA levels and the Bax/Bcl2 gene ratio significantly increased compared to the control group. In the diabetic + myoinositol group, sperm count, viability, morphology, and motility significantly improved (P < 0.001), as did TAC, testosterone, and FSH levels (P < 0.001), with a significant increase in LH levels (P < 0.05). Additionally, MDA levels (P < 0.01) and the Bax/Bcl2 gene ratio (P < 0.05) were significantly reduced compared to the diabetic group. This study showed that diabetes impairs sperm quality, antioxidant capacity, and hormones while increasing oxidative stress and apoptosis. Myoinositol improves sperm parameters, boosts antioxidants, and reduces apoptosis, suggesting its therapeutic potential for diabetes-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Mina Kiani
- Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran
| | | | | |
Collapse
|
133
|
Ullern H, Schnur P, Boccara CN, Knævelsrud H. Rest, Repair, Repeat: The Complex Relationship of Autophagy and Sleep. J Mol Biol 2025:169227. [PMID: 40409707 DOI: 10.1016/j.jmb.2025.169227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
Autophagy and sleep are two evolutionary conserved mechanisms across the animal kingdom. Autophagy is a pathway for the degradation of cytoplasmic material in the lysosome, playing important roles in the homeostasis and health of the organism. On the other hand, sleep is a homeostatically regulated state with numerous presumed essential roles, including the restoration of tissue and physiological functions, such as brain waste clearance via the activation of the glymphatic systems. Given that sleep and autophagy are crucial processes tightly linked to homeostasis and maintenance of good health, understanding how they interact is of great interest, especially as sleep quality decreases in our modern 24-hour societies. Autophagy represents a promising target for therapeutic interventions in this context. Here, we review the contrasted and complementary roles of autophagy and sleep in maintaining homeostasis. Specifically, we focus on recent evidence suggesting that sleep impairment may increase autophagy, while autophagosome levels may modulate the amount of sleep. We discuss outstanding questions at the intersection of these two fields, highlighting methodological shortcomings in the current literature. Overcoming these limitations will be instrumental to design new experiments with the aim of answering one of the greatest mysteries of our time - why do we sleep?
Collapse
Affiliation(s)
- Halvor Ullern
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Paulina Schnur
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian Centre for Molecular Biosciences and Medicine (NCMBM), University of Oslo, Oslo, Norway
| | - Charlotte N Boccara
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian Centre for Molecular Biosciences and Medicine (NCMBM), University of Oslo, Oslo, Norway; Department of Neurology, Clinical Neuroscience, Oslo University Hospital (OUS), Norway.
| | - Helene Knævelsrud
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Norway.
| |
Collapse
|
134
|
Liu S, Su Y, Han B, Yin L, Li H, Wang Y, Zhou K, Li P, Wei Y. Activation of Rab7-mediated lipophagy is required for triptolide to induce ferroptosis in hepatic cells. Food Chem Toxicol 2025; 203:115568. [PMID: 40403952 DOI: 10.1016/j.fct.2025.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/31/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
The aim of this study was to investigate the regulation of triptolide on Rab7-mediated lipophagy to elucidate the potential association between lipophagy and ferroptosis in triptolide-induced hepatotoxicity. Human normal liver HL7702 cells and C57BL/6J mice were treated with triptolide to establish in vitro and in vivo models. The results revealed that triptolide caused a severe hepatic cell damage in vitro and in vivo. Concurrently, triptolide induced the remarkable activation of Rab7-mediated lipophagy, as evidenced by the decreased levels of lipid droplets and p62, the increased Rab7, microtubule-associated protein light chain 3Ⅱ (LC3Ⅱ) and phosphorylated adenosine monophosphate-activated protein kinase (AMPK) levels, as well as the increased colocalization of LC3 and Rab7 proteins. Moreover, triptolide obviously increased the levels of ferroptotic markers, including MDA, iron, prostaglandin endoperoxide synthase 2, and induced GSH and GPX4 exhaustion and oxidative stress in hepatic cells. Importantly, the inhibition of lipophagy mitigated ferroptosis and alleviated the hepatic cell damage induced by triptolide. our results demonstrated that triptolide-activated lipophagy with Rab7 serves as a pivotal factor in triggering ferroptosis and exacerbating hepatoxicity. The manipulation of lipophagy is thus a potential therapeutic strategy for ameliorating triptolide-induced hepatotoxicity.
