101
|
Leira Y, Cho H, Marletta D, Orlandi M, Diz P, Kumar N, D'Aiuto F. Complications and treatment errors in periodontal therapy in medically compromised patients. Periodontol 2000 2023; 92:197-219. [PMID: 36166645 DOI: 10.1111/prd.12444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
Patients who are medically compromised may be at an increased risk of complications and treatment errors following periodontal therapy. A review of the evidence on the topic is presented, in relation to the type of complication reported, of periodontal treatment, and of patients' medical status. Further, a framework for risk assessment and appropriate treatment modifications is introduced, with the aim of facilitating the management of patients with existing comorbidities and reducing the incidence of treatment complications.
Collapse
Affiliation(s)
- Yago Leira
- Periodontology Unit, UCL Eastman Dental Institute & NIHR UCLH Biomedical Research Centre, University College London, London, UK
- Periodontology Unit, Faculty of Odontology, University of Santiago de Compostela & Medical-Surgical Dentistry Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Hana Cho
- Special Care Dentistry Unit, ENT & Eastman Dental Hospital, UCLH NHS Foundation Trust, London, UK
| | | | - Marco Orlandi
- Periodontology Unit, UCL Eastman Dental Institute & NIHR UCLH Biomedical Research Centre, University College London, London, UK
| | - Pedro Diz
- Special Care Dentistry Unit, Faculty of Odontology, University of Santiago de Compostela & Medical-Surgical Dentistry Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Navdeep Kumar
- Special Care Dentistry Unit, ENT & Eastman Dental Hospital, UCLH NHS Foundation Trust, London, UK
| | - Francesco D'Aiuto
- Periodontology Unit, UCL Eastman Dental Institute & NIHR UCLH Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
102
|
Thong PM, Chong HT, Chang AJW, Ong CWM. COVID-19, the escalation of diabetes mellitus and the repercussions on tuberculosis. Int J Infect Dis 2023; 130 Suppl 1:S30-S33. [PMID: 36898428 PMCID: PMC9993733 DOI: 10.1016/j.ijid.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
The COVID-19 pandemic has significantly disrupted global tuberculosis (TB) control efforts. The mobilization of healthcare resources and personnel to combat the pandemic, and the nationwide lockdown measures resulted in an accumulation of a large number of undiagnosed TB cases. Exacerbating the situation, recent meta-analyses showed that COVID-19-induced diabetes mellitus (DM) is on the increase. DM is an established risk factor for TB disease and worsens outcomes. Patients with concurrent DM and TB had more lung cavitary lesions, and are more likely to fail TB treatment and suffer disease relapse. This may pose a significant challenge to TB control in low- and middle-income countries where a high TB burden is found. There is a need to step up the efforts to end the TB epidemic, which include increased screening for DM among patients with TB, optimizing glycemic control among patients with TB-DM, and intensifying TB-DM research to improve treatment outcomes for patients with TB-DM.
Collapse
Affiliation(s)
- Pei Min Thong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 11, 119228 Singapore
| | - Hai Tarng Chong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 11, 119228 Singapore
| | - Anabel J W Chang
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 11, 119228 Singapore
| | - Catherine W M Ong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 11, 119228 Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 10, 119228 Singapore; Institute for Health Innovation & Technology (iHealthtech), National University of Singapore (NUS), MD6, 14 Medical Drive, #14-01 117599 Singapore.
| |
Collapse
|
103
|
Bagheri M, von Kohout M, Zoric A, Fuchs PC, Schiefer JL, Opländer C. Can Cold Atmospheric Plasma Be Used for Infection Control in Burns? A Preclinical Evaluation. Biomedicines 2023; 11:biomedicines11051239. [PMID: 37238910 DOI: 10.3390/biomedicines11051239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Wound infection with Pseudomonas aeruginosa (PA) is a serious complication and is responsible for higher rates of mortality in burn patients. Because of the resistance of PA to many antibiotics and antiseptics, an effective treatment is difficult. As a possible alternative, cold atmospheric plasma (CAP) can be considered for treatment, as antibacterial effects are known from some types of CAP. Hence, we preclinically tested the CAP device PlasmaOne and found that CAP was effective against PA in various test systems. CAP induced an accumulation of nitrite, nitrate, and hydrogen peroxide, combined with a decrease in pH in agar and solutions, which could be responsible for the antibacterial effects. In an ex vivo contamination wound model using human skin, a reduction in microbial load of about 1 log10 level was observed after 5 min of CAP treatment as well as an inhibition of biofilm formation. However, the efficacy of CAP was significantly lower when compared with commonly used antibacterial wound irrigation solutions. Nevertheless, a clinical use of CAP in the treatment of burn wounds is conceivable on account of the potential resistance of PA to common wound irrigation solutions and the possible wound healing-promoting effects of CAP.
Collapse
Affiliation(s)
- Mahsa Bagheri
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Hospital, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Maria von Kohout
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Hospital, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Andreas Zoric
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Hospital, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Paul C Fuchs
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Jennifer L Schiefer
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Hospital, Witten/Herdecke University, Ostmerheimer Str. 200, 51109 Cologne, Germany
| |
Collapse
|
104
|
Chavda VP, Bezbaruah R, Dolia S, Shah N, Verma S, Savale S, Ray S. Convalescent plasma (hyperimmune immunoglobulin) for COVID-19 management: An update. Process Biochem 2023; 127:66-81. [PMID: 36741339 PMCID: PMC9886570 DOI: 10.1016/j.procbio.2023.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
The pandemic COVID-19 has spread widely throughout the globe and has been responsible for millions of deaths worldwide. Recently, it has been identified that there is no specific and 100% effective treatment available to manage the infection especially for the severe cases. A significant amount of research efforts and clinical trials have been undertaken globally and many more are underway to find the potential treatment option. Earlier, convalescent plasma or hyperimmune immunoglobulin was effectively used in the treatment of many endemic or epidemic viral infections as a part of passive immunization. In this article, we have touched upon the immunopathology of COVID-19 infection, a basic understanding of convalescent plasma, it's manufacturing as well as evaluation, and have reviewed the scientific developments focussing on the potential of convalescent plasma vis-à-vis other modalities for the management of COVID-19. The article also covers various research approaches, clinical trials conducted globally, and the clinical trials which are at various stages for exploring the efficacy and safety of the convalescent plasma therapy (CPT) to predict its future perspective to manage COVID-19.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Sheetal Dolia
- Intas Pharmaceuticals Ltd. (Plasma Fractionation Unit), Ahmedabad 382213, Gujarat, India
| | - Nirav Shah
- Department of Pharmaceutics, SAL Institute of Pharmacy, Sola, Ahmedabad 380060, India
| | - Sachin Verma
- Intas Pharmaceuticals Ltd. (Plasma Fractionation Unit), Ahmedabad 382213, Gujarat, India
| | - Shrinivas Savale
- AIC-LMCP Foundation, L M College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Suma Ray
- Intas Pharmaceuticals Ltd. (Plasma Fractionation Unit), Ahmedabad 382213, Gujarat, India
| |
Collapse
|
105
|
Intarapanya T, Suratanee A, Pattaradilokrat S, Plaimas K. Modeling the Spread of COVID-19 with the Control of Mixed Vaccine Types during the Pandemic in Thailand. Trop Med Infect Dis 2023; 8:tropicalmed8030175. [PMID: 36977177 PMCID: PMC10056006 DOI: 10.3390/tropicalmed8030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
COVID-19 is a respiratory disease that can spread rapidly. Controlling the spread through vaccination is one of the measures for activating immunization that helps to reduce the number of infected people. Different types of vaccines are effective in preventing and alleviating the symptoms of the disease in different ways. In this study, a mathematical model, SVIHR, was developed to assess the behavior of disease transmission in Thailand by considering the vaccine efficacy of different vaccine types and the vaccination rate. The equilibrium points were investigated and the basic reproduction number R0 was calculated using a next-generation matrix to determine the stability of the equilibrium. We found that the disease-free equilibrium point was asymptotically stable if, and only if, R0<1, and the endemic equilibrium was asymptotically stable if, and only if, R0>1. The simulation results and the estimation of the parameters applied to the actual data in Thailand are reported. The sensitivity of parameters related to the basic reproduction number was compared with estimates of the effectiveness of pandemic controls. The simulations of different vaccine efficacies for different vaccine types were compared and the average mixing of vaccine types was reported to assess the vaccination policies. Finally, the trade-off between the vaccine efficacy and the vaccination rate was investigated, resulting in the essentiality of vaccine efficacy to restrict the spread of COVID-19.
Collapse
Affiliation(s)
- Tanatorn Intarapanya
- Advanced Virtual and Intelligence Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | | | - Kitiporn Plaimas
- Advanced Virtual and Intelligence Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence:
| |
Collapse
|
106
|
Baqer Almayali EJ, Al-Kraety IAA, Maki Naji A, Abd almunaam LH. Bacteriological study and its antibiotics susceptibility pattern of Otitis Media in Iraqi patients. BIONATURA 2023; 8:1-7. [DOI: 10.21931/rb/2023.08.01.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Otitis media is an acute upper respiratory tract infection-related inflammation of the middle ear and tympanic membrane, frequently affecting children. Typically, a subsequent bacterial infection complicates a viral infection, which ultimately causes the condition. The study aims to study the function of bacterial ear infections and its causes, as well as their resistance to medications, which was the focus of this investigation. The first axis of the research was the identification of bacterial isolates using recognized diagnostic tools, and the second axis was determining the antibiotic's resistance and sensitivity. Patients with otitis media were gathered from Al-Hakim General Hospital and Al-Sadr city hospital in Al-Najaf city between November 2020 and April 2021 for 100 clinical samples. More than 80 samples were found to be infected with bacteria. Bacterial strains found in this investigation are ( 30 ) isolates of Pseudomonas aeruginosa, (20) isolates of Klebsiella spp, (20) isolates of Proteus spp, ( 15 ) isolates of Staphylococcus aureus, (8) isolates Escherichia coli and (7) isolates Enterococcus fecalies. As part of this research, the disk diffusion method was used to assess how sensitive the test was. The results showed that Pseudomonas aeruginosa was resistant to most antibiotics, particularly the penicillin family, cephalosporin, and trimethoprim, with the existence of isolates resistant to meropenem. The investigation results varied for the quinolone, aminoglycoside, and macrolide families. Klebsiella spp. were tested for antibiotic sensitivity and found to be resistant to most antibiotics, particularly those in the penicillin family, cephalosporins, and trimethoprim. Some quinolones, aminoglycosides, and macrolides are also resistant. Proteus spp were resistant to most antibiotics, particularly the penicillin family (except for augmentin, which had some sensitive isolates) and cephalosporin (except for cefdinir and cefepime) had some susceptible isolates) and trimethoprim, in addition to the presence of isolates resistant to meropenem. There is a discrepancy in the examination results for the quinolone family. The aminoglycoside family is also highly resistant. S. aureus isolates were resistant to penicillin (except for augmentin, which some isolates were responsive to), trimethoprim, and quinolones, with the presence of isolates resistant to vancomycin. The macrolide class ( azithromycin) also has a significant resistance level. Escherichia coli is susceptible to meropenem, imipenem, and certain cephalosporin generations. Augmentin, cefepime, cephalothin, meropenem, imipenem, and azithromycin were ineffective against Enterococcus fecal. The conclusion is that Pseudomonas spp has a role in ear infections and the germs Klebsiella spp., Proteus spp., Staphylococcus aureus, Escherichia coli, and Enterococcus fecalies. Penicillin and cephalosporin resistance was seen in the majority of the identified isolates. The existence of isolates of Proteus and Pseudomonas species resistant to meropenem. Vancomycin-resistant strains of Staphylococcus aureus isolates are present.
