101
|
Zhong YT, Cen Y, Xu L, Li SY, Cheng H. Recent Progress in Carrier-Free Nanomedicine for Tumor Phototherapy. Adv Healthc Mater 2023; 12:e2202307. [PMID: 36349844 DOI: 10.1002/adhm.202202307] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Indexed: 11/10/2022]
Abstract
Safe and effective strategies are urgently needed to fight against the life-threatening diseases of various cancers. However, traditional therapeutic modalities, such as radiotherapy, chemotherapy and surgery, exhibit suboptimal efficacy for malignant tumors owing to the serious side effects, drug resistance and even relapse. Phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), are emerging therapeutic strategies for localized tumor inhibition, which can produce a large amount of reactive oxygen species (ROS) or elevate the temperature to initiate cell death by non-invasive irradiation. In consideration of the poor bioavailability of phototherapy agents (PTAs), lots of drug delivery systems have been developed to enhance the tumor targeted delivery. Nevertheless, the carriers of drug delivery systems inevitably bring biosafety concerns on account of their metabolism, degradation, and accumulation. Of note, carrier-free nanomedicine attracts great attention for clinical translation with synergistic antitumor effect, which is characterized by high drug loading, simplified synthetic method and good biocompatibility. In this review, the latest advances of phototherapy with various carrier-free nanomedicines are summarized, which may provide a new paradigm for the future development of nanomedicine and tumor precision therapy.
Collapse
Affiliation(s)
- Ying-Tao Zhong
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yi Cen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Lin Xu
- Department of Geriatric Cardiology, General Hospital of the Southern Theatre Command, People's Liberation Army (PLA) and Guangdong Pharmaceutical University, Guangzhou, 510016, P. R. China
| | - Shi-Ying Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
102
|
Lv Z, Hu T, Bian Y, Wang G, Wu Z, Li H, Liu X, Yang S, Tan C, Liang R, Weng X. A MgFe-LDH Nanosheet-Incorporated Smart Thermo-Responsive Hydrogel with Controllable Growth Factor Releasing Capability for Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206545. [PMID: 36426823 DOI: 10.1002/adma.202206545] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Although growth factor (GF)-loaded hydrogels have been explored as promising materials in repairing bone defects, it still remains challenging to construct smart hydrogels with excellent gelation/mechanical properties as well as controllable GF releasing capability. Herein, the incorporation of bone morphogenetic protein 2 (BMP-2)-functionalized MgFe-layered double hydroxide (LDH) nanosheets into chitosan/silk fibroin (CS) hydrogels loaded with platelet-derived growth factor-BB (PDGF-BB) to construct a smart injectable thermo-responsive hydrogel (denoted as CSP-LB), which can achieve a burst release of PDGF-BB and a sustained release of BMP-2, for highly efficient bone regeneration is reported. The incorporation of MgFe-LDH in CS hydrogel not only shortens the gelation time and decreases sol-gel transition temperature, but also enhances the mechanical property of the hydrogel. Because of the sequential release of dual-GFs and sustained release of bioactive Mg2+ /Fe3+ ions, the in vitro experiments prove that the CSP-LB hydrogel exhibits excellent angiogenic and osteogenic properties compared with the CS hydrogel. In vivo experiments further prove that the CSP-LB hydrogel can significantly enhance bone regeneration with higher bone volume and mineral density than that of the CS hydrogel. This smart thermo-sensitive CSP-LB hydrogel possesses excellent gelation capability and angiogenic and osteogenic properties, thus providing a promising minimally invasive solution for bone defect treatment.
Collapse
Affiliation(s)
- Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Guanyun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhikang Wu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xueyan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| |
Collapse
|
103
|
Liu Y, Yi Y, Zhong C, Ma Z, Wang H, Dong X, Yu F, Li J, Chen Q, Lin C, Li X. Advanced bioactive nanomaterials for diagnosis and treatment of major chronic diseases. Front Mol Biosci 2023; 10:1121429. [PMID: 36776741 PMCID: PMC9909026 DOI: 10.3389/fmolb.2023.1121429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
With the rapid innovation of nanoscience and technology, nanomaterials have also been deeply applied in the medical and health industry and become one of the innovative methods to treat many diseases. In recent years, bioactive nanomaterials have attracted extensive attention and have made some progress in the treatment of some major chronic diseases, such as nervous system diseases and various malignant tumors. Bioactive nanomaterials depend on their physical and chemical properties (crystal structure, surface charge, surface functional groups, morphology, and size, etc.) and direct produce biological activity and play to the role of the treatment of diseases, compared with the traditional nanometer pharmaceutical preparations, biological active nano materials don't exert effects through drug release, way more directly, also is expected to be more effective for the treatment of diseases. However, further studies are needed in the evaluation of biological effects, fate in vivo, structure-activity relationship and clinical transformation of bionanomaterials. Based on the latest research reports, this paper reviews the application of bioactive nanomaterials in the diagnosis and treatment of major chronic diseases and analyzes the technical challenges and key scientific issues faced by bioactive nanomaterials in the diagnosis and treatment of diseases, to provide suggestions for the future development of this field.
Collapse
Affiliation(s)
- Yongfei Liu
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yi Yi
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China,*Correspondence: Yi Yi,
| | - Chengqian Zhong
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Zecong Ma
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Haifeng Wang
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xingmo Dong
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Feng Yu
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Jing Li
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Qinqi Chen
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Chaolu Lin
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xiaohong Li
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| |
Collapse
|
104
|
Principle Superiority and Clinical Extensibility of 2D and 3D Charged Nanoprobe Detection Platform Based on Electrophysiological Characteristics of Circulating Tumor Cells. Cells 2023; 12:cells12020305. [PMID: 36672240 PMCID: PMC9856308 DOI: 10.3390/cells12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The electrical characteristic of cancer cells is neglected among tumor biomarkers. The development of nanoprobes with opposing charges for monitoring the unique electrophysiological characteristics of cancer cells. Micro-nano size adsorption binding necessitates consideration of the nanoprobe's specific surface area. On the basis of the electrophysiological characteristics of circulating tumor cells (CTCs), clinical application and performance assessment are determined. To demonstrate that cancer cells have a unique pattern of electrophysiological patterns compared to normal cells, fluorescent nanoprobes with opposing charges were developed and fabricated. Graphene oxide (GO) was used to transform three-dimensional (3D) nanoprobes into two-dimensional (2D) nanoprobes. Compare 2D and 3D electrophysiological magnetic nanoprobes (MNP) in clinical samples and evaluate the adaptability and development of CTCs detection based on cell electrophysiology. Positively charged nanoprobes rapidly bind to negatively charged cancer cells based on electrostatic interactions. Compared to MNPs(+) without GO, the GO/MNPs(+) nanoprobe is more efficient and uses less material to trap cancer cells. CTCs can be distinguished from normal cells that are fully unaffected by nanoprobes by microscopic cytomorphological inspection, enabling the tracking of the number and pathological abnormalities of CTCs in the same patient at various chemotherapy phases to determine the efficacy of treatment. The platform for recognizing CTCs on the basis of electrophysiological characteristics compensates for the absence of epithelial biomarker capture and size difference capture in clinical performance. Under the influence of electrostatic attraction, the binding surface area continues to influence the targeting of cancer cells by nanoprobes. The specific recognition and detection of nanoprobes based on cell electrophysiological patterns has enormous potential in the clinical diagnosis and therapeutic monitoring of cancer.
Collapse
|
105
|
Jebakumari KAE, Murugasenapathi NK, Palanisamy T. Engineered Two-Dimensional Nanostructures as SERS Substrates for Biomolecule Sensing: A Review. BIOSENSORS 2023; 13:102. [PMID: 36671937 PMCID: PMC9855472 DOI: 10.3390/bios13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Two-dimensional nanostructures (2DNS) attract tremendous interest and have emerged as potential materials for a variety of applications, including biomolecule sensing, due to their high surface-to-volume ratio, tuneable optical and electronic properties. Advancements in the engineering of 2DNS and associated technologies have opened up new opportunities. Surface-enhanced Raman scattering (SERS) is a rapid, highly sensitive, non-destructive analytical technique with exceptional signal amplification potential. Several structurally and chemically engineered 2DNS with added advantages (e.g., π-π* interaction), over plasmonic SERS substrates, have been developed specifically towards biomolecule sensing in a complex matrix, such as biological fluids. This review focuses on the recent developments of 2DNS-SERS substrates for biomolecule sensor applications. The recent advancements in engineered 2DNS, particularly for SERS substrates, have been systematically surveyed. In SERS substrates, 2DNS are used as either a standalone signal enhancer or as support for the dispersion of plasmonic nanostructures. The current challenges and future opportunities in this synergetic combination have also been discussed. Given the prospects in the design and preparation of newer 2DNS, this review can give a critical view on the current status, challenges and opportunities to extrapolate their applications in biomolecule detection.