Collapse
Affiliation(s)
- Shan Liu
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yuerui Su
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Bo Han
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Liang Yin
- Yangquan Municipal Center for Disease Control and Prevention, Yangquan, China
| | - Huifang Li
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yingli Wang
- Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Kun Zhou
- Shanxi Institute of Energy, Taiyuan, China
| | - Pengcheng Li
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yanming Wei
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China; Yangquan Municipal Center for Disease Control and Prevention, Yangquan, China.
| |
Collapse
|
135
|
Peng Z, Gong Z, Wang Z, Deng B, Zhang X, Lin J. Salvia miltiorrhiza-derived exosome-like nanoparticles improve diabetic cardiomyopathy by inhibiting NLRP3 inflammasome-mediated macrophage pyroptosis via targeting the NEDD4/SGK1 axis. Nanomedicine (Lond) 2025:1-12. [PMID: 40391625 DOI: 10.1080/17435889.2025.2506351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
AIM Exosome-like nanoparticles mediate intercellular communication and regulate gene expression. In this study, we isolated and purified exosome-like nanoparticles from Salvia miltiorrhiza (SM-ELNs), a traditional Chinese medicinal herb, and investigated their therapeutic effects on diabetic cardiomyopathy (DCM). MATERIALS & METHODS To investigate the effect of SM-ELNs on DCM, we established a mouse model via HFD/STZ treatment. Cardiac function was assessed by echocardiography. Cardiac hypertrophy was assessed by measuring the heart weight/body weight ratio and HE staining, while myocardial fibrosis was evaluated using Masson's trichrome staining. The role of SM-ELNs on NLRP3 inflammasome inhibition and macrophage pyroptosis were evaluated both in vivo and in vitro. The interaction between NEDD4 and SGK1 was analyzed by Co-IP and ubiquitination assays. RESULTS SM-ELNs treatment alleviated cardiac function and histopathological changes in DCM mice. Moreover, SM-ELNs suppressed NLRP3 inflammasome activation and subsequent macrophage pyroptosis in both in vivo and in vitro models. Mechanistically, NEDD4 facilitated the ubiquitination and degradation of SGK1 in macrophages. Both NEDD4 depletion and SGK1 addition could counteract the SM-ELNs-induced suppression of NLRP3 inflammasome-triggered macrophage pyroptosis in LPS/ATP-treated RAW264.7 cells. CONCLUSION Our study provides the first evidence that SM-ELNs inhibit NLRP3 inflammasome-mediated macrophage pyroptosis in DCM by modulating the NEDD4/SGK1 axis.
Collapse
Affiliation(s)
- Zhijian Peng
- Department of Cardiovascular, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zefeng Gong
- Internal Medicine Department, GuangZhou Nansha Hospital of TCM, Guangzhou, Guangdong, People's Republic of China
| | - Zhiyong Wang
- Internal Medicine Department, GuangZhou Nansha Hospital of TCM, Guangzhou, Guangdong, People's Republic of China
| | - Bin Deng
- Department of Cardiovascular, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xiaoduo Zhang
- Department of Cardiovascular, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Jiexing Lin
- Internal Medicine Department, GuangZhou Nansha Hospital of TCM, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
136
|
Fu B, Yuan Z, Fang G, Wang WJ, Xiong Z, Chen YC. Dielectric Nanocavity Enhanced Fluorescence Emission for Ultrasensitive Wavelength-Multiplexed Detection. NANO LETTERS 2025. [PMID: 40393953 DOI: 10.1021/acs.nanolett.5c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
This study demonstrates a novel biosensing platform utilizing a dielectric nanocavity to enhance fluorescence emission for the ultrasensitive detection of biomolecules. By coupling a silver (Ag) nanocube with a distributed Bragg reflector (DBR) mirror, we achieved a substantial fluorescence enhancement reaching a maximum enhancement factor of up to 855-fold and having quasi-single molecule sensitivity. The platform was successfully applied for multiplexed detection of four different miRNA biomarkers, showcasing its ability to detect multiple targets simultaneously with high sensitivity. The simplicity, rapid speed, and small detection volume (down to 0.5 μL) of this system make it suitable for high-throughput and large-area nanocavity imaging. Our findings offer a promising solution for ultrasensitive, multiplexed biosensing with potential applications in disease diagnosis, personalized medicine, and digital molecular diagnostics.
Collapse
Affiliation(s)
- Bowen Fu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921 Singapore
| | - Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Guocheng Fang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Wen-Jie Wang
- Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zhongshu Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921 Singapore
| |
Collapse
|
137
|
Zhao Q, Hao D, Wang S, Chen S, Zhou C, Fan C, Su Q, Huang W, Liu J, Kong Q, Wu Y, He Z. Exposure to high altitude leads to disturbances in host metabolic homeostasis: study of the effects of hypoxia-reoxygenation and the associations between the microbiome and metabolome. mSystems 2025; 10:e0134724. [PMID: 40237534 PMCID: PMC12090774 DOI: 10.1128/msystems.01347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/16/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigated alterations in hematological parameters, gut microbiota composition, and fecal and plasma metabolic profiles among high-altitude residents during reoxygenation periods of 1 week, 1 month, and 4 months to elucidate the effects of reoxygenation on human physiology and metabolism. Exposure to high altitudes alters intestinal flora, plasma and fecal metabolites, disrupting their metabolic balance. Distinct differences in amino acid, lipid, energy, immune, cofactor, and vitamin metabolism pathways were detected between high- and low-altitude populations, with a partial recovery of disparities during reoxygenation. Although the gut microbiota exhibited limited adaptive homeostasis to altitude variations, the abundance of microbial taxa and the expression levels of fecal metabolites during the initial reoxygenation phase, particularly during the first week, were sensitive to the reoxygenated environment. Through 16S rRNA gene sequencing and bioinformatics analysis, operational taxonomic units (OTUs) were annotated at the genus level, revealing that the genera Barnesiella, Parabacteroides, and Megasphaera, along with plasma L-arginine, S1P, and alpha-D-glucose, emerged as potential biomarkers for the first week of reoxygenation among high-altitude