Keywords: Otitis media, Resistance antibiotic, S.aureus, P.aerginosa
Collapse
Affiliation(s)
- Enas Jalil Baqer Almayali
- Department of Medical Laboratory Technique, Faculty of Medical and Health Technique, University of Alkafeel. Najaf, Iraq
| | - Israa Abdul Ameer Al-Kraety
- Department of Medical Laboratory Technique, Faculty of Medical and Health Technique, University of Alkafeel. Najaf, Iraq
| | | | | |
Collapse
|
107
|
Schalli M, Platzer S, Schmutz R, Ofner-Kopeinig P, Reinthaler FF, Haas D. Dissolved Carbon Dioxide: The Lifespan of Staphylococcus aureus and Enterococcus faecalis in Bottled Carbonated Mineral Water. BIOLOGY 2023; 12:biology12030432. [PMID: 36979124 PMCID: PMC10045048 DOI: 10.3390/biology12030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
During the process of mineral water production, many possible contamination settings can influence the quality of bottled water. Microbial contamination can originate from different sources, for example, the ambient air, the bottles, the caps, and from the bottling machine itself. The aim of this study was to investigate the influence of three different carbon dioxide (CO2) concentrations (3.0 g/L, 5.5 g/L, and 7.0 g/L; 20 bottles each) in bottled mineral water on the bacterial growth of Staphylococcus aureus (S. aureus) and Enterococcus faecalis (Ent. faecalis). The examined mineral water was artificially contaminated before capping the bottles inside the factory. After a specific number of days, water samples were taken from freshly opened bottles and after filtration (100 mL), filters were placed on Columbia Agar with 5% Sheep blood to cultivate S. aureus and Slanetz and Bartley Agar to cultivate Ent. faecalis. The respective colony-forming units (CFU) were counted after incubation times ranging from 24 to 120 h. Colony-forming units of S. aureus were not detectable after the 16th and 27th day, whereas Ent. faecalis was not cultivable after the 5th and 13th day when stored inside the bottles. The investigation of the bottles that were stored open for a certain amount of time with CO2 bubbling out showed only single colonies for S. aureus after the 5th day and no CFUs for Ent. faecalis after the 17th day. A reduction in the two investigated bacterial strains during storage in carbonated mineral water bottles means that a proper standardized disinfection and cleaning procedure, according to valid hygiene standards of industrial bottling machines, cannot be replaced by carbonation.
Collapse
Affiliation(s)
- Michael Schalli
- Department for Water-Hygiene and Micro-Ecology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-73610
| | - Sabine Platzer
- Department for Water-Hygiene and Micro-Ecology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Rainer Schmutz
- Department for Water-Hygiene and Micro-Ecology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Petra Ofner-Kopeinig
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8010 Graz, Austria
| | - Franz F. Reinthaler
- Department for Water-Hygiene and Micro-Ecology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Doris Haas
- Applied Hygiene and Aerobiology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
108
|
Hassaninejad Farahani F, Moraffah F, Samadi N, Sharifzadeh M, Motasadizadeh H, Vatanara A. Improved infectious burn wound healing by applying lyophilized particles containing probiotics and prebiotics. Int J Pharm 2023; 636:122800. [PMID: 36889414 DOI: 10.1016/j.ijpharm.2023.122800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Lactiplantibacillus plantarum cells were encapsulated in a mixture of cationic and anionic polymers, with the final composition stabilized through freeze-drying. A D-optimal design was used to examine the effects of different polymer concentrations as well as adding prebiotics on the probiotic viability and swelling behavior of the formulations. Scanning electron micrographs revealed stacked particles capable of rapidly absorbing significant amounts of water. These images corresponded to initial swelling percentages of around 2000% for the optimal formulation. The optimized formula had a viability percentage of more than 82%, with the stability studies suggesting that the powders should be stored at refrigerated temperatures. The physical characteristics of the optimized formula were examined to ensure compatibility with its application. According to antimicrobial evaluations, the difference in pathogen inhibition between formulated and fresh probiotics was less than a logarithm. The final formula was tested in vivo and showed improved wound healing indicators. The optimized formula resulted in a higher rate of wound closure and infection clearance. Furthermore, the molecular studies for oxidative stress indicated that the formula could modify wound inflammatory responses. In histological investigations, the probiotic-loaded particles functioned exactly as efficaciously as silver sulfadiazine ointment did.
Collapse
Affiliation(s)
| | - Fatemeh Moraffah
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran
| | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran; Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1414614411, Iran.
| |
Collapse
|
109
|
Nagoba BS, Rayate A, Gavkare A, Rao A. Craze for Publishing in Foreign Journals: Why Not? MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2023; 16:300-301. [DOI: 10.4103/mjdrdypu.mjdrdypu_152_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022] Open
Affiliation(s)
- Basavraj S. Nagoba
- Department of Microbiology, Maharashtra Institute of Medical Sciences and Research (Medical College), Latur, Maharashtra, India
| | - Abhijit Rayate
- Department of Surgery, Maharashtra Institute of Medical Sciences and Research (Medical College), Latur, Maharashtra, India
| | - Ajay Gavkare
- Department of Physiology, Maharashtra Institute of Medical Sciences and Research (Medical College), Latur, Maharashtra, India
| | - Arunkumar Rao
- Department of Orthopaedics, Maharashtra Institute of Medical Sciences and Research (Medical College), Latur, Maharashtra, India
| |
Collapse
|
110
|
Faruqi J, Balasubramanyam A. COVID-19 and diabetes mellitus: a review of the incidence, pathophysiology and management of diabetes during the pandemic. Expert Rev Endocrinol Metab 2023; 18:167-179. [PMID: 36797835 DOI: 10.1080/17446651.2023.2176300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The COVID-19 pandemic has changed the landscape of modern medicine on a global scale. An emerging concern is the recognition of a bidirectional relationship between COVID-19 and diabetes. Diabetes is a risk factor for severe COVID-19 illness. Intriguingly, recent epidemiological and in vitro studies suggest that infection with SARS-CoV-2, the causative viral agent of COVID-19, is associated with new-onset diabetes and worsening diabetes control. These factors have affected the management of diabetes. AREAS COVERED This review provides an overview of our current understanding of the incidence and prevalence of diabetes in relation to the COVID-19 pandemic, highlights studies evaluating SARS-CoV-2's beta cell tropism and its effects on insulin secretion and sensitivity and evaluates the impact of the pandemic on diabetes management and metabolic control. EXPERT OPINION Epidemiological studies have noted an increase in the incidence of new-onset diabetes associated with COVID-19 in patients with phenotypes of type 1 diabetes, type 2 diabetes and Ketosis-Prone Diabetes. Prospective studies are needed to fully elucidate the association between COVID-19 and diabetes and to characterize persons at risk of developing diabetes after SARS-CoV-2 infection, identify those who should be screened for diabetes, and determine the natural histories of different forms of diabetes associated with COVID-19.
Collapse
Affiliation(s)
- Jordana Faruqi
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
111
|
Kale DS, Karande GS, Datkhile KD. Diabetic Foot Ulcer in India: Aetiological Trends and Bacterial Diversity. Indian J Endocrinol Metab 2023; 27:107-114. [PMID: 37292074 PMCID: PMC10245308 DOI: 10.4103/ijem.ijem_458_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 06/10/2023] Open
Abstract
Diabetes is one of the most prevalent epidemic metabolic disorders, responsible for a significant amount of physical, psychological and economic loss in human society. Diabetic foot ulcer (DFU) is one of the extreme pathophysiological consequences of diabetes. Bacterial infection is the most important cause of chronic DFU. Bacterial species or their biofilms show multidrug resistance, which complicates DFU and consequently leads to amputation of the infected part. Since the Indian population comprises diverse ethnic and cultural groups, this could influence the aetiology of diabetic foot infections and bacterial diversity. We reviewed 56 articles published from 2005 to 2022 on the microbiology of DFU and extracted the data on study location, number of patients analysed in the study, pathophysiological complications, age of the patients, sex of the patient, type of bacteria, type of infection (mono or polymicrobial), predominant bacteria (Gram-positive or Gram-negative), predominant isolates and multiple drug resistance (tested or not). We analysed data and described aetiological trends in diabetic foot infections and bacterial diversity. The study revealed that Gram-negative bacteria are predominant as compared to Gram-positive bacteria in individuals with diabetes with DFU in India. Escherichia coli, Pseudomonas aeruginosa, Klebsiella sp. and Proteus sp. were the most predominant Gram-negative bacteria, while Staphylococcus aureus and Enterococcus sp. were the major Gram-positive bacteria in DFU. We discuss bacterial infections in DFU in the context of bacterial diversity, sampling methods, demography and aetiology.