Collapse
Affiliation(s)
- K. A. Esther Jebakumari
- Electrodics and Electrocatalysis Division (EEC), CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - N. K. Murugasenapathi
- Electrodics and Electrocatalysis Division (EEC), CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR—Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
106
|
Ye S, Xiao H, Chen J, Zhang D, Qi L, Peng T, Gao Y, Zhang Q, Qu J, Wang L, Liu R. Copperphosphotungstate Doped Polyanilines Nanorods for GSH-Depletion Enhanced Chemodynamic/NIR-II Photothermal Synergistic Therapy. Int J Nanomedicine 2023; 18:1245-1257. [PMID: 36937549 PMCID: PMC10019345 DOI: 10.2147/ijn.s399026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/14/2023] [Indexed: 03/13/2023] Open
Abstract
Introduction The high concentration of glutathione (GSH) and hydrogen peroxide (H2O2) levels within the tumor microenvironment (TME) are the major obstacle to induce the unsatisfactory anticancer treatment efficiency. The synergistic cancer therapy strategies of the combination the GSH depletion enhanced chemodynamic therapy (CDT) with photothermal therapy (PTT) have been proved to be the promising method to significantly improve the therapeutic efficacy. Methods The copperphosphotungstate was incorporated into polyanilines to design copperphosphotungstate doped polyaniline nanorods (CuPW@PANI Nanorods) via chemical oxidant polymerization of aniline. The low long-term toxicity and biocompatibility were evaluated. Both in vitro and in vivo experiments were carried out to confirm the GSH depletion enhanced CDT/NIR-II PTT synergistic therapy. Results CuPW@PANI Nanorods feature biosafety and biocompatibility, strong NIR-II absorbance, and high photothermal-conversion efficiency (45.14%) in NIR-II bio-window, making them highly applicable for photoacoustic imaging and NIR-II PTT. Moreover, CuPW@PANI Nanorods could consume endogenous GSH to disrupt redox homeostasis and perform a Fenton-like reaction with H2O2 to produce cytotoxic •OH for the enhanced CDT. Furthermore, NIR-II photothermal-induced local hyperthermia accelerates •OH generation to enhance CDT, which realizes high therapeutic efficacy in vivo. Conclusion This study provides a proof of concept of GSH-depletion augmented chemodynamic/NIR-II photothermal therapy.
Collapse
Affiliation(s)
- Sheng Ye
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Huichun Xiao
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jian Chen
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Li Qi
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ting Peng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yanyang Gao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Jinqing Qu; Ruiyuan Liu, Email ;
| | - Lei Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, People’s Republic of China
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
107
|
Jiang H, Zang Z, Wang X, Que H, Wang L, Si K, Zhang P, Ye Y, Gong Y. Thickness-Tunable Growth of Composition-Controllable Two-Dimensional Fe xGeTe 2. NANO LETTERS 2022; 22:9477-9484. [PMID: 36383484 DOI: 10.1021/acs.nanolett.2c03562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) magnetic materials provide an ideal platform for investigating novel magnetism and spin behavior in low-dimensional systems while being restricted by the deficiency of accurate bottom-up synthesis. To overcome this difficulty, a facile and universal flux-assisted growth (FAG) method is proposed to synthesize the multicomponent FexGeTe2 (x = 3-5) with different Fe contents and even alloyed with hetero metal atoms. This one-to-one method ensures the stoichiometry consistency from the FexGeTe2 and MyFe5-yGeTe2 (M = Co, Ni) bulk crystal precursors to the 2D nanosheets, with controllable composition. Tuning the growth temperatures can provide thickness-tunable products. Changeable magnetic properties of FexGeTe2 and alloyed CoyFe5-yGeTe2 are substantiated by the superconducting quantum interference device and reflective magnetic circular dichroism. This method generates thickness-tunable high-crystallinity FexGeTe2 samples without phase separation and exhibits a high tolerance to different substrates and a large temperature window, providing a new avenue to synthesize and explore such multicomponent 2D magnets and even the alloyed ones.
Collapse
Affiliation(s)
- Huaning Jiang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhihao Zang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xingguo Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Haifeng Que
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Lei Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Kunpeng Si
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Peng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yu Ye
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou 310051, China
| |
Collapse
|
108
|
Zhang X, Wang J, Zhu L, Wang X, Meng F, Xia L, Zhang H. Advances in Stigmasterol on its anti-tumor effect and mechanism of action. Front Oncol 2022; 12:1101289. [PMID: 36578938 PMCID: PMC9791061 DOI: 10.3389/fonc.2022.1101289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Stigmasterol is a phytosterol derived from multiple herbaceous plants such as herbs, soybean and tobacco, and it has received much attention for its various pharmacological effects including anti-inflammation, anti-diabetes, anti-oxidization, and lowering blood cholesterol. Multiple studies have revealed that stigmasterol holds promise as a potentially beneficial therapeutic agent for malignant tumors because of its significant anti-tumor bioactivity. It is reported that stigmasterol has anti-tumor effect in a variety of malignancies (e.g., breast, lung, liver and ovarian cancers) by promoting apoptosis, inhibiting proliferation, metastasis and invasion, and inducing autophagy in tumor cells. Mechanistic study shows that stigmasterol triggers apoptosis in tumor cells by regulating the PI3K/Akt signaling pathway and the generation of mitochondrial reactive oxygen species, while its anti-proliferative activity is mainly dependent on its modulatory effect on cyclin proteins and cyclin-dependent kinase (CDK). There have been multiple mechanisms underlying the anti-tumor effect of stigmasterol, which make stigmasterol promising as a new anti-tumor agent and provide insights into research on its anti-tumor role. Presently, stigmasterol has been poorly understood, and there is a paucity of systemic review on the mechanism underlying its anti-tumor effect. The current study attempts to conduct a literature review on stigmasterol for its anti-tumor effect to provide reference for researchers and clinical workers.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayun Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuezhen Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feifei Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Hairong Zhang, ; Lei Xia,
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China,*Correspondence: Hairong Zhang, ; Lei Xia,
| |
Collapse
|
109
|
Behera P, Karunakaran S, Sahoo J, Bhatt P, Rana S, De M. Ligand Exchange on MoS 2 Nanosheets: Applications in Array-Based Sensing and Drug Delivery. ACS NANO 2022; 17:1000-1011. [PMID: 36482513 DOI: 10.1021/acsnano.2c06994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional MoS2 nanosheets (2D-MoS2) have been widely used in many biological applications due to their distinctive physicochemical properties. Further, the development of surface modification using thiolated ligands allows us to use them for many specific applications. But the effect of possible ligand exchange on 2D-MoS2 has never been explored, which can play an important role in diverse biological applications. In this study, we have observed the ligand-exchange phenomenon on 2D-MoS2 in the presence of different thiolated ligands. The initial study proceeded with boron-dipyrromethene (BODIPY) functionalized MoS2 with different concentrations of glutathione (GSH), which is the most abundant thiol species in the cytoplasm of various cancer cells. It was found that in the presence of GSH the fluorescence of BODIPY can be regenerated, which is time and concentration dependent. We have also examined this phenomenon with different thiol ligands and transition-metal dichalcogenides (TMDs). We observed a variable rate of ligand exchange in different solvents, surface functionality, and receptor environments that helped us to construct sensor arrays. Interestingly, a ligand-exchange process was not observed in the presence of dithiols. Further, this concept was applied to a cancerous cell line for in vitro delivery. We found that BODIPY-functionalized 2D-MoS2 undergoes thiol exchange by intracellular GSH and subsequently enhanced the fluorescence in the cytoplasm of cancer cells. This strategy can be applied to the development of 2D-TMD-based materials for various biological applications related to ligand exchange.