populations. Notably, a marked change in oxidative stress levels and an increase in antioxidant capacity were observed in high-altitude residents during early reoxygenation. Tyrosine metabolism, which is jointly regulated by the plasma and fecal metabolites and gut microbiota, plays an important role under high-altitude conditions during initial reoxygenation. Additionally, the plasma metabolites pyridoxine and hypoxanthine and the Rothia genus correlated significantly with high-altitude deacclimatization syndrome scores during the first week of reoxygenation.IMPORTANCEOur research focuses on the prompt activation of tyrosine metabolism in plasma following reoxygenation, along with the regulatory mechanisms employed by the intestinal microbiota and the metabolism of feces to modulate this metabolic process. Notably, in the initial stages of reoxygenation, specific microbial genera such as Barnesiella, Parabacteroides, and Megasphaera, alongside plasma biomarkers including L-arginine, S1P, and alpha-D-glucose, emerge as pivotal players. Additionally, our findings reveal a distinct hematological profile characterized by a decrease in the MCHC and increases in the MCV and RDW-SD during the first week of reoxygenation, and this temporal window marked a crucial juncture in the plasma metabolome. Whereas the first month of reoxygenation signified a pivotal phase in the gut microbiome's adaptation to altered environmental conditions, as evidenced by alterations in alpha diversity.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Biobank, Hospital of Chengdu Office of People’s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Doudou Hao
- Department of Biobank, Hospital of Chengdu Office of People’s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Siyu Wang
- Department of Biobank, Hospital of Chengdu Office of People’s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Siyuan Chen
- Department of Biobank, Hospital of Chengdu Office of People’s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Chaohua Zhou
- Department of Biobank, Hospital of Chengdu Office of People’s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Chen Fan
- Department of Science Education, Hospital of Chengdu Office of People’s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Qian Su
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wenting Huang
- Stomatology, Hospital of Chengdu Office of People’s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Jiaxin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Yunhong Wu
- Department of Endocrinology and Metabolism, Hospital of Chengdu Office of People’s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Zeng He
- Department of Biobank, Hospital of Chengdu Office of People’s Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| |
Collapse
|
138
|
Mardi N, Khanicheragh P, Abbasi-Malati Z, Saghebasl S, Khosrowshahi ND, Chegeni SA, Javid F, Azari M, Salimi L, Rezabakhsh A, Milani SZ, Rahbarghazi R. Beneficial and challenges of exosome application in ischemic heart disease. Stem Cell Res Ther 2025; 16:247. [PMID: 40390086 PMCID: PMC12090443 DOI: 10.1186/s13287-025-04363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/23/2025] [Indexed: 05/21/2025] Open
Abstract
Cardiovascular diseases are the main cause of death and disability in the clinical setting. Among several pathological conditions, myocardial infarction (MI) is a common clinical finding and happens due to the reduction or complete interruption of blood support. Stem cells and progenitors are valid cell sources with significant potential to alleviate several tissue injuries. Differentiation to mature and functional cells and the release of various growth factors, and cytokines are the main reparative mechanisms by which stem cells mediate their reparative tasks. Exosomes (Exos), a subset of extracellular vesicles (EVs), exhibit great theranostic potential in biomedicine. Along with whole-cell-based therapies, the pre-clinical and clinical application of Exos has been extended in animals and humans with ischemic heart diseases (IHD). Here, in this review article, we aimed to highlight the importance of Exos in IHD and address the mechanism of action by focusing on their regenerative potential.
Collapse
Affiliation(s)
- Narges Mardi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Abbasi-Malati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | | | - Farzin Javid
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdiyeh Azari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheil Zamen Milani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
139
|
Li B, Zhao X, Ding Y, Zhang Y. Network toxicology and molecular docking to investigate the mechanism of bisphenol A toxicity in human diabetic cardiomyopathy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118301. [PMID: 40393322 DOI: 10.1016/j.ecoenv.2025.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is widely used in polymers, plasticizers, and food packaging, raising significant concerns for human health. Growing evidence links BPA exposure to cardiovascular diseases, including diabetic cardiomyopathy (DCM), a severe complication of diabetes characterized by myocardial dysfunction. This study employs an integrative approach combining network toxicology and molecular docking to elucidate the molecular mechanisms underlying BPA-induced DCM. Using computational tools such as ADMETlab2.0, ProTox3.0, GeneCards, OMIM, Swiss Target Prediction, and ChEMBL databases, we systematically predicted BPA's potential to induce DCM and constructed comprehensive disease and BPA target libraries. Venn diagram analysis identified 93 potential targets associated with BPA-induced DCM, and a robust BPA regulatory network was established using Cytoscape. Functional enrichment analyses revealed significant involvement of oxidative stress, insulin signaling, and metabolic pathways in BPA toxicity. Molecular docking simulations demonstrated stable binding interactions between BPA and core targets (INS, AKT1, PPARG, STAT3, PPARA, MMP9), with binding energies ranging from -5.3 to -7.5 kcal/mol. Our findings indicate that BPA may induce DCM through key genes and pathways, including cGMP-PKG signaling pathway, insulin signaling pathway, AMPK signaling pathway, and HIF-1 signaling pathway. This study provides a novel theoretical framework for understanding the molecular pathogenesis of BPA-induced DCM and highlights the potential of network toxicology in identifying toxic pathways for uncharacterized environmental compounds. These insights offer potential targets for preventive and therapeutic strategies against BPA-associated cardiovascular complications.