Collapse
Affiliation(s)
- Dipak S. Kale
- Department of Microbiology, Krishna Institute of Medical Sciences, Karad, Satara, Maharashtra, India
| | - Geeta S. Karande
- Department of Microbiology, Krishna Institute of Medical Sciences, Karad, Satara, Maharashtra, India
| | - Kailas D. Datkhile
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Karad, Satara, Maharashtra, India
| |
Collapse
|
112
|
Kim J, Choi Y, Park J, Choi J. Gelatin-Gallic Acid Microcomplexes Release GO/Cu Nanomaterials to Eradicate Antibiotic-Resistant Microbes and Their Biofilm. ACS Infect Dis 2023; 9:296-307. [PMID: 36696596 DOI: 10.1021/acsinfecdis.2c00439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Wound-infecting bacteria are typically Pseudomonas aeruginosa and Staphylococcus epidermidis, both of which form biofilms and become resistant to antibiotics. To solve this problem, copper nanoparticles (Cu) on graphene oxide (GO) nanosheets were used as antibacterial materials. Since the excessive use of antibacterial substances is fatal to normal tissues, GO/Cu was encapsulated with a gelatin complex to lower the cytotoxicity. Among the catechol-based substances, gallic acid (GA), which has anti-inflammatory and antibacterial properties, was used in this study to impart stability to the gelatin complex. Gelatin (GE) and gallic acid (GA) were combined by a crosslinking method using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) as a crosslinker, and the crosslinking was confirmed by Fourier transform infrared (FT-IR), 1H NMR, and the fluorescence property of GA. The GO/Cu@GE-GA microcomplexes exhibited more antibacterial effect against Gram-positive bacteria (S. epidermidis) and Gram-negative bacteria (P. aeruginosa) than when GO/Cu alone was used, and the antibiofilm effect was also confirmed. The cytotoxicity evaluation for human skin cells (human dermal fibroblast (HDF)) at the same concentration showed that it had low cytotoxicity and biocompatibility. This study shows the potential of antimicrobial gelatin microcomplex in prohibiting infectious bacteria and their biofilms and controlling the release of antimicrobial substances.
Collapse
Affiliation(s)
- Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.,Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| | - Jongjun Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.,Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| |
Collapse
|
113
|
Association between cardiovascular diseases and periodontal disease: more than what meets the eye. Drug Target Insights 2023; 17:31-38. [PMID: 36761891 PMCID: PMC9906023 DOI: 10.33393/dti.2023.2510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are inflammatory diseases of coronary arteries accompanying atheroma formation that can spawn impairment and, in severe cases, death. CVDs are the leading cause of death in the world. In recent decades, investigators have focused their impact on CVD by periodontal disease (PD). PD is a risk factor that can trigger the formation, maturation, and instability of atheroma in the arteries. Two mechanisms have been proposed to explain this relationship: periodontopathic pathogens explicitly invade the circulation or indirectly increase systemic levels of inflammatory mediators. It has been suggested that improvement in disease state has a positive effect on others. This review summarizes evidence from epidemiological studies as well as researches focusing on potential causation channels to deliver a comprehensive representation of the relationship between PD and CVD.
Collapse
|
114
|
Yue Z, Liu Y, Chen Y, Chen C, Zhang J, He L, Ma K. Comprehensive Genomics and Proteomics Analysis Reveals the Multiple Response Strategies of Endophytic Bacillus sp. WR13 to Iron Limitation. Microorganisms 2023; 11:microorganisms11020367. [PMID: 36838332 PMCID: PMC9961900 DOI: 10.3390/microorganisms11020367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Iron (Fe) is an important metal element for the growth of bacteria. Many bacteria respond to Fe limitation through a variety of strategies. We previously isolated an endophyte Bacillus sp. WR13 from wheat root. However, whether and how this strain can cope with Fe-deficient environments remains unclear. In this study, the growth of WR13 under Fe starvation was investigated, and the underlying mechanisms of WR13 in response to Fe starvation were elucidated via genomics and iTRAQ-based proteomics. Under Fe limitation, WR13 showed a growth pattern similar to that of Fe sufficiency. Genomics analysis demonstrated that WR13 had gene clusters related to siderophore synthesis (dhbACEBF), transportation (bcbE), uptake (feuABC-yusV) and hydrolysis (besA). These genes were significantly up-regulated in Fe-starved WR13, which resulted in more siderophore production. Proteomics data revealed that many Fe-containing proteins such as ACO, HemQ, ferredoxin, CNP, and SufD were significantly reduced under Fe limitation. Meanwhile, significant decreases in many proteins involved in glycolysis, TCA cycle, pentose phosphate pathway; asparagine, glutamine, methionine, and serine metabolism; and phospholipid hydrolysis were also observed. Overall, this study shows that Bacillus sp. WR13 was able to respond to Fe limitation via multiple strategies and provides a theoretical basis for the application of WR13 in Fe-deficient soil.
Collapse
Affiliation(s)
- Zonghao Yue
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yongchuang Liu
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yanjuan Chen
- School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Can Chen
- Henan Key Laboratory of Plant Molecular Breeding and Bioreactor, Zhoukou 466001, China
| | - Ju Zhang
- Henan Key Laboratory of Plant Molecular Breeding and Bioreactor, Zhoukou 466001, China
| | - Le He
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Keshi Ma
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
- Correspondence: ; Tel.: +86-158-9672-0176
| |
Collapse
|
115
|
Nagoba B, Gavkare A, Rayate A. Exploring the Possibility of Use of SARS-CoV-2 Antiserum as an Alternative
for Plasma Therapy. CORONAVIRUSES 2023; 4. [DOI: 10.2174/2666796704666230329101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 01/13/2025]
Affiliation(s)
- Basavraj Nagoba
- Department of Microbiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur, India
| | - Ajay Gavkare
- Department of Physiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur, India
| | - Abhijit Rayate
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur, India
| |
Collapse
|
116
|
Morrison AG, Sarkar S, Umar S, Lee STM, Thomas SM. The Contribution of the Human Oral Microbiome to Oral Disease: A Review. Microorganisms 2023; 11:318. [PMID: 36838283 PMCID: PMC9962706 DOI: 10.3390/microorganisms11020318] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The oral microbiome is an emerging field that has been a topic of discussion since the development of next generation sequencing and the implementation of the human microbiome project. This article reviews the current literature surrounding the oral microbiome, briefly highlighting most recent methods of microbiome characterization including cutting edge omics, databases for the microbiome, and areas with current gaps in knowledge. This article also describes reports on microorganisms contained in the oral microbiome which include viruses, archaea, fungi, and bacteria, and provides an in-depth analysis of their significant roles in tissue homeostasis. Finally, we detail key bacteria involved in oral disease, including oral cancer, and the current research surrounding their role in stimulation of inflammatory cytokines, the role of gingival crevicular fluid in periodontal disease, the creation of a network of interactions between microorganisms, the influence of the planktonic microbiome and cospecies biofilms, and the implications of antibiotic resistance. This paper provides a comprehensive literature analysis while also identifying gaps in knowledge to enable future studies to be conducted.
Collapse
Affiliation(s)
- Austin Gregory Morrison
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Shahid Umar
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- 1717 Claflin Road, 136 Ackert Hall, Manhattan, KS 66506, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Departments of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- 3901 Rainbow Blvd., 4031 Wahl Hall East, MS 3040, Kansas City, KS 66160, USA
| |
Collapse
|
117
|
Ananieva M, Faustova M, Loban G, Avetikov D, Tkachenko P, Bobyr V, Dobrovolska O. Biological Properties of Streptococcus pluranimalium as the New Human Pathogen. Open Access Maced J Med Sci 2023. [DOI: 10.3889/oamjms.2023.10990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND: The limited amount of information available today does not fully reflect the biological properties of Streptococcus pluranimalium as a pathogen new to humans, its pathogenicity factors, and, as a consequence, the pathogenesis of diseases, which is causes
AIM: The aim of this research was to study the biological properties of S. pluranimalium, its sensitivity to antibiotics and antiseptics, as well as its adhesive properties.
METHODS: Two hundred samples were collected from the coronal pockets in patients with acute purulent pericoronitis during 2019–2021 years. Among them, five clinical strains of S. pluranimalium were isolated. Final identification was carried out using a Vitec-2compact bioMérieux automatic bacteriological analyzer. The sensitivity of the studied microbial strains to antibiotics of various groups was determined by the disk diffusion method. The adhesive properties of S. pluranimalium were determined according to the standard Brilis method.
RESULTS: It possesses typical morphological and cultural properties characteristics of the genus Streptococcus representatives. This microorganism virtually does not break down carbohydrates, but it produces arylamidases that enables it to be differentiated from other streptococci. S. pluranimalium demonstrates variable sensitivity to antibiotics; the lowest sensitivity has been found out to the second-generation fluoroquinolones. In addition, the clinical isolates studied show high adhesive properties to human red blood cells.
CONCLUSIONS: S. pluranimalium is increasingly acting as the causative agent of human infectious diseases. The information available today fully reflects the biological properties of a pathogen new to humans, its pathogenicity factors.
Collapse
|
118
|
Rayate AS, Nagoba BS, Mumbre SS, Mavani HB, Gavkare AM, Deshpande AS. Current scenario of traditional medicines in management of diabetic foot ulcers: A review. World J Diabetes 2023; 14:1-16. [PMID: 36684382 PMCID: PMC9850800 DOI: 10.4239/wjd.v14.i1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetic foot infections and diabetic foot ulcers (DFU) cause significant suffering and are often recurring. DFU have three important pathogenic factors, namely, microangiopathy causing local tissue anoxia, neuropathy making the foot prone to injuries from trivial trauma, and local tissue hyperglycaemia favouring infection and delaying the wound healing. DFU have been the leading cause for non-traumatic amputations of part or whole of the limb. Western medicines focus mainly on euglycaemia, antimicrobials, debridement and wound cover with grafts, and off-loading techniques. Advances in euglycaemic control, foot care and footwear, systemic antimicrobial therapy, and overall health care access and delivery, have resulted in an overall decrease in amputations. However, the process of wound care after adequate debridement remains a major cost burden globally, especially in developing nations. This process revolves around two basic concerns regarding control/eradication of local infection and promotion of faster healing in a chronic DFU without recurrence. Wound modulation with various dressings and techniques are often a costly affair. Some aspects of the topical therapy with modern/Western medicines are frequently not addressed. Cost of and compliance to these therapies are important as both the wounds and their treatment are "chronic." Naturally occurring agents/medications from traditional medicine systems have been used frequently in different cultures and nations, though without adequate clinical base/relevance. Traditional Chinese medicine involves restoring yin-yang balance, regulating the 'chi', and promoting local blood circulation. Traditional medicines from India have been emphasizing on 'naturally' available products to control wound infection and promote all the aspects of wound healing. There is one more group of chemicals which are not pharmaceutical agents but can create acidic milieu in the wound to satisfy the above-mentioned basic concerns. Various natural and plant derived products (e.g., honey, aloe vera, oils, and calendula) and maggots are also used for wound healing purposes. We believe that patients with a chronic wound are so tired physically, emotionally, and financially that they usually accept native traditional medicine which has the same cultural base, belief, and faith. Many of these products have never been tested in accordance to "evidence-based medicine." There are usually case reports and experience-based reports about these products. Recently, there have been some trials (in vitro and in vivo) to verify the claims of usage of traditional medicines in management of DFU. Such studies show that these natural products enhance the healing process by controlling infection, stimulating granulation tissue, antimicrobial action, promoting fibroblastic activity and collagen deposition, etc. In this review, we attempt to study and analyse the available literature on results of topical traditional medicines, which are usually advocated in the management of DFU. An integrated and 'holistic' approach of both modern and traditional medicine may be more acceptable to the patient, cost effective, and easy to administer and monitor. This may also nevertheless lead to further improvement in quality of life and decrease in the rates of amputations for DFU.
