101
|
Mojsak P, Samczuk P, Klimaszewska P, Burdukiewicz M, Chilimoniuk J, Grzesiak K, Pietrowska K, Ciborowska J, Niemcunowicz-Janica A, Kretowski A, Ciborowski M, Szeremeta M. Comparative analysis of anticoagulant influence on PMI estimation based on porcine blood metabolomics profile measured using GC-MS. Front Mol Biosci 2025; 11:1400622. [PMID: 39840077 PMCID: PMC11746058 DOI: 10.3389/fmolb.2024.1400622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Accurate post-mortem interval (PMI) estimation is essential in forensic investigations. Although various methods for PMI determination have been developed, only an approximate estimation is still achievable, and an accurate PMI indication is still challenging. Therefore, in this study, we employed gas chromatography-mass spectrometry (GC-MS)-based metabolomics to assess post-mortem changes in porcine blood samples collected with and without the addition of anticoagulant (EDTA). Our study aimed to identify metabolites dependent on the EDTA addition and time (taking into account the biodiversity of the studied organism) and those that are time-dependent but resistant to the addition of an anticoagulant. Methods The experiment was performed on blood samples collected from 16 animals (domestic pig, breed: Polish Large White), 8 with and 8 without EDTA addition. The moment of death (time 0) and 15 additional time points (from 3 to 168 h after death) were selected to examine changes in metabolites' levels in specific time intervals. We employed linear mixed models to study the relationship between metabolite intensities, time and presence of EDTA while accounting for the effect of individual pigs. Results and Discussion We confirmed that the intensity of 16 metabolites (mainly amino acids) significantly depends on PMI and the presence of EDTA. However, the intensity of the ideal biomarker(s) for PMI estimation should be determined only by the time after death and not by external factors such as the presence of the anticoagulant agent. Thus, we identified 41 metabolites with time-dependent intensities that were not susceptible to EDTA presence. Finally, we assessed the performance of these metabolites in a PMI predictive model. Citraconic acid yielded one of the lowest errors in general PMI estimation (32.82 h). Moreover, similar errors were observed for samples with and without EDTA (33.32 h and 32.34 h, respectively). Although the small sample size and information leak in predictive modelling prevent drawing definite conclusions, citraconic acid shows potential as a robust PMI estimator.
Collapse
Affiliation(s)
- Patrycja Mojsak
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Paulina Samczuk
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Genetic Research, Central Forensic Laboratory of the Police, Warsaw, Poland
| | - Paulina Klimaszewska
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Michal Burdukiewicz
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Cerdanyola, Spain
| | - Jaroslaw Chilimoniuk
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Krystyna Grzesiak
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Faculty of Mathematics and Computer Science, University of Wroclaw, Wroclaw, Poland
| | - Karolina Pietrowska
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Justyna Ciborowska
- Chemical Research Laboratory, Forensic Laboratory of the Voivodeship Police Headquarters in Bialystok, Bialystok, Poland
| | | | - Adam Kretowski
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Medical Biochemistry, Medical University of Bialystok, Bialystok, Poland
| | - Michal Szeremeta
- Department of Forensic Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
102
|
Wang Z, Liang Q, Lin Z, Li H, Chen X, Zou Z, Mo J. Potential role of formononetin as a novel natural agent in Alzheimer's disease and osteoporosis comorbidity. J Alzheimers Dis 2025; 103:361-371. [PMID: 39828895 DOI: 10.1177/13872877241299104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
BACKGROUND The growing aging population has led to an increase in the prevalence of Alzheimer's disease (AD) and osteoporosis (OP), both of which significantly impair quality of life. The comorbid nature of these conditions suggests a shared genetic etiology, the understanding of which is crucial for developing targeted therapies. OBJECTIVE This study aims to explore the shared genetic etiology underlying AD and OP, using a system biology approach to identify potential therapeutic targets and natural compounds for treatment. METHODS We employed Weighted Gene Co-Expression Network Analysis (WGCNA) with molecular docking strategies to uncover the genetic links between AD and OP. MT2A and CACNA1C were identified as key pleiotropic hub genes potentially linking AD and OP. Molecular docking was utilized to screen for compounds with therapeutic potential, leading to the identification of formononetin as a compound with significant binding affinity to these hub genes. Quantitative real-time PCR (qRT-PCR) validation was conducted to confirm the gene expression changes in disease models. RESULTS Our study indicate that formononetin exhibits strong binding affinity to the identified hub genes, MT2A and CACNA1C. qRT-PCR validation confirmed the upregulation of these genes in disease models, which was mitigated upon treatment with formononetin, suggesting a reversal of disease markers. CONCLUSIONS This study advances our understanding of the genetic intersections between AD and OP and positions formononetin as a promising natural agent for further translational research. Formononetin's multi-target potential makes it a valuable candidate for managing these comorbid conditions, meriting further investigation and development as a therapeutic strategy.
Collapse
Affiliation(s)
- Zhigang Wang
- Clinical Research Center for Neurological Diseases of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Brain and Cognition of Guangxi Province, Guilin Medical University, Guilin, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Qiaoyi Liang
- Clinical Research Center for Neurological Diseases of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Brain and Cognition of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Zhaoqiu Lin
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Hongyang Li
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Xin Chen
- Key Laboratory of Environmental Exposomics and Entire Lifecycle Health of Guangxi Province, Guilin Medical University, Guilin, China
| | - Zhenyou Zou
- Biochemistry Department of Purdue University, West Lafayette, IN, USA
| | - Jingxin Mo
- Clinical Research Center for Neurological Diseases of Guangxi Province, Guilin Medical University, Guilin, China
- Key Laboratory of Brain and Cognition of Guangxi Province, Guilin Medical University, Guilin, China
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
103
|
Hakimi Naeini S, Rajabi-Maham H, Hosseini A, Azizi V. Neuroprotective impact of glycitin on memory impairment in a pentylenetetrazol-induced chronic epileptic rat model: insights into hippocampal histology, oxidative stress, and inflammation. J Nat Med 2025; 79:59-72. [PMID: 39365539 DOI: 10.1007/s11418-024-01846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Epilepsy, characterized by recurrent seizures, often accompanies neurocognitive impairments and is associated with increased oxidative stress and inflammation. This study investigates the possible neuroprotective properties of glycitin, a soy isoflavone, on memory impairment, its impact on oxidative stress responses, and inflammatory gene expression in a chronic epileptic rat model induced by pentylenetetrazol (PTZ). Glycitin was administered at varying doses to evaluate its potential neuroprotective impact on memory, oxidative stress, and inflammation in this model. Behavioural assessments, memory retention and recall capabilities, histopathological examinations, measurements of oxidative stress biomarkers, and molecular assessments were employed for comprehensive evaluation. The results demonstrated that glycitin significantly improved memory impairment and reduced oxidative stress in epileptic rats. Additionally, glycitin treatment decreased the expression of tumor necrosis factor-α (TNF-α) and nuclear factor kappa B (NF-κB), indicating its potential to modulate the inflammatory response associated with epilepsy. These observations underscore the potential of glycitin as a therapeutic candidate for mitigating memory impairments linked to chronic epilepsy due to its antioxidant and anti-inflammatory properties, offering insights into novel avenues for the development of targeted interventions aimed at preserving cognitive function and ameliorating oxidative damage and inflammation in epileptic conditions.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
104
|
AlRawili N, Al‐Kuraishy HM, Al‐Gareeb AI, Abdel‐Fattah MM, Al‐Harchan NA, Alruwaili M, Papadakis M, Alexiou A, Batiha GE. Trajectory of Cardiogenic Dementia: A New Perspective. J Cell Mol Med 2025; 29:e70345. [PMID: 39828641 PMCID: PMC11742966 DOI: 10.1111/jcmm.70345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
The functions of the heart and brain are closely linked and essential to support human life by the heart-brain axis, which is a complex interconnection between the heart and brain. Also, cardiac function and cerebral blood flow regulate the brain's metabolism and function. Therefore, deterioration of cardiac function may affect cognitive function and may increase the risk of dementia. Cardiogenic dementia is defined as a cognitive deterioration due to heart diseases such as heart failure, myocardial infarction, and atrial fibrillation. The prevalence of cognitive impairment in patients with heart failure was 29%. In addition, coronary artery disease (CAD) is also associated with the development of cognitive impairment. CAD and reduction of myocardial contractility reduced cerebral blood flow and increased the risk of dementia in CAD patients. Furthermore, myocardial infarction and subsequent systemic haemodynamic instability promote the development and progression of cardiogenic dementia. These findings indicated that many cardiac diseases are implicated in the development and progression of cognitive impairment. Nevertheless, the underlying mechanism for the development of cardiogenic dementia was not fully elucidated. Consequently, this review aims to discuss the potential mechanisms involved in the pathogenesis of cardiogenic dementia.
Collapse
Affiliation(s)
- Nawaf AlRawili
- Department of Internal Medicine, College of MedicineNorthern Border UniversityArarSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical PharmacologyJabir ibn Hayyan Medical UniversityKufaIraq
| | - Maha M. Abdel‐Fattah
- Department of Pharmacology and Toxicology, Faculty of PharmacyBeni‐Suef UniversityBeni‐SuefEgypt
| | - Nasser A. Al‐Harchan
- Department of Clinical Pharmacology, College of DentistryAl‐Rasheed UniversityBaghdadIraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySaudi Arabia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐ HerdeckeWuppertalGermany
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationNew South WalesAustralia
- Department of Research & DevelopmentAthensGreece
| | - Gaber El‐Saber Batiha
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
105
|
Li H, Yu W, Zheng X, Zhu Z. TREM1-Microglia crosstalk: Neurocognitive disorders. Brain Res Bull 2025; 220:111162. [PMID: 39645047 DOI: 10.1016/j.brainresbull.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Neurocognitive Disorders (NCDs) primarily affect cognitive functions, including learning, memory, perception, and problem-solving. They predominantly arise as pathological sequelae of central nervous system (CNS) disorders. Emerging evidence suggests that microglial inflammatory activation within the hippocampus underlies the pathogenesis of cognitive impairment. Triggering receptor expressed on myeloid cells 1 (TREM1), a pattern-recognition receptor on microglia, becomes upregulated in response to injury and synergistically amplifies inflammatory responses mediated by other pattern-recognition receptors, leading to uncontrolled inflammation. While TREM1 is lowly expressed in the resting state, its upregulation upon exposure to injurious inflammatory stimuli promotes microglial activation and contributes to the development of NCDs. Consequently, TREM1 may serve as a critical receptor in microglia-mediated inflammation. This article reviews the current understanding of TREM1 and its role in NCDs pathogenesis.
Collapse
Affiliation(s)
- Huashan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China.
| | - Wanqiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Xue Zheng
- Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China
| | - Zhaoqiong Zhu
- Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
106
|
Mohan M, Mannan A, Kakkar C, Singh TG. Nrf2 and Ferroptosis: Exploring Translational Avenues for Therapeutic Approaches to Neurological Diseases. Curr Drug Targets 2025; 26:33-58. [PMID: 39350404 DOI: 10.2174/0113894501320839240918110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 02/19/2025]
Abstract
Nrf2, a crucial protein involved in defense mechanisms, particularly oxidative stress, plays a significant role in neurological diseases (NDs) by reducing oxidative stress and inflammation. NDs, including Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, stroke, epilepsy, schizophrenia, depression, and autism, exhibit ferroptosis, iron-dependent regulated cell death resulting from lipid and iron-dependent reactive oxygen species (ROS) accumulation. Nrf2 has been shown to play a critical role in regulating ferroptosis in NDs. Age-related decline in Nrf2 expression and its target genes (HO-1, Nqo-1, and Trx) coincides with increased iron-mediated cell death, leading to ND onset. The modulation of iron-dependent cell death and ferroptosis by Nrf2 through various cellular and molecular mechanisms offers a potential therapeutic pathway for understanding the pathological processes underlying these NDs. This review emphasizes the mechanistic role of Nrf2 and ferroptosis in multiple NDs, providing valuable insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Chirag Kakkar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
107
|
Zhang J, Yuan Y, Gao X, Li H, Yuan F, Wu D, Cui Q, Piao G, Yuan H. Scopoletin ameliorates hyperlipidemia and hepatic steatosis via AMPK, Nrf2/HO-1 and NF-κB signaling pathways. Biochem Pharmacol 2025; 231:116639. [PMID: 39571916 DOI: 10.1016/j.bcp.2024.116639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Scopoletin (SC) is one of the important phenolic coumarin constituents derived from many edible plants and fruits, and exerts a wide range of biological activities. In the present study, we investigated the effects of SC on tyloxapol (TY)-induced hyperlipidemia and hepatic steatosis in C57BL/6j mice and free fatty acid (FFA) 0.5 mM-stimulated lipid accumulation in human L02 cells. Our results showed that TY injection significantly increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL-C) as well as malondialdehyde (MDA) in the livers of the mice (p < 0.001, respectively), and decreased serum levels of high density lipoprotein (HDL-C), IL-10 levels as well as superoxide dismutase (SOD) in the livers (p < 0.001, respectively). On the other hand, SC pretreatment reversed these changes. SC obviously alleviated TY-induced liver steatosis by upregulating the AMP-activated kinase (AMPK), acetyl-CoA carboxylase (ACC) phosphorylation, and significantly downregulated sterol regulatory element binding protein (SREBP)1c and fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), Lipin 1, phospho-hormone-sensitive triglyceride lipase (p-HSL) proteins and SREBP-2, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) mRNA expressions. In the meantime, SC upregulated the expressions of the lipolysis-associated genes LDL receptor (LDLR), adipose triglyceride lipase (ATGL), and HSL. In addition, SC significantly inhibited TNF-α, F4/80, caspase-1 (cas-1), cas-1p10, IL-1β, Kelch-like ECH-associated protein 1 (Keap1) expressions, nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) translocation, and increased heme oxygenase 1 (HO-1) expressions in TY-induced hyperlipidemia and hepatic steatosis mice. The in vivo results were similar to that those in the in vitro experiment, for example, SC markedly lowered TG and TC levels and protected lipid accumulation via AMPK, NF-κB, and Nrf2/HO-1 signaling pathway in FFA-induced L02 cells. These results indicate that SC has protective potential against hyperlipidemia and hepatic steatosis, and the underlying mechanism may be closely associated with AMPK activation and Nrf2/HO-1 and NF-κB inhibition.