Collapse
Affiliation(s)
- Bo Li
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Xu Zhao
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, No. 37 Chaoyang Middle Road, Shiyan, Hubei 442000, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Yi Zhang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China.
| |
Collapse
|
140
|
Serot C, Scarcelli V, Pouget A, Largeau C, Sagot A, El-Hachami K, Dupuy D, Culetto E, Lefebvre C, Legouis R. Reticulon-dependent ER-phagy mediates adaptation to heat stress in C. elegans. Curr Biol 2025; 35:2365-2378.e7. [PMID: 40328253 DOI: 10.1016/j.cub.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/06/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
The selective degradation of endoplasmic reticulum (ER) by autophagy, named ER-phagy, promotes the recovery of ER homeostasis after stress. Depending on the ER stress, different types of ER-phagy involve various selective autophagy receptors. In this study, we report a macroER-phagy induced by the fragmentation of tubular ER in response to acute heat stress. We identified a novel ER-phagy receptor encoded by the reticulon long isoform RET-1d. RET-1d is mainly expressed in the nervous system and the epidermis and colocalizes with the ubiquitin-like autophagy protein LGG-1/GABARAP during heat-stress-induced autophagy. Two LC3-interacting region (LIR) motifs in the long intrinsically disordered region of RET-1d mediate its interaction with the LGG-1 protein. The specific depletion of the RET-1d isoform or the mutations of the LIRs resulted in a defective ER-phagy and a decrease in the capacity of animals to adapt to heat stress. Our data revealed a RET-1d- and LGG-1-dependent ER-phagy mechanism that takes place in neurons and epidermis and participates in the adaptation of C. elegans to heat stress.
Collapse
Affiliation(s)
- Claudia Serot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; Department of R&I in Monogastric Animal Nutrition, European Laboratory of Innovation Science & Expertise (ELISE), Adisseo France S.A.S., Saint Fons 69190, France
| | - Vincent Scarcelli
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Alexandre Pouget
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France
| | - Céline Largeau
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France
| | - Audrey Sagot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France
| | - Kenza El-Hachami
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Denis Dupuy
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARN: Régulation Naturelle et Artificielle (ARNA) Laboratory, Bordeaux F-33000, France
| | - Emmanuel Culetto
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France
| | - Christophe Lefebvre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France.
| | - Renaud Legouis
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; INSERM U1280, Gif-sur-Yvette cedex 91198, France.
| |
Collapse
|
141
|
Susilo RJK, Pramudya M, Dewi FRP, Seftiarini W, Hidayati D, Aunurohim A, Lim V, Herdiansyah MA, Hayati A. Adverse Effect of Polystyrene Nanoplastics in Impairing Glucose Metabolism in Liver Injury. Int J Mol Sci 2025; 26:4870. [PMID: 40430012 PMCID: PMC12112329 DOI: 10.3390/ijms26104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Polystyrene nanoplastics (PS-NPs) are result from the degradation of plastic and have diameters ranging from 1 nm to 100 nm. The objective of this study is to provide information on the adverse effects of PS-NPs with in vitro and in vivo analyses of liver injury. An in vitro study was conducted using confocal microscopy, flow cytometry, and MTT test analysis. An in vivo study was conducted to determine apoptosis levels, glucose metabolism gene expressions, liver enzymes, and liver histology. Data were analyzed using GraphPad Prism software 10.2.1. The in vitro study showed the absorption of PS-NPs in the cell cytoplasm, the percentage of apoptosis, 3t3, and the WiDr cell lines' viability. The in vivo analysis showed that PS-NPs can stimulate liver injuries, such as inducing the elevation of liver enzymes, necrosis, edema, inflammation, and the dilatation of the portal vein diameter. High levels of caspase-3, caspase-9, and Bax were detected, as well as the expression of several genes including PI3K, AKT, PEPCK, GLUT2, and PK. In conclusion, the in vitro analysis showed the detrimental effects of PS-NPs on cells, such as high levels of apoptosis and low cell viability, while the in vivo studies displayed the impairment of liver tissue and disturbances in glucose metabolism regulation.
Collapse
Affiliation(s)
- Raden Joko Kuncoroningrat Susilo
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Manikya Pramudya
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; (M.P.); (F.R.P.D.); (M.A.H.)
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; (M.P.); (F.R.P.D.); (M.A.H.)
| | - Windy Seftiarini
- Graduate School of Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Dewi Hidayati
- Department of Biology, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (D.H.); (A.A.)
| | - Aunurohim Aunurohim
- Department of Biology, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (D.H.); (A.A.)