Collapse
Affiliation(s)
- Abhijit S Rayate
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Basavraj S Nagoba
- Department of Microbiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Sachin S Mumbre
- Department of Community Medicine, Ashwini Rural Medical College, Solapur 413006, India
| | - Hardi B Mavani
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Ajay M Gavkare
- Department of Physiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Advait S Deshpande
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| |
Collapse
|
119
|
Passos JRD, Sangaleti CT, Trincaus MR, Prezotto KH, Araújo LDO, Techy B, Baratieri T, Lentsck MH, Taques GR, Moreira RC, Silva DCD. Effects of Citric Acid on the Healing Process of Chronic Wound due to Leprosy. INT J LOW EXTR WOUND 2023:15347346221147398. [PMID: 36604854 DOI: 10.1177/15347346221147398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: The aim was to describe the effects of the use of citric acid in the healing process of chronic leprosy wounds. Approach: This is a case series, carried out with 5 people with chronic leprosy wounds, under continuous care in an outpatient center wound care in the center-south region of Brazil. The intervention protocol consisted of topical application of 3% citric acid (ointment), on the wound bed, in a thin layer of approximately 2 mm, on alternate days, and followed up for a total period of 8 weeks and secondary coverage rayon and gauze. The cases were analyzed regarding wound dimensions, histology and clinical observation. Results: It was observed in all cases better aspect of the wound bed, presence of granulation tissue and decrease of the inflammatory process with predominance of lymphocytes, reduction of bacterial colonies, increase and verticalization of type I collagen fibers, reduction of type III collagen and increased areas of epithelialization. Innovation: There was also a reduction in the level of pain and exudation after the treatment protocol. Conclusions: Therefore, the use of citric acid in leprosy neuropathic wounds is promising and may be a treatment option, considering its cost, clinical management and possible effect on the chronic inflammatory process.
Collapse
Affiliation(s)
| | - Carine Teles Sangaleti
- Departamento de Enfermagem, 307046Universidade Estadual do Centro-Oeste, Guarapuava, Brasil
| | - Maria Regiane Trincaus
- Departamento de Enfermagem, 307046Universidade Estadual do Centro-Oeste, Guarapuava, Brasil
| | - Kelly Holanda Prezotto
- Departamento de Enfermagem, 307046Universidade Estadual do Centro-Oeste, Guarapuava, Brasil
| | | | - Basilio Techy
- Secretaria Municipal de Saúde de Guarapuava-PR-Brasil, Médico da Estratégia Saúde da Família, Guarapuava, Brasil
| | - Tatiane Baratieri
- Departamento de Enfermagem, 307046Universidade Estadual do Centro-Oeste, Guarapuava, Brasil
| | | | | | | | | |
Collapse
|
120
|
Ahmed AB, Tahir HM, Yousaf MS, Munir F, Ali S. Efficacy of Silk Sericin and Jasminum grandiflorum L. Leaf Extract on Skin Injuries Induced by Burn in Mice. J Burn Care Res 2023; 44:58-64. [PMID: 35584807 DOI: 10.1093/jbcr/irac069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 01/14/2023]
Abstract
Burns wounds are one of the most health-threatening problems worldwide. Sericin is a natural protein synthesized by the silkworm Bombyx mori L. It is a natural biomaterial that helps in the management of wounds by promoting the proliferation of fibroblasts and keratinocytes. Jasminum grandiflorum L leaves contain high mucilage content and have been used to cure various dermal wounds in ancient times. The present study was aimed to investigate the individual and synergetic effect of sericin and J. grandiflorum leaves extract on burn injury in mice. Ten-week-old mice weighing 22 g ± 5 g were randomly divided into eight groups, each group containing 10 mice. Burn injury in mice was induced by using a hot metal rod. Wounds were evaluated morphologically and histologically. In comparison with controls, 4% sericin + jasmine (S + J) expressively improved wound contraction area. Restoration of the epidermis was also faster in S + J 4% group (P ≤ .01) than in other groups. Histopathological analysis also verified the efficacy of the 4% S + J cream. It is concluded that a mixture of sericin and jasmine leaves effectively improved the healing process of skin burns.
Collapse
Affiliation(s)
| | | | | | - Fareeha Munir
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
121
|
Synthesis and characterization of citric acid and itaconic acid-based two-pack polyurethane antimicrobial coatings. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-022-04638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
122
|
Huang F, Lu X, Yang Y, Yang Y, Li Y, Kuai L, Li B, Dong H, Shi J. Microenvironment-Based Diabetic Foot Ulcer Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203308. [PMID: 36424137 PMCID: PMC9839871 DOI: 10.1002/advs.202203308] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/02/2022] [Indexed: 06/04/2023]
Abstract
Diabetic foot ulcers (DFU), one of the most serious complications of diabetes, are essentially chronic, nonhealing wounds caused by diabetic neuropathy, vascular disease, and bacterial infection. Given its pathogenesis, the DFU microenvironment is rather complicated and characterized by hyperglycemia, ischemia, hypoxia, hyperinflammation, and persistent infection. However, the current clinical therapies for DFU are dissatisfactory, which drives researchers to turn attention to advanced nanotechnology to address DFU therapeutic bottlenecks. In the last decade, a large number of multifunctional nanosystems based on the microenvironment of DFU have been developed with positive effects in DFU therapy, forming a novel concept of "DFU nanomedicine". However, a systematic overview of DFU nanomedicine is still unavailable in the literature. This review summarizes the microenvironmental characteristics of DFU, presents the main progress of wound healing, and summaries the state-of-the-art therapeutic strategies for DFU. Furthermore, the main challenges and future perspectives in this field are discussed and prospected, aiming to fuel and foster the development of DFU nanomedicines successfully.
Collapse
Affiliation(s)
- Fang Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
| | - Xiangyu Lu
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
| | - Yan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Yushan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Yongyong Li
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
| | - Le Kuai
- Department of DermatologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghai200437China
| | - Bin Li
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
- Department of DermatologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghai200437China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Jianlin Shi
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
| |
Collapse
|
123
|
Kim Y, Ku JY, Lee K, Moon BY, Ha S, Choi KS, Park J. Successful treatment of idiopathic tetanus using metronidazole, magnesium, and acepromazine in Hanwoo (Korean indigenous cattle) yearling bull. Front Vet Sci 2023; 10:1142316. [PMID: 37035803 PMCID: PMC10076696 DOI: 10.3389/fvets.2023.1142316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Bovine tetanus is a serious infectious disease of the central nervous system caused by the exotoxin produced by Clostridium tetani and is characterized by persistent tension and spasm of the rhabdomyocytes. Currently, many studies have focused on diagnosing tetanus; however, only a few studies on treatment methods have been conducted. Therefore, cattle with tetanus have been treated using symptomatic therapy. In this case, severe muscle spasticity and spasms were observed in a 9-month-old Hanwoo (Korean indigenous cattle) bull, and aspartate aminotransferase and creatine kinase levels were increased in serum biochemical tests. Clinically, bovine tetanus was strongly suspected, and metronidazole was administered orally for 5 days. To treat the intensifying bloat, a temporary rumenostomy was performed on the third day of onset, and the toxin gene (tetanospasmin) of C. tetani was amplified by polymerase chain reaction analysis from the collected ruminal fluid. Magnesium and sedatives (acepromazine) were administered for 7 days to treat muscle spasticity and spasms. Muscle spasticity and spasm markedly improved, and the bull stood up from the lateral recumbent position. On the 17th day after onset, all tetanus-related symptoms resolved and a normal diet was started. Our findings demonstrated that treatment with metronidazole, magnesium, and acepromazine was effective in the bull with tetanus.
Collapse
Affiliation(s)
- Youngjun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, Republic of Korea
- Department of Animal Hospital, Hanwoo Genetic Improvement Center, NongHyup Agribusiness Group Inc., Seosan, Republic of Korea
| | - Ji-Yeong Ku
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, Republic of Korea
| | - Kichan Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Bo-Youn Moon
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Seungmin Ha
- Department of Animal Resource Development, Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
- *Correspondence: Kyoung-Seong Choi
| | - Jinho Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk University, Iksan, Republic of Korea
- Jinho Park
| |
Collapse
|
124
|
Antimicrobial activity of organic acids against canine skin bacteria. Vet Res Commun 2022; 47:999-1005. [DOI: 10.1007/s11259-022-10056-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
|
125
|
Feng L, Xu M, Zeng W, Zhang X, Wang S, Yao Z, Zhou T, Shi S, Cao J, Chen L. Evaluation of the antibacterial, antibiofilm, and anti-virulence effects of acetic acid and the related mechanisms on colistin-resistant Pseudomonas aeruginosa. BMC Microbiol 2022; 22:306. [PMID: 36529724 PMCID: PMC9762083 DOI: 10.1186/s12866-022-02716-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa) has been majorly implicated in the infection of burns, wounds, skin, and respiratory tract. Colistin is considered the last line of defense against P. aeruginosa infections. However, colistin is becoming increasingly invalid in treating patients infected with colistin-resistant (COL-R) P. aeruginosa. As one of the disinfectants used for wound infections, acetic acid (AA) offers good antibacterial and antibiofilm activities against P. aeruginosa. This study investigated the effects of AA on COL-R P. aeruginosa in terms of its antibacterial, antibiofilm, and anti-virulence properties and the corresponding underlying mechanisms. RESULTS The antimicrobial susceptibility and growth curve data revealed that 0.078% (v/v) AA exhibited good antibacterial activity against COL-R P. aeruginosa. Subinhibitory concentrations of AA were ineffective in inhibiting biofilm formation, but 4 × and 8 × of the minimum inhibitory concentration (MIC) was effective in removing the preformed biofilms in biofilm-eradication assays. The virulence results illustrated that AA inhibited COL-R P. aeruginosa swimming, swarming, twitching, and pyocyanin and elastase production. The analysis of the potential antibacterial mechanisms of AA on COL-R P. aeruginosa revealed that AA acted by increasing the outer and inner membrane permeability, polarizing the membrane potential, and decreasing the reduction potential in a concentration-dependent manner. The qRT-PCR results revealed that AA may inhibit the virulence of COL-R P. aeruginosa by inhibiting the expression of T3SS-related and QS-related genes. CONCLUSIONS AA possesses antibacterial, antibiofilm, and anti-virulence properties that ultimately lead to the alteration of the bacterial membrane permeability, membrane potential, and reduction potential. Our findings indicated that AA is presently one of the effective treatment options for infections. A high concentration of AA (> 0.156% v/v) can be used to sterilize biofilm-prone surgical instruments, for hospital disinfection, and for treating the external wound, whereas a low concentration of AA (0.00975-0.039% v/v) may be used as an anti-virulence agent for adjuvant treatment of COL-R P. aeruginosa, thereby further improving the application value of AA in the treatment of infections.