Collapse
Affiliation(s)
- Jianxiu Zhang
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Yilin Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Xiaoyan Gao
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Hui Li
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Fengxia Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Di Wu
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Qinglong Cui
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Guangchun Piao
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| | - Haidan Yuan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
108
|
Li Y, Huang Y, Yang H, Li Y, Luo G, Ma Y, Cheng H, Long Y, Xia W, Liu H, Fang H, Du Y, Sun T, Wang K, Zhai X. Composite Scaffold Materials of Nanocerium Oxide Doped with Allograft Bone: Dual Optimization Based on Anti-Inflammatory Properties and Promotion of Osteogenic Mineralization. Adv Healthc Mater 2025; 14:e2403006. [PMID: 39502017 DOI: 10.1002/adhm.202403006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 01/15/2025]
Abstract
Spinal fusion technique is widely used in the treatment of lumbar degeneration, cervical instability, disc injury, and spinal deformity. However, it is usually accompanied by a high incidence of fusion failure and pseudoarthrosis, placing higher demands on bone implants. Therefore, materials with good biocompatibility, osteoconductivity, and even induce bone ingrowth, which can be used to improve spinal fusion rate and bone regeneration, have become a hot research topic. Here, ultra-small cerium oxide nanoparticles (CeO2 NPs) are prepared and loaded onto the surface of the homograft bone surface to prepare a composite scaffold AB@PLGA/CeO2. The composite scaffold shows the competitive ability to promote osteoblast differentiation in vitro. In vivo experiments show that AB@PLGA/CeO2 has a good bone enhancement effect. In particular, good biological effects of collagen fiber formation, osteogenic mineralization, and tissue repair are shown in intervertebral implant fusion. Further, transcriptome sequencing confirms that CeO2 NPs promote osteogenic differentiation and mineralization by regulating extracellular matrix (ECM) and collagen formation. Meanwhile, CeO2 NPs can regulate the function of the PI3K-Akt signaling pathway to exert its ability to promote osteogenic differentiation and mineralization and affect p53 and cell cycle signaling pathway to regulate osteogenic differentiation and mineralization. Hence, the proposed scaffold is a promising strategy for intervertebral fusion in the clinic.
Collapse
Affiliation(s)
- Yuqiao Li
- Department of Spine Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yongkang Huang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| | - Houzhi Yang
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Yuxin Li
- College of Life Sciences, Anhui Normal University, Anhui, 241000, China
| | - Gan Luo
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Yuan Ma
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Haiyang Cheng
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Yubin Long
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
- Department of Spine Surgery, The Central Hospital of Shaoyang, Hunan, 422000, China
| | - Weiwei Xia
- Department of Spine Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Haiying Liu
- Department of Spine Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
- Shanghat Zhitong Construction Engineering Tethnology Co, LTD
| | - Yaping Du
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| | - Tianwei Sun
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Kaifeng Wang
- Department of Spine Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Xinyun Zhai
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| |
Collapse
|
109
|
Ma S, Xu CC, Dong YC, Li CX, Shang YZ. Scutellaria Baicalensis Georgi Stem and Leaf Flavonoids Ameliorate the Learning and Memory Impairment in Rats Induced by Okadaic Acid. Comb Chem High Throughput Screen 2025; 28:263-277. [PMID: 38204252 DOI: 10.2174/0113862073265060231127054325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 01/12/2024]
Abstract
AIM The objective of this study is to explore the impact and underlying mechanism of S. baicalensis Georgi stem and leaf flavonoids (SSFs) on cognitive impairment caused by intracerebroventricular injection of okadaic acid (OA) in rats. METHODS An experimental model of Alzheimer's disease (AD) was induced in rats by intracerebroventricular injection of OA, resulting in memory impairment. The Morris water maze test was employed to confirm the successful establishment of the memory impairment model. The rats that exhibited significant memory impairment were randomly divided into different groups, including a model group, three SSFs dose groups (25, 50, and 100 mg/kg), and a positive control group treated with Ginkgo biloba tablets (GLT) at a dose of 200 mg/kg. To evaluate the learning and memory abilities of the rats, the Morris water maze test was conducted. Hematoxylin-eosin (HE) staining was used to observe any morphological changes in neurons. Immunohistochemistry (IHC) was performed to measure the expression of choline acetyltransferase (ChAT) protein. Western blotting (WB) was utilized to assess the phosphorylation levels of tau protein at Ser262 and Ser396. The activities of inducible nitric oxide synthase (iNOS) and constitutive nitric oxide synthase (cNOS) were quantified using ultraviolet spectrophotometry. The levels of inflammatory factors, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), were measured using ELISA. RESULTS In rats, the administration of OA via intracerebroventricular injection resulted in cognitive impairment, neuropathological changes, and alterations in protein expression and activity levels. Specifically, the protein expression of ChAT was significantly reduced (P<0.01), while the phosphorylation levels of tau protein at Ser262 and Ser396 were significantly increased (P<0.01). Moreover, iNOS activity in the hippocampus and cerebral cortex exhibited a significant increase (P<0.01), whereas cNOS activity showed a decrease (P<0.05). Furthermore, the levels of IL-1β and TNF-α in the cerebral cortex were elevated (P<0.01), while the level of IL-6 was decreased (P<0.05). The administration of three doses of SSFs and GLT to rats exhibited varying degrees of improvement in the aforementioned pathological alterations induced by OA. CONCLUSION SSFs demonstrated the ability to enhance cognitive function and mitigate memory deficits in rats following intracerebroventricular injection of OA. This beneficial effect may be attributed to the modulation of ChAT protein expression, tau hyperphosphorylation, NOS activity, and inflammatory cytokine levels by SSFs.
Collapse
Affiliation(s)
- Shuai Ma
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Anyuan Road, Chengde, 067000, P.R. China
| | - Cong-Cong Xu
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Anyuan Road, Chengde, 067000, P.R. China
| | - Yong-Cai Dong
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Anyuan Road, Chengde, 067000, P.R. China
| | - Cai-Xia Li
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050011, China
| | - Ya-Zhen Shang
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Anyuan Road, Chengde, 067000, P.R. China
| |
Collapse
|
110
|
Kumar S, Ranga A. Role of miRNAs in breast cancer development and progression: Current research. Biofactors 2025; 51:e2146. [PMID: 39601401 DOI: 10.1002/biof.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Breast cancer, a complex and heterogeneous ailment impacting numerous women worldwide, persists as a prominent cause of cancer-related fatalities. MicroRNAs (miRNAs), small non-coding RNAs, have garnered significant attention for their involvement in breast cancer's progression. These molecules post-transcriptionally regulate gene expression, influencing crucial cellular processes including proliferation, differentiation, and apoptosis. This review provides an overview of the current research on the role of miRNAs in breast cancer. It discusses the role of miRNAs in breast cancer, including the different subtypes of breast cancer, their molecular characteristics, and the mechanisms by which miRNAs regulate gene expression in breast cancer cells. Additionally, the review highlights recent studies identifying specific miRNAs that are dysregulated in breast cancer and their potential use as diagnostic and prognostic biomarkers. Furthermore, the review explores the therapeutic potential of miRNAs in breast cancer treatment. Preclinical studies have shown the effectiveness of miRNA-based therapies, such as antagomir and miRNA mimic therapies, in inhibiting tumor growth and metastasis. Emerging areas, including the application of artificial intelligence (AI) to advance miRNA research and the "One Health" approach that integrates human and animal cancer insights, are also discussed. However, challenges remain before these therapies can be fully translated into clinical practice. In conclusion, this review emphasizes the significance of miRNAs in breast cancer research and their potential as innovative diagnostic and therapeutic tools. A deeper understanding of miRNA dysregulation in breast cancer is essential for their successful application in clinical settings. With continued research, miRNA-based approaches hold promise for improving patient outcomes in this devastating disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Ranga
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
111
|
Goyal L, Singh S. Neurological Manifestations Following Traumatic Brain Injury: Role of Behavioral, Neuroinflammation, Excitotoxicity, Nrf-2 and Nitric Oxide. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:47-59. [PMID: 39082170 DOI: 10.2174/0118715273318552240708055413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 01/31/2025]
Abstract
Traumatic Brain Injury (TBI) is attributed to a forceful impact on the brain caused by sharp, penetrating bodies, like bullets and any sharp object. Some popular instances like falls, traffic accidents, physical assaults, and athletic injuries frequently cause TBI. TBI is the primary cause of both mortality and disability among young children and adults. Several individuals experience psychiatric problems, including cognitive dysfunction, depression, post-traumatic stress disorder, and anxiety, after primary injury. Behavioral changes post TBI include cognitive deficits and emotional instability (anxiety, depression, and post-traumatic stress disorder). These alterations are linked to neuroinflammatory processes. On the other hand, the direct impact mitigates inflammation insult by the release of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF-α, exacerbating neuronal injury and contributing to neurodegeneration. During the excitotoxic phase, activation of glutamate subunits like NMDA enhances the influx of Ca2+ and leads to mitochondrial metabolic impairment and calpain-mediated cytoskeletal disassembly. TBI pathological insult is also linked to transcriptional response suppression Nrf-2, which plays a critical role against TBI-induced oxidative stress. Activation of NRF-2 enhances the expression of anti-oxidant enzymes, providing neuroprotection. A possible explanation for the elevated levels of NO is that the stimulation of NMDA receptors by glutamate leads to the influx of calcium in the postsynaptic region, activating NOS's constitutive isoforms.
Collapse
Affiliation(s)
- Lav Goyal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| |
Collapse
|
112
|
Pu X, Lu C, Yang X, He H, Chen X, Wang R, Li B, Chen S, Zhang Y, Wang W, Li Y. Unveiling the hepatoprotective mechanisms of Desmodium heterocarpon (L.) DC: Novel flavonoid identification and Keap1/Nrf2 pathway activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156323. [PMID: 39706064 DOI: 10.1016/j.phymed.2024.156323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The pathophysiology of liver diseases is significantly influenced by oxidative stress, making its alleviation a key strategy for treatment. The Keap1/Nrf2 signaling pathway is the body's most crucial antioxidant defense mechanism. Traditional Chinese medicine, Desmodium heterocarpon (L.) DC, has shown promising hepatoprotective effects, however, the specific active components and underlying mechanisms of its liver-protective properties remain inadequately understood. Further investigation into the bioactive constituents and mechanisms of its hepatoprotective action is therefore essential. OBJECTIVE This study aims to identify the active ingredients in D. heterocarpon and to explore its hepatoprotective properties and underlying mechanisms. METHODS The hepatoprotective activity of the ethyl acetate fraction (JEAE) from D. heterocarpon was first evaluated utilizing a mouse model of acute liver damage (ALI) caused by CCl4. Molecular and histological analyses, including H&E staining, ELISA, and Western blot, were used to assess liver protection. The chemical constituents of JEAE were further identified using UPLC-MS/MS, and the molecular network of the JEAE fraction was analyzed. Compounds were isolated through column chromatography, and their antioxidant and hepatoprotective effects were assessed in an H₂O₂-induced HepG2 cell model using molecular assays. Additionally, binding interactions between active compounds and Keap1 were evaluated using molecular docking, molecular dynamics simulations, and surface plasmon resonance. RESULTS The ethyl acetate fraction of Desmodium heterocarpon (JEAE) showed remarkable antioxidant activity, with the highest flavonoid contents among extract fractions. In CCl₄-induced liver injury models, JEAE improved liver function, reduced ALT and AST levels, and enhanced antioxidant enzyme activities, suggesting hepatoprotective effects via the Keap1/Nrf2 pathway. 47 compounds were identified in JEAE, and fourteen flavonoids, including two novel compounds (1 and 2), were isolated from the JEAE fraction. Compounds 1, 3, 5, 8, and 14 notably protected HepG2 cells from oxidative damage, reduced ROS levels, and maintained mitochondrial function. These compounds also showed strong binding affinities to Keap1 and other antioxidant receptors, with molecular dynamics simulations confirming their stability and binding potential as effective hepatoprotective agents. CONCLUSION This study demonstrates that the ethyl acetate fraction of Desmodium heterocarpon (JEAE) exhibits significant hepatoprotective effects, largely attributed to its flavonoid-rich composition. The protective effects are mediated through antioxidant pathways, particularly the Keap1/Nrf2 signaling pathway. Newly identified isoflavanes and other flavonoids in JEAE show strong potential as bioactive compounds, with stability and binding affinities supporting their role in reducing oxidative stress. These findings suggest D. heterocarpon as a promising source of hepatoprotective agents and provide a foundation for further exploration of its therapeutic applications.