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia;
| | - Mochammad Aqilah Herdiansyah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; (M.P.); (F.R.P.D.); (M.A.H.)
| | - Alfiah Hayati
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; (M.P.); (F.R.P.D.); (M.A.H.)
| |
Collapse
|
142
|
Zhao J, Chen Z, Yang J, Duan L, Yang H, Cai D, Zhao Z. Effect of KLF15-Mediated Circadian Rhythm on Myocardial Infarction: A Narrative Review. Int J Mol Sci 2025; 26:4831. [PMID: 40429972 PMCID: PMC12111827 DOI: 10.3390/ijms26104831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Normal circadian rhythms are essential for organisms to adapt to diurnal changes and maintain an optimal state of physiological function. Disturbances in circadian rhythms such as shift work and working at night increase the risk of cardiovascular disease. Myocardial infarction exhibits a marked circadian rhythm, usually peaking in the early morning. Krüppel-like factor 15 (KLF15), a transcription factor with a circadian rhythm, plays an important role in cardiac physiopathology. It has a protective effect against myocardial injury after myocardial infarction by regulating energy metabolism and inflammatory factors, among other pathways. Currently, the association between circadian rhythm, KLF15, and myocardial infarction is unclear, thus this paper reviews how circadian rhythm influences the role of KLF15 in myocardial infarction, aiming to reveal the association between circadian rhythm, KLF15, and myocardial infarction, and to explore the underlying mechanisms, to provide new theoretical insights and therapeutic strategies for the clinical treatment of myocardial infarction.
Collapse
Affiliation(s)
| | | | | | | | | | - Dingjun Cai
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (J.Z.); (Z.C.); (J.Y.); (L.D.); (H.Y.)
| | - Zhengyu Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (J.Z.); (Z.C.); (J.Y.); (L.D.); (H.Y.)
| |
Collapse
|
143
|
Clark-Flores D, Vidal-Montiel A, Mondragón-Flores R, Valentín-Gómez E, Hernández-Rodríguez C, Juárez-Montiel M, Villa-Tanaca L. Vacuolar Proteases of Candida auris from Clades III and IV and Their Relationship with Autophagy. J Fungi (Basel) 2025; 11:388. [PMID: 40422722 DOI: 10.3390/jof11050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/03/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
Candida auris is a multidrug-resistant pathogen with a high mortality rate and widespread distribution. Additionally, it can persist on inert surfaces for extended periods, facilitating its transmissibility in hospital settings. Autophagy is a crucial cellular mechanism that enables fungal survival under adverse conditions. A fundamental part of this process is mediated by vacuolar proteases, which play an essential role in the degradation and recycling of cellular components. The present work explores the relationship between C. auris vacuolar peptidases and autophagy, aiming to establish a precedent for understanding the survival mechanisms of this emerging fungus. Thus, eight genes encoding putative vacuolar peptidases in the C. auris genomes were identified: PEP4, PRB1, PRC1, ATG42, CPS, LAP4, APE3, and DAP2. Analysis of the protein domains and their phylogenetic relationships suggests that these enzymes are orthologs of Saccharomyces cerevisiae vacuolar peptidases. Notably, both vacuolar protease gene expression and the proteolytic activity of cell-free extracts increased under nutritional stress and rapamycin. An increase in the expression of the ATG8 gene and the presence of autophagic bodies were also observed. These results suggest that proteases could play a role in yeast autophagy and survival during starvation conditions.
Collapse
Affiliation(s)
- Daniel Clark-Flores
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico
| | - Alvaro Vidal-Montiel
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México 07360, Mexico
| | - Eulogio Valentín-Gómez
- Departmento de Microbiología y Ecología, Universidad de Valencia, 46100 Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico
| | - Margarita Juárez-Montiel
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
144
|
Santín-Márquez R, Salas-Venegas V, Garcia-Álvarez JA, Librado-Osorio R, Luna-López A, López-Diazguerrero NE, Gómez-González B, Königsberg M. Sex differences in middle-aged and old Wistar rats in response to long-term sulforaphane treatment for prevention of neuroinflammation, cognitive decline and brain senescence. Biogerontology 2025; 26:110. [PMID: 40380982 DOI: 10.1007/s10522-025-10231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/26/2025] [Indexed: 05/19/2025]
Abstract
The nervous system (NS) experiences morphological and functional changes during the aging process, where low-grade chronic inflammation, oxidative stress and senescence are key regulators. Sulforaphane (SFN) is an isothiocyanate that activates redox response and inhibits the inflammatory process, which could modify the pro-inflammatory components of senescent cells secretory phenotype (SASP). Here we aimed to determine if SFN long-term treatment was able to prevent age-associated damage in the NS of adult and old females and males Wistar rats. We evaluated cytokines and chemokines profile, senescent cells markers, and memory parameters of adult (15 m.o.) and old (21 m.o.) rats after three months of SFN treatment. Young rats (4 m.o.) were used as age controls. Differences between sexes were observed in the inflammatory profile. Our results showed that SFN-treatment diminished proinflammatory molecules, senescence markers and senescent cells number in brain cortex and hippocampus from males and females' adult rats, but no effects were observed in both sexes old groups compared with the same age control groups. SFN-dependent reduction in inflammatory and senescence parameters resulted in better scores in Barnes Maze Trial memory test when compared with same age non-treated group. Interestingly, adult females showed higher levels of proinflammatory cytokines and chemokines than adult males, which were prevented by SFN-treatment. No effects of SFN were observed in memory of old-treated groups.