Collapse
Affiliation(s)
- Luozhu Feng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province China
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Sipei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Shiyi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province China
| |
Collapse
|
126
|
Peppoloni S, Colombari B, Tagliazucchi D, Odorici A, Ventrucci C, Meto A, Blasi E. Attenuation of Pseudomonas aeruginosa Virulence by Pomegranate Peel Extract. Microorganisms 2022; 10:microorganisms10122500. [PMID: 36557753 PMCID: PMC9784079 DOI: 10.3390/microorganisms10122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen often responsible for biofilm-associated infections. The high adhesion of bacterial cells onto biotic/abiotic surfaces is followed by production of an extracellular polysaccharidic matrix and formation of a sessile community (the biofilm) by the release of specific quorum-sensing molecules, named autoinducers (AI). When the concentrations of AI reach a threshold level, they induce the expression of many virulence genes, including those involved in biofilm formation, motility, pyoverdine and pyocyanin release. P. aeruginosa embedded into biofilm becomes resistant to both conventional drugs and the host's immune response. Accordingly, biofilm-associated infections are a major clinical problem underlining the need for new antimicrobial therapies. In this study, we evaluated the effects of pomegranate peel extract (PomeGr) in vitro on P. aeruginosa growth and biofilm formation; moreover, the release of four AI was assessed. The phenolic profile of PomeGr, exposed or not to bacteria, was determined by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis. We found that bacterial growth, biofilm production and AI release were impaired upon PomeGr treatment. In addition, the PomeGr phenolic content was also markedly hampered following incubation with bacterial cells. In particular, punicalagin, punicalin, pedunculagin, granatin, di-(HHDP-galloyl-hexoside) pentoside and their isomers were highly consumed. Overall, these results provide novel insights on the ability of PomeGr to attenuate P. aeruginosa virulence; moreover, the AI impairment and the observed consumption of specific phenolic compounds may offer new tools in designing innovative therapeutic approaches against bacterial infections.
Collapse
Affiliation(s)
- Samuele Peppoloni
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Bruna Colombari
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2—Pad. Besta, 42100 Reggio Emilia, Italy
| | - Alessandra Odorici
- Laboratory of Microbiology and Virology, School of Doctorate in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | | | - Aida Meto
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania
| | - Elisabetta Blasi
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence:
| |
Collapse
|
127
|
Beshay L, Wei K, Yang Q. Newly diagnosed autoimmune Addison's disease in a patient with COVID-19 with autoimmune disseminated encephalomyelitis. BMJ Case Rep 2022; 15:15/12/e250749. [PMID: 36593594 PMCID: PMC9723877 DOI: 10.1136/bcr-2022-250749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
A man in his 20s with a history of acute disseminated encephalomyelitis (ADEM) was brought into the emergency department (ED) after his family found him at home collapsed on the floor unresponsive with a blood glucose of 28 mg/dL at the field. In the ED, the patient was tachycardic, tachypnoeic and hypotensive, requiring pressors and intubation at 9 hours and 12 hours after arrival, respectively. Laboratory results revealed a positive COVID-19 test, serum sodium of 125 mmol/L and persistent hypoglycaemia. The patient was given a high dose of dexamethasone for COVID-19 treatment 1 hour before pressors were started. He was then continued on a stress dose of intravenous hydrocortisone with rapid clinical improvement leading to his extubation, and discontinuation of vasopressors and glucose on day 2 of admission. The patient received his last dose of intravenous hydrocortisone on day 4 in the early afternoon with the plan to order adrenal testing the following morning prior to discharge. On day 5, the aldosterone <3.0 ng/dL, adrenocorticotropic hormone (ACTH) level >1250 pg/mL, and ACTH stimulation test showed cortisol levels of 3 and 3 µg/dL at 30 and 60 min, respectively. The anti-21-hydroxylase antibody was positive. The patient was discharged on hydrocortisone and fludrocortisone. The patient's symptoms, elevated ACTH, low cortisol and presence of 21-hydroxylase antibodies are consistent with autoimmune Addison's disease. This is the first case reporting autoimmune Addison's disease in a patient with COVID-19 with a history of ADEM. The case highlights the importance of considering adrenal insufficiency as a diagnostic differential in haemodynamically unstable patients with COVID-19.
Collapse
Affiliation(s)
- Lauren Beshay
- Endocrinology, University of California Irvine, Irvine, California, USA
| | - Kevin Wei
- Endocrinology, University of California Irvine, Orange, California, USA
| | - Qin Yang
- Endocrinology, University of California Irvine, Irvine, California, USA
| |
Collapse
|
128
|
Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation-Old Pathways, New Problems. Biomedicines 2022; 10:3113. [PMID: 36551869 PMCID: PMC9775339 DOI: 10.3390/biomedicines10123113] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Geoffrey W. Guy
- The Guy Foundation, Chedington Court, Beaminster, Dorset DT8 3HY, UK
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
129
|
Leder MCD, Bagheri M, Plattfaut I, Fuchs PC, Brüning AKE, Schiefer JL, Opländer C. Phototherapy of Pseudomonas aeruginosa-Infected Wounds: Preclinical Evaluation of Antimicrobial Blue Light (450-460 nm) Using In Vitro Assays and a Human Wound Skin Model. Photobiomodul Photomed Laser Surg 2022; 40:800-809. [PMID: 36306523 DOI: 10.1089/photob.2022.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective: To determine effective treatment strategies against bacterial infections of burn wounds with Pseudomonas aeruginosa, we tested different treatment regimens with antibacterial blue light (BL). Background: Infections of burn wounds are serious complications and require effective and pathogen-specific therapy. Hereby, infections caused by P. aeruginosa pose a particular challenge in clinical practice due to its resistance to many antibiotics and topical antiseptics. Methods: LED-based light sources (450-460 nm) with different intensities and treatment times were used. Antibacterial effects against P. aeruginosa were determined by colony-forming unit (CFU) assays, human skin wound models, and fluorescence imaging. Results: In suspension assays, BL (2 h, 40 mW/cm2, 288 J/cm2) reduced bacterial number (>5 log10 CFU/mL). Applying 144 J/cm2, using 40 mW/cm2 for 1 h was more effective (>4 log10 CFU) than using 20 mW/cm2 for 2 h (>1.5 log10 CFU). BL with low irradiance (24 h, 3.5 mW/cm2, 300 J/cm2) only revealed bacterial reduction in thin bacteria-containing medium layers. In infected in vitro skin wounds only BL irradiation (2 h, 40 mW/cm2, 288 J/cm2) exerted a significant antimicrobial efficacy (2.94 log10 CFU/mL). Conclusions: BL treatment may be an effective therapy for P. aeruginosa-infected wounds to avoid radical surgical debridement. However, a significant antibacterial efficacy can only be achieved with higher irradiances and longer treatment times (min. 40 mW/cm2; >1 h), which cannot be easily integrated into regular clinical treatment protocols, for example, during a dressing change. Further studies are necessary to establish BL therapy for infected burns among tissue compatibility and interactions with previous therapeutic agents.
Collapse
Affiliation(s)
- Marie-Charlotte D Leder
- Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Mahsa Bagheri
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Isabell Plattfaut
- Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Paul C Fuchs
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Anne K E Brüning
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center North Rhine Westphalia, Bad Oeynhausen, Germany
| | - Jennifer L Schiefer
- Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| |
Collapse
|
130
|
Liu Y, Li C, Feng Z, Han B, Yu DG, Wang K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022; 12:1727. [PMID: 36551155 PMCID: PMC9775188 DOI: 10.3390/biom12121727] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Biao Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
131
|
Thoresen T, Jordal S, Lie SA, Wünsche F, Jacobsen MR, Lund B. Infective endocarditis: association between origin of causing bacteria and findings during oral infection screening. BMC Oral Health 2022; 22:491. [PMCID: PMC9664784 DOI: 10.1186/s12903-022-02509-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Oral streptococci represent the causing microorganism for infective endocarditis (IE) in many patients. The impact of oral infections is questioned, and it has been suggested that bacteraemia due to daily routines may play a bigger part in the aetiology of IE. The aim of this study was to examine the association between oral health and infective endocarditis caused by oral bacteria in comparison with bacteria of other origin than the oral cavity.
Methods
A retrospective study was conducted at Haukeland University Hospital from 2006- 2015. All consecutive adult patients admitted to hospital for treatment of IE and subjected to an oral focus screening including orthopantomogram, were included. The clinical, radiological and laboratory characteristics of the patients, collected during oral infectious focus screening, were analysed. Patient survival was calculated using Kaplan–Meier and mortality rates were compared using Cox-regression.
Results
A total of 208 patients were included, 77% (n = 161) male patients and 23% (n = 47) female, mean age was 58 years. A total of 67 (32%) had IE caused by viridans streptococci. No statistically significant correlation could be found between signs of oral infection and IE caused by viridans streptococci. The overall mortality at 30 days was 4.3% (95% CI: 1.6–7.0). There was no statistical difference in mortality between IE caused by viridans streptococci or S. aureus (HRR = 1.16, 95% CI: 0.57–2.37, p = 0.680).