Collapse
Affiliation(s)
- Pradipta Behera
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Subbaraj Karunakaran
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Preeti Bhatt
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
110
|
Wan W, Li Z, Wang X, Tian F, Yang J. Rapid preparation of hyperbranched β-CD functionalized hydroxyapatite based on host-guest reaction for cell imaging and drug delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
111
|
Dang S, Mo Y, Zeng J, Xu Y, Xie Z, Zhang H, Zhang B, Nie G. Three birds with one stone: oxygen self-supply engineering palladium nanocluster/titanium carbide hybrid for single-NIR laser-triggered synergistic photodynamic-photothermal therapy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5061-5075. [PMID: 39634298 PMCID: PMC11501429 DOI: 10.1515/nanoph-2022-0268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/07/2024]
Abstract
As a key branch of the cross-discipline biophotonics, phototherapy, including photodynamic therapy (PDT), and photothermal therapy (PTT), is promising in biomedicine and visible light-driving PDT has been applied to clinical treatment. However, extensive applications of phototherapy are limited by the hypoxic microenvironment, laser penetration depth, and potential complexity for combined PDT/PTT. Thus, NIR-responsive oxygen self-supply nanocomposites functionalized with photosensitizers for achieving simultaneous in-depth PDT/PTT are urgently required. Herein, a multifunctional platform has been fabricated by co-immobilizing monodispersed ultrasmall Pd nanoclusters and a photosensitizer 5,10,15,20-Tetrakis (4-Aminophenyl)-21H,23H Porphyrin (Thp) on the surface of Ti3C2T x MXene nanosheets, generating the Pd-Thp-Ti3C2T x nanocomposite. Material characterization demonstrated that Pd nanoclusters and Thp were well-distributed on the MXene surface while MXene maintained its photothermal conversion efficiency and broad absorption. In this nanoplatform, irradiated by the single 808 nm laser, Pd selectively catalyzed the decomposition of H2O2 to O2, and O2 was continuously supplied to Thp for enhanced NIR-driving PDT. The in vivo fluorescence and photothermal imaging demonstrated the pronounced accumulation of nanocomposites in the tumor site. Both in vitro and in vivo results clearly demonstrated the nanocomposite had good biocompatibility, and that the synergistic PTT and enhanced PDT made apoptosis of the tumor cell achievable. This work not only proves this Pd-Thp-Ti3C2T x nanocomposite serves a promising solution for tumor hypoxia by inducing apoptosis of tumor cells with synergistic PTT and PDT, but also broadens the application of promising optical materials in biomedical field.
Collapse
Affiliation(s)
- Shanshan Dang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Institute of Microscale Optoelectronics, Shenzhen 518035, China,
| | - Yanmei Mo
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Institute of Microscale Optoelectronics, Shenzhen 518035, China,
| | - Junqing Zeng
- Graduate Collaborative Training Base of Shenzhen Second' People's Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China,
| | - Yunjie Xu
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Institute of Microscale Optoelectronics, Shenzhen 518035, China,
| | - Zhongjian Xie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Institute of Microscale Optoelectronics, Shenzhen 518035, China,
| | - Han Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Institute of Microscale Optoelectronics, Shenzhen 518035, China,
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Institute of Microscale Optoelectronics, Shenzhen 518035, China,
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Institute of Microscale Optoelectronics, Shenzhen 518035, China,
| |
Collapse
|
112
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
113
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
114
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
115
|
Liang L, Everest-Dass AV, Kostyuk AB, Khabir Z, Zhang R, Trushina DB, Zvyagin AV. The Surface Charge of Polymer-Coated Upconversion Nanoparticles Determines Protein Corona Properties and Cell Recognition in Serum Solutions. Cells 2022; 11:cells11223644. [PMID: 36429072 PMCID: PMC9688575 DOI: 10.3390/cells11223644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Applications of nanoparticles (NPs) in the life sciences require control over their properties in protein-rich biological fluids, as an NP quickly acquires a layer of proteins on the surface, forming the so-called "protein corona" (PC). Understanding the composition and kinetics of the PC at the molecular level is of considerable importance for controlling NP interaction with cells. Here, we present a systematic study of hard PC formation on the surface of upconversion nanoparticles (UCNPs) coated with positively-charged polyethyleneimine (PEI) and negatively-charged poly (acrylic acid) (PAA) polymers in serum-supplemented cell culture medium. The rationale behind the choice of UCNP is two-fold: UCNP represents a convenient model of NP with a size ranging from 5 nm to >200 nm, while the unique photoluminescent properties of UCNP enable direct observation of the PC formation, which may provide new insight into this complex process. The non-linear optical properties of UCNP were utilised for direct observation of PC formation by means of fluorescence correlation spectroscopy. Our findings indicated that the charge of the surface polymer coating was the key factor for the formation of PC on UCNPs, with an ensuing effect on the NP-cell interactions.
Collapse
Affiliation(s)
- Liuen Liang
- MQ Photonics Centre, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Alexey B. Kostyuk
- Laboratory of Optical Theranostics, Nizhny Novgorod State University, 603950 Nizhny Novgorod, Russia
| | - Zahra Khabir
- MQ Photonics Centre, Macquarie University, Sydney, NSW 2109, Australia
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Macquarie University, Sydney, NSW 2109, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Daria B. Trushina
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia
- Correspondence:
| | - Andrei V. Zvyagin
- MQ Photonics Centre, Macquarie University, Sydney, NSW 2109, Australia
- Laboratory of Optical Theranostics, Nizhny Novgorod State University, 603950 Nizhny Novgorod, Russia
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
116
|
Wang G, Lv Z, Wang T, Hu T, Bian Y, Yang Y, Liang R, Tan C, Weng X. Surface Functionalization of Hydroxyapatite Scaffolds with MgAlEu-LDH Nanosheets for High-Performance Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204234. [PMID: 36394157 PMCID: PMC9811441 DOI: 10.1002/advs.202204234] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/14/2022] [Indexed: 05/10/2023]
Abstract
Although artificial bone repair scaffolds, such as titanium alloy, bioactive glass, and hydroxyapatite (HAp), have been widely used for treatment of large-size bone defects or serious bone destruction, they normally exhibit unsatisfied bone repair efficiency because of their weak osteogenic and angiogenesis performance as well as poor cell crawling and adhesion properties. Herein, the surface functionalization of MgAlEu-layered double hydroxide (MAE-LDH) nanosheets on porous HAp scaffolds is reported as a simple and effective strategy to prepare HAp/MAE-LDH scaffolds for enhanced bone regeneration. The surface functionalization of MAE-LDHs on the porous HAp scaffold can significantly improve its surface roughness, specific surface, and hydrophilicity, thus effectively boosting the cells adhesion and osteogenic differentiation. Importantly, the MAE-LDHs grown on HAp scaffolds enable the sustained release of Mg2+ and Eu3+ ions for efficient bone repair and vascular regeneration. In vitro experiments suggest that the HAp/MAE-LDH scaffold presents much enhanced osteogenesis and angiogenesis properties in comparison with the pristine HAp scaffold. In vivo assays further reveal that the new bone mass and mineral density of HAp/MAE-LDH scaffold increased by 3.18- and 2.21-fold, respectively, than that of pristine HAp scaffold. The transcriptome sequencing analysis reveals that the HAp/MAE-LDH scaffold can activate the Wnt/β-catenin signaling pathway to promote the osteogenic and angiogenic abilities.
Collapse
Affiliation(s)
- Guanyun Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Tao Wang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Yu Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong Kong SARChina
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| |
Collapse
|
117
|
Strategies for Solubility and Bioavailability Enhancement and Toxicity Reduction of Norcantharidin. Molecules 2022; 27:molecules27227740. [PMID: 36431851 PMCID: PMC9693198 DOI: 10.3390/molecules27227740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Cantharidin (CTD) is the main active ingredient isolated from Mylabris, and norcantharidin (NCTD) is a demethylated derivative of CTD, which has similar antitumor activity to CTD and lower toxicity than CTD. However, the clinical use of NCTD is limited due to its poor solubility, low bioavailability, and toxic effects on normal cells. To overcome these shortcomings, researchers have explored a number of strategies, such as chemical structural modifications, microsphere dispersion systems, and nanodrug delivery systems. This review summarizes the structure-activity relationship of NCTD and novel strategies to improve the solubility and bioavailability of NCTD as well as reduce the toxicity. This review can provide evidence for further research of NCTD.
