101
|
Liu S, Liu Y, Li J, Wang M, Chen X, Gan F, Wen L, Huang K, Liu D. Arsenic Exposure-Induced Acute Kidney Injury by Regulating SIRT1/PINK1/Mitophagy Axis in Mice and in HK-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15809-15820. [PMID: 37843077 DOI: 10.1021/acs.jafc.3c05341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Groundwater resources are often contaminated by arsenic, which poses a serious threat to human and animal's health. Some studies have demonstrated that acute arsenic exposure could induce kidney injury because the kidney is a key target organ for toxicity, but the exact mechanism remains unclear. Hence, we investigated the effect of SIRT1-/PINK1-mediated mitophagy on NaAsO2-induced kidney injury in vivo and in vitro. In our study, NaAsO2 exposure obviously induced renal tubule injury and mitochondrial dysfunction. Meanwhile, NaAsO2 exposure could inhibit the mRNA/protein level of SIRT1 and activate the mitophagy-related mRNA/protein levels in the kidney of mice. In HK-2 cells, we also confirmed that NaAsO2-induced nephrotoxicity depended on the activation of mitophagy. Moreover, the activation of SIRT1 by resveratrol alleviated NaAsO2-induced acute kidney injury via the activation of mitophagy in vivo and in vitro. Interestingly, the inhibition of mitophagy by cyclosporin A (CsA) further exacerbated NaAsO2-induced nephrotoxicity and inflammation in HK-2 cells. Taken together, our study found that SIRT1-regulated PINK1-/Parkin-dependent mitophagy was implicated in NaAsO2-induced acute kidney injury. In addition, we confirmed that PINK1-/Parkin-dependent mitophagy played a protective role against NaAsO2-induced acute kidney injury. Therefore, activation of SIRT1 and mitophagy may represent a novel therapeutic target for the prevention and treatment of NaAsO2-induced acute renal injury.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
102
|
Alkhaleq HA, Karram T, Fokra A, Hamoud S, Kabala A, Abassi Z. The Protective Pathways Activated in Kidneys of αMUPA Transgenic Mice Following Ischemia\Reperfusion-Induced Acute Kidney Injury. Cells 2023; 12:2497. [PMID: 37887341 PMCID: PMC10605904 DOI: 10.3390/cells12202497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the high prevalence of acute kidney injury (AKI), the therapeutic approaches for AKI are disappointing. This deficiency stems from the poor understanding of the pathogenesis of AKI. Recent studies demonstrate that αMUPA, alpha murine urokinase-type plasminogen activator (uPA) transgenic mice, display a cardioprotective pathway following myocardial ischemia. We hypothesize that these mice also possess protective renal pathways. Male and female αMUPA mice and their wild type were subjected to 30 min of bilateral ischemic AKI. Blood samples and kidneys were harvested 48 h following AKI for biomarkers of kidney function, renal injury, inflammatory response, and intracellular pathways sensing or responding to AKI. αMUPA mice, especially females, exhibited attenuated renal damage in response to AKI, as was evident from lower SCr and BUN, normal renal histology, and attenuated expression of NGAL and KIM-1. Notably, αMUPA females did not show a significant change in renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Moreover, αMUPA female mice exhibited the lowest levels of renal apoptotic and autophagy markers during normal conditions and following AKI. αMUPA mice, especially the females, showed remarkable expression of PGC1α and eNOS following AKI. Furthermore, MUPA mice showed a significant elevation in renal leptin expression before and following AKI. Pretreatment of αMUPA with leptin-neutralizing antibodies prior to AKI abolished their resistance to AKI. Collectively, the kidneys of αMUPA mice, especially those of females, are less susceptible to ischemic I/R injury compared to WT mice, and this is due to nephroprotective actions mediated by the upregulation of leptin, eNOS, ACE2, and PGC1α along with impaired inflammatory, fibrotic, and autophagy processes.
Collapse
Affiliation(s)
- Heba Abd Alkhaleq
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Tony Karram
- Department of Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Ahmad Fokra
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Shadi Hamoud
- Internal Medicine, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Aviva Kabala
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
- Laboratory Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
103
|
Tanaka T, Kobuchi S, Ito Y, Sakaeda T. Pharmacokinetic evaluation of oxaliplatin combined with S-1 (SOX) chemotherapy in a rat model of colorectal cancer with acute kidney injury: predictive renal biomarkers for dose optimisation. Xenobiotica 2023; 53:613-620. [PMID: 37966716 DOI: 10.1080/00498254.2023.2283736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/11/2023] [Indexed: 11/16/2023]
Abstract
Dose adjustment based on renal function is essential in S-1, which contains the 5‑fluorouracil prodrug tegafur, and platinum-based agent oxaliplatin (SOX) combination chemotherapy for colorectal cancer in patients with chronic kidney disease. However, limited evidence on dose adjustment in acute kidney injury (AKI) and challenges in determining dosing strategies. This study investigated the pharmacokinetics of SOX chemotherapy and renal biomarkers in rats.AKI was prepared by renal ischaemia-reperfusion injury in 1,2-dimethylhydrazine-induced colorectal cancer model rats. Serum creatinine (sCr) levels were determined as a renal biomarker. After administration of S-1 (2 mg/kg tegafur) and oxaliplatin (5 mg/kg), drug concentrations of tegafur, 5-FU, and platinum were measured in the plasma and tumours.No alterations in the area under the plasma concentration-time curve (AUC0-24h) values of 5-fluorouracil were observed between control and AKI model rats. The tumour concentrations of 5-fluorouracil in the mild and severe AKI groups were significantly lower than control group. The AUC0-24h for platinum increased with AKI severity. Notably, population pharmacokinetic analysis identified sCr as a covariate in platinum distribution after SOX chemotherapy.To optimise dose adjustment of SOX chemotherapy in patients with AKI, sCr may be a key factor in determining the appropriate dose.
Collapse
Affiliation(s)
- Takumi Tanaka
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shinji Kobuchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Toshiyuki Sakaeda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
104
|
Saito K, Temmoku J, Sumichika Y, Yoshida S, Takano E, Watanabe S, Matsumoto H, Fujita Y, Matsuoka N, Asano T, Sato S, Watanabe H, Migita K. Adult-onset Still's Disease with Acute Kidney Injury Requiring Hemodialysis: A Case Report and Literature Review. Intern Med 2023; 62:2901-2906. [PMID: 36823090 PMCID: PMC10602845 DOI: 10.2169/internalmedicine.1026-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/23/2022] [Indexed: 02/23/2023] Open
Abstract
Adult-onset Still's disease (AOSD) is characterized by high spiking fever, evanescent rash, and arthritis. However, AOSD rarely presents with severe acute kidney injury (AKI). We herein present the case of a 56-year-old woman with new-onset AOSD who rapidly developed AKI. A physical examination and laboratory data revealed spiking fever, evanescent rash, thrombocytopenia, hyperferritinemia, and azotemia. The patient was diagnosed with AOSD complicated by AKI and macrophage activation syndrome. Treatment with high-dose steroids, hemodialysis, and plasma exchange successfully resolved her AKI. In this report, we review previously published reports on AOSD accompanied by AKI and discuss this rare complication in AOSD.
Collapse
Affiliation(s)
- Kenji Saito
- Department of Rheumatology, Fukushima Medical University School of Medicine, Japan
| | - Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine, Japan
| | - Yuya Sumichika
- Department of Rheumatology, Fukushima Medical University School of Medicine, Japan
| | - Shuhei Yoshida
- Department of Rheumatology, Fukushima Medical University School of Medicine, Japan
| | - Eisuke Takano
- Department of Nephrology and Hypertension, Fukushima Medical University School of Medicine, Japan
| | - Shuhei Watanabe
- Department of Nephrology and Hypertension, Fukushima Medical University School of Medicine, Japan
| | - Haruki Matsumoto
- Department of Rheumatology, Fukushima Medical University School of Medicine, Japan
| | - Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Japan
| | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Japan
| |
Collapse
|
105
|
He XY, Wang F, Suo XG, Gu MZ, Wang JN, Xu CH, Dong YH, He Y, Zhang Y, Ji ML, Chen Y, Zhang MM, Fan YG, Wen JG, Jin J, Wang J, Li J, Zhuang CL, Liu MM, Meng XM. Compound-42 alleviates acute kidney injury by targeting RIPK3-mediated necroptosis. Br J Pharmacol 2023; 180:2641-2660. [PMID: 37248964 DOI: 10.1111/bph.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Necroptosis plays an essential role in acute kidney injury and is mediated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed lineage kinase domain-like pseudokinase (MLKL). A novel RIPK3 inhibitor, compound 42 (Cpd-42) alleviates the systemic inflammatory response. The current study was designed to investigate whether Cpd-42 exhibits protective effects on acute kidney injury and reveal the underlying mechanisms. EXPERIMENTAL APPROACH The effects of Cpd-42 were determined in vivo through cisplatin- and ischaemia/reperfusion (I/R)-induced acute kidney injury and in vitro through cisplatin- and hypoxia/re-oxygenation (H/R)-induced cell damage. Transmission electron microscopy and periodic acid-Schiff staining were used to identify renal pathology. Cellular thermal shift assay and RIPK3-knockout mouse renal tubule epithelial cells were used to explore the relationship between Cpd-42 and RIPK3. Molecular docking and site-directed mutagenesis were used to determine the binding site of RIPK3 with Cpd-42. KEY RESULTS Cpd-42 reduced human proximal tubule epithelial cell line (HK-2) cell damage, necroptosis and inflammatory responses in vitro. Furthermore, in vivo, cisplatin- and I/R-induced acute kidney injury was alleviated by Cpd-42 treatment. Cpd-42 inhibited necroptosis by interacting with two key hydrogen bonds of RIPK3 at Thr94 and Ser146, which further blocked the phosphorylation of RIPK3 and mitigated acute kidney injury. CONCLUSION AND IMPLICATIONS Acting as a novel RIPK3 inhibitor, Cpd-42 reduced kidney damage, inflammatory response and necroptosis in acute kidney injury by binding to sites Thr94 and Ser146 on RIPK3. Cpd-42 could be a promising treatment for acute kidney injury.