Collapse
Affiliation(s)
- Roberto Santín-Márquez
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340, Ciudad de Mexico, Mexico
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Verónica Salas-Venegas
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340, Ciudad de Mexico, Mexico
- Facultad de Medicina, Unidad de Medicina Experimental "Dr. Ruy Pérez Tamayo", Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | | | | | - Norma E López-Diazguerrero
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340, Ciudad de Mexico, Mexico
| | - Beatriz Gómez-González
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de Mexico, Mexico
| | - Mina Königsberg
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340, Ciudad de Mexico, Mexico.
| |
Collapse
|
145
|
Ma T, He J, Long Q, Wang Y, Chen F, Chen S, Xu K, Cao Y. Orientin attenuates UVB-induced skin photodamage by inhibiting ROS generation via the AMPK/Nrf2 axis. Int Immunopharmacol 2025; 155:114655. [PMID: 40239333 DOI: 10.1016/j.intimp.2025.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
The accumulation of reactive oxygen species (ROS) in the skin following UVB exposure is a key contributor to ultraviolet-induced skin photodamage. Orientin, a bioactive flavonoid, has demonstrated antioxidant properties in previous studies. However, its efficacy in treating skin photodamage remains inadequately understood. This study investigates the effects of orientin in preventing UVB-induced immortalized human keratinocytes (HaCaT cells) and BALB/c mouse skin photodamage by activating the AMPK/Nrf2 axis. Results show that orientin protects HaCaT cell viability after UVB exposure, reduces ROS levels, and upregulates antioxidant enzymes, including SOD1, HO-1, and NQO-1, while concurrently suppressing the expression of inflammatory mediators such as COX-2, IL-6, and IL-8. Additionally, orientin promotes AMPK phosphorylation, which facilitates Nrf2 nuclear translocation, thereby enhancing the antioxidant defense of cells. This effect is diminished upon inhibition of AMPK or Nrf2. In the BALB/c mouse model of photodamage, topical application of orientin alleviates symptoms like skin roughness, scaling, and erythema induced by UVB irradiation, while also elevating antioxidant enzyme expression in skin tissues. These findings suggest that orientin mitigates ultraviolet-induced skin photodamage both in vitro and in vivo, boosts cellular antioxidant capacity, and diminishes inflammatory responses, suggesting its potential for further exploration in skin photodamage management.
Collapse
Affiliation(s)
- Ting Ma
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Department of Dermatology, Guizhou Provincial People's Hospital, Guiyang 550000, Guizhou Province, China; Molecular Biology Laboratory, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Jing He
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Qiu Long
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Ye Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Feng Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shaojie Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Kexin Xu
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yu Cao
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China.
| |
Collapse
|
146
|
He F, Nichols RM, Agosto MA, Wensel TG. Roles of class III phosphatidylinositol 3-kinase, Vps34, in phagocytosis, autophagy, and endocytosis in retinal pigmented epithelium. iScience 2025; 28:112371. [PMID: 40330883 PMCID: PMC12052997 DOI: 10.1016/j.isci.2025.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Phosphatidylinositol-3-phosphate (PI(3)P) is important for multiple functions of retinal pigmented epithelial (RPE) cells, but its functions in RPE have not been studied. In RPE from mouse eyes and in cultured human RPE cells, PI(3)P-enriched membranes include endosomes, the trans-Golgi network, phagosomes, and autophagophores. Mouse RPE cells lacking activity of the PI-3 kinase, Vps34, lack detectable PI(3)P and die prematurely. Phagosomes containing rod discs accumulate, as do membrane aggregates positive for autophagosome markers. These autophagy-related membranes recruit LC3/Atg8 without Vps34, but phagosomes do not. Vps34 loss leads to accumulation of lysosomes which do not fuse with phagosomes or membranes with autophagy markers. Thus, Vps34-derived PI(3)P is not needed for initiation of phagocytosis or endocytosis, nor for formation of membranes containing autophagy markers. In contrast, Vps34 and PI(3)P are essential for intermediate and later stages, including membrane fusion with lysosomes.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Ralph M. Nichols
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Theodore G. Wensel
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
147
|
Hao Y, Fan X, Huang X, Li Z, Jing Z, Zhang G, Xu Y, Zhang N, Wei P. Recovery of Lysosomal Acidification and Autophagy Flux by Attapulgite Nanorods: Therapeutic Potential for Lysosomal Disorders. Biomolecules 2025; 15:728. [PMID: 40427621 PMCID: PMC12109497 DOI: 10.3390/biom15050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Dysfunction of the lysosome and autophagy-lysosome pathway is closely associated with various diseases, such as neurodegenerative diseases, non-alcoholic fatty liver disease (NAFLD), etc. Additionally, chloroquine is a clinically widely used drug for treating malaria and autoimmune diseases, but long-term or high-dose administration may lead to significant toxic side effects. Attapulgite (ATT), a natural nanomaterial with excellent adsorption capacity and biocompatibility, herein demonstrated a novel biological function in regulating the lysosomal and autophagy-lysosome pathway. ATT could be effectively internalized into lysosome-related acidic compartments. Further study revealed that ATT could restore lysosomal pH, activate cathepsin D, alleviate autophagy blockage in chloroquine-treated cells, and reduce chloroquine-elicited cell death. In a cell model related to Huntington's disease, treatment with ATT reinforced the degradation of the mutant huntingtin proteins by increasing cathepsin D maturation and autophagy flux. ATT could also promote lipid droplet clearance in hepatocytes with palmitic acid-induced steatosis, reduce hepatic lipid accumulation, and improve fasting blood glucose in high-fat-diet-induced NAFLD mice. These findings establish ATT as a lysosomal modulator, providing a foundation for its therapeutic potential in mitigating the adverse effects associated with long-term chloroquine use, especially improving neurodegenerative and metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Na Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (Y.H.); (X.F.); (X.H.); (Z.L.); (Z.J.); (G.Z.); (Y.X.)