Collapse
|
118
|
Hou Q, Wang L, Xiao F, Wang L, Liu X, Zhu L, Lu Y, Zheng W, Jiang X. Dual targeting nanoparticles for epilepsy therapy. Chem Sci 2022; 13:12913-12920. [PMID: 36519053 PMCID: PMC9645397 DOI: 10.1039/d2sc03298h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/19/2022] [Indexed: 12/07/2024] Open
Abstract
For epilepsy therapy, one-third of the patients worldwide are resistant to antiepileptic drugs mainly due to the existence of the blood-brain barrier (BBB) that prevents the drugs from reaching the epileptic lesions. Here, we design a double targeting nanoparticle carrying lamotrigine (LTG) to cross the BBB and further concentrate at the neurons. We prepare the nanoparticles on a microfluidic chip by encapsulating LTG in poly(lactic-co-glycolic acid) (PLGA) to form a core (PL) and capping the core with a shell of lipids conjugated with the D-T7 peptide (targeting the BBB) and Tet1 peptide (targeting the neuron) to form D-T7/Tet1-lipids@PL nanoparticles (NPs). In vitro and in vivo experiments show that D-T7/Tet1-lipids@PL NPs have excellent neuron targeting, antiepileptic, and protecting effects. Our approach provides a new strategy for improving the therapeutic efficacy of existing antiepileptic drugs.
Collapse
Affiliation(s)
- Qinghong Hou
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen 518055 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Department of Chemistry, School of Science, Tianjin University Tianjin 300350 P. R. China
| | - Lulu Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen 518055 P. R. China
| | - Feng Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Le Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Xiaoyan Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Lina Zhu
- Department of Chemistry, School of Science, Tianjin University Tianjin 300350 P. R. China
| | - Yi Lu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen 518055 P. R. China
| | - Wenfu Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen 518055 P. R. China
| |
Collapse
|
119
|
Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res 2022; 26:61. [PMID: 36348441 PMCID: PMC9641873 DOI: 10.1186/s40824-022-00308-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/16/2022] [Indexed: 11/10/2022] Open
Abstract
Near-infrared-II (NIR-II, 1000–1700 nm) light-triggered photothermal therapy (PTT) has been regarded as a promising candidate for cancer treatment, but PTT alone often fails to achieve satisfactory curative outcomes. Hollow nanoplatforms prove to be attractive in the biomedical field owing to the merits including good biocompatibility, intrinsic physical-chemical nature and unique hollow structures, etc. On one hand, hollow nanoplatforms themselves can be NIR-II photothermal agents (PTAs), the cavities of which are able to carry diverse therapeutic units to realize multi-modal therapies. On the other hand, NIR-II PTAs are capable of decorating on the surface to combine with the functions of components encapsulated inside the hollow nanoplatforms for synergistic cancer treatment. Notably, PTAs generally can serve as good photoacoustic imaging (PAI) contrast agents (CAs), which means such kind of hollow nanoplatforms are also expected to be multifunctional all-in-one nanotheranostics. In this review, the recent advances of NIR-II hollow nanoplatforms for single-modal PTT, dual-modal PTT/photodynamic therapy (PDT), PTT/chemotherapy, PTT/catalytic therapy and PTT/gas therapy as well as multi-modal PTT/chemodynamic therapy (CDT)/chemotherapy, PTT/chemo/gene therapy and PTT/PDT/CDT/starvation therapy (ST)/immunotherapy are summarized for the first time. Before these, the typical synthetic strategies for hollow structures are presented, and lastly, potential challenges and perspectives related to these novel paradigms for future research and clinical translation are discussed.
Collapse
|
120
|
Ding L, Liang M, Li C, Ji X, Zhang J, Xie W, Reis RL, Li FR, Gu S, Wang Y. Design Strategies of Tumor-Targeted Delivery Systems Based on 2D Nanomaterials. SMALL METHODS 2022; 6:e2200853. [PMID: 36161304 DOI: 10.1002/smtd.202200853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Conventional chemotherapy and radiotherapy are nonselective and nonspecific for cell killing, causing serious side effects and threatening the lives of patients. It is of great significance to develop more accurate tumor-targeting therapeutic strategies. Nanotechnology is in a leading position to provide new treatment options for cancer, and it has great potential for selective targeted therapy and controlled drug release. 2D nanomaterials (2D NMs) have broad application prospects in the field of tumor-targeted delivery systems due to their special structure-based functions and excellent optical, electrical, and thermal properties. This review emphasizes the design strategies of tumor-targeted delivery systems based on 2D NMs from three aspects: passive targeting, active targeting, and tumor-microenvironment targeting, in order to promote the rational application of 2D NMs in clinical practice.
Collapse
Affiliation(s)
- Lin Ding
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Minli Liang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinting Ji
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Weifen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Guimarães, 4805-017, Portugal
| | - Fu-Rong Li
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, China
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, 518055, China
- Guangdong Engineering Technology Research Centerof Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Shuo Gu
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| | - Yanli Wang
- School of Pharmaceutical Sciences and The First Affiliated Hospital, Hainan Medical University, Haikou, 570228, P. R. China
| |
Collapse
|
121
|
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022; 190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.
Collapse
Affiliation(s)
- Li Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yue Liu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Baozhu Zhang
- Department of Oncology, People's Hospital of Shenzhen Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
122
|
Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. J Control Release 2022; 351:752-778. [DOI: 10.1016/j.jconrel.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
|
123
|
Cheng X, Li F, Liang L. Boron Neutron Capture Therapy: Clinical Application and Research Progress. Curr Oncol 2022; 29:7868-7886. [PMID: 36290899 PMCID: PMC9601095 DOI: 10.3390/curroncol29100622] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary modality that is used to treat a variety of malignancies, using neutrons to irradiate boron-10 (10B) nuclei that have entered tumor cells to produce highly linear energy transfer (LET) alpha particles and recoil 7Li nuclei (10B [n, α] 7Li). Therefore, the most important part in BNCT is to selectively deliver a large number of 10B to tumor cells and only a small amount to normal tissue. So far, BNCT has been used in more than 2000 cases worldwide, and the efficacy of BNCT in the treatment of head and neck cancer, malignant meningioma, melanoma and hepatocellular carcinoma has been confirmed. We collected and collated clinical studies of second-generation boron delivery agents. The combination of different drugs, the mode of administration, and the combination of multiple treatments have an important impact on patient survival. We summarized the critical issues that must be addressed, with the hope that the next generation of boron delivery agents will overcome these challenges.
Collapse
Affiliation(s)
- Xiang Cheng
- Oncology Department, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei 230601, China
| | - Fanfan Li
- Oncology Department, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei 230601, China
- Correspondence: (F.L.); (L.L.); Tel.: +86-13855137365 (F.L.); +86-15905602477 (L.L.)
| | - Lizhen Liang
- Hefei Comprehensive National Science Center, Institute of Energy, Building 9, Binhu Excellence City Phase I, 16 Huayuan Avenue, Baohe District, Hefei 230031, China
- Correspondence: (F.L.); (L.L.); Tel.: +86-13855137365 (F.L.); +86-15905602477 (L.L.)