Collapse
Affiliation(s)
- XingNa Pu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Cheng Lu
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xing Yang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - HongPing He
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - XingLong Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - RuiRui Wang
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - BaoJing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Shuai Chen
- Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yi Zhang
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - WeiGuang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China.
| | - YanPing Li
- Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
113
|
Meng X, Zhang K, Zeng WJ, Hu ZH. Expression and Clinical Implications of pro-BNP and Soluble ST2 in Chronic Heart Failure. Br J Hosp Med (Lond) 2024; 85:1-13. [PMID: 39831497 DOI: 10.12968/hmed.2024.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aims/Background Chronic heart failure (CHF) is a complex clinical syndrome resulting from various cardiac diseases, characterized by weakened cardiac pumping capacity and inadequate blood supply to body tissues. This study aims to investigate the expression and clinical implications of pro-B-type natriuretic peptide (pro-BNP) and soluble suppression of tumorigenicity 2 (sST2) in CHF to explore their potential in early diagnosis and severity assessment of the pathological condition. Methods This study included 146 CHF patients treated at our hospital from January 2022 to December 2023, who were classified in the observation group, and 150 concurrent healthy people categorized in the control group. pro-BNP and sST2 levels in the observation and control groups were compared. The diagnostic value of pro-BNP and sST2 in CHF was determined using receiver operating characteristic (ROC) curves. Besides, pro-BNP and sST2 levels in patients with different New York Heart Association (NYHA) grades were compared, and their relationships with left ventricular ejection fraction (LVEF), left atrial diameter (LAD), and left ventricular end-diastolic diameter (LVEDD) were assessed by means of Pearson's correlation. Results CHF cases showed markedly higher pro-BNP and sST2 levels than healthy controls (p < 0.05). The area under the ROC curves for pro-BNP and sST2 in diagnosing CHF was 0.826 (95% CI: 0.778-0.875) and 0.733 (95% CI: 0.674-0.791), respectively. pro-BNP and sST2 levels were similar in grades I and II patients (p > 0.05), but lower when compared with those in grades III and IV patients (p < 0.05). Grade III patients showed lower pro-BNP and sST2 expression than grade Ⅳ patients (p < 0.05). Additionally, pro-BNP and sST2 had an inverse connection with LVEF (r = -0.764 and r = -0.535, respectively) and a positive correlation with LAD (r = 0.752 and r = 0.535, respectively) and LVEDD (r = 0.721 and r = 0.544, respectively). Conclusion pro-BNP and sST2 exhibit good diagnostic value for CHF, owing to their close association with patients' cardiac function. These biomarkers can be used as effective indicators to evaluate the severity of heart failure.
Collapse
Affiliation(s)
- Xing Meng
- Clinical Laboratory, Suzhou Kowloon Hospital Affiliated with Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Kai Zhang
- Clinical Laboratory, Suzhou Kowloon Hospital Affiliated with Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Wan-Jie Zeng
- Clinical Laboratory, Suzhou Kowloon Hospital Affiliated with Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhen-Hua Hu
- Clinical Laboratory, Suzhou Kowloon Hospital Affiliated with Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
114
|
Dudek M, Kałużna-Oleksy M, Sawczak F, Kukfisz A, Soloch A, Migaj J, Lesiak M, Straburzyńska-Migaj E. The Usefulness of Soluble ST2 Concentration in Heart Failure with Reduced Ejection Fraction to Predict Severe Impairment in Exercise Capacity Assessed in Cardiopulmonary Exercise Testing. Biomedicines 2024; 13:60. [PMID: 39857644 PMCID: PMC11761951 DOI: 10.3390/biomedicines13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Heart failure (HF) constitutes a complex clinical syndrome that is highly prevalent worldwide, comprises a serious prognosis, and results in a reduced quality of life. Exercise capacity is one of the most significant parameters involved in the prognosis in HF patients. Our objective was to evaluate the relationship between the selected cardiopulmonary exercise testing (CPET) parameters and the concentration of novel biomarker sST2 in a group of patients with heart failure with reduced ejection fraction (HFrEF). Methods: A group of 135 patients with HFrEF was enrolled in this prospective cohort study. Patients were in the stable phase of the disease in the prior 4 weeks and received optimal medical treatment. Clinical and biochemical parameters were investigated. All patients performed maximal CPET. Results: The mean (SD) concentration of sST2 was 45.5 ± 39.2 ng/mL. Based on the CPET results, the cut-off value (52.377 ng/mL) was established, optimal for the discrimination of relative peakVO2 < 12 mL/kg/min. Patients were divided into two groups according to sST2 cut-off values determined with an ROC curve (AUC 0.692, 95% CI: 0.567-0.816). The mean relative peakVO2 in patients with higher sST2 was 14.5 ± 4.6 mL/kg/min, while in the second group, it was 17.6 ± 5.2 (p = 0.002). In the sST2 ≥ 52.377 ng/mL group, 55.6% of patients achieved VO2 < 50%. Subjects with lower sST2 values obtained higher values of PETCO2 (p < 0.001) and higher values of pulse O2 (p = 0.01). VE/VCO2slope (p = 0.002) was higher in patients with increased sST2 concentration. Conclusions: The concentration of sST2 protein is substantially associated with the clinical severity of heart failure with reduced left ventricular ejection fraction assessed by functional capacity through CPET.
Collapse
Affiliation(s)
- Magdalena Dudek
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.K.-O.); (F.S.); (A.S.); (J.M.); (M.L.); (E.S.-M.)
| | - Marta Kałużna-Oleksy
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.K.-O.); (F.S.); (A.S.); (J.M.); (M.L.); (E.S.-M.)
| | - Filip Sawczak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.K.-O.); (F.S.); (A.S.); (J.M.); (M.L.); (E.S.-M.)
| | - Agata Kukfisz
- 3rd Department of Cardiology, Silesian Center for Heart Disease, Faculty of Medical University of Silesia, 41-800 Zabrze, Poland;
| | - Aleksandra Soloch
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.K.-O.); (F.S.); (A.S.); (J.M.); (M.L.); (E.S.-M.)
| | - Jacek Migaj
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.K.-O.); (F.S.); (A.S.); (J.M.); (M.L.); (E.S.-M.)
| | - Maciej Lesiak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.K.-O.); (F.S.); (A.S.); (J.M.); (M.L.); (E.S.-M.)
| | - Ewa Straburzyńska-Migaj
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.K.-O.); (F.S.); (A.S.); (J.M.); (M.L.); (E.S.-M.)
| |
Collapse
|
115
|
Lucke-Wold B, Zasler ND, Ruchika FNU, Weisman S, Le D, Brunicardi J, Kong I, Ghumman H, Persad S, Mahan D, Delawan M, Shah S, Aghili-Mehrizi S. Supplement and nutraceutical therapy in traumatic brain injury. Nutr Neurosci 2024:1-35. [DOI: 10.1080/1028415x.2024.2404782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Affiliation(s)
| | - Nathan D. Zasler
- Founder, CEO & CMO, Concussion Care Centre of Virginia, Ltd., Medical Director, Tree of Life, Richmond, VA, USA
- Professor, affiliate, Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Professor, Visiting, Department of Physical Medicine and Rehabilitation, University of Virginia, Charlottesville, VA, USA
- Vice-Chairperson, IBIA, London, UK
- Chair Emeritus, IBIA, London, UK
| | - FNU Ruchika
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Sydney Weisman
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Dao Le
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Jade Brunicardi
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Iris Kong
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Haider Ghumman
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Sarah Persad
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - David Mahan
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Maliya Delawan
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
116
|
Choi H, Hwang W. Anesthetic Approaches and Their Impact on Cancer Recurrence and Metastasis: A Comprehensive Review. Cancers (Basel) 2024; 16:4269. [PMID: 39766169 PMCID: PMC11674873 DOI: 10.3390/cancers16244269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/10/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer recurrence and metastasis remain critical challenges following surgical resection, influenced by complex perioperative mechanisms. This review explores how surgical stress triggers systemic changes, such as neuroendocrine responses, immune suppression, and inflammation, which promote the dissemination of residual cancer cells and circulating tumor cells. Key mechanisms, such as epithelial-mesenchymal transition and angiogenesis, further enhance metastasis, while hypoxia-inducible factors and inflammatory responses create a microenvironment conducive to tumor progression. Anesthetic agents and techniques modulate these mechanisms in distinct ways. Inhaled anesthetics, such as sevoflurane, may suppress immune function by increasing catecholamines and cytokines, thereby promoting cancer progression. In contrast, propofol-based total intravenous anesthesia mitigates stress responses and preserves natural killer cell activity, supporting immune function. Opioids suppress immune surveillance and promote angiogenesis through the activation of the mu-opioid receptor. Opioid-sparing strategies using NSAIDs show potential in preserving immune function and reducing recurrence risk. Regional anesthesia offers benefits by reducing systemic stress and immune suppression, though the clinical outcomes remain inconsistent. Additionally, dexmedetomidine and ketamine exhibit dual effects, both enhancing and inhibiting tumor progression depending on the dosage and context. This review emphasizes the importance of individualized anesthetic strategies to optimize long-term cancer outcomes. While retrospective studies suggest potential benefits of propofol-based total intravenous anesthesia and regional anesthesia, further large-scale trials are essential to establish the definitive role of anesthetic management in cancer recurrence and survival.
Collapse
Affiliation(s)
| | - Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
117
|
Ganesan K, Xu C, Wu S, Sui Y, Du B, Zhang J, Gao F, Chen J, Tang H. Ononin Inhibits Tumor Bone Metastasis and Osteoclastogenesis By Targeting Mitogen-Activated Protein Kinase Pathway in Breast Cancer. RESEARCH (WASHINGTON, D.C.) 2024; 7:0553. [PMID: 39687715 PMCID: PMC11648741 DOI: 10.34133/research.0553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024]
Abstract
Breast cancer (BC) often spreads to bones, leading to bone metastasis (BM). Current targeted therapies have limited effectiveness in the treatment of this condition. Osteoclasts, which contribute to bone destruction, are crucial in supporting tumor cell growth in the bones. Breast cancer bone metastasis (BCBM) treatments have limited efficacy and can cause adverse effects. Ononin exhibits anticancer properties against various cancers. The study examined the impact of ononin on the BCBM and the signaling pathways involved. Our study utilized a variety of experimental techniques, including cell viability assays, colony formation assays, wound-healing assays, Transwell migration assays, Western blot analysis, and tartrate-resistant acid phosphatase (TRAP) staining. We examined the effects of ononin on osteoclastogenesis induced in MDA-MB-231 conditioned medium- and RANKL-treated RAW 264.7 cells. In a mouse model of BCBM, ononin reduced tumor-induced bone destruction. Ononin treatment effectively inhibited proliferation and colony formation and reduced the metastatic capabilities of MDA-MB-231 cells by suppressing cell adhesion, invasiveness, and motility and reversing epithelial-mesenchymal transition (EMT) markers. Ononin markedly suppressed osteoclast formation and osteolysis-associated factors in MDA-MB-231 cells, as well as blocked the activation of the mitogen-activated protein kinase (MAPK) pathway in RAW 264.7 cells. Ononin treatment down-regulated the phosphorylation of MAPK signaling pathways, as confirmed using MAPK agonists or inhibitors. Ononin treatment had no adverse effects on the organ function. Our findings suggest that ononin has therapeutic potential as a BCBM treatment by targeting the MAPK pathway.
Collapse
Affiliation(s)
- Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cong Xu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yue Sui
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Fei Gao
- Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
118
|
Trigo G, Coelho M, Ferreira CB, Melosini M, Lehmann IS, Reis CP, Gaspar MM, Santos S. Exploring the Biological Activity of Phytocannabinoid Formulations for Skin Health Care: A Special Focus on Molecular Pathways. Int J Mol Sci 2024; 25:13142. [PMID: 39684852 DOI: 10.3390/ijms252313142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Recent advancements have highlighted the potential of cannabis and its phytocannabinoids (pCBs) in skin health applications. These compounds, through their interaction with the endocannabinoid system (ECS), show promise for skin health products. Their ability to regulate inflammation, oxidative stress and cell proliferation makes them useful in addressing skin problems such as inflammation, scarring, healing, acne and aging, positioning them as valuable tools for innovative skincare solutions. In the present work, the cellular and molecular effects of proprietary pCB-based formulations on ECS modulation, inflammation and skin regeneration were investigated. Using human dermal fibroblasts (HDF) and keratinocytes (HaCaT), the effect of formulations in both pre-treatment and treatment scenarios following exposure to stress-inducing agents was assessed. Key molecular markers were analyzed to tackle their efficacy in mitigating inflammation and promoting structural integrity and regeneration. In vitro results showed that these formulations significantly reduced inflammation, promoted skin regeneration and improved structural functions. In vivo studies confirmed that the formulations were well-tolerated and led to noticeable improvements in skin health, including enhanced barrier function. This study demonstrates the safety and efficacy of pCB-based formulations for cosmeceutical applications. By combining molecular analysis with in vivo testing, this research provides new insights into the therapeutic potential of pCBs for managing various skin conditions.