Collapse
Affiliation(s)
- Xiao-Yan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Fang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
- Department of Pharmacy, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ming-Zhen Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Meng-Meng Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Juan Jin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Chun-Lin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
106
|
Li J, Zheng S, Fan Y, Tan K. Emerging significance and therapeutic targets of ferroptosis: a potential avenue for human kidney diseases. Cell Death Dis 2023; 14:628. [PMID: 37739961 PMCID: PMC10516929 DOI: 10.1038/s41419-023-06144-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Kidney diseases remain one of the leading causes of human death and have placed a heavy burden on the medical system. Regulated cell death contributes to the pathology of a plethora of renal diseases. Recently, with in-depth studies into kidney diseases and cell death, a new iron-dependent cell death modality, known as ferroptosis, has been identified and has attracted considerable attention among researchers in the pathogenesis of kidney diseases and therapeutics to treat them. The majority of studies suggest that ferroptosis plays an important role in the pathologies of multiple kidney diseases, such as acute kidney injury (AKI), chronic kidney disease, and renal cell carcinoma. In this review, we summarize recently identified regulatory molecular mechanisms of ferroptosis, discuss ferroptosis pathways and mechanisms of action in various kidney diseases, and describe the protective effect of ferroptosis inhibitors against kidney diseases, especially AKI. By summarizing the prominent roles of ferroptosis in different kidney diseases and the progress made in studying ferroptosis, we provide new directions and strategies for future research on kidney diseases. In summary, ferroptotic factors are potential targets for therapeutic intervention to alleviate different kidney diseases, and targeting them may lead to new treatments for patients with kidney diseases.
Collapse
Affiliation(s)
- Jinghan Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Sujuan Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
107
|
Mapuskar KA, Pulliam CF, Zepeda-Orozco D, Griffin BR, Furqan M, Spitz DR, Allen BG. Redox Regulation of Nrf2 in Cisplatin-Induced Kidney Injury. Antioxidants (Basel) 2023; 12:1728. [PMID: 37760031 PMCID: PMC10525889 DOI: 10.3390/antiox12091728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin, a potent chemotherapeutic agent, is marred by severe nephrotoxicity that is governed by mechanisms involving oxidative stress, inflammation, and apoptosis pathways. The transcription factor Nrf2, pivotal in cellular defense against oxidative stress and inflammation, is the master regulator of the antioxidant response, upregulating antioxidants and cytoprotective genes under oxidative stress. This review discusses the mechanisms underlying chemotherapy-induced kidney injury, focusing on the role of Nrf2 in cancer therapy and its redox regulation in cisplatin-induced kidney injury. We also explore Nrf2's signaling pathways, post-translational modifications, and its involvement in autophagy, as well as examine redox-based strategies for modulating Nrf2 in cisplatin-induced kidney injury while considering the limitations and potential off-target effects of Nrf2 modulation. Understanding the redox regulation of Nrf2 in cisplatin-induced kidney injury holds significant promise for developing novel therapeutic interventions. This knowledge could provide valuable insights into potential strategies for mitigating the nephrotoxicity associated with cisplatin, ultimately enhancing the safety and efficacy of cancer treatment.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Casey F. Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Diana Zepeda-Orozco
- Pediatric Nephrology and Hypertension at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin R. Griffin
- Division of Nephrology, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Muhammad Furqan
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
108
|
Jahankhani K, Taghipour N, Mashhadi Rafiee M, Nikoonezhad M, Mehdizadeh M, Mosaffa N. Therapeutic effect of trace elements on multiple myeloma and mechanisms of cancer process. Food Chem Toxicol 2023; 179:113983. [PMID: 37567355 DOI: 10.1016/j.fct.2023.113983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
In the human body, trace elements and other micronutrients play a vital role in growth, health and immune system function. The trace elements are Iron, Manganese, Copper, Iodine, Zinc, Cobalt, Fluoride, and Selenium. Estimating the serum levels of trace elements in hematologic malignancy patients can determine the severity of the tumor. Multiple myeloma (MM) is a hematopoietic malignancy and is characterized by plasma cell clonal expansion in bone marrow. Despite the advances in treatment methods, myeloma remains largely incurable. In addition to conventional medicine, treatment is moving toward less expensive noninvasive alternatives. One of the alternative treatments is the use of dietary supplements. In this review, we focused on the effect of three trace elements including iron, zinc and selenium on important mechanisms such as the immune system, oxidative and antioxidant factors and cell cycle. Using some trace minerals in combination with approved drugs can increase patients' recovery speed. Trace elements can be used as not only a preventive but also a therapeutic tool, especially in reducing inflammation in hematological cancers such as multiple myeloma. We hope that the prospect of the correct use of trace element supplements in the future could be promising for the treatment of diseases.
Collapse
Affiliation(s)
- Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nikoonezhad
- Department of Immunology, School of Medicine, Tarbiat Modarres University, Tehran, Iran
| | - Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
109
|
Ye L, Jiang S, Hu J, Wang M, Weng T, Wu F, Cai L, Sun Z, Ma L. Induction of Metabolic Reprogramming in Kidney by Singlet Diradical Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301338. [PMID: 37295411 DOI: 10.1002/adma.202301338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic compounds with an open-shell singlet diradical ground state, namely singlet diradicals, have recently gained attention in the fields of organic electronics, photovoltaics, and spintronics owing to their unique electronic structures and properties. Notably, singlet diradicals exhibit tunable redox amphoterism, which makes them excellent redox-active materials for biomedical applications. However, the safety and therapeutic efficacy of singlet diradicals in biological systems have not yet been explored. Herein, the study presents a newly designed singlet diradical nanomaterial, diphenyl-substituted biolympicenylidene (BO-Ph), exhibiting low cytotoxicity in vitro, non-significant acute nephrotoxicity in vivo, and the ability to induce metabolic reprogramming in kidney organoids. Integrated transcriptome and metabolome analyses reveal that the metabolism of BO-Ph stimulates glutathione (GSH) synthesis and fatty acid degradation, increases the levels of intermediates in the tricarboxylic acid (TCA) and carnitine cycles, and eventually boosts oxidative phosphorylation (OXPHOS) under redox homeostasis. Benefits of BO-Ph-induce metabolic reprogramming in kidney organoids include enhancing cellular antioxidant capacity and promoting mitochondrial function. The results of this study can facilitate the application of singlet diradical materials in the treatment of clinical conditions induced by mitochondrial abnormalities in kidney.
Collapse
Affiliation(s)
- Lei Ye
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shengwei Jiang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin, 300072, China
| | - Mingzhe Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Taoyu Weng
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin, 300072, China
| | - Feng Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Liangyu Cai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin, 300072, China
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
110
|
Su L, Zhang J, Wang J, Wang X, Cao E, Yang C, Sun Q, Sivakumar R, Peng Z. Pannexin 1 targets mitophagy to mediate renal ischemia/reperfusion injury. Commun Biol 2023; 6:889. [PMID: 37644178 PMCID: PMC10465551 DOI: 10.1038/s42003-023-05226-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Renal ischemia/reperfusion (I/R) injury contributes to the development of acute kidney injury (AKI). Kidney is the second organ rich in mitochondrial content next to the heart. Mitochondrial damage substantially contributes for AKI development. Mitophagy eliminates damaged mitochondria from the cells to maintain a healthy mitochondrial population, which plays an important role in AKI. Pannexin 1 (PANX1) channel transmembrane proteins are known to drive inflammation and release of adenosine triphosphate (ATP) during I/R injury. However, the specific role of PANX1 on mitophagy regulation in renal I/R injury remains elusive. In this study, we find that serum level of PANX1 is elevated in patients who developed AKI after cardiac surgery, and the level of PANX1 is positively correlated with serum creatinine and urea nitrogen levels. Using the mouse model of renal I/R injury in vivo and cell-based hypoxia/reoxygenation (H/R) model in vitro, we prove that genetic deletion of PANX1 mitigate the kidney tubular cell death, oxidative stress and mitochondrial damage after I/R injury through enhanced mitophagy. Mechanistically, PANX1 disrupts mitophagy by influencing ATP-P2Y-mTOR signal pathway. These observations provide evidence that PANX1 could be a potential biomarker for AKI and a therapeutic target to alleviate AKI caused by I/R injury.