| |
Collapse
|
124
|
Zhou Z, Li X, Hu T, Xue B, Chen H, Ma L, Liang R, Tan C. Molybdenum‐Based Nanomaterials for Photothermal Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Xiangqian Li
- School of Chemical and Environmental Engineering (Key Lab of Ecological Restoration in Hilly Areas) Pingdingshan University Pingdingshan 467000 P.R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Baoli Xue
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Chaoliang Tan
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Kowloon Hong Kong SAR 999077 P.R. China
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 999077 P.R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P.R. China
| |
Collapse
|
125
|
Nie Y, Zhang W, Xiao W, Zeng W, Chen T, Huang W, Wu X, Kang Y, Dong J, Luo W, Ji X. Novel biodegradable two-dimensional vanadene augmented photoelectro-fenton process for cancer catalytic therapy. Biomaterials 2022; 289:121791. [DOI: 10.1016/j.biomaterials.2022.121791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
|
126
|
Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials – A review. Carbohydr Polym 2022; 293:119700. [DOI: 10.1016/j.carbpol.2022.119700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
|
127
|
Li G, Lei H, Yang Y, Zhong X, Gong F, Gong Y, Zhou Y, Zhang Y, Shi H, Xiao Z, Dong Z, Cheng L. Titanium Sulfide Nanosheets Serve as Cascade Bioreactors for H 2 S-Mediated Programmed Gas-Sonodynamic Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201069. [PMID: 36026580 PMCID: PMC9596849 DOI: 10.1002/advs.202201069] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Gas-mediated sonodynamic therapy (SDT) has the potential to become an effective strategy to improve the therapeutic outcome and survival rate of cancer patients. Herein, titanium sulfide nanosheets (TiSX NSs) are prepared as cascade bioreactors for sequential gas-sonodynamic cancer therapy. TiSX NSs themselves as hydrogen sulfide (H2 S) donors can burst release H2 S gas. Following H2 S generation, TiSX NSs are gradually degraded to become S-defective and partly oxidized into TiOX on their surface, which endows TiSX NSs with high sonodynamic properties under ultrasound (US) irradiation. In vitro and in vivo experiments show the excellent therapeutic effects of TiSX NSs. In detail, large amounts of H2 S gas and reactive oxygen species (ROS) can simultaneously inhibit mitochondrial respiration and ATP synthesis, leading to cancer cell apoptosis. Of note, H2 S gas also plays important roles in modulating and activating the immune system to effectively inhibit pulmonary metastasis. Finally, the metabolizable TiSX NSs are excreted out of the body without inducing any significant long-term toxicity. Collectively, this work establishes a cascade bioreactor of TiSX NSs with satisfactory H2 S release ability and excellent ROS generation properties under US irradiation for programmed gas-sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Guangqiang Li
- College of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
- Brain Research InstituteResearch Center of Neurological DiseasesTaihe HospitalHubei University of MedicineShiyanHubei442000China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Xiaoyan Zhong
- Department of ToxicologySchool of Public HealthSuzhou Medical College of Soochow UniversitySuzhou215123China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Yuehan Gong
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Yangkai Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsu215123China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsu215123China
| | - Zhidong Xiao
- College of ScienceState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070China
| | - Zhiqiang Dong
- College of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Brain Research InstituteResearch Center of Neurological DiseasesTaihe HospitalHubei University of MedicineShiyanHubei442000China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123China
| |
Collapse
|
128
|
Zheng L, Zhong Y, He T, Peng S, Yang L. A Codispersed Nanosystem of Silver-anchored MoS 2 Enhances Antibacterial and Antitumor Properties of Selective Laser Sintered Scaffolds. Int J Bioprint 2022; 8:577. [PMID: 36105125 PMCID: PMC9468948 DOI: 10.18063/ijb.v8i43.577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022] Open
Abstract
Tumor recurrence and bacterial infection are common problems during bone repair and reconstruction after bone tumor surgery. In this study, silver-anchored MoS2 nanosheets (Ag@PMoS2) were synthesized by in situ reduction, then a composite polymer scaffold (Ag@PMoS2/PGA) with sustained antitumor and antibacterial activity was successfully constructed by selective laser sintering technique. In the Ag@PMoS2 nanostructures, silver nanoparticles (Ag NPs) were sandwiched between adjacent MoS2 nanosheets (MoS2 NSs), which restrained the restacking of the MoS2 NSs. In addition, the MoS2 NSs acted as steric hindrance layers, which prevented the aggregation of Ag NPs. More importantly, MoS2 NSs can provide a barrier layer for Ag NPs, hindering Ag NPs from reacting with the external solution to prevent its quick release. The results showed that Ag@PMoS2/PGA scaffolds have stronger photothermal effect and antitumor function. Meanwhile, the Ag@PMoS2/PGA scaffolds also demonstrated slow control of silver ion (Ag+) release and more efficient long-term antibacterial ability. Besides, composite scaffolds have been proved to kill the MG-63 cells by inducing apoptosis and inhibit bacterial proliferation by upregulating the level of bacterial reactive oxygen species. This kind of novel bifunctional implants with antitumor and antibacterial properties provides better choice for the artificial bone transplantation after primary bone tumor resection.
Collapse
Affiliation(s)
- Leliang Zheng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tiantian He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan China.,Hunan Key Laboratory of Non Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liuyimei Yang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| |
Collapse
|
129
|
Biomimetic synthesis of protein-DNA-CaHPO 4 hybrid nanosheets for biosensing: Detection of thrombin as an example. Anal Chim Acta 2022; 1225:340227. [PMID: 36038237 DOI: 10.1016/j.aca.2022.340227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Traditional strategies for coupling of proteins with DNA involve the additional modifications on protein or DNA to construct protein-DNA conjugates, resulting in complex or time-consuming coupling process. This study presented a biomimetic synthesis strategy to elaborately synthesize a new type of biomolecule-inorganic hybrid nanosheets. Horseradish peroxidase (HRP) and DNA aptamer can be easily combined with CaHPO4 via coprecipitation simultaneously to form all-inclusive HRP-aptamer-CaHPO4 hybrid (HAC) nanosheets integrating bifunction of biorecognition and signal amplification, which was proceeded in the green environment at room temperature and required no additional modifications on CaHPO4, protein and DNA. Therefore, it avoided tedious linking and purification procedures. The HAC nanosheets were then employed as the signal labels and showed excellent performance for detecting thrombin. This bioinspired approach provides great possibilities to facile and efficient immobilization of protein, DNA or even other types of biomolecules (e.g., RNA and peptide) on inorganic nanomaterials and endows great potential in the preparation of a variety of multifunctional biomolecule-CaHPO4 two-dimensional (2D) nanobiohybrids for various applications extending from biosensing to energy, biomedicine, environmental science and catalysis.
Collapse
|
130
|
Wu M, Li X, Mu X, Zhang X, Wang H, Zhang XD. Multimodal molecular imaging in the second near-infrared window. Nanomedicine (Lond) 2022; 17:1585-1606. [PMID: 36476011 DOI: 10.2217/nnm-2022-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Near-infrared-II (NIR-II) fluorescence imaging has rapidly developed for the noninvasive investigation of physiological and pathological activities in living organisms with high spatiotemporal resolution. However, the penetration depth of fluorescence restricts its ability to provide deep anatomical information. Scientists integrate NIR-II fluorescence imaging with other imaging modes (such as photoacoustic and magnetic resonance imaging) to create multimodal imaging that can acquire detailed anatomical and quantitative information with deeper penetration by using multifunctional probes. This review offers a comprehensive picture of NIR-II-based dual/multimodal imaging probes and highlights advances in bioimaging and therapy. In addition, seminal studies and trends in multimodal imaging probes activated by NIR-II laser are summarized and several key points regarding future clinical translation are elucidated.
Collapse
Affiliation(s)
- Menglin Wu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Physics & Tianjin Key Laboratory of Low Dimensional Materials Physics & Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
131
|
How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022; 14:pharmaceutics14091817. [PMID: 36145569 PMCID: PMC9504126 DOI: 10.3390/pharmaceutics14091817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer, the incidence and mortality of which are increasing worldwide. Its extensive degree of heterogeneity has limited its response to existing therapies. For many years the therapeutic strategies were limited to surgery, radiotherapy, and chemotherapy. Fortunately, advances in knowledge have allowed the development of new therapeutic strategies. Despite the undoubted progress, alternative therapies are still under research. In this context, nanotechnology is also positioned as a strong and promising tool to develop nanosystems that act as drug carriers and/or light absorbents to potentially improve photothermal and photodynamic therapies outcomes. This review describes the latest advances in nanotechnology field in the treatment of melanoma from 2011 to 2022. The challenges in the translation of nanotechnology-based therapies to clinical applications are also discussed. To sum up, great progress has been made in the field of nanotechnology-based therapies, and our understanding in this field has greatly improved. Although few therapies based on nanoparticulate systems have advanced to clinical trials, it is expected that a large number will come into clinical use in the near future. With its high sensitivity, specificity, and multiplexed measurement capacity, it provides great opportunities to improve melanoma treatment, which will ultimately lead to enhanced patient survival rates.