Collapse
Affiliation(s)
- Guilherme Trigo
- R&D&I Department, EXMceuticals Portugal Lda, 1749-016 Lisboa, Portugal
| | - Mariana Coelho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | | | - Matteo Melosini
- R&D&I Department, EXMceuticals Portugal Lda, 1749-016 Lisboa, Portugal
| | | | - Catarina P Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Institute of Biophysics and Biomedical Engineering (IBEB), Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Institute of Biophysics and Biomedical Engineering (IBEB), Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Susana Santos
- R&D&I Department, EXMceuticals Portugal Lda, 1749-016 Lisboa, Portugal
| |
Collapse
|
119
|
Huang JJ, Zhuo JY, Wang Q, Sun Y, Qi JX, Wu JJ, Zhang Y, Chen G, Jiang PF, Fan YY. The time-dependent expression of FPR2 and ANXA1 in murine deep vein thrombosis model and its relation to thrombus age. Forensic Sci Med Pathol 2024; 20:1155-1165. [PMID: 38652217 DOI: 10.1007/s12024-024-00818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Thrombus age determination in fatal venous thromboembolism cases is an important task for forensic pathologists. In this study, we investigated the time-dependent expressions of formyl peptide receptor 2 (FPR2) and Annexin A1 (ANXA1) in a stasis-induced deep vein thrombosis (DVT) murine model, with the aim of obtaining useful information for thrombus age timing. A total of 75 ICR mice were randomly classified into thrombosis group and control group. In thrombosis group, a DVT model was established by ligating the inferior vena cava (IVC) of mice, and thrombosed IVCs were harvested at 1, 3, 5, 7, 10, 14, and 21 days after modeling. In control group, IVCs without thrombosis were taken as control samples. The expressions of FPR2 and ANXA1 during thrombosis were detected using immunohistochemistry and double immunofluorescence staining. Their protein and mRNA levels in the samples were determined by Western blotting and quantitative real-time PCR. The results reveal that FPR2 was predominantly expressed by intrathrombotic neutrophils and macrophages. ANXA1 expression in the thrombi was mainly distributed in neutrophils, endothelial cells of neovessels, and fibroblastic cells. After thrombosis, the expressions of FPR2 and ANXA1 were time-dependently up-regulated. The percentage of FPR2-positive cells and the level of FPR2 protein significantly elevated at 1, 3, 5 and 7 days after IVC ligation as compared to those at 10, 14 and 21 days after ligation (p < 0.05). Moreover, the mRNA level of FPR2 were significantly higher at 5 days than that at the other post-ligation intervals (p < 0.05). Besides, the levels of ANXA1 mRNA and protein peaked at 10 and 14 days after ligation, respectively. A significant increase in the mRNA level of ANXA1 was found at 10 and 14 days as compared with that at the other post-ligation intervals (p < 0.01). Our findings suggest that FPR2 and ANXA1 are promising as useful markers for age estimation of venous thrombi.
Collapse
Affiliation(s)
- Jun-Jie Huang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Ying Zhuo
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Qian Wang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yue Sun
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Jia-Xin Qi
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Juan-Juan Wu
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yu Zhang
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Gang Chen
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China
| | - Peng-Fei Jiang
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
| | - Yan-Yan Fan
- Department of Forensic Medicine, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- School of Basic Medical Science, Wenzhou Medical University, Higher Education District, Wenzhou, 325035, Zhejiang Province, People's Republic of China.
- Forensic Center, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China.
| |
Collapse
|
120
|
Ren Q, Chen G, Wan Q, Xiao L, Zhang Z, Feng Y. Unravelling the role of natural and synthetic products as DNA topoisomerase inhibitors in hepatocellular carcinoma. Bioorg Chem 2024; 153:107860. [PMID: 39442463 DOI: 10.1016/j.bioorg.2024.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Topoisomerase is a ubiquitous enzyme in the control of DNA chain topology. There have been extensive research on topoisomerase inhibitors derived from natural sources, which act as partial inducers of tumor cell apoptosis. However, their specific efficacy in treating hepatocellular carcinoma is relatively unexplored. Hence, this comprehensive review focuses on the structural characteristics and anti-cancer properties of topoisomerase inhibitors in hepatocellular carcinoma. Furthermore, this review is also elucidating the mechanism of action, structure-activity relationships, therapeutic limitations, stage of clinical trials of described classes of natural bioactive compounds as well as their potential application in cancer chemotherapies. This broad understanding of topoisomerase medical biology will provide indispensable framework for enhancing the efficiency of rational anti-hepatocellular carcinoma drug discovery.
Collapse
Affiliation(s)
- Qing Ren
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Guoming Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Qi Wan
- Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Liangman Xiao
- Acupuncture Rehabilitation Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhitong Zhang
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
121
|
Shi H, Song L, Wu Y, Shen R, Zhang C, Liao X, Wang Q, Zhu J. Edaravone Alleviates Traumatic Brain Injury by Inhibition of Ferroptosis via FSP1 Pathway. Mol Neurobiol 2024; 61:10448-10461. [PMID: 38733490 PMCID: PMC11584507 DOI: 10.1007/s12035-024-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Traumatic brain injury (TBI) is a highly severe form of trauma with complex series of reactions in brain tissue which ultimately results in neuronal damage. Previous studies proved that neuronal ferroptosis, which was induced by intracranial haemorrhage and other reasons, was one of the most primary causes of neuronal damage following TBI. However, the association between neuronal mechanical injury and ferroptosis in TBI and relevant treatments remain unclear. In the present study, we first demonstrated the occurrence of neuronal ferroptosis in the early stage of TBI and preliminarily elucidated that edaravone (EDA), a cerebroprotective agent that eliminates oxygen radicals, was able to inhibit ferroptosis induced by TBI. A cell scratching model was established in PC12 cells, and it was confirmed that mechanical injury induced ferroptosis in neurons at the early stage of TBI. Ferroptosis suppressor protein 1 (FSP1) plays a significant role in inhibiting ferroptosis, and we found that iFSP, a ferroptosis agonist which is capable to inhibit FSP1 pathway, attenuated the anti-ferroptosis effect of EDA. In conclusion, our results suggested that EDA inhibited neuronal ferroptosis induced by mechanical injury in the early phase of TBI by activating FSP1 pathway, which could provide evidence for future research on prevention and treatment of TBI.
Collapse
Affiliation(s)
- Haoyu Shi
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Libiao Song
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Yonghui Wu
- Department of Neurosurgery, The Second People's Hospital of Lu'an, Lu'an, 237000, Anhui Province, China
| | - Ruonan Shen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Chenxu Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Xingzhi Liao
- Department of Anaesthesiology, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Qiuhong Wang
- Department of Ophthalmology, Wuxi Second Hospital Affiliated to Jiangnan University, Wuxi, 214002, Jiangsu Province, China
| | - Jie Zhu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China.
| |
Collapse
|
122
|
Faruk EM, Ibrahim F, Hassan MM, Kamal KM, Hassan DAA, Awwad AAE, Taha NM, Hablas MGA, Zaazaa AM, Ibrahim MH. Protective effects of quercetin against tongue injury and oxidative stress triggered by irinotecan: a histopathological, biochemical and molecular study. Toxicol Res (Camb) 2024; 13:tfae214. [PMID: 39703341 PMCID: PMC11652611 DOI: 10.1093/toxres/tfae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction About 80% of patients receiving chemotherapeutics suffer from side effects related to the gastrointestinal tract. Irinotecan (CPT-11) is a chemotherapeutic agent usually used in treating solid tumors. Quercetin (QRT), a bioflavonoid, is an antioxidant and scavenger reactive oxygen species scavenger. Objective The current study explored the possible protective effects of QRT against mucosal tongue injury caused by CPT-11. Methods The study included four equal groups: group 1/control, group 2/QRT, group 3/CPT-11, and group 4/CPT-11 + QRT. Results CPT-11-induced tongue injury in the form of non-healed ulcers, absent lingual papillae, mononuclear cells infiltration, marked deposition of collagen fibers, and overexpression of CD86 and tumor necrosis factor- α (TNF-α). The increased malondialdehyde levels, decreased superoxide dismutase and total antioxidant capacity revealed that there was an oxidative stress. Also, there was a decreased countenance of Ki-67 and Bcl-2 and an increased countenance of NF-κB. The QRT-treated group showed complete ulcer healing, with histological features almost like the control group, along with minimal collagen fiber deposition, decreased reactivity to CD86 and TNF-α and improvement of oxidative stress status and the molecular study results as well. Conclusion QRT possess protective properties against CPT-11-triggered tongue injury.
Collapse
Affiliation(s)
- Eman Mohamed Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, Al Abidiyah, Makkah, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha 13518, Benha, Al-Qalyubia Governorate, Egypt
| | - Fatma Ibrahim
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig Rd inside Zagazig University, Shaibet an Nakareyah, Zagazig 44519, Al-Sharqia Governorate,Egypt
| | - Mahmoud M Hassan
- Department of Physiology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Benha, Egypt
| | - Kamal M Kamal
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Benha, Egypt
| | | | - Ayat Abu-elnasr Awwad
- Department of Otorhinolaryngology, Faculty of Medicine, Al-Azhar University, Cairo 11751, Cairo, Egypt
| | - Neama Mahmoud Taha
- Department of Physiology, Umm Al-Qura University, Al Abidiyah, Makkah, Saudi Arabia
| | | | - Ahmed Mohammed Zaazaa
- Student at Faculty of Medicine, Benha National University, Benha Colleges in Cairo, Main Axis of El-Obour City, Egypt
| | - Mai Hassan Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Benha, Egypt
| |
Collapse
|
123
|
Chen Y, Ma H, Liang J, Sun C, Wang D, Chen K, Zhao J, Ji S, Ma C, Ye X, Cao J, Wang Y, Sun C. Hepatoprotective potential of four fruit extracts rich in different structural flavonoids against alcohol-induced liver injury via gut microbiota-liver axis. Food Chem 2024; 460:140460. [PMID: 39068798 DOI: 10.1016/j.foodchem.2024.140460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Alcoholic liver injury (ALI) accounts for a major share of the global burden of non-viral liver disease. In the absence of specialized medications, research on using fruit flavonoids as a treatment is gaining momentum. This study investigated the hepatoprotective effects of four fruits rich in structurally diverse flavonoids: ougan (Citrus reticulata cv. Suavissima, OG), mulberry (Morus alba L., MB), apple (Malus × domestica Borkh., AP), and turnjujube (Hovenia dulcis Thunnb., TJ). A total of one flavanone glycoside, three polymethoxyflavones, two anthocyanins, one flavonol glycoside, and one dihydroflavonol were identified through UPLC analysis. In an acute ethanol-induced ALI mouse model, C57BL/6J mice were supplemented with 200 mg/kg·BW/day of different fruit extracts for three weeks. Our results showed that the four extracts exhibited promising benefits in improving lipid metabolism disorders, iron overload, and oxidative stress. RT-PCR and Western blot tests suggested that the potential mechanism may partially be attributed to the activation of the NRF2-mediated antioxidant response and the inhibition of ferroptosis pathways. Furthermore, fruit extracts administration demonstrated a specific regulatory role in intestinal microecology, with increases in beneficial bacteria such as Dubosiella, Lactobacillus, and Bifidobacterium. Spearman correlation analysis revealed strong links between intestinal flora, lipid metabolism, and iron homeostasis, implying that the fruit extracts mitigated ALI via the gut microbiota-liver axis. In vitro experiments reaffirmed the activity against ethanol-induced oxidative damage and highlighted the positive effects of flavonoid components. These findings endorse the prospective application of OG, MB, AP, and TJ as dietary supplements or novel treatments for ALI.
Collapse
Affiliation(s)
- Yunyi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hanbing Ma
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiaojiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cui Sun
- Hainan Institute of Zhejiang University, Sanya, Hainan, People's Republic of China
| | - Dengliang Wang
- Institute of Fruit Tree Research, Quzhou Academy of Agriculture and Forestry Science, Quzhou, China
| | - Kang Chen
- Liandu Agriculture and Rural Bureau, Lishui, China
| | - Jinmiao Zhao
- Liandu Agriculture and Rural Bureau, Lishui, China
| | - Shiyu Ji
- Lishui Agriculture and Rural Bureau, Zhejiang, China
| | - Chao Ma
- Zhejiang NongZhen Food Co., Ltd., Hangzhou, China
| | - Xianming Ye
- Zhejiang JiaNong Fruit & Vegetable Co., Ltd., Quzhou, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
124
|
Lipke K, Kubis-Kubiak A, Piwowar A. Investigating the role of nucleoside reverse transcriptase inhibitors in modulating lipotoxicity: Effects on lipid dynamics stress pathways, and insulin resistance on the function of dopaminergic neurons. Biomed Pharmacother 2024; 181:117701. [PMID: 39637753 DOI: 10.1016/j.biopha.2024.117701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Despite decades of advancements in HIV treatment, the persistence of viral reservoirs necessitates lifelong therapy, complicating efforts to fully control the infection. Nucleoside reverse transcriptase inhibitors (NRTIs) remain a cornerstone of HIV treatment, but long-term use is associated with side effects, including lipid metabolism disruption and neurocognitive disorders. There is a gap in understanding the safety of antiretrovirals and their impact on lipid toxicity in the central nervous system. To address this issue, our study investigated the impact of NRTIs, specifically lamivudine and zidovudine, on lipid metabolism and insulin resistance in the SH-SY5Y dopaminergic neuronal cell line. We also compared these effects to those induced by two free fatty acids, palmitic and docosahexaenoic acids. We measured mitochondrial superoxide levels, fatty acid binding proteins 4 and 5, and overall lipid content. Additionally, we assessed insulin resistance by analyzing the phosphorylation of mitogen-activated protein kinases and phosphoinositide 3-kinase, as well as the concentrations of insulin receptor substrate 1 and insulin receptor. The results demonstrated that NRTIs led to reduced fatty acid binding protein 4 levels and lipid content, similar to the effects observed with fatty acids. Moreover, lamivudine and zidovudine increased mitochondrial superoxide levels. Lamivudine also amplified the phosphorylation level of ERK. These findings suggest that NRTIs may contribute to lipotoxicity in dopaminergic neurons, warranting further investigation into their long-term effects on the central nervous system.