Collapse
Affiliation(s)
- Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China.
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Xiaozhan Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Edward Cao
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chen Yang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Qihao Sun
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ramadoss Sivakumar
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China.
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15206, USA.
| |
Collapse
|
111
|
Hahn RG, Weinberg L, Li Y, Bahlmann H, Bellomo R, Wuethrich PY. Concentrated urine, low urine flow, and postoperative elevation of plasma creatinine: A retrospective analysis of pooled data. PLoS One 2023; 18:e0290071. [PMID: 37590224 PMCID: PMC10434918 DOI: 10.1371/journal.pone.0290071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Elevations of plasma creatinine are common after major surgery, but their pathophysiology is poorly understood. To identify possible contributing mechanisms, we pooled data from eight prospective studies performed in four different countries to study circumstances during which elevation of plasma creatinine occurs. We included 642 patients undergoing mixed major surgeries, mostly open gastrointestinal. Plasma and urinary creatinine and a composite index for renal fluid conservation (Fluid Retention Index, FRI) were measured just before surgery and on the first postoperative morning. Urine flow was measured during the surgery. The results show that patients with a postoperative increase in plasma creatinine by >25% had a high urinary creatinine concentration (11.0±5.9 vs. 8.3±5.6 mmol/L; P< 0001) and higher FRI value (3.2±1.0 vs. 2.9±1.1; P< 0.04) already before surgery was initiated. Progressive increase of plasma creatinine was associated with a gradually lower urine flow and larger blood loss during the surgery (Kruskal-Wallis test, P< 0.001). The patients with an elevation > 25% also showed higher creatinine and a higher FRI value on the first postoperative morning (P< 0.001). Elevations to > 50% of baseline were associated with slightly lower mean arterial pressure (73 ± 10 vs. 80 ± 12 mmHg; P< 0.005). We conclude that elevation of plasma creatinine in the perioperative period was associated with low urine flow and greater blood loss during surgery and with concentrated urine both before and after the surgery. Renal water conservation-related mechanisms seem to contribute to the development of increased plasma creatinine after surgery.
Collapse
Affiliation(s)
- Robert G. Hahn
- Karolinska Institutet at Danderyds Hospital (KIDS), Stockholm, Sweden
| | - Laurence Weinberg
- Department of Anesthesia, Austin Hospital; Melbourne, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Australia
| | - Yuhong Li
- Department of Anesthesiology, Shulan International Hospital, Shuren University, Hangzhou, 3100004, Zhejiang Province, PR of China
| | - Hans Bahlmann
- Department of Anesthesiology and Intensive Care in Linköping, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Department of Critical Care, The University of Melbourne; Melbourne, Australia
| | - Patrick Y. Wuethrich
- Department of Anesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
112
|
Khamis T, Alsemeh AE, Alanazi A, Eltaweel AM, Abdel-Ghany HM, Hendawy DM, Abdelkhalek A, Said MA, Awad HH, Ibrahim BH, Mekawy DM, Pascu C, Florin C, Arisha AH. Breast Milk Mesenchymal Stem Cells and/or Derived Exosomes Mitigated Adenine-Induced Nephropathy via Modulating Renal Autophagy and Fibrotic Signaling Pathways and Their Epigenetic Regulations. Pharmaceutics 2023; 15:2149. [PMID: 37631363 PMCID: PMC10458733 DOI: 10.3390/pharmaceutics15082149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic kidney disease (CKD), a global health concern, is highly prevalent among adults. Presently, there are limited therapeutic options to restore kidney function. This study aimed to investigate the therapeutic potential of breast milk mesenchymal stem cells (Br-MSCs) and their derived exosomes in CKD. Eighty adult male Sprague Dawley rats were randomly assigned to one of six groups, including control, nephropathy, nephropathy + conditioned media (CM), nephropathy + Br-MSCs, nephropathy + Br-MSCs derived exosomes (Br-MSCs-EXOs), and nephropathy + Br-MSCs + Br-MSCs-EXOs. Before administration, Br-MSCs and Br-MSCs-EXOs were isolated, identified, and labeled with PKH-26. SOX2, Nanog, and OCT3/4 expression levels in Br-MSCs and miR-29b, miR-181, and Let-7b in both Br-MSCs and Br-MSCs-EXOs were assayed. Twelve weeks after transplantation, renal function tests, oxidative stress, expression of the long non-coding RNA SNHG-7, autophagy, fibrosis, and expression of profibrotic miR-34a and antifibrotic miR-29b, miR-181, and Let-7b were measured in renal tissues. Immunohistochemical analysis for renal Beclin-1, LC3-II, and P62, Masson trichome staining, and histopathological examination of kidney tissues were also performed. The results showed that Br-MSCs expressed SOX2, Nanog, and OCT3/4, while both Br-MSCs and Br-MSCs-EXOs expressed antifibrotic miR-181, miR-29b, and Let-7b, with higher expression levels in exosomes than in Br-MSCs. Interestingly, the administration of Br-MSCs + EXOs, EXOs, and Br-MSCs improved renal function tests, reduced renal oxidative stress, upregulated the renal expression of SNHG-7, AMPK, ULK-1, Beclin-1, LC3, miR-29b, miR-181, Let-7b, and Smad-7, downregulated the renal expression of miR-34a, AKT, mTOR, P62, TGF-β, Smad-3, and Coli-1, and ameliorated renal pathology. Thus, Br-MSCs and/or their derived exosomes appear to reduce adenine-induced renal damage by secreting antifibrotic microRNAs and potentiate renal autophagy by modulating SNHG-7 expression.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asma Alanazi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Asmaa Monir Eltaweel
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Heba M. Abdel-Ghany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Doaa M. Hendawy
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Adel Abdelkhalek
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
| | - Mahmoud A. Said
- Zagazig University Hospital, Zagazig University, Zagazig 44511, Egypt
| | - Heba H. Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Basma Hamed Ibrahim
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Dina Mohamed Mekawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Corina Pascu
- Faculty of Veterinary Medicine, University of Life Sciences, King Mihai I from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania;
| | - Crista Florin
- Department of Soil Science, Faculty of Agriculture, University of Life Sciences, King Mihai I from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
113
|
Hao Y, Zhao L, Zhao JY, Han X, Zhou X. Unveiling the potential of mitochondrial dynamics as a therapeutic strategy for acute kidney injury. Front Cell Dev Biol 2023; 11:1244313. [PMID: 37635869 PMCID: PMC10456901 DOI: 10.3389/fcell.2023.1244313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Acute Kidney Injury (AKI), a critical clinical syndrome, has been strongly linked to mitochondrial malfunction. Mitochondria, vital cellular organelles, play a key role in regulating cellular energy metabolism and ensuring cell survival. Impaired mitochondrial function in AKI leads to decreased energy generation, elevated oxidative stress, and the initiation of inflammatory cascades, resulting in renal tissue damage and functional impairment. Therefore, mitochondria have gained significant research attention as a potential therapeutic target for AKI. Mitochondrial dynamics, which encompass the adaptive shifts of mitochondria within cellular environments, exert significant influence on mitochondrial function. Modulating these dynamics, such as promoting mitochondrial fusion and inhibiting mitochondrial division, offers opportunities to mitigate renal injury in AKI. Consequently, elucidating the mechanisms underlying mitochondrial dynamics has gained considerable importance, providing valuable insights into mitochondrial regulation and facilitating the development of innovative therapeutic approaches for AKI. This comprehensive review aims to highlight the latest advancements in mitochondrial dynamics research, provide an exhaustive analysis of existing studies investigating the relationship between mitochondrial dynamics and acute injury, and shed light on their implications for AKI. The ultimate goal is to advance the development of more effective therapeutic interventions for managing AKI.