Conclusion
The study indicates that the association between origin of the IE causing bacteria and findings during oral infection screening might be uncertain and may suggest that the benefit of screening and elimination of oral infections in patients admitted with IE might be overestimated. However, the results should be interpreted with caution and further studies are needed before any definite conclusions can be drawn.
Collapse
|
132
|
Mssillou I, Bakour M, Slighoua M, Laaroussi H, Saghrouchni H, Ez-Zahra Amrati F, Lyoussi B, Derwich E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115663. [PMID: 36038091 DOI: 10.1016/j.jep.2022.115663] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The human skin constitutes a biological barrier against external stress and wounds can reduce the role of its physiological structure. In medical sciences, wounds are considered a major problem that requires urgent intervention. For centuries, medicinal plants have been used in the Mediterranean countries for many purposes and against wounds. AIM OF THIS REVIEW Provides an outlook on the Mediterranean medicinal plants used in wound healing. Furthermore, the wound healing effect of polyphenolic compounds and their chemical structures are also summarized. Moreover, we discussed the wound healing process, the structure of the skin, and the current therapies in wound healing. MATERIALS AND METHODS The search was performed in several databases such as ScienceDirect, PubMed, Google Scholar, Scopus, and Web of Science. The following Keywords were used individually and/or in combination: the Mediterranean, wound healing, medicinal plants, phenolic compounds, composition, flavonoid, tannin. RESULTS The wound healing process is distinguished by four phases, which are respectively, hemostasis, inflammation, proliferation, and remodeling. The Mediterranean medicinal plants are widely used in the treatment of wounds. The finding showed that eighty-nine species belonging to forty families were evaluated for their wound-healing effect in this area. The Asteraceae family was the most reported family with 12 species followed by Lamiaceae (11 species). Tunisia, Egypt, Morocco, and Algeria were the countries where these plants are frequently used in wound healing. In addition to medicinal plants, results showed that nineteen phenolic compounds from different classes are used in wound treatment. Tyrosol, hydroxytyrosol, curcumin, luteolin, chrysin, rutin, kaempferol, quercetin, icariin, morin, epigallocatechin gallate, taxifolin, silymarin, hesperidin, naringin, isoliquiritin, puerarin, genistein, and daidzein were the main compounds that showed wound-healing effect. CONCLUSION In conclusion, medicinal plants and polyphenolic compounds provide therapeutic evidence in wound healing and for the development of new drugs in this field.
Collapse
Affiliation(s)
- Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Balcalı/Sarıçam, Adana, Turkey
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
133
|
Sim P, Strudwick XL, Song Y, Cowin AJ, Garg S. Influence of Acidic pH on Wound Healing In Vivo: A Novel Perspective for Wound Treatment. Int J Mol Sci 2022; 23:13655. [PMID: 36362441 PMCID: PMC9658872 DOI: 10.3390/ijms232113655] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
There has been little understanding of acidification functionality in wound healing, highlighting the need to study the efficacy of wound acidification on wound closure and cellular activity in non-infected wounds. This study is focused on establishing the healing potential of wound acidification in non-infected wounds. Acidic buffers, constituting either phosphoric or citric acid, were employed to modify the physiological pH of non-infected full-thickness excisional murine wounds. Acidification of the wound by acidic buffers was found to be an effective strategy to improve wound healing. A significant improvement in wound healing parameters was observed as early as 2 days post-treatment with acidic buffers compared to controls, with faster rate of epithelialization, wound closure and higher levels of collagen at day 7. pH is shown to play a role in mediating the rate of wound healing, with acidic buffers formulated at pH 4 observed to stimulate faster recovery of wounded tissues than pH 6 buffers. Our study shows the importance of maintaining an acidic wound microenvironment at pH 4, which could be a potential therapeutic strategy for wound management.
Collapse
Affiliation(s)
- Pivian Sim
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Xanthe L. Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - YunMei Song
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
134
|
Seganfredo FB, Dias AR, Santos PR, Rebelo M, João C, Mendes D, Carmo E. Successful treatment of persistent and severe SARS-CoV-2 infection in a high-risk chronic lymphocytic leukemia patient using Ronapreve™ antibodies. Clin Case Rep 2022; 10:e6548. [PMID: 36408087 PMCID: PMC9666912 DOI: 10.1002/ccr3.6548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/29/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with lymphoproliferative diseases are at an increased risk of an incomplete immune response following vaccination or SARS-CoV-2 infection and might develop persistent viral infection and severe COVID-19 disease. We present a case of successful treatment of persistent and mechanical-ventilation-requiring SARS-CoV-2 infection in a del17+ CLL patient using exogenous antibodies.
Collapse
Affiliation(s)
- Fernanda Braga Seganfredo
- Haematology DepartmentInstituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG)LisbonPortugal
| | - Ana Raquel Dias
- Haematology DepartmentHospital do Divino Espírito Santo de Ponta DelgadaPonta DelgadaPortugal
| | - Pedro R. Santos
- Intensive Care UnitCentro Hospitalar Lisboa Ocidental – Hospital Egas MonizLisbonPortugal
| | - Marta Rebelo
- Intensive Care UnitCentro Hospitalar Lisboa Ocidental – Hospital Egas MonizLisbonPortugal
| | - Cristina João
- Haematology DepartmentFundação ChampalimaudLisbonPortugal
| | - Dina Mendes
- Pharmaceutical DepartmentCentro Hospitalar Lisboa Ocidental – Hospital Egas MonizLisbonPortugal
| | - Eduarda Carmo
- Intensive Care UnitCentro Hospitalar Lisboa Ocidental – Hospital Egas MonizLisbonPortugal
| |
Collapse
|
135
|
Investigation of the Mechanism and Chemistry Underlying Staphylococcus aureus ' Ability to Inhibit Pseudomonas aeruginosa Growth In Vitro. J Bacteriol 2022; 204:e0017422. [PMID: 36218351 DOI: 10.1128/jb.00174-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa inhibits or eradicates Staphylococcus aureus in most in vitro settings. Nonetheless, P. aeruginosa and S. aureus are commonly isolated from chronically infected, nonhealing wounds and lungs of people with cystic fibrosis (CF). Therefore, we hypothesized that S. aureus could protect itself from P. aeruginosa through glucose-derived metabolites, such as small organic acids, preventing it from being eradicated. This in vitro study demonstrated that S. aureus populations, in the presence of glucose, secrete one or more substances that efficiently eradicate P. aeruginosa in a concentration-dependent manner. These substances had a molecular mass lower than three kDa, were hydrophilic, heat- and proteinase-resistant, and demonstrated a pH-dependent effect. Nuclear magnetic resonance analysis identified acetoin, acetic acid, and oligopeptides or cyclic peptides in glucose-grown S. aureus supernatants. All the tested wild-type and clinical S. aureus strain inhibited P. aeruginosa growth. Thus, we proposed a model in which a cocktail of these compounds, produced by established S. aureus populations in glucose presence, facilitated these two species' coexistence in chronic infections. IMPORTANCE Chronic infections affect a growing part of the population and are associated with high societal and personal costs. Multiple bacterial species are often present in these infections, and multispecies infections are considered more severe than single-species infections. Staphylococcus aureus and Pseudomonas aeruginosa often coexist in chronic infections. However, the interactions between these two species and their coexistence in chronic infections are not fully understood. By exploring in vitro interactions, we found a novel S. aureus-mediated inhibition of P. aeruginosa, and we suggested a model of the coexistence of the two species in chronic infections. With this study, we enhanced our understanding of the pathogenesis of chronic multispecies infections, which is crucial to paving the way for developing improved treatment strategies.
Collapse
|
136
|
Phytochemical Characterization, Anti-Oxidant, Anti-Enzymatic and Cytotoxic Effects of Artemisia verlotiorum Lamotte Extracts: A New Source of Bioactive Agents. Molecules 2022; 27:molecules27185886. [PMID: 36144622 PMCID: PMC9500874 DOI: 10.3390/molecules27185886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant’s biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.
Collapse
|
137
|
Prasathkumar M, Anisha S, Khusro A, Mohamed Essa M, Babu Chidambaram S, Walid Qoronfleh M, Sadhasivam S, Umar Khayam Sahibzada M, Alghamdi S, Almehmadi M, Abdulaziz O, Khandaker MU, Faruque MRI, Emran TB. Anti-pathogenic, anti-diabetic, anti-inflammatory, antioxidant, and wound healing efficacy of Datura metel L. leaves. ARAB J CHEM 2022; 15:104112. [DOI: 10.1016/j.arabjc.2022.104112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
138
|
Pidiyar V, Kumraj G, Ahmed K, Ahmed S, Shah S, Majumder P, Verma B, Pathak S, Mukherjee S. COVID-19 management landscape: A need for an affordable platform to manufacture safe and efficacious biotherapeutics and prophylactics for the developing countries. Vaccine 2022; 40:5302-5312. [PMID: 35914959 PMCID: PMC9148927 DOI: 10.1016/j.vaccine.2022.05.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/19/2022] [Indexed: 12/23/2022]
Abstract
To gain world-wide control over COVID-19 pandemic, it is necessary to have affordable and accessible vaccine and monoclonal antibody technologies across the globe. In comparison to the western countries, Asian and African countries have less percentage of vaccination done which warrants urgent attention. Global manufacturer production capacities, dependency on advanced nations for the supply of vaccines or the raw material, national economy, limited research facilities, and logistics could be the factors. This review article elaborates the existing therapeutic and prophylactic strategies available for COVID-19, currently adopted vaccine and monoclonal antibody platforms for SARS-CoV-2 along with the approaches to bridge the gap prevailing in the challenges faced by low- and middle-income countries. We believe adoption of yeast-derived P. pastoris technology can help in developing safe, proven, easy to scale-up, and affordable recombinant vaccine or monoclonal antibodies against SARS-CoV-2. This platform has the advantage of not requiring a dedicated or specialized facility making it an affordable option using existing manufacturing facilities, without significant additional capital investments. Besides, the technology platform of multiantigen vaccine approach and monoclonal antibody cocktail will serve as effective weapons to combat the threat posed by the SARS-CoV-2 variants. Successful development of vaccines and monoclonal antibodies using such a technology will lead to self-sufficiency of these nations in terms of availability of vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Vyankatesh Pidiyar
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Ganesh Kumraj
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Kafil Ahmed
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Syed Ahmed
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India.