Collapse
Affiliation(s)
- Katarzyna Lipke
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland.
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
125
|
Fang Y, Zheng Y, Gao Q, Pang M, Wu Y, Feng X, Tao X, Hu Y, Lin Z, Lin W. Activation of the Nrf2/Keap1 signaling pathway mediates the neuroprotective effect of Perillyl alcohol against cerebral hypoxic-ischemic damage in neonatal rats. Redox Rep 2024; 29:2394714. [PMID: 39284589 PMCID: PMC11407389 DOI: 10.1080/13510002.2024.2394714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe disease with a poor prognosis, whose clinical treatment is still limited to therapeutic hypothermia with limited efficacy. Perillyl alcohol (POH), a natural monoterpene found in various plant essential oils, has shown neuroprotective properties, though its effects on HIE are not well understood. This study investigates the neuroprotective effects of POH on HIE both in vitro and in vivo. We established an in vitro model using glucose deprivation and hypoxia/reperfusion (OGD/R) in PC12 cells, alongside an in vivo model via the modified Rice-Vannucci method. Results indicated that POH acted as an indirect antioxidant, reducing inducible nitric oxide synthase and malondialdehyde production, maintaining content of antioxidant molecules and enzymes in OGD/R-induced PC12 cells. In vivo, POH remarkably lessened infarct volume, reduced cerebral edema, accelerated tissue regeneration, and blocked reactive astrogliosis after hypoxic-ischemic brain injury. POH exerted antiapoptotic activities through both the intrinsic and extrinsic apoptotic pathways. Mechanistically, POH activated Nrf2 and inactivated its negative regulator Keap1. The use of ML385, a Nrf2 inhibitor, reversed these effects. Overall, POH mitigates neuronal damage in HIE by combating oxidative stress, reducing inflammation, and inhibiting apoptosis via the Nrf2/Keap1 pathway, suggesting its potential for HIE treatment.
Collapse
Affiliation(s)
- Yu Fang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yihui Zheng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiqi Gao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Mengdan Pang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yiqing Wu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoli Feng
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
126
|
Zhu YW, Liu ZT, Tang AQ, Liang XY, Wang Y, Liu YF, Jin YQ, Gao W, Yuan H, Wang DY, Ji XY, Wu DD. The Emerging Roles of Hydrogen Sulfide in Ferroptosis. Antioxid Redox Signal 2024; 41:1150-1172. [PMID: 39041626 DOI: 10.1089/ars.2023.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Significance: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. Recent Advances: Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. Critical Issues: Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. Future Directions: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance. Antioxid. Redox Signal. 41, 1150-1172.
Collapse
Affiliation(s)
- Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Zi-Tao Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Da-Yong Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
127
|
Lu H, Li Z, Zhu L, Xu P, Wang H, Li Y, Zhao W. Fabrication and Temporal Dependency Osteogenic Regulation of Dual-Scale Hierarchical Microstructures on Medical Metal Surface. Adv Healthc Mater 2024; 13:e2402369. [PMID: 39175381 DOI: 10.1002/adhm.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The structural characteristics at the interface of bone implants can guide biological regulation. In this study, a dual-scale hierarchical microstructure is proposed and customized using hybrid machining to achieve temporal dependency osteogenic regulation. It is observed that osteoblasts induced by dual-scale hierarchical structure exhibit adequate protrusion development and rapid cell attachment through the modulation of mechanical forces in the cell growth environment, and further promot the upregulation of the cell membrane receptor PDGFR-α, which is related to cell proliferation. Afterward, transcriptomic analysis reveals that during the differentiation stage, the DSH structure regulates cellular signaling cascades primarily through integrin adhesion mechanisms and then accelerates osteogenic differentiation by activating the TGF-β pathway and cAMP signaling pathway. Furthermore, the calcium nodules are preferentially deposited within the lower honeycomb-like channels, thereby endowing the proposed dual-scale hierarchical structure with the potential to induce oriented deposition and improve the long-term stability of the implant.
Collapse
Affiliation(s)
- Hao Lu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Zhijun Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Lida Zhu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Peihua Xu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Hai Wang
- Shenyang Lebuy Vacuum Tech. Co., Ltd, Shenyang, Liaoning, China
| | - Yonghao Li
- Shenyang Lebuy Vacuum Tech. Co., Ltd, Shenyang, Liaoning, China
| | - Weidong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
128
|
Fang Y, Li W, Dong C, Gao B, Guo W, Li M, Jiao Z. Inhibition of SLC40A1 represses osteoblast formation via inducing iron accumulation and activating the PERK/ATF4/CHOP pathway mediated oxidative stress. Redox Rep 2024; 29:2428147. [PMID: 39607819 DOI: 10.1080/13510002.2024.2428147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of solute carrier family 40 member 1 (SLC40A1) on iron accumulation, oxidative stress and differentiation in osteoblasts and potential mechanisms. METHODS Mouse preosteoblastic MC3T3-E1 cells were transfected with the SLC40A1 overexpression vector (oeSLC40A1) and siRNA (siSLC40A1), then cell differentiation was induced via ascorbic acid and β-glycerophosphate. Besides, Ferrostatin-1 (ferroptosis inhibitor) and GSK2606414 (PERK inhibitor) were added with siSLC40A1. RESULTS Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS) were higher but reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio was lower after siSLC40A1 transfection, while reduced Fe2+ and ROS but elevated GSH/GSSG ratio was observed after oeSLC40A1 transfection. Alkaline phosphatase (ALP) staining, Alizarin Red S (ARS) staining, osteopontin (OPN) and bone morphogenetic protein 2 (BMP2) were lower after siSLC40A1 transfection but were greater after oeSLC40A1 transfection. Furthermore, SLC40A1 negatively regulated the PERK/ATF4/CHOP pathway. Further exploration revealed that Fe2+, MDA, ROS, and the PERK/ATF4/CHOP pathway were attenuated, while GSH/GSSG ratio, ALP staining, ARS staining, and OPN expression were increased after ferrostatin-1 treatment in the siSLC40A1-transfected cells. Similar trends were observed with respect to GSK2606414 treatment with siSLC40A1. CONCLUSION SLC40A1 inhibition suppresses osteoblast formation by facilitating iron accumulation and activating the PERK/ATF4/CHOP pathway-mediated oxidative stress.
Collapse
Affiliation(s)
- Yu Fang
- Department of Orthopedics, Medical Affairs Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Wei Li
- Department of Radiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Chongyang Dong
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Binli Gao
- Department of Orthopedics, Medical Affairs Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Wen Guo
- Department of Orthopedics, Medical Affairs Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Mingyu Li
- Department of Orthopedics, Medical Affairs Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Zhichao Jiao
- Department of Orthopedics, Medical Affairs Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| |
Collapse
|
129
|
Ishii R, Harai N, Hosokawa T, Tahara I, Ogiwara M, Tsuchiya K. Reduction of Ovarian Cysts After Endoscopic Surgery for Follicle-Stimulating Hormone-Producing Pituitary Adenoma. JCEM CASE REPORTS 2024; 2:luae231. [PMID: 39659387 PMCID: PMC11630798 DOI: 10.1210/jcemcr/luae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 12/12/2024]
Abstract
A 49-year-old woman presented with irregular menstrual bleeding, elevated estradiol (E2) (665 pg/mL [2441.21 pmol/L]) (reference range [RR]: menstrual period [MP] 20-50 pg/mL; 73.42-183.55 pmol/L), unsuppressed follicle-stimulating hormone (FSH) (19.3 mIU/mL [19.3 IU/L]) (RR: MP 3.5-10.0 mIU/mL; 3.5-10.0 IU/L), and cystic ovarian enlargement (right ovary, 109 mL; left ovary, 146 mL). A 7-mm pituitary microadenoma was also observed, and 6 months after referral, endoscopic transsphenoidal surgery was performed, resulting in a diagnosis of FSH-producing pituitary adenoma. Nine months postoperatively, the ovarian cysts had markedly shrunk. Although FSH-producing pituitary adenomas are rare, approximately 64% of nonfunctioning pituitary adenomas are positive for gonadotropin immunostaining. FSH-producing pituitary adenomas are often endocrinologically silent, with symptoms typically triggered by pituitary tumor enlargement. Early diagnosis can be facilitated by measuring FSH and E2 levels in cases of irregular vaginal bleeding, abnormal menstruation, ovarian enlargement, ovarian hyperstimulation syndrome, or infertility. If E2 is elevated but FSH is not suppressed, pituitary magnetic resonance imaging should be performed to identify FSH-producing pituitary adenomas. In cases of FSH-producing pituitary adenomas, including microadenomas, symptoms may improve after tumor resection, making surgery the preferred treatment option.
Collapse
Affiliation(s)
- Reo Ishii
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Yamanashi 4093898, Japan
| | - Nozomi Harai
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Yamanashi 4093898, Japan
| | - Tadatsugu Hosokawa
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Yamanashi 4093898, Japan
| | - Ippei Tahara
- Department of Pathology, University of Yamanashi Hospital, Yamanashi 4093898, Japan
| | - Masakazu Ogiwara
- Department of Neurosurgery, Tokyo Metropolitan Tama Medical Center, Tokyo 1838524, Japan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Yamanashi 4093898, Japan
| |
Collapse
|
130
|
Lu P, Li WP, Zhou BJ, Tian WZ, Lu X, Gao W. N-butylphthalide (NBP) ameliorated ischemia/reperfusion-induced skeletal muscle injury in male mice via activating Sirt1/Nrf2 signaling pathway. Physiol Rep 2024; 12:e70149. [PMID: 39614673 DOI: 10.14814/phy2.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
N-butylphthalide (NBP) has been reported to have potential protective effects in ischemic stroke via its antioxidative properties. The present study was aimed to investigate the protective effects of NBP on ischemia/reperfusion (I/R)-induced skeletal muscle injury. Mouse model of I/R-induced skeletal muscle injury and hypoxia/reoxygenation (H/R)-induced C2C12 myotube injury model were constructed to test the protective effects of NBP both in vivo and in vitro. Our results showed that I/R resulted in skeletal muscle injury, as evidenced by elevated levels of LDH, CK, ROS, 3-NT, MDA, and 4-HNE as well as decreased activities of SOD, GSH-Px, and decreased expression of Myog and MyoD in gastrocnemius muscle, which was ameliorated by NBP treatment. Mechanistically, NBP treatment increased the expression of Sirt1 and Nrf2 in the injured skeletal muscle. Notably, the protective effects of NBP on I/R-induced skeletal muscle injury was diminished by the treatment of Sirt1 inhibitor. Further studies in H/R-induced C2C12 myotubes injury model also showed that NBP activated the Sirt1/Nrf2 pathway. NBP treatment upregulated the expression of myog and MyoD in H/R-stimulated C2C12 myotubes, which was eliminated by silencing of Sirt1. Taken together, our results suggest that NBP may alleviated I/R-induced skeletal muscle injury by activating Sirt1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Peng Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Department of Geriatrics, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Wei-Peng Li
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ben-Jun Zhou
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Ze Tian
- Department of Thoracic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
131
|
Eddin LB, Meeran MFN, Subramanya SB, Jha NK, Ojha S. Therapeutic potential of agents targeting cannabinoid type 2 receptors in organ fibrosis. Pharmacol Res Perspect 2024; 12:e1219. [PMID: 39425446 PMCID: PMC11489134 DOI: 10.1002/prp2.1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 10/21/2024] Open
Abstract
The endocannabinoid system has garnered attention as a potential therapeutic target in a range of pathological disorders. Cannabinoid receptors type 2 (CB2) are a class of G protein-coupled receptors responsible for transmitting intracellular signals triggered by both endogenous and exogenous cannabinoids, including those derived from plants (phytocannabinoids) or manufactured synthetically (synthetic cannabinoids). Recent recognition of the role of CB2 receptors in fibrosis has fueled interest in therapeutic targeting of CB2 receptors in fibrosis. Fibrosis is characterized by the alteration of the typical cellular composition within the tissue parenchyma, resulting from exposure to diverse etiological factors. The pivotal function of CB2 agonists has been widely recognized in the regulation of inflammation, fibrogenesis, and various other biological pathologies. The modulation of CB2 receptors, whether by enhancing their expression or activating their function, has the potential to provide benefits in numerous conditions, particularly by avoiding any associated adverse effects on the central nervous system. The sufficient activation of CB2 receptors resulted in the complete suppression of gene expression related to transforming growth factor β1 and its subsequent fibrogenic response. Multiple reports have also indicated the diverse functions that CB2 agonists possess in mitigating chronic inflammation and subsequent fibrosis development in various types of tissues. While currently in the preclinical stage, the advancement of CB2 compounds has garnered significant attention within the realm of drug discovery. This review presents a comprehensive synthesis of various independent experimental studies elucidating the pivotal role of identified natural and synthetic CB2 agonists in the pathophysiology of organ fibrosis, specifically in the cardiac, hepatic, and renal systems.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical CollegeSaveetha Institute of Medical and Technical Sciences, Saveetha UniversityChennaiIndia
- School of Bioengineering & BiosciencesLovely Professional UniversityPhagwaraIndia
- Department of Biotechnology, School of Applied & Life Sciences (SALS)Uttaranchal UniversityDehradunIndia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
- Zayed Bin Sultan Center for Health SciencesUnited Arab Emirates UniversityAl AinUAE
| |
Collapse
|
132
|
Yuan Q, Wang Y, Hu S, Cai Z, Jiang L, Huang Y. Role of microRNA in Diabetic Osteoporosis. Mol Biotechnol 2024:10.1007/s12033-024-01316-1. [PMID: 39609335 DOI: 10.1007/s12033-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Diabetic osteoporosis (DOP), a complication associated with diabetes mellitus (DM), is a metabolic bone disorder characterized by a reduction in bone mass per unit volume, impaired bone tissue microarchitecture, heightened bone fragility, and increased susceptibility to fractures. Individuals with diabetes exhibit a significantly greater incidence of osteoporosis and related fractures than those without diabetes. These fractures present a significant challenge in terms of the healing process and can result in severe consequences, including fatalities. MicroRNAs (miRNAs), a class of noncoding RNAs, play a pivotal role in numerous human diseases and are implicated in the pathogenesis of DOP. This review initially elucidates the essential role of miRNAs in the pathogenesis of DOP. Next, we emphasize the potential significance of miRNAs as valuable biomarkers for diagnosing DOP and predicting DOP-related fractures. Furthermore, we explore the involvement of miRNAs in managing DOP through various pathways, including conventional pharmaceutical interventions and exercise therapy. Importantly, miRNAs exhibit potential as targeted therapeutic agents for effectively treating DOP. Finally, we highlight the use of novel materials and exosomes for miRNA delivery, which has significant advantages in the treatment of DOP and overcomes the limitations associated with miRNA delivery.