Collapse
Affiliation(s)
- Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Yu Zhao
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, China
| |
Collapse
|
114
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
115
|
Alrzouq FK, Dendini F, Alsuwailem Y, Aljaafri BA, Alsuhibani AS, Al Babtain I. Incidence of Post-laparotomy Acute Kidney Injury Among Abdominal Trauma Patients and Its Associated Risk Factors at King Abdulaziz Medical City, Riyadh. Cureus 2023; 15:e44245. [PMID: 37772248 PMCID: PMC10523828 DOI: 10.7759/cureus.44245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Background This research study investigates the prevalence of acute kidney injury (AKI) in trauma patients undergoing emergency laparotomies. AKI is a common complication in major surgeries and is associated with various adverse effects. The study aims to explore the relationship between AKI and other comorbidities in this specific context. Methodology This is a retrospective cohort study. All patients who had laparotomy after abdominal trauma at King Abdulaziz Medical City (KAMC) and met the inclusion criteria were included in the study. Nonprobability consecutive sampling was used. Data were collected by chart review using the Best-Care system at KAMC. Descriptive statistics were used to summarize and describe the characteristics of the study participants. Frequencies and percentages were calculated for categorical variables, such as comorbidities. For continuous variables, mean and standard deviations were calculated and tabulated. All statistical calculations were performed using IBM SPSS Statistics for Windows, Version 27.0 (IBM Corp., Armonk, NY, USA). Results This research study included 152 patients who underwent laparotomy, and the majority of patients (146, 96%) did not experience AKI. Several comorbidities were observed, with hypertension and diabetes being the most prevalent at 37 (24.3%) and 35 (23%), respectively. Intraoperative hypotension was experienced by 23 (15.1%) patients, while 129 (84.9%) did not have this issue. Norepinephrine was the most common vasopressor used (25.7%), followed by ephedrine and a combination of norepinephrine and epinephrine. Gender and age groups did not show significant associations with AKI, comorbidities like diabetes, heart failure, and chronic kidney disease (CKD) demonstrated significant relationships with AKI. There was no significant difference in eGFR and serum creatinine baseline levels between patients meeting AKI criteria and those who did not. Conclusions The low overall incidence of AKI in this patient population is encouraging. However, healthcare professionals must be aware of the significant impact of comorbidities such as diabetes, heart failure, and CKD on AKI development. Vigilant monitoring of postoperative kidney function, particularly serum creatinine levels within the first 48 hours, is essential for early detection and timely intervention. By understanding and addressing these risk factors, healthcare providers can take proactive steps to prevent and manage AKI in patients undergoing laparotomy, ultimately leading to improved patient outcomes and reduced healthcare costs.
Collapse
Affiliation(s)
- Fahad K Alrzouq
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
- Department of Research Office, King Abdullah International Medical Research Center, Riyadh, SAU
| | - Fares Dendini
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
- Department of Research Office, King Abdullah International Medical Research Center, Riyadh, SAU
| | - Yousef Alsuwailem
- Collage of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
- Department of Research Office, King Abdullah International Medical Research Center, Riyadh, SAU
| | - Bader A Aljaafri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
- Department of Research Office, King Abdullah International Medical Research Center, Riyadh, SAU
| | - Abdulaziz S Alsuhibani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
- Department of Research Office, King Abdullah International Medical Research Center, Riyadh, SAU
| | - Ibrahim Al Babtain
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
- Department of General Surgery, King Abdulaziz Medical City Riyadh, Riyadh, SAU
- Department of Research Office, King Abdullah International Medical Research Center, Riyadh, SAU
| |
Collapse
|
116
|
Koc Güdük N, Sahin T. Follow-up of perfusion index and inferior vena cava collapsibility index in fluid therapy in prerenal acute renal failure. Heliyon 2023; 9:e18715. [PMID: 37576286 PMCID: PMC10415656 DOI: 10.1016/j.heliyon.2023.e18715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Acute renal failure (ARF), which may occur as a result of hypovolemia, is frequently diagnosed in emergency departments. It is essential to determine these patients' volume status and fluid requirement. The aim of this study was to examine the change in the inferior vena cava (IVC) collapsibility index and perfusion index (PI) in order to evaluate fluid deficit, volume status, and response to fluid therapy in patients with prerenal ARF who presented with signs of hypovolemia. Materials and methods The study sample included 104 patients diagnosed with prerenal ARF due to hypovolemia in our emergency department. After obtaining informed consent from the patients, intravenous (IV) fluid therapy (20 cc/kg IV infusion of 0.9% sodium chloride solution for 30 min) was initiated. The PI and IVC collapsibility index were measured before and after the treatment. Results Of the patients included in this study, 56.7% were women. The mean age was 76.06 years. Of the patients, 46.2% had a history of multiple diseases. Avoidant/restrictive food intake disorder was the most common complaint (28.8%). The mean PI of the patients was 2.20 at admission, which increased to 3.27 after treatment. The mean IVC collapsibility index was 38.39 at admission, which decreased to 29.36 after treatment. There was a significant and negative correlation between the PI and IVC collapsibility index of the patients. Conclusions Early diagnosis and treatment of ARF in emergency departments are critical. Serial measurements of the IVC collapsibility index and PI are helpful in monitoring patients' response to fluid therapy.
Collapse
Affiliation(s)
| | - Taner Sahin
- Emergency Medicine Department Kayseri City Training and Research Hospital Affiliated with University of Health Sciences Turkey, Kayseri, Turkey
| |
Collapse
|
117
|
Gupta A, Chakole S, Agrawal S, Khekade H, Prasad R, Lohakare T, Wanjari M. Emerging Insights Into Necroptosis: Implications for Renal Health and Diseases. Cureus 2023; 15:e43609. [PMID: 37719475 PMCID: PMC10504449 DOI: 10.7759/cureus.43609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Necroptosis is a regulated form of cell death that has gained increasing attention in recent years. It plays a significant role in various physiological and pathological processes, including renal health and disease. This review article provides an overview of necroptosis as a regulated cell death pathway and explores its implications in renal physiology and renal diseases. The molecular signaling pathways involved in necroptosis, including the key players such as receptor-interacting protein kinases (RIPKs) and mixed lineage kinase domain-like protein (MLKL), are discussed in detail. The crosstalk between necroptosis and other cell death pathways, particularly apoptosis, is explored to understand the interplay between these processes in renal cells. In normal physiological conditions, necroptosis has been found to play a crucial role in renal development and tissue homeostasis. However, dysregulated necroptosis can contribute to tissue damage, inflammation, and fibrosis in renal diseases. The review highlights the involvement of necroptosis in acute kidney injury, chronic kidney disease, and renal transplant rejection, elucidating the underlying pathophysiological mechanisms and consequences. The therapeutic targeting of necroptosis in renal diseases is an emerging area of interest. Current and emerging strategies to modulate necroptosis, including the inhibition of key mediators and regulators, are discussed here. Additionally, the potential therapeutic targets and inhibitors of necroptosis, along with preclinical and clinical studies exploring their efficacy, are reviewed.
Collapse
Affiliation(s)
- Anannya Gupta
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swarupa Chakole
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suyash Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshal Khekade
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejaswee Lohakare
- Child Health Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Wardha, IND
| | - Mayur Wanjari
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
118
|
Liu HH, Wang YT, Yang MH, Lin WSK, Oyang YJ. Exploiting Machine Learning Technologies to Study the Compound Effects of Serum Creatinine and Electrolytes on the Risk of Acute Kidney Injury in Intensive Care Units. Diagnostics (Basel) 2023; 13:2551. [PMID: 37568914 PMCID: PMC10417601 DOI: 10.3390/diagnostics13152551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Assessing the risk of acute kidney injury (AKI) has been a challenging issue for clinicians in intensive care units (ICUs). In recent years, a number of studies have been conducted to investigate the associations between several serum electrolytes and AKI. Nevertheless, the compound effects of serum creatinine, blood urea nitrogen (BUN), and clinically relevant serum electrolytes have yet to be comprehensively investigated. Accordingly, we initiated this study aiming to develop machine learning models that illustrate how these factors interact with each other. In particular, we focused on ICU patients without a prior history of AKI or AKI-related comorbidities. With this practice, we were able to examine the associations between the levels of serum electrolytes and renal function in a more controlled manner. Our analyses revealed that the levels of serum creatinine, chloride, and magnesium were the three major factors to be monitored for this group of patients. In summary, our results can provide valuable insights for developing early intervention and effective management strategies as well as crucial clues for future investigations of the pathophysiological mechanisms that are involved. In future studies, subgroup analyses based on different causes of AKI should be conducted to further enhance our understanding of AKI.