| | - Pengfei Wei
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (Y.H.); (X.F.); (X.H.); (Z.L.); (Z.J.); (G.Z.); (Y.X.)
| |
Collapse
|
148
|
Prisco SZ, Blake M, Kazmirczak F, Moon R, Kremer BP, Hartweck LM, Kim M, Vogel N, Mendelson JB, Moutsoglou D, Thenappan T, Prins KW. Lactobacillus Restructures the Micro/Mycobiome to Combat Inflammation-Mediated Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. Circ Heart Fail 2025:e012524. [PMID: 40376801 DOI: 10.1161/circheartfailure.124.012524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 05/01/2025] [Indexed: 05/18/2025]
Abstract
BACKGROUND Inflammation suppresses right ventricular (RV) function in pulmonary arterial hypertension (PAH). In particular, we showed GP130 (glycoprotein-130) signaling promotes pathological microtubule remodeling and RV dysfunction in rodent PAH. Emerging data demonstrate the intestinal microbiome regulates systemic inflammation, but the impact of modulating the gut microbiome on the GP130-microtubule axis in RV failure is unknown. METHODS Two weeks following monocrotaline injection, rats were administered daily Lactobacillus rhamnosus (4×107 colony-forming units) via oral gavage for 10 days. Next-generation metagenomics and internal transcribed spacer 2 sequencing delineated fecal bacterial and fungal compositions. SomaScan proteomics measured levels of 7596 serum proteins. RV immunoblots quantified protein abundances. Light or super resolution confocal microscopy assessed RV, lung, and jejunal morphology. Echocardiography and invasive closed-chest pressure-volume loops evaluated PAH severity and RV function. The relationship between Lactobacillus abundance and RV function was assessed in 65 patients with PAH. RESULTS Lactobacillus administration restructured both the intestinal micro- and mycobiome. The alteration in the gut ecosystem improved intestinal health as demonstrated by increased jejunal villus length and glycocalyx thickness and diminished intestinal permeability biomarkers. Serum proteomics revealed Lactobacillus modulated systemic inflammation and decreased circulating GP130 ligands. Lactobacillus-mediated suppression of GP130 signaling blunted pathological microtubule remodeling in RV cardiomyocytes. Microtubule-associated phenotypes, including RV cardiomyocyte and nuclear hypertrophy, transverse tubule integrity, and connexin-43 localization, were all corrected with Lactobacillus. These cellular changes manifested as improved RV function despite no significant alteration in PAH severity. Finally, patients with PAH and detectable fecal Lactobacillus had superior RV function despite similar mean pulmonary arterial pressure and pulmonary vascular resistance as compared with those without detectable Lactobacillus. CONCLUSIONS Lactobacillus supplementation restructures the gut micro/mycobiome, restores intestinal health, dampens systemic inflammation, and reduces GP130 ligands and associated RV cardiomyocyte microtubule remodeling. These data identify a novel microbiome-inflammation-microtubule axis that has therapeutic relevance for RV dysfunction.
Collapse
Affiliation(s)
- Sasha Z Prisco
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis (S.Z.P., M.B., F.K., R.M., B.P.K., L.M.H., M.K., N.V., J.B.M., T.T., K.W.P.)
| | - Madelyn Blake
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis (S.Z.P., M.B., F.K., R.M., B.P.K., L.M.H., M.K., N.V., J.B.M., T.T., K.W.P.)
| | - Felipe Kazmirczak
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis (S.Z.P., M.B., F.K., R.M., B.P.K., L.M.H., M.K., N.V., J.B.M., T.T., K.W.P.)
| | - Ryan Moon
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis (S.Z.P., M.B., F.K., R.M., B.P.K., L.M.H., M.K., N.V., J.B.M., T.T., K.W.P.)
| | - Benjamin P Kremer
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis (S.Z.P., M.B., F.K., R.M., B.P.K., L.M.H., M.K., N.V., J.B.M., T.T., K.W.P.)