| | - Sanket Shah
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Piyali Majumder
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Bhawna Verma
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Sarang Pathak
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Sushmita Mukherjee
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| |
Collapse
|
139
|
Li XY, Wen MZ, Liu H, Shen YC, Su LX, Yang XT. Dietary magnesium intake is protective in patients with periodontitis. Front Nutr 2022; 9:976518. [PMID: 36091240 PMCID: PMC9453259 DOI: 10.3389/fnut.2022.976518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Periodontitis is a chronic inflammatory disease of the oral cavity characterized by inflammation of the periodontal tissue and resorption of the alveolar bone, which has a high incidence and is the main cause of tooth loss in adults. In addition to its role in promoting osteogenesis, magnesium also has a role in regulating the inflammatory response, both systemically and locally. There is growing evidence that magnesium is an important factor in maintaining the normal functioning of the body's immune system. Hypomagnesaemia can lead to a variety of chronic inflammatory diseases throughout the body, including periodontitis. Two-thirds of the US population suffers from magnesium deficiency. The connection between dietary magnesium and periodontitis is unknown. As a result, we set out to investigate the link between dietary magnesium intake and periodontitis. Methods In this study, we collected data from the National Health and Nutrition Examination Survey (NHANES) database from 2013 to 2014. Through 24-h dietary recalls, information about food consumption was collected. We examined the association between the dietary magnesium and periodontitis using multivariable logistic regression model. Based on odds ratios (OR) and 95% confidence intervals (CIs), a strong association was detected. Results Multivariable logistic regression analysis showed that the OR for periodontitis comparing the highest to the lowest quintile of dietary magnesium intake was 0.69 (95% CIs = 0.52~0.92). The restricted cubic spline (RCS) analysis showed that the non-linear association between dietary magnesium and periodontitis was statistically significant and that dietary magnesium supplementation reduced the prevalence of periodontitis. Conclusion Dietary magnesium intake is associated with the prevalence of periodontitis. Dietary magnesium deficiency increases the prevalence of periodontitis.
Collapse
Affiliation(s)
- Xin-yu Li
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ming-zhe Wen
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu-chen Shen
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li-xin Su
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Li-xin Su
| | - Xi-tao Yang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Xi-tao Yang
| |
Collapse
|
140
|
du Teil Espina M, Haider Rubio A, Fu Y, López-Álvarez M, Gabarrini G, van Dijl JM. Outer membrane vesicles of the oral pathogen Porphyromonas gingivalis promote aggregation and phagocytosis of Staphylococcus aureus. FRONTIERS IN ORAL HEALTH 2022; 3:948524. [PMID: 35937774 PMCID: PMC9354530 DOI: 10.3389/froh.2022.948524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/30/2022] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an opportunistic Gram-positive bacterial pathogen that causes a wide variety of infectious diseases, including S. aureus bacteremia (SAB). Recent studies showed that rheumatoid arthritis (RA) is a risk factor for SAB, as RA patients appear to be more susceptible to SAB and display higher degrees of disease severity or complications, such as osteoarticular infections. On the other hand, Porphyromonas gingivalis is a Gram-negative bacterial oral pathogen, which is notable for its implication in the etiopathogenesis of RA due to its unique citrullinating enzyme PPAD and its highly effective proteases, known as gingipains. Both PPAD and gingipains are abundant in P. gingivalis outer membrane vesicles (OMVs), which are secreted nanostructures that originate from the outer membrane. Here we show that P. gingivalis OMVs cause the aggregation of S. aureus bacteria in a gingipain- and PPAD-dependent fashion, and that this aggregation phenotype is reversible. Importantly, we also show that the exposure of S. aureus to OMVs of P. gingivalis promotes the staphylococcal internalization by human neutrophils with no detectable neutrophil killing. Altogether, our observations suggest that P. gingivalis can eliminate its potential competitor S. aureus by promoting staphylococcal aggregation and the subsequent internalization by neutrophils. We hypothesize that this phenomenon may have repercussions for the host, since immune cells with internalized bacteria may facilitate bacterial translocation to the blood stream, which could potentially contribute to the association between RA and SAB.
Collapse
Affiliation(s)
- Marines du Teil Espina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anna Haider Rubio
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Yanyan Fu
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marina López-Álvarez
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Giorgio Gabarrini
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
141
|
Ye YW, Yan ZY, He LP, Li CP. More studies are necessary to establish the effectiveness of Jinhuang powder in the treatment of diabetic foot. World J Diabetes 2022; 13:581-583. [PMID: 36051428 PMCID: PMC9329839 DOI: 10.4239/wjd.v13.i7.581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a common global public health problem that can cause serious illness and premature death. Diabetic foot ulcer, one of the complications of diabetes, is a major cause of morbidity and mortality and is associated with many other devastating complications. Previous study found that a group of traditional Chinese medicine (TCM) can be used for treating diabetic foot ulcers. More and more attention is being paid to the use of Chinese medicine to heal diabetic feet. Under the guidance of relevant theories of traditional Chinese medicine, more studies are needed to reveal the key active components and related signal pathways of TCM in the treatment of diabetic foot ulcer. One clinical study explored the treatment of diabetic foot with infection combined moist exposed burn ointment with Jinhuang powder. However, large-scale multi-center, double blind, randomized, placebo-controlled clinical trials and animal studies are necessary to establish the effectiveness of Jinhuang powder in the treatment of diabetic foot.
Collapse
Affiliation(s)
- Ya-Wen Ye
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Zi-Yun Yan
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Lian-Ping He
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Cui-Ping Li
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| |
Collapse
|
142
|
Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M. Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Front Microbiol 2022; 13:898979. [PMID: 35898908 PMCID: PMC9309559 DOI: 10.3389/fmicb.2022.898979] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Plant growth performance under a stressful environment, notably in the agriculture field, is directly correlated with the rapid growth of the human population, which triggers the pressure on crop productivity. Plants perceived many stresses owing to degraded land, which induces low plant productivity and, therefore, becomes a foremost concern for the future to face a situation of food scarcity. Land degradation is a very notable environmental issue at the local, regional, and global levels for agriculture. Land degradation generates global problems such as drought desertification, heavy metal contamination, and soil salinity, which pose challenges to achieving many UN Sustainable Development goals. The plant itself has a varied algorithm for the mitigation of stresses arising due to degraded land; the rhizospheric system of the plant has diverse modes and efficient mechanisms to cope with stress by numerous root-associated microbes. The suitable root-associated microbes and components of root exudate interplay against stress and build adaptation against stress-mediated mechanisms. The problem of iron-deficient soil is rising owing to increasing degraded land across the globe, which hampers plant growth productivity. Therefore, in the context to tackle these issues, the present review aims to identify plant-stress status owing to iron-deficient soil and its probable eco-friendly solution. Siderophores are well-recognized iron-chelating agents produced by numerous microbes and are associated with the rhizosphere. These siderophore-producing microbes are eco-friendly and sustainable agents, which may be managing plant stresses in the degraded land. The review also focuses on the molecular mechanisms of siderophores and their chemistry, cross-talk between plant root and siderophores-producing microbes to combat plant stress, and the utilization of siderophores in plant growth on degraded land.
Collapse
Affiliation(s)
- Pratiksha Singh
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Prabhat K. Chauhan
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Sudhir K. Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
- Sudhir K. Upadhyay
| | - Rajesh Kumar Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
- *Correspondence: Mingguo Jiang
| |
Collapse
|
143
|
Pilarczyk-Zurek M, Sitkiewicz I, Koziel J. The Clinical View on Streptococcus anginosus Group – Opportunistic Pathogens Coming Out of Hiding. Front Microbiol 2022; 13:956677. [PMID: 35898914 PMCID: PMC9309248 DOI: 10.3389/fmicb.2022.956677] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Three distinct streptococcal species: Streptococcus anginosus, Streptococcus intermedius, and Streptococcus constellatus, belonging to the Streptococcus anginosus group (SAG), also known as Streptococcus milleri group, have been attracting clinicians and microbiologists, not only as oral commensals but also as opportunistic pathogens. For years they have been simply classified as so called viridans streptococci, and distinct species were not associated with particular clinical manifestations. Therefore, description of SAG members are clearly underrepresented in the literature, compared to other medically relevant streptococci. However, the increasing number of reports of life-threatening infections caused by SAG indicates their emerging pathogenicity. The improved clinical data generated with the application of modern molecular diagnostic techniques allow for precise identification of individual species belonging to SAG. This review summarizes clinical reports on SAG infections and systematizes data on the occurrence of individual species at the site of infection. We also discuss the issue of proper microbiological diagnostics, which is crucial for further clinical treatment.
Collapse
Affiliation(s)
- Magdalena Pilarczyk-Zurek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Izabela Sitkiewicz
- Center for Translational Medicine, Warsaw University of Life Sciences (SGGW), Warszawa, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- *Correspondence: Joanna Koziel,
| |
Collapse
|
144
|
Nagoba BS, Abhijit R. Science in the Times of COVID-19. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022; 15:466-467. [DOI: 10.4103/mjdrdypu.mjdrdypu_96_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
145
|
Kargaltseva NM, Borisova OY, Mironov AY, Kocherovets VI, Pimenova AS, Gadua NT. Bloodstream infection in hospital therapeutic patients. Klin Lab Diagn 2022; 67:355-361. [PMID: 35749601 DOI: 10.51620/0869-2084-2022-67-6-355-361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bloodstream infection (BI) is the cause of high mortality. Hospital bloodstream infection (HBI) complicates hemodialysis, pneumonia, oncohematological diseases. Positive hemoculture obtaining depends on the volume of blood inoculation, the number of blood samples, the incubation time. To test the principles of microbiological culturomics in the diagnosis BI of hospital patients with a therapeutic profile. 848 hospital cardiac patients with suspected BI were included. 10 ml of blood were taken intravenously with a syringe, blood was inoculated into 200 ml of the heart-brain medium (HBM) in an anaerobic bottle. It was incubated for 7 or more days in a thermostat at +37º C. The hemocultures were obtained in 64.3% of cases with paired blood sampling with an interval of 30 minutes whereas an increase in the number of blood samples reduced the effectiveness of obtaining hemocultures to 9.1%. When incubating bottles for more than 7 days there were obtained 200 additional hemocultures containing 239 strains of microorganisms. Episodes of HBI were observed more often in the cases of the circulatory system (77.8%), including infectious endocarditis (IE) (47.0%), rheumatism (22.1%), myocarditis (14.6%). Episodes of HBI occurred more often in men with IE and coronary heart disease, in women - with rheumatism and myocarditis. Patients aged 45-75 were in the group of risk with a probability of complications of HBI up to 73.7%. When examining the blood of 848 hospital patients of cardiological profile HBI was detected in 38.3% of cases. Among clinical isolates gram-positive cocci with a great number S.epidermidis prevailed. Polymicrobial hemocultures (16.3%) were characterized by two and three associates in one blood sample. Among the hematological indicators in HBI there were: leukocytosis, increased ESR, lymphocytosis, decreased hemoglobin; increased values of fibrinogen, CRP, γ-globulin, α2-globulin, low levels of total protein and A/G coefficient. The techniques of microbiological culturomics were used. HBI was diagnosed in 38.3% of the therapeutic patients of cardiological profile. The etiology of HBI was characterized by polymicrobicity in 16.3% of cases. Hematological markers of HBI were identified.