Collapse
Affiliation(s)
- Hsin-Hung Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei City 10617, Taiwan;
| | - Yu-Tseng Wang
- Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei City 10617, Taiwan;
| | - Meng-Han Yang
- Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807618, Taiwan;
| | - Wei-Shu Kevin Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei City 10617, Taiwan;
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei City 10002, Taiwan
| | - Yen-Jen Oyang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei City 10617, Taiwan;
- Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei City 10617, Taiwan;
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
119
|
Dusabimana T, Je J, Yun SP, Kim HJ, Kim H, Park SW. GOLPH3 promotes endotoxemia-induced liver and kidney injury through Golgi stress-mediated apoptosis and inflammatory response. Cell Death Dis 2023; 14:458. [PMID: 37479687 PMCID: PMC10361983 DOI: 10.1038/s41419-023-05975-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Sepsis is a serious clinical condition characterized by a systemic inflammatory response, a leading cause of acute liver and kidney injury, and is associated with a high morbidity and mortality. Understanding the molecular mechanisms underlying the acute liver and kidney injury is crucial for developing an effective therapy. Golgi apparatus plays important roles and has various substrates mediating cellular stress responses. Golgi phosphoprotein 3 (GOLPH3), linking Golgi membranes to the cytoskeleton, has been identified as an important oncogenic regulator; however, its role in endotoxemia-induced acute liver and kidney injury remains elusive. Here, we found that upregulation of GOLPH3 was associated with endotoxemia-induced acute liver and kidney injury. Lipopolysaccharide (LPS) treatment increased Golgi stress and fragmentation, and associated pro-inflammatory mediator (Tnfα, IL-6, and IL-1β) production in vivo and in vitro. Interestingly, the downregulation of GOLPH3 significantly decreased LPS-induced Golgi stress and pro-inflammatory mediators (Tnfα, IL-6, Mcp1, and Nos2), and reversed apoptotic cell deaths in LPS-treated hepatocytes and renal tubular cells. GOLPH3 knockdown also reduced inflammatory response in LPS-treated macrophages. The AKT/NF-kB signaling pathway was suppressed in GOLPH3 knockdown, which may be associated with a reduction of inflammatory response and apoptosis and the recovery of Golgi morphology and function. Taken together, GOLPH3 plays a crucial role in the development and progression of acute liver and kidney injury by promoting Golgi stress and increasing inflammatory response and apoptosis, suggesting GOLPH3 as a potential therapeutic target for endotoxemia-induced tissue injury.
Collapse
Affiliation(s)
- Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
- Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
- Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, 52727, Republic of Korea.
- Department of Convergence Medical Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea.
| |
Collapse
|
120
|
Yu Z, Zhou Y, Zhang Y, Ning X, Li T, Wei L, Wang Y, Bai X, Sun S. Cell Profiling of Acute Kidney Injury to Chronic Kidney Disease Reveals Novel Oxidative Stress Characteristics in the Failed Repair of Proximal Tubule Cells. Int J Mol Sci 2023; 24:11617. [PMID: 37511374 PMCID: PMC10380716 DOI: 10.3390/ijms241411617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health issue around the world. A significant number of CKD patients originates from acute kidney injury (AKI) patients, namely "AKI-CKD". CKD is significantly related to the consequences of AKI. Damaged renal proximal tubular (PT) cell repair has been widely confirmed to indicate the renal prognosis of AKI. Oxidative stress is a key damage-associated factor and plays a significant role throughout the development of AKI and CKD. However, the relationships between AKI-CKD progression and oxidative stress are not totally clear and the underlying mechanisms in "AKI-CKD" remain indistinct. In this research, we constructed unilateral ischemia-reperfusion injury (UIRI)-model mice and performed single-nucleus RNA sequencing (snRNA-seq) of the kidney samples from UIRI and sham mice. We obtained our snRNA-seq data and validated the findings based on the joint analysis of public databases, as well as a series of fundamental experiments. Proximal tubular cells associated with failed repair express more complete senescence and oxidative stress characteristics compared to other subgroups. Furthermore, oxidative stress-related transcription factors, including Stat3 and Dnmt3a, are significantly more active under the circumstance of failed repair. What is more, we identified abnormally active intercellular communication between PT cells associated with failed repair and macrophages through the APP-CD74 pathway. More notably, we observed that the significantly increased expression of CD74 in hypoxia-treated TECs (tubular epithelial cells) was dependent on adjacently infiltrated macrophages, which was essential for the further deterioration of failed repair in PT cells. This research provides a novel understanding of the process of AKI to CKD progression, and the oxidative stress-related characteristics that we identified might represent a potentially novel therapeutic strategy against AKI.
Collapse
Affiliation(s)
- Zhixiang Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Zhou
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuzhan Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Wei
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yingxue Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Center for Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, 124, 76 West Yanta Road, Xi'an 710061, China
| | - Xiao Bai
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
121
|
Gumbar S, Bhardwaj S, Mehan S, Khan Z, Narula AS, Kalfin R, Tabrez S, Zughaibi TA, Wasi S. Renal mitochondrial restoration by gymnemic acid in gentamicin-mediated experimental nephrotoxicity: evidence from serum, kidney and histopathological alterations. Front Pharmacol 2023; 14:1218506. [PMID: 37521462 PMCID: PMC10372487 DOI: 10.3389/fphar.2023.1218506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Nephrotoxicity refers to the toxigenic impact of compounds and medications on kidney function. There are a variety of drug formulations, and some medicines that may affect renal function in multiple ways via nephrotoxins production. Nephrotoxins are substances that are harmful to the kidneys. Purpose: This investigation examines the renoprotective effect of gymnemic acid (GA) on Wistar rats in gentamicin-induced nephrotoxicity by analyzing serum, kidney, and histopathological markers. Study-design/methods: The current study investigated the protective effect of GA at doses of 20, 40, and 60 mg/kg against gentamicin-induced nephrotoxicity in rats. Vitamin E was administered to compare the antioxidant capacity and efficacy of GA. In addition to the treatment groups, 100 mg/kg of gentamicin was administered intraperitoneal for 14 days. At the end of the study protocol, kidney homogenate, blood, and serum were evaluated biochemically. Serum creatinine, blood urea, glomerular filtration rate (GFR), mitochondrial dysfunctions, inflammatory cytokines, and renal oxidative stress were examined to assess gentamicin-induced nephrotoxicity. In addition, the impact of GA on the above-mentioned nephrotoxic markers were evaluated and further confirmed by histological analysis. Results: This study establishes a correlation between antibiotic use, especifically aminoglycosides and acute renal failure. The research demonstrates the nephrotoxic effects of aminoglycosides, inducing mitochondrial ETC-complex dysfunction, and renal tissue inflammation in experimental rats. GA's antioxidant properties restored renal oxidative stress markers, reducing kidney inflammation and injury. Histopathological analysis revealed a significant reduction in renal injury with GA treatment. Additionally, GA demonstrated greater efficacy than Vitamin E in restoring antioxidant potential and mitochondrial enzymes. Conclusion: Consequently, our findings imply that long-term use of GA may be a suitable therapeutic strategy for reducing aminoglycoside toxicity. The current study suggests GA's potential in treating gentamicin-induced nephrotoxicity and acute renal failure, meriting further investigation using advanced techniques.
Collapse
Affiliation(s)
- Shubhangi Gumbar
- Department of Pharmacology, Seth G. L. Bihani S. D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar, Rajasthan, India
| | - Sudeep Bhardwaj
- Department of Pharmacology, Seth G. L. Bihani S. D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar, Rajasthan, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga, Punjab, India
| | - Zuber Khan
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga, Punjab, India
| | | | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Healthcare, South-West University “NeofitRilski”, Blagoevgrad, Bulgaria
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samina Wasi
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Alkhobar, Saudi Arabia
| |
Collapse
|
122
|
Guo R, Duan J, Pan S, Cheng F, Qiao Y, Feng Q, Liu D, Liu Z. The Road from AKI to CKD: Molecular Mechanisms and Therapeutic Targets of Ferroptosis. Cell Death Dis 2023; 14:426. [PMID: 37443140 PMCID: PMC10344918 DOI: 10.1038/s41419-023-05969-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Acute kidney injury (AKI) is a prevalent pathological condition that is characterized by a precipitous decline in renal function. In recent years, a growing body of studies have demonstrated that renal maladaptation following AKI results in chronic kidney disease (CKD). Therefore, targeting the transition of AKI to CKD displays excellent therapeutic potential. However, the mechanism of AKI to CKD is mediated by multifactor, and there is still a lack of effective treatments. Ferroptosis, a novel nonapoptotic form of cell death, is believed to have a role in the AKI to CKD progression. In this study, we retrospectively examined the history and characteristics of ferroptosis, summarized ferroptosis's research progress in AKI and CKD, and discussed how ferroptosis participates in regulating the pathological mechanism in the progression of AKI to CKD. Furthermore, we highlighted the limitations of present research and projected the future evolution of ferroptosis. We hope this work will provide clues for further studies of ferroptosis in AKI to CKD and contribute to the study of effective therapeutic targets to prevent the progression of kidney diseases.