Collapse
Affiliation(s)
- Qiong Yuan
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
- Department of Transfusion, Zigong First People's Hospital, Zigong, 643000, China
| | - Yuhan Wang
- Department of Clinical Laboratory, Luzhou Longmatan District People's Hospital, Luzhou, 646000, China
| | - Shan Hu
- Department of Transfusion, Guanghan People's Hospital, Deyang, 618300, China
| | - Zhi Cai
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
| | - Ling Jiang
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
133
|
Cesarini L, Grignaffini F, Alisi A, Pastore A. Alterations in Glutathione Redox Homeostasis in Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:1461. [PMID: 39765791 PMCID: PMC11672975 DOI: 10.3390/antiox13121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Low molecular weight (LMW) thiols, particularly glutathione, play pathogenic roles in various multiorgan diseases. The liver is central for the production and systemic distribution of LMW thiols; thus, it is particularly susceptible to the imbalance of redox status that may determine increased oxidative stress and trigger the liver damage observed in metabolic dysfunction-associated steatotic liver disease (MASLD) models and humans. Indeed, increased LMW thiols at the cellular and extracellular levels may be associated with the severity of MASLD. Here, we present a systematic literature review of recent studies assessing the levels of LMW thiols in MASLD in in vivo and in vitro models and human subjects. Based on the PRISMA 2020 criteria, a search was conducted using PubMed and Scopus by applying inclusion/exclusion filters. The initial search returned 1012 documents, from which 165 eligible studies were selected, further described, and qualitatively analysed. Of these studies, most focused on animal and cellular models, while a minority used human fluids. The analysis of these studies revealed heterogeneity in the methods of sample processing and measurement of LMW thiol levels, which hinder cut-off values for diagnostic use. Standardisation of the analysis and measure of LMW thiol is necessary to facilitate future studies.
Collapse
Affiliation(s)
| | | | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.G.); (A.P.)
| | | |
Collapse
|
134
|
Cui L, Sang C, Li R, Zhao S. Inhibition of lysine-specific histone demethylase 1A suppresses adenomyosis through reduction in ectopic endometrial stromal cell proliferation, migration, and invasion. Cytojournal 2024; 21:50. [PMID: 39737119 PMCID: PMC11683409 DOI: 10.25259/cytojournal_48_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/22/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Deep endometriosis is now referred to as adenomyosis externa, whereas adenomyosis is once known as endometriosis interna. Lysine-specific histone demethylase 1A (KDM1A, commonly LSD1) is a lysine demethylase that targets histone and non-histone proteins. This study aimed to assess how KDM1A affects the migration, invasion, and proliferation of adenomyosis-derived endometrial stromal cells (ESCs). Material and Methods Immunocytochemistry staining was used to identify primary ectopic endometrial stromal cells (EESCs) and eutopic endometrial stromal cells (EuESCs) were isolated and purified from patients with complete hysterectomy for adenomyosis. Cell counting kit-8 assay, colony formation, wound scratch, and transwell assays were used to investigate the effect of silencing KDM1A on the inhibition cell viability, colony, migration, and invasion, respectively. Mechanistic investigations were carried out by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Results Vimentin staining was highly positive and cytokeratin staining was nearly negative in EESCs and EuESCs. KDM1A silencing reduced the ability of EESCs and EuESCs to proliferate (P < 0.001). The proliferation, motility, and invasiveness of EESCs and EuESCs were markedly reduced when KDM1A was silenced (P < 0.001). KDM1A silencing substantially downregulated invasion- and migration-related proteins or genes according to Western blot and qRT-PCR analysis (P < 0.05). EESCs and EuESCs with KDM1A silencing showed a higher reduction in these proteins than the control group (P < 0.05). Conclusion In adenomyosis, silencing KDM1A can limit the motility, invasiveness, and proliferation of EuESCs and EESCs. These outcomes could potentially correlate with the decreased expression levels of matrix metalloproteinases (MMP)-2, MMP-9, Fascin, and Erzin proteins.
Collapse
Affiliation(s)
- Limei Cui
- Department of Gynecology , Qingdao Women and Children’s Hospital, Shandong University, Qingdao, China
- Department of Gynecology, Qingzhou People’s Hospital, Weifang, China
| | - Changmei Sang
- Department of Gynecology, Qingdao Women and Children’s Hospital, Qingdao, China
| | - Ruoqing Li
- Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shuping Zhao
- Department of Gynecology , Qingdao Women and Children’s Hospital, Shandong University, Qingdao, China
| |
Collapse
|
135
|
Soladogun AS, Zhang L. The Neural Palette of Heme: Altered Heme Homeostasis Underlies Defective Neurotransmission, Increased Oxidative Stress, and Disease Pathogenesis. Antioxidants (Basel) 2024; 13:1441. [PMID: 39765770 PMCID: PMC11672823 DOI: 10.3390/antiox13121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Heme, a complex iron-containing molecule, is traditionally recognized for its pivotal role in oxygen transport and cellular respiration. However, emerging research has illuminated its multifaceted functions in the nervous system, extending beyond its canonical roles. This review delves into the diverse roles of heme in the nervous system, highlighting its involvement in neural development, neurotransmission, and neuroprotection. We discuss the molecular mechanisms by which heme modulates neuronal activity and synaptic plasticity, emphasizing its influence on ion channels and neurotransmitter receptors. Additionally, the review explores the potential neuroprotective properties of heme, examining its role in mitigating oxidative stress, including mitochondrial oxidative stress, and its implications in neurodegenerative diseases. Furthermore, we address the pathological consequences of heme dysregulation, linking it to conditions such as Alzheimer's disease, Parkinson's disease, and traumatic brain injuries. By providing a comprehensive overview of heme's multifunctional roles in the nervous system, this review underscores its significance as a potential therapeutic target and diagnostic biomarker for various neurological disorders.
Collapse
Affiliation(s)
| | - Li Zhang
- Department of Biological Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX 75080, USA;
| |
Collapse
|
136
|
Zhang Y, Miao X, Liu F, Shi H, Chen D, Chen Y, Ma Y, Shi H. ASPP2 deficiency attenuates lipid accumulation through the PPARγ pathway in alcoholic liver injury. Cell Biol Toxicol 2024; 40:102. [PMID: 39576443 PMCID: PMC11584427 DOI: 10.1007/s10565-024-09925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/02/2024] [Indexed: 11/24/2024]
Abstract
The initial stage of alcoholic liver disease (ALD) is hepatic steatosis. Recent studies have highlighted a possible role for Apoptosis-stimulating protein 2 of p53 (ASPP2) in regulating hepatic lipid metabolism in nonalcoholic fatty liver (NAFLD). However, whether ASPP2 regulates alcohol-induced lipid accumulation and its mechanisms remain unclear. To explore that, we establish an alcoholic liver injury model in vivo and in vitro. The clinical specimens were collected from liver tissues of patients with alcoholic liver disease. Lipid metabolism was detected by HE staining, oil red O staining and qPCR; and ASPP2-peroxisome proliferator-activated receptor γ (PPARγ) signaling pathways were detected by western blot and immunohistochemical staining. We found that both ASPP2 and PPARγ expression increased in patients and mouse models with ALD. We also discovered the reduction of ASPP2 significantly inhibited the expression of PPARγ and alleviated alcohol-induced hepatic lipid accumulation and liver injury in vivo and in vitro. Mechanistically, the PPARγ agonist reversed the protective effect of ASPP2 downregulation on hepatic steatosis and liver injury, while the opposite results were observed using PPARγ inhibitor. In conclusion, ASPP2 exacerbates ethanol-induced lipid accumulation and hepatic injury by upregulating the PPARγ signaling pathway, thus promoting the occurrence and development of ALD.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xingzhong Miao
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fang Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Honglin Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| | - Hongbo Shi
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
137
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
138
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
139
|
Lin YK, Hong YL, Liu CY, Lin WQ, Liang K, Deng SQ, Zhang XJ, Zeng JX, Wang S. Jiawei Bai-Hu-decoction ameliorated heat stroke-induced brain injury by inhibiting TLR4/NF-κB signal and mitophagy of glial cell. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118571. [PMID: 38996953 DOI: 10.1016/j.jep.2024.118571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Bai-Hu-Decoction (JWBHD), a prescription formulated with seven traditional Chinese medicinal material has demonstrated clinical efficacy in mitigating brain injury among heat stroke (HS) patients. AIM OF THE STUDY This study aimed to evaluate the therapeutic efficacy of JWBHD on rat model of HS and to explore its therapeutic mechanisms by integrating network pharmacology and pharmacodynamic methodologies, which major components were analyzed by using UPLC-MS/MS. MATERIALS AND METHODS The network pharmacology analysis was firstly conducted to predict the potential active ingredients and therapeutic targets of JWBHD. The anti-HS effectiveness of JWBHD was then evaluated on rats experienced HS. Rat brain tissues were harvested for a comprehensive array of experiments, including Western blot, PCR, H&E staining, Nissl staining, ELISA, transmission electron microscope, flow cytometry and immunofluorescence to validate the protective effects of JWBHD against HS-induced brain damage. Furthermore, the inhibitory effects of JWBHD on TLR4/NF-κB signal and mitophagy of glial were further verified on HS-challenged F98 cell line. Finally, the chemical compositions of the water extract of JWBHD were analyzed by using UPLC-MS/MS. RESULTS Network pharmacology has identified fifty core targets and numerous HS-related signaling pathways as potential therapeutic targets of JWBHD. Analysis of protein-protein interaction (PPI) and GO suggests that JWBHD may suppress HS-induced inflammatory signals. In experiments conducted on HS-rats, JWBHD significantly reduced the core temperature, restored blood pressure and alleviated neurological defect. Furthermore, JWBHD downregulated the counts of white blood cells and monocytes, decreased the levels of inflammatory cytokines such as IL-1β, IL-6 and TNF-α in peripheral blood, and suppressed the expression of TLR4 and NF-κB in the cerebral cortex of HS-rats. Besides, JWBHD inhibited the apoptosis of cortical cells and mitigated the damage to the cerebral cortex in HS group. Conversely, overactive mitophagy was observed in the cerebral cortex of HS-rats. However, JWBHD restored the mitochondrial membrane potential and downregulated expressions of mitophagic proteins including Pink1, Parkin, LC3B and Tom20. JWBHD reduced the co-localization of Pink1 and GFAP, a specific marker of astrocytes in the cerebral cortex of HS-rats. In addition, the inhibitory effect of JWBHD on TLR4/NF-κB signaling and overactive mitophagy were further confirmed in F98 cells. Finally, UPLC-MS/MS analysis showed that the main components of JWBHD include isoliquiritigenin, liquiritin, dipotassium glycyrrhizinate, ginsenoside Rb1, ginsenoside Re, etc. CONCLUSIONS: JWBHD protected rats from HS and prevented HS-induced damage in the cerebral cortex by suppressing TLR4/NF-κB signaling and mitophagy of glial.