| | - Lynn M Hartweck
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis (S.Z.P., M.B., F.K., R.M., B.P.K., L.M.H., M.K., N.V., J.B.M., T.T., K.W.P.)
| | - Minwoo Kim
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis (S.Z.P., M.B., F.K., R.M., B.P.K., L.M.H., M.K., N.V., J.B.M., T.T., K.W.P.)
| | - Neal Vogel
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis (S.Z.P., M.B., F.K., R.M., B.P.K., L.M.H., M.K., N.V., J.B.M., T.T., K.W.P.)
| | - Jenna B Mendelson
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis (S.Z.P., M.B., F.K., R.M., B.P.K., L.M.H., M.K., N.V., J.B.M., T.T., K.W.P.)
| | - Daphne Moutsoglou
- Gastroenterology Section, Minneapolis VA Health Care System, MN (D.M.)
- Department of Medicine, University of Minnesota, Minneapolis (D.M.)
| | - Thenappan Thenappan
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis (S.Z.P., M.B., F.K., R.M., B.P.K., L.M.H., M.K., N.V., J.B.M., T.T., K.W.P.)
| | - Kurt W Prins
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis (S.Z.P., M.B., F.K., R.M., B.P.K., L.M.H., M.K., N.V., J.B.M., T.T., K.W.P.)
| |
Collapse
|
149
|
Wang P, Wang Z, Jin X, Zhang M, Shen M, Li D. Oral Sulforaphane Intervention Protects Against Diabetic Cardiomyopathy in db/db Mice: Focus on Cardiac Lipotoxicity and Substrate Metabolism. Antioxidants (Basel) 2025; 14:603. [PMID: 40427484 PMCID: PMC12109042 DOI: 10.3390/antiox14050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The protective effect of cruciferae-derived sulforaphane (SFN) on diabetic cardiomyopathy (DCM) has garnered increasing attention. However, no studies have specifically explored its mechanistic involvement in cardiac substrate metabolism and mitochondrial function. To address this gap, Type 2 diabetes mellitus (T2DM) db/db mice were orally gavaged with vehicle or 10 mg/kg body weight SFN every other day for 16 weeks, with vehicle-treated wild-type mice as controls. SFN intervention (SFN-I) alleviated hyperglycemia, dyslipidemia, HOMA-IR, serum MDA levels, and liver inflammation. Furthermore, SFN-I improved the lipotoxicity-related phenotype of T2DM cardiomyopathy, manifested as attenuation of diastolic dysfunction, cardiac injury, fibrosis, lipid accumulation and peroxidation, ROS generation, and decreased mitochondrial complex I and II activities and ATP content, despite having no effect on ceramide abnormalities. Protein expression data revealed that the model mice exhibited upregulated cardiac CD36, H-FABP, FATP4, CPT1B, PPARα, and PDK4 but downregulated GLUT4, with unchanged MPC1 and MPC2. Notably, SFN-I significantly attenuated the increase in CD36, H-FABP, CPT1B, and PPARα. These results suggest that chronic oral SFN-I protects against DCM by mitigating overall metabolic dysregulation and inhibiting cardiolipotoxicity. The latter might involve controlling cardiac fatty acid metabolism and improving mitochondrial function, rather than promoting glucose metabolism.
Collapse
Affiliation(s)
- Pan Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Ziling Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Xinyuan Jin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Mengdi Zhang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Mengfan Shen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| |
Collapse
|
150
|
Tang H, Li K, Shi Z, Wu J. G-Protein-Coupled Receptors in Chronic Kidney Disease Induced by Hypertension and Diabetes. Cells 2025; 14:729. [PMID: 40422232 DOI: 10.3390/cells14100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Hypertension and diabetes are two common causes of chronic kidney disease. Hypertension can induce renal vascular injury, glomerular damage, podocyte loss, and tubular injury, leading to tubulointerstitial fibrosis. A number of factors influence the regulation of hypertension, among which G-protein-coupled receptors (GPCRs) have been studied extensively because they are desirable targets for drug development. Compared to hypertension, the regulatory effects of GPCRs on hypertensive kidney disease (HKD) are less generalized. In this review, we discussed the GPCRs involved in hypertensive kidney disease, such as angiotensin II receptors (AT1R and AT2R), Mas receptor (MasR), Mas-related G-protein-coupled receptor member D (MrgD), relaxin family receptor 1 (RXFP1), adenosine receptors (A1, A2A, A2B, and A3), purinergic P2Y receptors, and endothelin receptors (ETA and ETB). The progression of HKD is rarely reversed but can be retarded by ameliorating the hypertensive microenvironment in the kidneys. However, simply reducing blood pressure cannot stop the progression of HKD. Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD), which is a major cause of morbidity and mortality in diabetes. Many GPCRs are involved in DN. Here, we select some well-studied GPCRs that are directly associated with the pathogenesis of DN to illustrate their mechanisms. The main purpose of this review is to provide an overview of the GPCRs involved in the occurrence and progression of HKD and DN and their probable pathophysiological mechanisms, which we hope will help in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Huidi Tang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Kang Li
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Zhan Shi
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Jichao Wu
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| |
Collapse
|