Collapse
Affiliation(s)
- Runzhi Guo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Jiayu Duan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Fei Cheng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
123
|
Tian Y, Ji B, Diao X, Wang C, Wang W, Gao Y, Wang S, Zhou C, Zhang Q, Gao S, Xu X, Liu J, Wang J, Wang Y. Dynamic predictive scores for cardiac surgery-associated agitated delirium: a single-center retrospective observational study. J Cardiothorac Surg 2023; 18:219. [PMID: 37415226 DOI: 10.1186/s13019-023-02339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Prevention, screening, and early treatment are the aims of postoperative delirium management. The scoring system is an objective and effective tool to stratify potential delirium risk for patients undergoing cardiac surgery. METHODS Patients who underwent cardiac surgery between January 1, 2012, and January 1, 2019, were enrolled in our retrospective study. The patients were divided into a derivation cohort (n = 45,744) and a validation cohort (n = 11,436). The AD predictive systems were formulated using multivariate logistic regression analysis at three time points: preoperation, ICU admittance, and 24 h after ICU admittance. RESULTS The prevalence of AD after cardiac surgery in the whole cohort was 3.6% (2,085/57,180). The dynamic scoring system included preoperative LVEF ≤ 45%, serum creatinine > 100 µmol/L, emergency surgery, coronary artery disease, hemorrhage volume > 600 mL, intraoperative platelet or plasma use, and postoperative LVEF ≤ 45%. The area under the receiver operating characteristic curve (AUC) values for AD prediction were 0.68 (preoperative), 0.74 (on the day of ICU admission), and 0.75 (postoperative). The Hosmer‒Lemeshow test indicated that the calibration of the preoperative prediction model was poor (P = 0.01), whereas that of the pre- and intraoperative prediction model (P = 0.49) and the pre, intra- and postoperative prediction model (P = 0.35) was good. CONCLUSIONS Using perioperative data, we developed a dynamic scoring system for predicting the risk of AD following cardiac surgery. The dynamic scoring system may improve the early recognition of and the interventions for AD.
Collapse
Affiliation(s)
- Yu Tian
- Department of Anesthesiology, Beijing AnZhen Hospital, Capital Medical University, Beijing, China
| | - Bingyang Ji
- Department of Cardiopulmonary Bypass, Fuwai Hospital,National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolin Diao
- Department of Information Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunrong Wang
- Department of Anesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China
| | - Weiwei Wang
- Department of Information Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Gao
- Department of Anesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China
| | - Sudena Wang
- Department of Anesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China
| | - Chun Zhou
- Department of Cardiopulmonary Bypass, Fuwai Hospital,National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiaoni Zhang
- Department of Cardiopulmonary Bypass, Fuwai Hospital,National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sizhe Gao
- Department of Cardiopulmonary Bypass, Fuwai Hospital,National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyi Xu
- Department of Information Center, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Liu
- Department of Surgery Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, China
| | - Jianhui Wang
- Department of Anesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China.
| | - Yuefu Wang
- Department of Surgery Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian, Haidian District, Beijing, China.
| |
Collapse
|
124
|
Wang J, Liu X, Gu Y, Gao Y, Jankowski V, Was N, Leitz A, Reiss LK, Shi Y, Cai J, Fang Y, Song N, Zhao S, Floege J, Ostendorf T, Ding X, Raffetseder U. DNA binding protein YB-1 is a part of the neutrophil extracellular trap mediation of kidney damage and cross-organ effects. Kidney Int 2023; 104:124-138. [PMID: 36963487 DOI: 10.1016/j.kint.2023.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/26/2023]
Abstract
Open-heart surgery is associated with high morbidity, with acute kidney injury (AKI) being one of the most commonly observed postoperative complications. Following open-heart surgery, in an observational study we found significantly higher numbers of blood neutrophils in a group of 13 patients with AKI compared to 25 patients without AKI (AKI: 12.9±5.4 ×109 cells/L; non-AKI: 10.1±2. 9 ×109 cells/L). Elevated serum levels of neutrophil extracellular trap (NETs) components, such as dsDNA, histone 3, and DNA binding protein Y-box protein (YB)-1, were found within the first 24 hours in patients who later developed AKI. We could demonstrate that NET formation and hypoxia triggered the release of YB-1, which was subsequently shown to act as a mediator of kidney tubular damage. Experimentally, in two models of AKI mimicking kidney hypoperfusion during cardiac surgery (bilateral ischemia/reperfusion (I/R) and systemic lipopolysaccharide (LPS) administration), a neutralizing YB-1 antibody was administered to mice. In both models, prophylactic YB-1 antibody administration significantly reduced the tubular damage (damage score range 1-4, the LPS model: non-specific IgG control, 0.92±0.23; anti-YB-1 0.65±0.18; and in the I/R model: non-specific IgG control 2.42±0.23; anti-YB-1 1.86±0.44). Even in a therapeutic, delayed treatment model, antagonism of YB-1 ameliorated AKI (damage score, non-specific IgG control 3.03±0.31; anti-YB-1 2.58±0.18). Thus, blocking extracellular YB-1 reduced the effects induced by hypoxia and NET formation in the kidney and significantly limited AKI, suggesting that YB-1 is part of the NET formation process and an integral mediator of cross-organ effects.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiyang Liu
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany
| | - Yulu Gu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yingying Gao
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH, Aachen University, Aachen, Germany
| | - Nina Was
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Anna Leitz
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany
| | - Lucy K Reiss
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH, Aachen University, Germany
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany
| | - Tammo Ostendorf
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Ute Raffetseder
- Department of Nephrology and Clinical Immunology, University Hospital, Rhine-Westphalia Technical University (RWTH)-Aachen, Aachen, Germany.
| |
Collapse
|
125
|
Lin Y, Teixeira-Pinto A, Craig JC, Opdam H, Chapman JC, Pleass H, Carter A, Rogers NM, Davies CE, McDonald S, Yang J, Lim WH, Wong G. Trajectories of systolic blood pressure decline in kidney transplant donors prior to circulatory death and delayed graft function. Clin Kidney J 2023; 16:1170-1179. [PMID: 37398694 PMCID: PMC10310517 DOI: 10.1093/ckj/sfad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Kidneys donated after circulatory death suffer a period of functional warm ischaemia before death, which may lead to early ischaemic injury. Effects of haemodynamic trajectories during the agonal phase on delayed graft function (DGF) is unknown. We aimed to predict the risk of DGF using patterns of trajectories of systolic blood pressure (SBP) declines in Maastricht category 3 kidney donors. METHODS We conducted a cohort study of all kidney transplant recipients in Australia who received kidneys from donation after circulatory death donors, divided into a derivation cohort (transplants between 9 April 2014 and 2 January 2018 [462 donors]) and a validation cohort (transplants between 6 January 2018 and 24 December 2019 [324 donors]). Patterns of SBP decline using latent class models were evaluated against the odds of DGF using a two-stage linear mixed effects model. RESULTS In the derivation cohort, 462 donors were included in the latent class analyses and 379 donors in the mixed effects model. Of the 696 eligible transplant recipients, 380 (54.6%) experienced DGF. Ten different trajectories, with distinct patterns of SBP decline were identified. Compared with recipients from donors with the slowest decline in SBP after withdrawal of cardiorespiratory support, the adjusted odds ratio (aOR) for DGF was 5.5 [95% confidence interval (CI) 1.38-28.0] for recipients from donors with a steeper decline and lowest SBP [mean 49.5 mmHg (standard deviation 12.5)] at the time of withdrawal. For every 1 mmHg/min reduction in the rate of decline of SBP, the respective aORs for DGF were 0.95 (95% CI 0.91-0.99) and 0.98 (95% CI 0.93-1.0) in the random forest and least absolute shrinkage and selection operator models. In the validation cohort, the respective aORs were 0.95 (95% CI 0.91-1.0) and 0.99 (95% CI 0.94-1.0). CONCLUSION Trajectories of SBP decline and their determinants are predictive of DGF. These results support a trajectory-based assessment of haemodynamic changes in donors after circulatory death during the agonal phase for donor suitability and post-transplant outcomes.