Collapse
|
132
|
Sun J, Cheng N, Yin K, Wang R, Zhu T, Gao J, Dong X, Dong C, Gu X, Zhao C. Activatable photothermal agents with target-initiated large spectral separation for highly effective reduction of side effects. Chem Sci 2022; 13:9525-9530. [PMID: 36128038 PMCID: PMC9400798 DOI: 10.1039/d2sc02467e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Photothermal agents (PTAs) with minimized side effects are critical for transforming cancer photothermal therapy (PTT) into clinical applications. However, most currently available PTAs lack true selective activation to reduce side effects because of heavy spectral overlap between photothermal agents and their corresponding products. This study reports the construction of activatable PTAs with target-initiated large spectral separation for highly effective reduction of side effects. Such designed probes involve two H2O2-activatable PTAs, aza-BOD-B1 (single activatable site) and aza-BOD-B2 (multiple activatable site). After interacting with H2O2, aza-BOD-B1 only displays a mild absorption redshift (60 nm) from 750 nm to 810 nm with serious spectral overlap, resulting in a mild photothermal effect on normal tissues upon 808 nm light irradiation. In contrast, aza-BOD-B2 displays a large absorption spectral separation (150 nm) from 660 nm to 810 nm, achieving true selective activation to minimize side effects during PTT of cancer. Besides, in vitro and in vivo investigations demonstrated that aza-BOD-B2 can specifically induce photothermal ablation of cancer cells and tumors while leaving normal sites undamaged, whereas aza-BOD-B1 exhibits undesirable side effects on normal cells. Our study provides a practical solution to the problem of undesired side effects of phototherapy, an advance in precision medicine.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ning Cheng
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Kai Yin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University Shanghai 201203 P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University Shanghai 201203 P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
133
|
Mattinen M, Gity F, Coleman E, Vonk JFA, Verheijen MA, Duffy R, Kessels WMM, Bol AA. Atomic Layer Deposition of Large-Area Polycrystalline Transition Metal Dichalcogenides from 100 °C through Control of Plasma Chemistry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7280-7292. [PMID: 36032554 PMCID: PMC9404538 DOI: 10.1021/acs.chemmater.2c01154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional transition metal dichalcogenides, such as MoS2, are intensely studied for applications in electronics. However, the difficulty of depositing large-area films of sufficient quality under application-relevant conditions remains a major challenge. Herein, we demonstrate deposition of polycrystalline, wafer-scale MoS2, TiS2, and WS2 films of controlled thickness at record-low temperatures down to 100 °C using plasma-enhanced atomic layer deposition. We show that preventing excess sulfur incorporation from H2S-based plasma is the key to deposition of crystalline films, which can be achieved by adding H2 to the plasma feed gas. Film composition, crystallinity, growth, morphology, and electrical properties of MoS x films prepared within a broad range of deposition conditions have been systematically characterized. Film characteristics are correlated with results of field-effect transistors based on MoS2 films deposited at 100 °C. The capability to deposit MoS2 on poly(ethylene terephthalate) substrates showcases the potential of our process for flexible devices. Furthermore, the composition control achieved by tailoring plasma chemistry is relevant for all low-temperature plasma-enhanced deposition processes of metal chalcogenides.
Collapse
Affiliation(s)
- Miika Mattinen
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Farzan Gity
- Tyndall
National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland
| | - Emma Coleman
- Tyndall
National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland
| | - Joris F. A. Vonk
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marcel A. Verheijen
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Eurofins
Materials Science Netherlands, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Ray Duffy
- Tyndall
National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland
| | - Wilhelmus M. M. Kessels
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ageeth A. Bol
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department
of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
134
|
Ali I, Faraz Ud Din M, Gu ZG. MXenes Thin Films: From Fabrication to Their Applications. Molecules 2022; 27:4925. [PMID: 35956874 PMCID: PMC9370612 DOI: 10.3390/molecules27154925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/25/2022] Open
Abstract
Two-dimensional MXenes possessed exceptional physiochemical properties such as high electrical conductivity (20,000 Scm-1), flexibility, mechanical strength (570 MPa), and hydrophilic surface functionalities that have been widely explored for energy storage, sensing, and catalysis applications. Recently, the fabrication of MXenes thin films has attracted significant attention toward electronic devices and sensor applications. This review summarizes the exciting features of MXene thin film fabrication methods such as vacuum-assisted filtration (VAF), electrodeposition techniques, spin coating, spray coating, dip-coating methods, and other physical/chemical vapor deposition methods. Furthermore, a comparison between different methods available for synthesizing a variety of MXenes films was discussed in detail. This review further summarizes fundamental aspects and advances of MXenes thin films in solar cells, batteries, electromagnetic interference shielding, sensing, etc., to date. Finally, the challenges and opportunities in terms of future research, development, and applications of MXenes-based films are discussed. A comprehensive understanding of these competitive features and challenges shall provide guidelines and inspiration for further growth in MXenes-based functional thin films and contribute to the advances in MXenes technology.
Collapse
Affiliation(s)
- Israt Ali
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Zhi-Gang Gu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
135
|
Wang Z, Cheng H, Sheng Y, Chen Z, Zhu X, Ren J, Zhang X, Lv L, Zhang H, Zhou J, Ding Y. Biofunctionalized graphene oxide nanosheet for amplifying antitumor therapy: Multimodal high drug encapsulation, prolonged hyperthermal window, and deep-site burst drug release. Biomaterials 2022; 287:121629. [PMID: 35724541 DOI: 10.1016/j.biomaterials.2022.121629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022]
Abstract
Biofunctional surface-modification surpassed critical limitation of graphene oxide (GO) in biocompatibility and drug delivery efficiency, contributing to versatile biomedical applications. Here, a protein corona-bridged GO nanoplatform with high drug loading, longstanding hyperthermia, and controllable drug release, was engineered for amplified tumor therapeutic benefits. Structurally, GO surface was installed with phenylboronic acid (PBA) layer, on which iRGD conjugated apolipoprotein A-I (iRGD-apoA-I) was coordinated via boron electron-deficiency, to form the sandwich-like GO nanosheet (iAPG). The GO camouflaging by iRGD-apoA-I corona provided multimodal high doxorubicin (DOX) loading by π-π stacking and coordination, and generated a higher photothermal transformation efficiency simultaneously. In vitro studies demonstrated that iAPG significantly improved drug penetration and internalization, then achieved tumor-targeted DOX release through near-infrared (NIR) controlled endo/lysosome disruption. Moreover, iAPG mediated site-specific drug shuttling to produce a 3.53-fold enhancement of tumor drug-accumulation compared to the free DOX in vivo, and induced deep tumor penetration dramatically. Primary tumor ablation and spontaneous metastasis inhibition were further demonstrated with negligible side effects under optimal NIR. Taken together, our work provided multifunctional protein corona strategy to inorganic nanomaterials toward advantageous biomedical applications.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hao Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yu Sheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zongkai Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xiaohong Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jianye Ren
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xiangze Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lingyu Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
136
|
Maity S, Tomar MS, Wasnik K, Patra S, Modak MD, Gupta PS, Pareek D, Singh M, Paik P. Azadirachta indica Seed Derived Carbon Nanocapsules: Cell Imaging, Depolarization of Mitochondrial Membrane Potential, and Dose-Dependent Control Death of Breast Cancer. ACS Biomater Sci Eng 2022; 8:3608-3622. [PMID: 35892286 DOI: 10.1021/acsbiomaterials.2c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, a series of mesoporous carbon nanocapsules (mCNS) of size below 10 nm have been prepared from Azadirachta indica seeds with a very easy and cost-effective approach. These nanocapsules can emit red and green light and are effective for cell imaging. Further, these carbon nanocapsules are biocompatible toward the normal healthy cells, however, they possess modest cytotoxicity against the MCF-7 (human breast cancer) and triple-negative breast cancer (TNBC) (MDA- MB-231 breast cancer cells), and the rate of killing cancer cells strongly depends on the dose of mCNCs. Further, the mitochondrial membrane potential and apoptosis assay were performed to analyze the therapeutic significance of these nanocapsules to kill breast cancer. Results showed that these carbon nanocapsules can depolarize the mitochondrial membrane potential alone (without using conventional drugs) and can change the physiological parameters and cellular metabolic energy of the cancer cells and kill them. The apoptosis results confirmed the death of breast cancer cells in the form of apoptosis and necrosis. Moreover, the results suggested that the porous carbon nanocapsules (mCNCs) reported herein can be used as a potential candidate and useful for the theranostic applications such as for cancer cell detection and therapy without using any conventional drugs.