Collapse
Affiliation(s)
- Yi-Ke Lin
- Guangzhou Hospital of Integrated Traditional and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, No.87 Yingbin Avenue, Huadu District, Guangzhou, 510801, PR China; School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou, 510006, PR China
| | - Yu-Lin Hong
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou, 510006, PR China
| | - Chun-Yan Liu
- Guangzhou Hospital of Integrated Traditional and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, No.87 Yingbin Avenue, Huadu District, Guangzhou, 510801, PR China; School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou, 510006, PR China
| | - Wan-Qiu Lin
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou, 510006, PR China
| | - Kang Liang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou, 510006, PR China
| | - Si-Qi Deng
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou, 510006, PR China
| | - Xiao-Jun Zhang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou, 510006, PR China.
| | - Jia-Xin Zeng
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou, 510006, PR China; The Sixth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 6001, Beihuan Avenue, Futian District, Shenzhen, 518034, PR China.
| | - Shuai Wang
- Guangzhou Hospital of Integrated Traditional and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, No.87 Yingbin Avenue, Huadu District, Guangzhou, 510801, PR China; School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou, 510006, PR China; Guangzhou Huadu District Women and Children's Health Hospital, No.51, Jianshe Road, Huadu District, Guangzhou, 510800, PR China.
| |
Collapse
|
140
|
Cai Y, Zhang X, Qian H, Huang G, Yan T. Uncovering the therapeutic efficacy and mechanisms of Quercetin on traumatic brain injury animals: a meta-analysis and network pharmacology analysis. Metab Brain Dis 2024; 40:13. [PMID: 39556146 DOI: 10.1007/s11011-024-01449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/05/2024] [Indexed: 11/19/2024]
Abstract
Quercetin, a flavonoid and natural antioxidant derived from fruits and vegetables, has shown promising results in the improvement of traumatic brain injury (TBI). This study aims to elucidate the therapeutic role and potential mechanisms of quercetin in TBI through systematic evaluations and network pharmacology approaches. First, the meta-analysis was conducted via Review Manager 5.4 software. The meta-analysis results confirmed that quercetin could improve TBI, primarily by inhibiting inflammation, oxidative stress, and apoptosis. Subsequently, targets related to quercetin and those related to TBI were extracted from drug-related databases and disease-related databases, respectively. We found that the potential mechanism by which quercetin treats TBI is largely associated with ferroptosis, as indicated by functional analysis. Based on this, we identified 29 ferroptosis-related genes (FRGs) associated with quercetin and TBI, and then performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using the DAVID database. The functional enrichment results revealed that these FRGs mainly involve the HIF-1 signaling pathway, IL-17 signaling pathway, and PI3K-Akt signaling pathway. Subsequently, we constructed a PPI network and identified the top 10 targets-HIF1A, IL6, JUN, TP53, IL1B, PTGS2, PPARG, EGFR, IFNG, and GSK3B-as hub targets. Meanwhile, molecular docking results further demonstrated that quercetin could stably bind to the top 10 hub targets. In conclusion, the above results elucidated that quercetin could effectively attenuates TBI by inhibiting inflammation, oxidative stress, and apoptosis. Notably, quercetin may also target these hub targets to regulate ferroptosis and improve TBI.
Collapse
Affiliation(s)
- Yawen Cai
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohang Zhang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haotian Qian
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guiqin Huang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianhua Yan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
141
|
Yizhong B, Chen F, Jin W, Dai J, Mao G, Song B. Sulfated galactofucan from Sargassum fusiforme protects against postmenopausal osteoporosis by regulating bone remodeling. Commun Biol 2024; 7:1471. [PMID: 39516319 PMCID: PMC11549216 DOI: 10.1038/s42003-024-07097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoporosis is a degenerative bone disease highly prevalent in older women, causing high morbidity and mortality rates. Fourteen kinds of fucoidan were isolated from Sargassum fusiforme through acid (named as SFS), alkaline (SFJ) and water (SFW). SFW was passed through an anion exchange column to obtain SFW-0, SFW-0.5 and SFW-2. SFW-0.5 and SFW-2 were degraded to obtain different sulfate group contents SFW-x-M/S/O (x for 0.5 or 2). We further confirmed SFW-0.5-O was the most effective fraction of SFW. SFW-0.5-O may have alternating backbones of (Gal)n and (Fuc)n, and the main sulfation may be at C2/C3 of the Fuc/Gal residues. SFW-0.5-O inhibition of OC differentiation was associated with IRF-8 signaling; meanwhile, SFW-0.5-O promoted osteoblast differentiation and bone mineral nodule formation. SFW-0.5-O also effectively ameliorated osteoporosis symptom caused by estrogen deprivation in vivo. We uncovered that the fucoidan active fraction SFW-0.5-O demonstrated effective bone protection, may be exploited for osteoporosis therapy.
Collapse
Affiliation(s)
- Bao Yizhong
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, PR China
| | - Fen Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Jihua Dai
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, PR China
| | - Genxiang Mao
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, PR China.
| | - Boshan Song
- Department of Orthopaedic Surgery, Zhejiang Hospital, Hangzhou, PR China.
| |
Collapse
|
142
|
Nie S, Zhang S, Wu R, Zhao Y, Wang Y, Wang X, Zhu M, Huang P. Scutellarin: pharmacological effects and therapeutic mechanisms in chronic diseases. Front Pharmacol 2024; 15:1470879. [PMID: 39575387 PMCID: PMC11578714 DOI: 10.3389/fphar.2024.1470879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Scutellarin (SCU), a flavonoid glucuronide derived from Scutellaria barbata and Erigeron breviscapus, exhibits broad pharmacological effects with promising therapeutic potential in treating various chronic diseases. It has demonstrated efficacy in modulating multiple biological pathways, including antioxidant, anti-inflammatory, anti-apoptotic, and vasodilatory mechanisms. These protective roles make SCU a valuable compound in treating chronic diseases such as cerebrovascular diseases, cardiovascular diseases, neurodegenerative disorders, and metabolic diseases. Despite its multi-targeted effects, SCU faces challenges such as low bioavailability and limited clinical data, which hinder its widespread therapeutic application. Current research supports its potential to prevent oxidative stress, reduce inflammatory responses, and enhance cell survival in cells and rats. However, more comprehensive studies are required to clarify its molecular mechanisms and to develop strategies that enhance its bioavailability for clinical use. SCU could emerge as a potent therapeutic agent for the treatment of chronic diseases with complex pathophysiological mechanisms. This review examines the current literature on Scutellarin to provide a comprehensive understanding of its pharmacological activity, mechanisms of action, and therapeutic potential in treating chronic diseases.
Collapse
Affiliation(s)
- Shanshan Nie
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruipeng Wu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuhang Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongxia Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinlu Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mingjun Zhu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
143
|
Huh J, Hwang W. The Role of Anesthetic Management in Lung Cancer Recurrence and Metastasis: A Comprehensive Review. J Clin Med 2024; 13:6681. [PMID: 39597826 PMCID: PMC11594908 DOI: 10.3390/jcm13226681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Lung cancer remains a leading cause of cancer-related mortality worldwide. Although surgical treatment is a primary approach, residual cancer cells and surgery-induced pathophysiological changes may promote cancer recurrence and metastasis. Anesthetic agents and techniques have recently been shown to potentially impact these processes by modulating surgical stress responses, immune function, inflammatory pathways, and the tumor microenvironment. Anesthetics can influence immune-modulating cytokines, induce pro-inflammatory factors such as HIF-1α, and alter natural-killer cell activity, affecting cancer cell survival and spread. Preclinical studies suggest volatile anesthetics may promote tumor progression by triggering pro-inflammatory signaling, while propofol shows potential antitumor properties through immune-preserving effects and reductions in IL-6 and other inflammatory markers. Additionally, opioids are known to suppress immune responses and stimulate pathways that may support cancer cell proliferation, whereas regional anesthesia may reduce these risks by decreasing the need for systemic opioids and volatile agents. Despite these findings, clinical data remain inconclusive, with studies showing mixed outcomes across patient populations. Current clinical trials, including comparisons of volatile agents with propofol-based total intravenous anesthesia, aim to provide clarity but highlight the need for further investigation. Large-scale, well-designed studies are essential to validate the true impact of anesthetic choice on cancer recurrence and to optimize perioperative strategies that support long-term oncologic outcomes for lung cancer patients.
Collapse
Affiliation(s)
| | - Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
144
|
Shen H, Zhang C, Zhang Q, Lv Q, Liu H, Yuan H, Wang C, Meng F, Guo Y, Pei J, Yu C, Tie J, Chen X, Yu H, Zhang G, Wang X. Gut microbiota modulates depressive-like behaviors induced by chronic ethanol exposure through short-chain fatty acids. J Neuroinflammation 2024; 21:290. [PMID: 39508236 PMCID: PMC11539449 DOI: 10.1186/s12974-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Chronic ethanol exposure (CEE) is recognized as an important risk factor for depression, and the gut-brain axis has emerged as a key mechanism underlying chronic ethanol exposure-induced anxiety and depression-like behaviors. Short-chain fatty acids (SCFAs), which are the key metabolites generated by gut microbiota from insoluble dietary fiber, exert protective roles on the central nervous system, including the reduction of neuroinflammation. However, the link between gut microbial disturbances caused by chronic ethanol exposure, production of SCFAs, and anxiety and depression-like behaviors remains unclear. METHODS Initially, a 90-day chronic ethanol exposure model was established, followed by fecal microbiota transplantation model, which was supplemented with SCFAs via gavage. Anxiety and depression-like behaviors were determined by open field test, forced swim test, and elevated plus-maze. Serum and intestinal SCFAs levels were quantified using GC-MS. Changes in related indicators, including the intestinal barrier, intestinal inflammation, neuroinflammation, neurotrophy, and nerve damage, were detected using Western blotting, immunofluorescence, and Nissl staining. RESULTS Chronic ethanol exposure disrupted with gut microbial homeostasis, reduced the production of SCFAs, and led to anxiety and depression-like behaviors. Recipient mice transplanted with fecal microbiota that had been affected by chronic ethanol exposure exhibited impaired intestinal structure and function, low levels of SCFAs, intestinal inflammation, activation of neuroinflammation, a compromised blood-brain barrier, neurotrophic defects, alterations in the GABA system, anxiety and depression-like behaviors. Notably, the negative effects observed in these recipient mice were significantly alleviated through the supplementation of SCFAs. CONCLUSION SCFAs not only mitigate damage to intestinal structure and function but also alleviate various lesions in the central nervous system, such as neuroinflammation, and reduce anxiety and depression-like behaviors, which were triggered by transplantation with fecal microbiota that had been affected by chronic ethanol exposure, adding more support that SCFAs serve as a bridge between the gut and the brain.
Collapse
Affiliation(s)
- Hui Shen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chaoxu Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Qian Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, 110001, P. R. China
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, P. R. China
| | - Qing Lv
- Department of Clinical Nutrition, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, P. R. China
| | - Hao Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Huiya Yuan
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, 110122, P. R. China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, 110122, P. R. China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, 110032, P. R. China
| | - Fanyue Meng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Yufu Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jiaxin Pei
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chenyang Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jinming Tie
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Xiaohuan Chen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Hao Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Xiaolong Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| |
Collapse
|
145
|
Uruno A, Kadoguchi-Igarashi S, Saito R, Koiso S, Saigusa D, Chu CT, Suzuki T, Saito T, Saido TC, Cuadrado A, Yamamoto M. The NRF2 inducer CDDO-2P-Im provokes a reduction in amyloid β levels in Alzheimer's disease model mice. J Biochem 2024; 176:405-414. [PMID: 39259503 DOI: 10.1093/jb/mvae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Alzheimer's disease (AD) is the most common aetiology of dementia. The transcription factor NF-E2-related factor 2 (NRF2) induces the expression of genes encoding phase II detoxification and antioxidant genes. NRF2 is regulated by Kelch-like ECH-associated protein 1 (KEAP1), and the KEAP1-NRF2 system is the key regulatory system involved in cytoprotection. To examine whether pharmacological induction of NRF2 expression alleviates AD phenotypes in vivo, we employed two AD mouse models, i.e. App NL-G-F/NL-G-F (AppNLGF) and APPV717I::TAUP301L (APP/TAU) mice. As the synthetic oleanane triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11-dien-28-oyl)] (CDDO)-4(-pyridin-2-yl)-imidazole (CDDO-2P-Im) exhibits strong NRF2-inducing activity, we treated AD model mice with CDDO-2P-Im. We found that Aβ42 levels were markedly greater in the brains of AppNLGF mice than in those of APP/TAU mice. CDDO-2P-Im treatment significantly decreased Aβ42 levels, but not Aβ40 levels, in APP/TAU mice. Consequently, CDDO-2P-Im also decreased the ratio of Aβ42/Aβ40, a vital marker of amyloid plaque formation. LC-MS/MS analyses revealed that CDDO-2P-Im was delivered to the brains of the APP/TAU mice. CDDO-2P-Im induced the expression of detoxification and antioxidant gene targets of NRF2 and elevated reduced glutathione (GSH) levels in the mouse brain. These results support the notion that CDDO-2P-Im ameliorates AD-related pathologic changes.