Collapse
Affiliation(s)
- Yingxin Lin
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Mathematics and Science, University of Sydney, Sydney, NSW, Australia
| | - Armando Teixeira-Pinto
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, Kids Research Institute, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Jonathan C Craig
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Helen Opdam
- Department of Surgery, DonateLife, Organ and Tissue Authority, Canberra, ACT, Australia
| | - Jeremy C Chapman
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, NSW, Australia
| | - Henry Pleass
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, NSW, Australia
- Specialty of Surgery, University of Sydney, Sydney, NSW, Australia
| | - Angus Carter
- Intensive Care Unit, Cairns Hospital, Cairns, QLD, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, NSW, Australia
| | - Christopher E Davies
- Department of Renal Medicine, Australia and New Zealand Dialysis and Transplant (ANZDATA) Registry, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Stephen McDonald
- Department of Renal Medicine, Australia and New Zealand Dialysis and Transplant (ANZDATA) Registry, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jean Yang
- Faculty of Science, School of Mathematics and Science, University of Sydney, Sydney, NSW, Australia
| | - Wai H Lim
- Faculty of Health and Medical Science, University of Western Australia, Perth, WA, Australia
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, Kids Research Institute, Children's Hospital at Westmead, Sydney, NSW, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, NSW, Australia
| |
Collapse
|
126
|
Su CT, See DHW, Huang YJ, Jao TM, Liu SY, Chou CY, Lai CF, Lin WC, Wang CY, Huang JW, Hung KY. LTBP4 Protects Against Renal Fibrosis via Mitochondrial and Vascular Impacts. Circ Res 2023; 133:71-85. [PMID: 37232163 DOI: 10.1161/circresaha.123.322494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND As a part of natural disease progression, acute kidney injury (AKI) can develop into chronic kidney disease via renal fibrosis and inflammation. LTBP4 (latent transforming growth factor beta binding protein 4) regulates transforming growth factor beta, which plays a role in renal fibrosis pathogenesis. We previously investigated the role of LTBP4 in chronic kidney disease. Here, we examined the role of LTBP4 in AKI. METHODS LTBP4 expression was evaluated in human renal tissues, obtained from healthy individuals and patients with AKI, using immunohistochemistry. LTBP4 was knocked down in both C57BL/6 mice and human renal proximal tubular cell line HK-2. AKI was induced in mice and HK-2 cells using ischemia-reperfusion injury and hypoxia, respectively. Mitochondrial division inhibitor 1, an inhibitor of DRP1 (dynamin-related protein 1), was used to reduce mitochondrial fragmentation. Gene and protein expression were then examined to assess inflammation and fibrosis. The results of bioenergetic studies for mitochondrial function, oxidative stress, and angiogenesis were assessed. RESULTS LTBP4 expression was upregulated in the renal tissues of patients with AKI. Ltbp4-knockdown mice showed increased renal tissue injury and mitochondrial fragmentation after ischemia-reperfusion injury, as well as increased inflammation, oxidative stress, and fibrosis, and decreased angiogenesis. in vitro studies using HK-2 cells revealed similar results. The energy profiles of Ltbp4-deficient mice and LTBP4-deficient HK-2 cells indicated decreased ATP production. LTBP4-deficient HK-2 cells exhibited decreased mitochondrial respiration and glycolysis. Human aortic endothelial cells and human umbilical vein endothelial cells exhibited decreased angiogenesis when treated with LTBP4-knockdown conditioned media. Mitochondrial division inhibitor 1 treatment ameliorated inflammation, oxidative stress, and fibrosis in mice and decreased inflammation and oxidative stress in HK-2 cells. CONCLUSIONS Our study is the first to demonstrate that LTBP4 deficiency increases AKI severity, consequently leading to chronic kidney disease. Potential therapies focusing on LTBP4-associated angiogenesis and LTBP4-regulated DRP1-dependent mitochondrial division are relevant to renal injury.
Collapse
Affiliation(s)
- Chi-Ting Su
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei (C.-T.S., D.H.W.S., Y.-J.H.)
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| | - Daniel H W See
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei (C.-T.S., D.H.W.S., Y.-J.H.)
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| | - Yue-Jhu Huang
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei (C.-T.S., D.H.W.S., Y.-J.H.)
| | - Tzu-Ming Jao
- Global Innovation Joint-Degree Program International Joint Degree Master's Program in Agro-Biomedical Science in Food and Health, College of Medicine, National Taiwan University, Taipei (T.-M.J.)
| | - Shin-Yun Liu
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan (S.-Y.L.)
| | - Chih-Yi Chou
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei (C.-Y.W.)
| | - Chun-Fu Lai
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
- Renal Division, Department of Internal Medicine (C.-F.L.), National Taiwan University Hospital, Taipei
| | - Wei-Chou Lin
- Department of Pathology (W.-C.L.), National Taiwan University Hospital, Taipei
| | - Chih-Yuan Wang
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| | - Jenq-Wen Huang
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
- Renal Division, Department of Internal Medicine, National Taiwan University Yunlin Branch, Douliu (J.-W.H.)
| | - Kuan-Yu Hung
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| |
Collapse
|
127
|
de Oliveira BKF, de Oliveira Silva E, Ventura S, Vieira GHF, de Pina Victoria CD, Volpini RA, de Fátima Fernandes Vattimo M. Amazonia Phytotherapy Reduces Ischemia and Reperfusion Injury in the Kidneys. Cells 2023; 12:1688. [PMID: 37443721 PMCID: PMC10341095 DOI: 10.3390/cells12131688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Acute kidney injury (AKI) is defined as a sudden decrease in kidney function. Phytomedicines have shown positive effects in the treatment of AKI worldwide. The aim of this study was to evaluate the effect of Abuta grandifolia on the renal function of rats submitted to AKI. A phytochemical study of the plant was performed through liquid chromatography coupled with mass spectrometry (CL-EM) and DPPH and ABTS antioxidant tests. Renal function tests were performed in 20 male adult Wistar rats weighing from 250 to 300 g distributed in the following groups: SHAM (submitted to laparotomy with simulation of renal ischemia); ABUTA (animals that received 400 mg/kg of AG, orally-VO, once a day, for 5 days, with simulation of renal ischemia); I/N (animals submitted to laparotomy for clamping of bilateral renal pedicles for 30 min, followed by reperfusion); ABUTA + I/R (animals that received AG-400 mg/kg, 1× per day, VO, for 5 days, submitted to renal ischemia after treatment with herbal medicine). The results suggest that the consumption of Abuta grandifolia promoted renoprotection, preventing the reduction of renal function induced by ischemia, oxidizing activity, and deleterious effects on the renal tissue, confirmed by the decrease of oxidative metabolites and increase of antioxidants in the animals' organisms.
Collapse
Affiliation(s)
| | - Eloiza de Oliveira Silva
- School of Nursing, University of São Paulo, São Paulo 05403-000, Brazil; (E.d.O.S.); (S.V.); (G.H.F.V.); (C.D.d.P.V.); (M.d.F.F.V.)
| | - Sara Ventura
- School of Nursing, University of São Paulo, São Paulo 05403-000, Brazil; (E.d.O.S.); (S.V.); (G.H.F.V.); (C.D.d.P.V.); (M.d.F.F.V.)
| | | | - Carla Djamila de Pina Victoria
- School of Nursing, University of São Paulo, São Paulo 05403-000, Brazil; (E.d.O.S.); (S.V.); (G.H.F.V.); (C.D.d.P.V.); (M.d.F.F.V.)
| | | | | |
Collapse
|
128
|
Lilley RJ, Taylor KD, Wildman SSP, Peppiatt-Wildman CM. Inflammatory mediators act at renal pericytes to elicit contraction of vasa recta and reduce pericyte density along the kidney medullary vascular network. Front Physiol 2023; 14:1194803. [PMID: 37362447 PMCID: PMC10288992 DOI: 10.3389/fphys.2023.1194803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Regardless of initiating cause, renal injury promotes a potent pro-inflammatory environment in the outer medulla and a concomitant sustained decrease in medullary blood flow (MBF). This decline in MBF is believed to be one of the critical events in the pathogenesis of acute kidney injury (AKI), yet the precise cellular mechanism underlying this are still to be fully elucidated. MBF is regulated by contractile pericyte cells that reside on the descending vasa recta (DVR) capillaries, which are the primary source of blood flow to the medulla. Methods: Using the rat and murine live kidney slice models, we investigated the acute effects of key medullary inflammatory mediators TNF-α, IL-1β, IL-33, IL-18, C3a and C5a on vasa recta pericytes, the effect of AT1-R blocker Losartan on pro-inflammatory mediator activity at vasa recta pericytes, and the effect of 4-hour sustained exposure on immunolabelled NG2+ pericytes. Results and discussion: Exposure of rat and mouse kidney slices to TNF-α, IL-18, IL-33, and C5a demonstrated a real-time pericyte-mediated constriction of DVR. When pro-inflammatory mediators were applied in the presence of Losartan the inflammatory mediator-mediated constriction that had previously been observed was significantly attenuated. When live kidney slices were exposed to inflammatory mediators for 4-h, we noted a significant reduction in the number of NG2+ positive pericytes along vasa recta capillaries in both rat and murine kidney slices. Data collected in this study demonstrate that inflammatory mediators can dysregulate pericytes to constrict DVR diameter and reduce the density of pericytes along vasa recta vessels, further diminishing the regulatory capacity of the capillary network. We postulate that preliminary findings here suggest pericytes play a role in AKI.
Collapse
Affiliation(s)
- Rebecca J. Lilley
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | - Kirsti D. Taylor
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | | | | |
Collapse
|
129
|
Yang D, Fan Y, Xiong M, Chen Y, Zhou Y, Liu X, Yuan Y, Wang Q, Zhang Y, Petersen RB, Su H, Yue J, Zhang C, Chen H, Huang K, Zheng L. Loss of renal tubular G9a benefits acute kidney injury by lowering focal lipid accumulation via CES1. EMBO Rep 2023; 24:e56128. [PMID: 37042626 PMCID: PMC10240209 DOI: 10.15252/embr.202256128] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Surgery-induced renal ischemia and reperfusion (I/R) injury and nephrotoxic drugs like cisplatin can cause acute kidney injury (AKI), for which there is no effective therapy. Lipid accumulation is evident following AKI in renal tubules although the mechanisms and pathological effects are unclear. Here, we report that Ehmt2-encoded histone methyltransferase G9a is upregulated in patients and mouse kidneys after AKI. Renal tubular specific knockout of G9a (Ehmt2Ksp ) or pharmacological inhibition of G9a alleviates lipid accumulation associated with AKI. Mechanistically, G9a suppresses transcription of the lipolytic enzyme Ces1; moreover, G9a and farnesoid X receptor (FXR) competitively bind to the same promoter regions of Ces1. Ces1 is consistently observed to be downregulated in the kidney of AKI patients. Pharmacological inhibition of Ces1 increases lipid accumulation, exacerbates renal I/R-injury and eliminates the beneficial effects on AKI observed in Ehmt2Ksp mice. Furthermore, lipid-lowering atorvastatin and an FXR agonist alleviate AKI by activating Ces1 and reducing renal lipid accumulation. Together, our results reveal a G9a/FXR-Ces1 axis that affects the AKI outcome via regulating renal lipid accumulation.