Collapse
Affiliation(s)
- Somedutta Maity
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Munendra Singh Tomar
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221 005, Uttar Pradesh, India.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221 005, Uttar Pradesh, India
| | - Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221 005, Uttar Pradesh, India
| | - Monami Das Modak
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221 005, Uttar Pradesh, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221 005, Uttar Pradesh, India
| | - Monika Singh
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221 005, Uttar Pradesh, India
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221 005, Uttar Pradesh, India
| |
Collapse
|
137
|
Electrospun Silk Fibroin/Polylactic-co-glycolic Acid/Black Phosphorus Nanosheets Nanofibrous Membrane with Photothermal Therapy Potential for Cancer. Molecules 2022; 27:molecules27144563. [PMID: 35889436 PMCID: PMC9317578 DOI: 10.3390/molecules27144563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Photothermal therapy is a promising treating method for cancers since it is safe and easily controllable. Black phosphorus (BP) nanosheets have drawn tremendous attention as a novel biodegradable thermotherapy material, owing to their excellent biocompatibility and photothermal properties. In this study, silk fibroin (SF) was used to exfoliate BP with long-term stability and good solution-processability. Then, the prepared BP@SF was introduced into fibrous membranes by electrospinning, together with SF and polylactic-co-glycolic acid (PLGA). The SF/PLGA/BP@SF membranes had relatively smooth and even fibers and the maximum stress was 2.92 MPa. Most importantly, the SF/PLGA/BP@SF membranes exhibited excellent photothermal properties, which could be controlled by the BP@SF content and near infrared (NIR) light power. The temperature of SF/PLGA/BP@SF composite membrane was increased by 15.26 °C under NIR (808 nm, 2.5 W/cm2) irradiation for 10 min. The photothermal property of SF/PLGA/BP@SF membranes significantly killed the HepG2 cancer cells in vitro, indicating its good potential for application in local treatment of cancer.
Collapse
|
138
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
139
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
140
|
Pavličková M, Lorencová L, Hatala M, Kováč M, Tkáč J, Gemeiner P. Facile fabrication of screen-printed MoS 2 electrodes for electrochemical sensing of dopamine. Sci Rep 2022; 12:11900. [PMID: 35831476 PMCID: PMC9277599 DOI: 10.1038/s41598-022-16187-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Molybdenum disulfide (MoS2) screen-printed working electrodes were developed for dopamine (DA) electrochemical sensing. MoS2 working electrodes were prepared from high viscosity screen-printable inks containing various concentrations and sizes of MoS2 particles and ethylcellulose binder. Rheological properties of MoS2 inks and their suitability for screen-printing were analyzed by viscosity curve, screen-printing simulation and oscillatory modulus. MoS2 inks were screen-printed onto conductive FTO (Fluorine-doped Tin Oxide) substrates. Optical microscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX) analysis were used to characterize the homogeneity, topography and thickness of the screen-printed MoS2 electrodes. The electrochemical performance was assessed through differential pulse voltammetry. Results showed an extensive linear detection of dopamine from 1 µM to 300 µM (R2 = 0.996, sensitivity of 5.00 × 10-8 A μM-1), with the best limit of detection being 246 nM. This work demonstrated the possibility of simple, low-cost and rapid preparation of high viscosity MoS2 ink and their use to produce screen-printed FTO/MoS2 electrodes for dopamine detection.
Collapse
Affiliation(s)
- Michaela Pavličková
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Lenka Lorencová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Michal Hatala
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Miroslav Kováč
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Ján Tkáč
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Pavol Gemeiner
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic.
| |
Collapse
|
141
|
Zhu S, Liu Y, Gu Z, Zhao Y. Research trends in biomedical applications of two-dimensional nanomaterials over the last decade - A bibliometric analysis. Adv Drug Deliv Rev 2022; 188:114420. [PMID: 35835354 DOI: 10.1016/j.addr.2022.114420] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Two-dimensional (2D) nanomaterials with versatile properties have been widely applied in the field of biomedicine. Despite various studies having reviewed the development of biomedical 2D nanomaterials, there is a lack of a study that objectively summarizes and analyzes the research trend of this important field. Here, we employ a series of bibliometric methods to identify the development of the 2D nanomaterial-related biomedical field during the past 10 years from a holistic point of view. First, the annual publication/citation growth, country/institute/author distribution, referenced sources, and research hotspots are identified. Thereafter, based on the objectively identified research hotspots, the contributions of 2D nanomaterials to the various biomedical subfields, including those of biosensing, imaging/therapy, antibacterial treatment, and tissue engineering are carefully explored, by considering the intrinsic properties of the nanomaterials. Finally, prospects and challenges have been discussed to shed light on the future development and clinical translation of 2D nanomaterials. This review provides a novel perspective to identify and further promote the development of 2D nanomaterials in biomedical research.
Collapse
Affiliation(s)
- Shuang Zhu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
142
|
Wu C, Zhang Y, Wei X, Li N, Huang H, Xie Z, Zhang H, Yang G, Li M, Li T, Yang H, Li S, Qin X, Liu Y. Tumor Homing-Penetrating and Nanoenzyme-Augmented 2D Phototheranostics Against Hypoxic Solid Tumors. Acta Biomater 2022; 150:391-401. [DOI: 10.1016/j.actbio.2022.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
|
143
|
Zhang C, Chen L, Bai Q, Wang L, Li S, Sui N, Yang D, Zhu Z. Nonmetal Graphdiyne Nanozyme-Based Ferroptosis-Apoptosis Strategy for Colon Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27720-27732. [PMID: 35674241 DOI: 10.1021/acsami.2c06721] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ferroptosis-apoptosis, a new modality of induced cell death dependent on reactive oxygen species, has drawn tremendous attention in the field of nanomedicine. A metal-free ferroptosis-apoptosis inducer was reported based on boron and nitrogen codoped graphdiyne (BN-GDY) that possesses efficient glutathione (GSH) depletion capability and concurrently induces ferroptosis by deactivation of GSH-dependent peroxidases 4 (GPX4) and apoptosis by downregulation of Bcl2. The high catalytic activity of BN-GDY is explicated by both kinetic experiments and density functional theory (DFT) calculations of Gibbs free energy change during hydrogen peroxide (H2O2) decomposition. In addition, a unique sequence Bi-Bi mechanism is discovered, which is distinct from the commonly reported ping-pong Bi-Bi mechanism of most peroxidase mimics and natural enzymes. We anticipate that this nonmetal ferroptosis-apoptosis therapeutic concept by carbon-based nanomaterials would provide proof-of-concept evidence for nanocatalytic medicines in cancer therapy.
Collapse
Affiliation(s)
- Chaohui Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Lin Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Ulumuqi Road, Shanghai 200040, China
- Shanghai GeneChem Company Limited, 332 New Edison Road, Pudong, Shanghai 201203, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Siheng Li
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, United States
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, 12 Middle Ulumuqi Road, Shanghai 200040, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| |
Collapse
|
144
|
Chen K, Li H, Zhou A, Zhou X, Xu Y, Ge H, Ning X. Cell Membrane Camouflaged Metal Oxide-Black Phosphorus Biomimetic Nanocomplex Enhances Photo-chemo-dynamic Ferroptosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26557-26570. [PMID: 35658416 DOI: 10.1021/acsami.2c08413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the availability of various treatment options, the inherent complexity of tumors significantly impairs therapeutic efficacy. Recently, combination treatments exhibited great anticancer potential due to low cross-resistance and good therapeutic additivity. Herein, a photoactive metal oxide-black phosphorus biomimetic nanocomplex (photophage) is developed for improving the antitumor combination of ferroptosis and photodynamic therapy (PDT). The photophage is composed of M1 macrophage membrane camouflaged MnO2 and Fe3O4 nanoparticles anchored black phosphorus nanosheets (BPNs), which together trigger a synergistic antitumor action. Fe3O4 acts as an iron source to activate Fenton-reaction-dependent ferroptosis, which can be further strengthened by BPN-mediated PDT. Besides the original antitumor effects, PDT also generates reactive oxygen species to enhance lipid peroxidation and glutathione depletion, which in turn reinforce ferroptosis and PDT efficacy. Importantly, MnO2 can in situ generate oxygen to relieve tumor hypoxia and consequently leverage cell behaviors to improve therapeutic responses. Particularly, M1 macrophage membrane modification endows the photophage with good tumor targeting capability and tumor penetration, which promote synergistic ferroptosis and PDT to destroy tumors while reducing systemic side effects, resulting in the prolonged survival of tumor-bearing mice. Therefore, we present a biomimetic nanoplatform for overcoming tumor barriers and advancing tumor-targeted treatment.