Collapse
Affiliation(s)
- N M Kargaltseva
- G.N. Gabrichevskii Moscow research institute for epidemiology and microbiology for Rospotrebnadzor
| | - O Yu Borisova
- G.N. Gabrichevskii Moscow research institute for epidemiology and microbiology for Rospotrebnadzor
| | - A Yu Mironov
- G.N. Gabrichevskii Moscow research institute for epidemiology and microbiology for Rospotrebnadzor
| | | | - A S Pimenova
- G.N. Gabrichevskii Moscow research institute for epidemiology and microbiology for Rospotrebnadzor
| | - N T Gadua
- G.N. Gabrichevskii Moscow research institute for epidemiology and microbiology for Rospotrebnadzor
| |
Collapse
|
146
|
Chahal G, Quintana-Hayashi MP, Gaytán MO, Benktander J, Padra M, King SJ, Linden SK. Streptococcus oralis Employs Multiple Mechanisms of Salivary Mucin Binding That Differ Between Strains. Front Cell Infect Microbiol 2022; 12:889711. [PMID: 35782137 PMCID: PMC9247193 DOI: 10.3389/fcimb.2022.889711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus oralis is an oral commensal and opportunistic pathogen that can enter the bloodstream and cause bacteremia and infective endocarditis. Here, we investigated the mechanisms of S. oralis binding to oral mucins using clinical isolates, isogenic mutants and glycoconjugates. S. oralis bound to both MUC5B and MUC7, with a higher level of binding to MUC7. Mass spectrometry identified 128 glycans on MUC5B, MUC7 and the salivary agglutinin (SAG). MUC7/SAG contained a higher relative abundance of Lewis type structures, including Lewis b/y, sialyl-Lewis a/x and α2,3-linked sialic acid, compared to MUC5B. S. oralis subsp. oralis binding to MUC5B and MUC7/SAG was inhibited by Lewis b and Lacto-N-tetraose glycoconjugates. In addition, S. oralis binding to MUC7/SAG was inhibited by sialyl Lewis x. Binding was not inhibited by Lacto-N-fucopentaose, H type 2 and Lewis x conjugates. These data suggest that three distinct carbohydrate binding specificities are involved in S. oralis subsp. oralis binding to oral mucins and that the mechanisms of binding MUC5B and MUC7 differ. Efficient binding of S. oralis subsp. oralis to MUC5B and MUC7 required the gene encoding sortase A, suggesting that the adhesin(s) are LPXTG-containing surface protein(s). Further investigation demonstrated that one of these adhesins is the sialic acid binding protein AsaA.
Collapse
Affiliation(s)
- Gurdeep Chahal
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
| | - John Benktander
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Medea Padra
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children´s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| | - Sara K. Linden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Sara K. Linden, ; Samantha J. King,
| |
Collapse
|
147
|
Nagoba B, Rawal C, Davane M. Citric acid treatment of a diabetic leg ulcer infected with meticillin-resistant Staphylococcus aureus. J Wound Care 2022; 31:432-434. [PMID: 35579314 DOI: 10.12968/jowc.2022.31.5.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diabetic leg ulcers are difficult to manage. Infection by bacterial pathogens, such as meticillin-resistant Staphylococcus aureus (MRSA), is one of the most important reasons for non-healing of ulcers. If not treated in a timely manner, the ulceration may progress to septicaemia, amputation and even death. We report a successful treatment of a diabetic leg ulcer infected with MRSA, which was not responding to conventional antibiotic therapy and local wound care combined, with a local application of 3% citric acid ointment once daily for 30 days. The results indicated that its use may be a potential treatment in the management of hard-to-heal ulcers when all other options have been exhausted.
Collapse
Affiliation(s)
| | - Chandrashekhar Rawal
- Aundh Institute of Medical Sciences, Pune & Max Care Hospital, Pune, M.S., India
| | - Milind Davane
- Deptartment of Microbiology, MIMSR Medical College, Latur-413 531, M.S., India
| |
Collapse
|
148
|
Chen Q, Zhou K. Acetic Acid Use in Chronic Wound Healing: A Multiple Case Series. J Wound Ostomy Continence Nurs 2022; 49:286-289. [PMID: 35255076 DOI: 10.1097/won.0000000000000863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Acetic acid is bacteriostatic or bactericidal to many gram-negative and gram-positive microorganisms, especially Pseudomonas. Nevertheless, it has also been found to possess cytotoxic effects in concentrations as low as 0.25% inhibiting the epithelialization process during wound healing. CASES In this multiple case series, we present 2 cases of chronic traumatic leg wounds treated with gauze moistened with acetic acid (0.25%), which were covered with a securing dressing and compression stockinet. Both patients were told to apply gauze moistened with acetic acid (0.25%) twice daily. In both cases, the wound progressed to blue-green drainage and wet yellow slough tissue to near-complete beefy granulation tissue. At this point, acetic acid was replaced with collagen or petrolatum dressing until complete wound closure was achieved. The treatment of these wounds illustrated successful use of acetic acid for chronic wound care. CONCLUSION Our experience with these cases suggests that appearance of blue-green wound drainage and wet yellow slough tissue is a reasonable indication for the use of gauze moistened with acetic acid (0.25%). Further research is needed to test the efficacy of these principles in guiding acetic acid use in wound care.
Collapse
Affiliation(s)
- Qiuyun Chen
- Qiuyun Chen, MA, BA, School of Humanities, Beijing University of Chinese Medicine, Beijing, China
- Kehua Zhou, MD, DPT, Department of Hospital Medicine, ThedaCare Regional Medical Center-Appleton, Appleton, Wisconsin
| | - Kehua Zhou
- Qiuyun Chen, MA, BA, School of Humanities, Beijing University of Chinese Medicine, Beijing, China
- Kehua Zhou, MD, DPT, Department of Hospital Medicine, ThedaCare Regional Medical Center-Appleton, Appleton, Wisconsin
| |
Collapse
|
149
|
Sauvage S, Gaviard C, Tahrioui A, Coquet L, Le H, Alexandre S, Ben Abdelkrim A, Bouffartigues E, Lesouhaitier O, Chevalier S, Jouenne T, Hardouin J. Impact of Carbon Source Supplementations on Pseudomonas aeruginosa Physiology. J Proteome Res 2022; 21:1392-1407. [PMID: 35482949 DOI: 10.1021/acs.jproteome.1c00936] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen highly resistant to a wide range of antimicrobial agents, making its infections very difficult to treat. Since microorganisms need to perpetually adapt to their surrounding environment, understanding the effect of carbon sources on P. aeruginosa physiology is therefore essential to avoid increasing drug-resistance and better fight this pathogen. By a global proteomic approach and phenotypic assays, we investigated the impact of various carbon source supplementations (glucose, glutamate, succinate, and citrate) on the physiology of the P. aeruginosa PA14 strain. A total of 581 proteins were identified as differentially expressed in the 4 conditions. Most of them were more abundant in citrate supplementation and were involved in virulence, motility, biofilm development, and antibiotic resistance. Phenotypic assays were performed to check these hypotheses. By coupling all this data, we highlight the importance of the environment in which the bacterium evolves on its metabolism, and thus the necessity to better understand the metabolic pathways implied in its adaptative response according to the nutrient availability.
Collapse
Affiliation(s)
- Salomé Sauvage
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Charlotte Gaviard
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Ali Tahrioui
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Laurent Coquet
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Hung Le
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France
| | - Stéphane Alexandre
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France
| | - Ahmed Ben Abdelkrim
- Lactanet, Valacta, 555 Boul des Anciens-Combattants, Sainte-Anne-de-Bellevue, Québec H9X 3R4, Canada
| | - Emeline Bouffartigues
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Sylvie Chevalier
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Thierry Jouenne
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| |
Collapse
|
150
|
Teta R, Esposito G, Kundu K, Stornaiuolo M, Scarpato S, Pollio A, Costantino V. A Glimpse at Siderophores Production by Anabaena flos-aquae UTEX 1444. Mar Drugs 2022; 20:md20040256. [PMID: 35447929 PMCID: PMC9025534 DOI: 10.3390/md20040256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a strain of Anabaena flos-aquae UTEX 1444 was cultivated in six different concentrations of iron (III). Cultures were extracted with organic solvents and analyzed using our dereplication strategy, based on the combined use of high-resolution tandem mass spectrometry and molecular networking. The analysis showed the presence of the siderophores’ family, named synechobactins, only in the zero iron (III) treatment culture. Seven unknown synechobactin variants were present in the extract, and their structures have been determined by a careful HRMS/MS analysis. This study unveils the capability of Anabaena flos-aquae UTEX 1444 to produce a large array of siderophores and may be a suitable model organism for a sustainable scale-up exploitation of such bioactive molecules, for the bioremediation of contaminated ecosystems, as well as in drug discovery.
Collapse
Affiliation(s)
- Roberta Teta
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Germana Esposito
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Karishma Kundu
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Silvia Scarpato
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
| | - Antonino Pollio
- Department of Biology, Complesso Universitario Monte Sant’Angelo via Cinthia–Edificio 7, University of Naples Federico II, 80126 Napoli, Italy;
| | - Valeria Costantino
- “TheBlueChemistryLab”, Department of Pharmacy, Task Force “BIGFED2”, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.T.); (G.E.); (K.K.); (S.S.)
- Correspondence:
| |
Collapse
|