Collapse
Affiliation(s)
- Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Shiori Kadoguchi-Igarashi
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Shohei Koiso
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
- Department of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Ching-Tung Chu
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Takafumi Suzuki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Instituto de Investigación Sanitaria La Paz (IdiPaz), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Duperier, 4, Madrid 28049, Spain
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| |
Collapse
|
146
|
Hu J, Song Y, Zhang Y, Yang P, Chen S, Wu Z, Zhang J. Catalpol Enhances Osteogenic Differentiation of Human Periodontal Stem Cells and Modulates Periodontal Tissue Remodeling in an Orthodontic Tooth Movement Rat Model. Drug Des Devel Ther 2024; 18:4943-4960. [PMID: 39525045 PMCID: PMC11546164 DOI: 10.2147/dddt.s482969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This study examines the effects and mechanisms of catalpol (CAT) on the proliferation and osteogenic differentiation of cultured human periodontal ligament stem cells (hPDLSCs) in vitro and assesses the impact of CAT on periodontal remodeling in vivo using an orthodontic tooth movement (OTM) model in rats. Methods hPDLSCs were cultured in a laboratory setting, and their proliferation and osteogenic differentiation were assessed using the Cell-counting Kit-8 (CCK-8), Alizarin Red Staining (ARS), quantitative calcium assay, alkaline phosphatase (ALP) staining and activity assay, and immunofluorescence assay. Additionally, the expression of collagen type 1 (COL-1), ALP, and runt-related transcription factor-2 (RUNX-2) was evaluated through qRT-PCR and Western blot analysis. To verify the function of the estrogen receptor-α (ER-α)-mediated phosphatidylinositol-3-kinase-protein kinase B (PI3K/AKT) pathway in this mechanism, LY294002 (a PI3K signaling pathway inhibitor) and the ER-α specific inhibitor methyl-piperidine-pyrazole (MPP) were used. The osteogenic markers ER-α, AKT, and p-AKT (phosphoprotein kinase B) were identified through Western blot analysis. Eighteen male Sprague-Dawley rats were assigned to two groups randomly: a CAT group receiving CAT and a control group receiving an equivalent volume of saline. Micro-computed tomography (micro-CT) analysis was employed to evaluate tooth movement and changes in alveolar bone structure. Morphological changes in the periodontal tissues between the roots were investigated using hematoxylin and eosin (HE) staining and tartaric-resistant acid phosphatase (TRAP) staining. The expression of COL-1, RUNX-2, and nuclear factor-κB (NF-κB) ligand (RANKL) was assessed through immunohistochemical staining (IHC) to evaluate periodontal tissue remodeling. Tests were analyzed using GraphPad Prism 8 software. Differences among more than two groups were analyzed by one-way or two-way analysis of variance (ANOVA) followed by the Tukey's test. Values of p < 0.05 were regarded as statistically significant. Results In vitro experiments demonstrated that 10 μM CAT significantly promoted the proliferation, ALP activity, and calcium nodule formation of hPDLSCs, with a notable increase in the expression of COL-1, ALP, RUNX-2, ER-α, and p-AKT. The PI3K/AKT pathway was inhibited by LY294002, and further analysis using MPP suggested that ER-α mediated this effect. In vivo, experiments indicated that CAT enhanced the expression of COL-1 and RUNX-2 on the tension side of rat tooth roots, reduced the number of osteoclasts on the compression side, inhibited RANKL expression, and suppressed OTM. Conclusion CAT can promote hPDLSCs proliferation and osteogenic differentiation in vitro through the ER-α/PI3K/AKT pathway and enhance periodontal tissue remodeling in vivo using OTM models. These findings suggest the potential for the clinical application of catalpol in preventing relapse following OTM.
Collapse
Affiliation(s)
- Jing Hu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Yang Song
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Yuxing Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Peng Yang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Siyu Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Zhaoyan Wu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
147
|
Xie L, Dai X, Li Y, Cao Y, Shi M, Li X. Pickering Emulsion of Curcumin Stabilized by Cellulose Nanocrystals/Chitosan Oligosaccharide: Effect in Promoting Wound Healing. Pharmaceutics 2024; 16:1411. [PMID: 39598536 PMCID: PMC11597753 DOI: 10.3390/pharmaceutics16111411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 09/27/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The stabilization of droplets in Pickering emulsions using solid particles has garnered significant attention through various methods. Cellulose and chitin derivatives in nature offer a sustainable source of Pickering emulsion stabilizers. Methods: In this study, medium-chain triglycerides were used as the oil phase for the preparation of emulsion. This study explores the potential of cellulose nanocrystals (CNC) and shell oligosaccharides (COS) as effective stabilizers for achieving stable Pickering emulsions. Optical microscopy, CLSM, and Cyro-SEM were employed to analyze CNC/COS-Cur, revealing the formation of bright and uniform yellow spherical emulsions. Results: CLSM and SEM results confirmed that CNC/COS formed a continuous and compact shell at the oil-water interface layer, enabling a stable 2~3 microns Pickering emulsion with CNS/COS-Cur as an oil-in-water emulsion stabilizer. Based on FTIR, XRD, and SEM analyses of CNC/COS, along with zeta potential measurements of the emulsion, we found that CNC and COS complexed via electrostatic adsorption, forming irregular rods measuring approximately 200-300 nm in length. An evaluation of the DPPH radical-scavenging ability demonstrated that the CNC/ COS-Cur Pickering emulsion performed well in vitro. In vivo experiments involving full-thickness skin excision surgery in rats revealed that CNC/COS-Cur facilitated wound repair processes. Measurements of the MDA and SOD content in healing tissues indicated that the CNC/COS-Cur Pickering emulsion increased SOD levels and reduced MDA content, effectively countering oxidative stress-induced damage. An assessment based on wound-healing rates and histopathological examination showed that CNC/COS-Cur promoted granulation tissue formation, fibroblast proliferation, angiogenesis, and an accelerated re-epithelialization process within the wound tissue, leading to enhanced collagen deposition and facilitating rapid wound-healing capabilities. An antibacterial efficacy assessment conducted in vitro demonstrated antibacterial activity.
Collapse
Affiliation(s)
- Long Xie
- Science and Education Section, The First People’s Hospital of Shuangliu District, Chengdu (West China Airport Hospital Sichuan University), Chengdu 610299, China;
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (X.D.); (Y.L.); (Y.C.)
| | - Xiaolin Dai
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (X.D.); (Y.L.); (Y.C.)
- Department of pharmacy, Chengdu Seventh People’s Hospital (Affliated Cancer Hospital of Chengdu Medical College), Chengdu 610203, China
| | - Yuke Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (X.D.); (Y.L.); (Y.C.)
| | - Yi Cao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (X.D.); (Y.L.); (Y.C.)
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Xiaofang Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (X.D.); (Y.L.); (Y.C.)
| |
Collapse
|
148
|
Boidin M, Grégoire CA, Gagnon C, Thorin-Trescases N, Thorin E, Nigam A, Juneau M, Guillaume A, Tremblay J, Gayda M, Bherer L. Effects of variation in exercise training load on cognitive performances and neurotrophic biomarkers in patients with coronary artery disease. J Appl Physiol (1985) 2024; 137:1158-1167. [PMID: 38961824 PMCID: PMC11573279 DOI: 10.1152/japplphysiol.00636.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
This study compared the effects of linear (LP) and nonlinear (NLP) training periodization on cognitive functions, neurotrophic biomarkers [plasma brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1)], and cathepsin-B in patients with coronary artery disease (CAD). Forty-four patients with CAD reported to our laboratory on two occasions to undergo testing procedures before and after training sessions, and were then blindly randomized to NLP or LP for 36 training sessions. Visit 1 included blood samples and a maximal cardiopulmonary exercise testing to get maximal oxygen uptake (V̇o2peak). Visit 2 included cognitive functions assessment. Thirty-nine patients completed the study (LP: n = 20, NLP: n = 19), with no observed changes in cognitive performances after the training intervention in either group. IGF-1 concentration decreased in both groups (time-effect: P < 0.001), whereas BDNF concentration increased (time-effect: P < 0.05) without group interaction, and cathepsin-B did not change after the intervention. Associations were found between ΔV̇o2peak and ΔBDNF (R2 = 0.18, P = 0.04), and ΔIGF-1 and Δshort-term/working memory (R2 = 0.17, P = 0.01) in the pooled sample, with ΔIGF-1 and ΔBDNF accounting for 10% of the variance in Δshort-term/working memory. In the LP group, associations were found between ΔV̇o2peak and ΔBDNF (R2 = 0.45, P = 0.02), ΔBDNF and Δshort-term/working memory (R2 = 0.62, P = 0.004), ΔIGF-1 and Δshort-term/working memory (R2 = 0.31, P = 0.01), and ΔIGF-1 and Δexecutive function (R2 = 0.22, P = 0.04). This study indicates that linear and nonlinear training periodization led to an increase in BDNF, and a decrease in IGF-1, without change in cognitive function in individuals with stable CAD.NEW & NOTEWORTHY We used a novel and supervised iso-energetic training, integrating both moderate- and high-intensity aerobic exercises. Our findings indicate that greater variation in training load did not yield cognitive enhancements, although both protocols exhibited positive effects on brain-derived neurotrophic factor (BDNF) levels. Moreover, this study establishes a clear positive association between short-term and working memory and neurotrophic biomarkers. In addition, the independent predictive value of change in insulin-like growth factor-1 (IGF-1) on improvement in short-term and working memory highlight the close relationship between neurotrophic markers and cognition. Consequently, our results advocate for exercise training interventions targeting neurotrophic biomarkers to enhance cognitive function among individuals with coronary artery disease.
Collapse
Affiliation(s)
- Maxime Boidin
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, University of Liverpool, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Christine Gagnon
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Eric Thorin
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Anil Nigam
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Martin Juneau
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Arthur Guillaume
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Tremblay
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- School of Kinesiology and Exercise Science, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Mathieu Gayda
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Louis Bherer
- Research Center and Centre EPIC, Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
149
|
Pan X, Guo A, Guan K, Chen C, Xu S, Tang Y, Li X, Huang Z. Lactobacillus rhamnosus GG attenuates depression-like behaviour and cognitive deficits in chronic ethanol exposure mice by down-regulating systemic inflammatory factors. Addict Biol 2024; 29:e13445. [PMID: 39585236 PMCID: PMC11587820 DOI: 10.1111/adb.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 11/26/2024]
Abstract
Ethanol can directly or indirectly lead to cognitive and mental disorders. The long-term intake of alcohol can directly affect the distribution of gut microbiota. Lactobacillus rhamnosus GG (LGG) is a natural bacterium isolated from healthy human intestines that has the function of preventing cytokine-induced cell apoptosis and protecting cell barriers. However, the regulatory effect of LGG on cognitive and mental disorders caused by chronic ethanol exposure (CEE) is still unclear. In this study, we established a CEE mouse model through free alcohol consumption and added LGG or antibiotics in the later stages of the model. Sequencing analysis of the 16S rRNA gene showed that CEE resulted in a decrease in the abundance and diversity of mouse gut microbial communities accompanied by alterations in the relative abundance of multiple enterobacterial genera. The use of LGG and antibiotics alleviated the depression-like behaviour and cognitive impairment of CEE-induced mice, reduced expression of inflammatory factors such as interleukin (IL)-6, IL-1β and tumour necrosis factor (TNF)-α in the ileum, serum and brain and increased the expression of synaptophysin (SYN), postsynaptic density protein-95 (PSD-95) and brain-derived neurotrophic factor (BDNF) in the hippocampus. Together, LGG can alleviate depression-like behaviour caused by CEE in mice while also improving cognitive and memory functions through reducing peripheral and nervous system inflammation factors and balancing gut microbiota.
Collapse
Affiliation(s)
- Xiaoyu Pan
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Anqi Guo
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Kaiyu Guan
- Peking University Sixth Hospital, Peking University Institute of Mental HealthBeijingChina
| | - Congcong Chen
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Shengnan Xu
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yali Tang
- Institute of Brain ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Zhengwei Huang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| |
Collapse
|
150
|
Jin R, Li C, Yang Y, Xie J. AEBP1 restores osteoblastic differentiation under dexamethasone treatment by activating PI3K/AKT signalling. Clin Exp Pharmacol Physiol 2024; 51:e13923. [PMID: 39358837 DOI: 10.1111/1440-1681.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) is closely implicated in osteoblastic differentiation and bone fracture; this research aimed to investigate the effect of AEBP1 on restoring osteoblastic differentiation under dexamethasone (Dex) treatment, and its interaction with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Pre-osteoblastic MC3T3-E1 cells were cultured in osteogenic medium and treated by Dex to mimic steroid-induced osteonecrosis cellular model. They were then further transfected with control or AEBP1-overexpressed lentiviral vectors. Finally, cells were treated with the PI3K inhibitor LY294002, with or without AEBP1-overexpressed lentiviral vectors. AEBP1 expression showed a downward trend in MC3T3-E1 cells under Dex treatment in a dose-dependent manner. AEBP1-overexpressed lentiviral vectors increased relative cell viability, alkaline phosphatase (ALP) staining, Alizarin red staining and osteoblastic differentiation markers including osteocalcin (OCN), osteopontin (OPN), collagen type I alpha 1 (COL1A1), runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 2 (BMP2), but decreased cell apoptosis rate in MC3T3-E1 cells under Dex treatment; besides, AEBP1-overexpressed lentiviral vectors positively regulated p-PI3K and p-AKT expressions. Furthermore, LY294002 treatment decreased relative cell viability, Alizarin red staining, osteoblastic differentiation markers including OCN, OPN, RUNX2 and BMP, increased cell apoptosis rate and did not affect ALP staining in MC3T3-E1 cells under Dex treatment; meanwhile, LY294002 treatment weakened the effect of AEBP1 overexpression vectors on the above cell functions. AEBP1 restores osteoblastic differentiation under Dex treatment by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Rilong Jin
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yute Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xie
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|