Collapse
Affiliation(s)
- Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Huipeng Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
- Center for Health Science and Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
145
|
Li ZL, Wu H, Zhu JQ, Sun LY, Tong XM, Huang DS, Yang T. Novel Strategy for Optimized Nanocatalytic Tumor Therapy: From an Updated View. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Zhen-Li Li
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| | - Han Wu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| | - Jia-Qi Zhu
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Li-Yang Sun
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Xiang-Min Tong
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Dong-Sheng Huang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Tian Yang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| |
Collapse
|
146
|
Ouyang J, Rao S, Liu R, Wang L, Chen W, Tao W, Kong N. 2D materials-based nanomedicine: From discovery to applications. Adv Drug Deliv Rev 2022; 185:114268. [PMID: 35398466 DOI: 10.1016/j.addr.2022.114268] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/11/2022] [Accepted: 04/02/2022] [Indexed: 01/14/2023]
Abstract
Due to their unique physicochemical characteristics, 2D materials have attracted more and more attention in the biomedicine field. Currently, 2D materials-based nanomedicines have been extensively applied in various diseases including cancer, bacterial infection, tissue engineering, biological protection, neurodegenerative diseases, and cardiovascular disease. Depending on their various characteristics, these 2D nanomedicines exert their therapeutic effect in different ways, showing great clinical application prospects. Herein, we focus on the various biomedical applications of 2D materials-based nanomedicine. The structures and characteristics of several typical 2D nanomaterials with different configurations and their corresponding biomedical applications are first introduced. Then, the potential of 2D nanomedicines on therapeutic and imaging and their biological functionalization are discussed. Furthermore, the therapeutic potentials of 2D nanomedicines in various diseases are also comprehensively summarized. At last, the challenges and perspectives for the advancement of 2D nanomedicines in clinical transformation are outlooks.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siyuan Rao
- Guangzhou University of Chinese Medicine, Guangzhou, China & Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Runcong Liu
- Zhuhai Hospital Affiliated, Jinan University, Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
147
|
Khedri M, Maleki R, Dahri M, Sadeghi MM, Rezvantalab S, Santos HA, Shahbazi MA. Engineering of 2D nanomaterials to trap and kill SARS-CoV-2: a new insight from multi-microsecond atomistic simulations. Drug Deliv Transl Res 2022; 12:1408-1422. [PMID: 34476766 PMCID: PMC8413075 DOI: 10.1007/s13346-021-01054-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/23/2022]
Abstract
In late 2019, coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Spike protein is one of the surface proteins of SARS-CoV-2 that is essential for its infectious function. Therefore, it received lots of attention for the preparation of antiviral drugs, vaccines, and diagnostic tools. In the current study, we use computational methods of chemistry and biology to study the interaction between spike protein and its receptor in the body, angiotensin-I-converting enzyme-2 (ACE2). Additionally, the possible interaction of two-dimensional (2D) nanomaterials, including graphene, bismuthene, phosphorene, p-doped graphene, and functionalized p-doped graphene, with spike protein is investigated. The functionalized p-doped graphene nanomaterials were found to interfere with spike protein better than the other tested nanomaterials. In addition, the interaction of the proposed nanomaterials with the main protease (Mpro) of SARS-CoV-2 was studied. Functionalized p-doped graphene nanomaterials showed more capacity to prevent the activity of Mpro. These 2D nanomaterials efficiently reduce the transmissibility and infectivity of SARS-CoV-2 by both the deformation of the spike protein and inhibiting the Mpro. The results suggest the potential use of 2D nanomaterials in a variety of prophylactic approaches, such as masks or surface coatings, and would deserve further studies in the coming years.
Collapse
Affiliation(s)
- Mohammad Khedri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Moein Sadeghi
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Rezvantalab
- Renewable Energies Department, Faculty of Chemical Engineering, Urmia University of Technology, 57166-419, Urmia, Iran.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland.
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014, Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland.
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran.
| |
Collapse
|
148
|
Zhang H, Yin XB. Mixed-Ligand Metal-Organic Frameworks for All-in-One Theranostics with Controlled Drug Delivery and Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26528-26535. [PMID: 35641317 DOI: 10.1021/acsami.2c06873] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mixed-ligand metal-organic frameworks (MOFs) multiply the properties and improve the versatility of conventional MOFs for theranostic applications. A tumor targeting and tumoral microenvironment-responsive system is significant for specific and efficient cancer theranostics. Herein, we report a kind of versatile mixed-porphyrin ligand MOF as a multifunctional matrix for multimodality-imaging-guided synergistic therapy. Tetrakis(4-carboxyphenyl)porphyrin (TCPP) shows the properties of fluorescence (FL) and photodynamic therapy (PDT), while Mn-TCPP owns magically the properties of T1-weighted magnetic resonance (MR) imaging and photothermal conversion for photothermal imaging and photothermal therapy (PTT). Because of the same coordination capacity and mode of TCPP and Mn-TCPP to Zr4+ ions, MOFs with adjustable ligand ratios were easily prepared. The mixed-ligand MOFs exhibited a high drug loading capacity for 10-hydroxycamptothecin (HCPT, 65%). After modification with hyaluronic acid (HA) through a disulfide bond (-S-S-), the MOF-S-S-HA composites possess enhanced PDT and tumor-targeted redox-responsive drug release properties due to the -S-S- bond. Thus, excellent fluorescence, MR, and photothermal trimodality imaging, redox-responsive drug release, and enhanced PDT/PTT are integrated together in the mixed-ligand MOFs as "all-in-one" theranostic agents.
Collapse
Affiliation(s)
- Hui Zhang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA and College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201114, P. R. China
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xue-Bo Yin
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA and College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
149
|
Vasyukova IA, Zakharova OV, Kuznetsov DV, Gusev AA. Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1797. [PMID: 35683652 PMCID: PMC9182201 DOI: 10.3390/nano12111797] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
MXenes are a family of two-dimensional (2D) composite materials based on transition metal carbides, nitrides and carbonitrides that have been attracting attention since 2011. Combination of electrical and mechanical properties with hydrophilicity makes them promising materials for biomedical applications. This review briefly discusses methods for the synthesis of MXenes, their potential applications in medicine, ranging from sensors and antibacterial agents to targeted drug delivery, cancer photo/chemotherapy, tissue engineering, bioimaging, and environmental applications such as sensors and adsorbents. We focus on in vitro and in vivo toxicity and possible mechanisms. We discuss the toxicity analogies of MXenes and other 2D materials such as graphene, mentioning the greater biocompatibility of MXenes. We identify existing barriers that hinder the formation of objective knowledge about the toxicity of MXenes. The most important of these barriers are the differences in the methods of synthesis of MXenes, their composition and structure, including the level of oxidation, the number of layers and flake size; functionalization, test concentrations, duration of exposure, and individual characteristics of biological test objects Finally, we discuss key areas for further research that need to involve new methods of nanotoxicology, including predictive computational methods. Such studies will bring closer the prospect of widespread industrial production and safe use of MXene-based products.
Collapse
Affiliation(s)
- Inna A. Vasyukova
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
| | - Olga V. Zakharova
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Denis V. Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Alexander A. Gusev
- Technopark “Derzhavinsky”, Derzhavin Tambov State University, 392000 Tambov, Russia; (I.A.V.); (O.V.Z.)
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| |
Collapse
|
150
|
Fang X, Wang C, Zhou S, Cui P, Hu H, Ni X, Jiang P, Wang J. Hydrogels for Antitumor and Antibacterial Therapy. Gels 2022; 8:gels8050315. [PMID: 35621613 PMCID: PMC9141473 DOI: 10.3390/gels8050315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
As a highly absorbent and hydrophobic material with a three-dimensional network structure, hydrogels are widely used in biomedical fields for their excellent biocompatibility, low immunogenicity, adjustable physicochemical properties, ability to encapsulate a variety of drugs, controllability, and degradability. Hydrogels can be used not only for wound dressings and tissue repair, but also as drug carriers for the treatment of tumors. As multifunctional hydrogels are the focus for many researchers, this review focuses on hydrogels for antitumor therapy, hydrogels for antibacterial therapy, and hydrogels for co-use in tumor therapy and bacterial infection. We highlighted the advantages and representative applications of hydrogels in these fields and also outlined the shortages and future orientations of this useful tool, which might give inspirations for future studies.
Collapse
Affiliation(s)
- Xiuling Fang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Xinye Ni
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, China
- Correspondence: (X.N.); (P.J.); (J.W.)
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Correspondence: (X.N.); (P.J.); (J.W.)
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Correspondence: (X.N.); (P.J.); (J.W.)
| |
Collapse
|