Collapse
Affiliation(s)
- Dong Yang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuchen Chen
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yihao Zhou
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Yangmian Yuan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Qing Wang
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Yu Zhang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Robert B Petersen
- Foundational SciencesCentral Michigan University College of MedicineMt. PleasantMIUSA
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Junqiu Yue
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Chen
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kun Huang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
130
|
Meade RD, Notley SR, Akerman AP, McCormick JJ, King KE, Sigal RJ, Kenny GP. Efficacy of Cooling Centers for Mitigating Physiological Strain in Older Adults during Daylong Heat Exposure: A Laboratory-Based Heat Wave Simulation. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67003. [PMID: 37262028 DOI: 10.1289/ehp11651] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Health agencies, including the U.S. Centers for Disease Control and Prevention and the World Health Organization, recommend that heat-vulnerable older adults without home air-conditioning should visit cooling centers or other air-conditioned locations (e.g., a shopping mall) during heat waves. However, experimental evidence supporting the effectiveness of brief air-conditioning is lacking. OBJECTIVE We evaluated whether brief exposure to an air-conditioned environment, as experienced in a cooling center, was effective for limiting physiological strain in older adults during a daylong laboratory-based heat wave simulation. METHODS Forty adults 64-79 years of age underwent a 9-h simulated heat wave (heat index: 37°C) with (cooling group, n=20) or without (control group, n=20) a cooling intervention consisting of 2-h rest in an air-conditioned room (∼23°C, hours 5-6). Core and skin temperatures, whole-body heat exchange and storage, cardiovascular function, and circulating markers of acute inflammation were assessed. RESULTS Core temperature was 0.8°C (95% CI: 0.6, 0.9) lower in the cooling group compared with the control group at the end of the cooling intervention (p<0.001; hour 6), and it remained 0.3°C (95% CI: 0.2, 0.4) lower an hour after returning to the heat (p<0.001; hour 7). Despite this, core temperatures in each group were statistically equivalent at hours 8 and 9, within ±0.3°C (p≤0.005). Cooling also acutely reduced demand on the heart and improved indices of cardiovascular autonomic function (p≤0.021); however, these outcomes were not different between groups at the end of exposure (p≥0.58). DISCUSSION Brief air-conditioning exposure during a simulated heat wave caused a robust but transient reduction in core temperature and cardiovascular strain. These findings provide important experimental support for national and international guidance that cooling centers are effective for limiting physiological strain during heat waves. However, they also show that the physiological impacts of brief cooling are temporary, a factor that has not been considered in guidance issued by health agencies. https://doi.org/10.1289/EHP11651.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
131
|
Patschan D, Patschan S, Matyukhin I, Hoffmeister M, Lauxmann M, Ritter O, Dammermann W. Metabolomics in Acute Kidney Injury: The Experimental Perspective. J Clin Med Res 2023; 15:283-291. [PMID: 37434774 PMCID: PMC10332883 DOI: 10.14740/jocmr4913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 07/13/2023] Open
Abstract
Acute kidney injury (AKI) affects increasing numbers of in-hospital patients in Central Europe and the USA, the prognosis remains poor. Although substantial progress has been achieved in the identification of molecular/cellular processes that induce and perpetuate AKI, more integrated pathophysiological perspectives are missing. Metabolomics enables the identification of low-molecular-weight (< 1.5 kD) substances from biological specimens such as certain types of fluid or tissue. The aim of the article was to review the literature on metabolic profiling in experimental AKI and to answer the question if metabolomics allows the integration of distinct pathophysiological events such as tubulopathy and microvasculopathy in ischemic and toxic AKI. The following databases were searched for references: PubMed, Web of Science, Cochrane Library, Scopus. The period lasted from 1940 until 2022. The following terms were utilized: "acute kidney injury" OR "acute renal failure" OR "AKI" AND "metabolomics" OR "metabolic profiling" OR "omics" AND "ischemic" OR "toxic" OR "drug-induced" OR "sepsis" OR "LPS" OR "cisplatin" OR "cardiorenal" OR "CRS" AND "mouse" OR "mice" OR "murine" OR "rats" OR "rat". Additional search terms were "cardiac surgery", "cardiopulmonary bypass", "pig", "dog", and "swine". In total, 13 studies were identified. Five studies were related to ischemic, seven studies to toxic (lipopolysaccharide (LPS), cisplatin), and one study to heat shock-associated AKI. Only one study, related to cisplatin-induced AKI, was performed as a targeted analysis. The majority of the studies identified multiple metabolic deteriorations upon ischemia/the administration of LPS or cisplatin (e.g., amino acid, glucose, lipid metabolism). Particularly, abnormalities in the lipid homeostasis were shown under almost all experimental conditions. LPS-induced AKI most likely depends on the alterations in the tryptophan metabolism. Metabolomics studies provide a deeper understanding of pathophysiological links between distinct processes that are responsible for functional impairment/structural damage in ischemic or toxic or other types of AKI.
Collapse
Affiliation(s)
- Daniel Patschan
- Department of Medicine 1, Cardiology, Angiology, Nephrology, University Hospital Brandenburg of the Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Germany
| | - Susann Patschan
- Department of Medicine 1, Cardiology, Angiology, Nephrology, University Hospital Brandenburg of the Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| | - Igor Matyukhin
- Department of Medicine 1, Cardiology, Angiology, Nephrology, University Hospital Brandenburg of the Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| | - Meike Hoffmeister
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Germany
- Institute of Biochemistry, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| | - Martin Lauxmann
- Institute of Biochemistry, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| | - Oliver Ritter
- Department of Medicine 1, Cardiology, Angiology, Nephrology, University Hospital Brandenburg of the Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Germany
| | - Werner Dammermann
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Germany
- Department of Medicine 2, Gastroenterology, Diabetes, Endocrinology, University Hospital Brandenburg of the Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
132
|
Paredes-Flores MA, Lasala JD, Moon T, Bhavsar S, Hagan K, Huepenbecker S, Carram NP, Ramirez MF, Maheswari K, Feng L, Cata JP. Incidence of acute kidney injury after noncardiac surgery in patients receiving intraoperative dexmedetomidine: a retrospective study. BJA OPEN 2023; 6:100136. [PMID: 37588172 PMCID: PMC10430864 DOI: 10.1016/j.bjao.2023.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 08/18/2023]
Abstract
Background Postoperative acute kidney injury (AKI) is a common complication and is associated with increased hospital length of stay and 30 day all-cause mortality. Unfortunately, we have neither a defined strategy to prevent AKI nor an effective treatment. In vitro, animal, and human studies have suggested that dexmedetomidine may have a renoprotective effect. We conducted a retrospective cohort study to evaluate if intraoperative dexmedetomidine was associated with a reduced incidence of AKI. Methods We collected data from 6625 patients who underwent major non-cardiothoracic cancer surgery. Before and after propensity score matching, we compared the incidence of postoperative AKI in patients who received intraoperative dexmedetomidine and those who did not. AKI was defined according to the Kidney Disease Improving Global Outcomes (creatinine alone values) criteria and calculated for postoperative Days 1, 2, and 3. Results Twenty per cent (n=1301) of the patients received dexmedetomidine. The mean [standard deviation] administered dose was 78 [49.4] mcg. Patients treated with dexmedetomidine were matched to those who did not receive the drug. Patients receiving dexmedetomidine had a longer anaesthesia duration than the non-dexmedetomidine group. The incidence of AKI was not significantly different between the groups (dexmedetomidine 8% vs no dexmedetomidine 7%; P=0.333). The 30 day rates of infection, cardiovascular complications, or reoperation attributable to bleeding were higher in patients treated with dexmedetomidine. The 30 day mortality rate was not statistically different between the groups. Conclusions The administration of dexmedetomidine during major non-cardiothoracic cancer surgery is not associated with a reduction in AKI within 72 h after surgery.
Collapse
Affiliation(s)
| | - Javier D. Lasala
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Teresa Moon
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shreyas Bhavsar
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine Hagan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Huepenbecker
- Department of Gynecology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas P. Carram
- Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
- Department of Anaesthesia, Hospital General de Agudos ‘Teodoro Alvarez’, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Maria F. Ramirez
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Kamal Maheswari
- Department of General Anesthesia and Outcomes Research, Anesthesia Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lei Feng
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan P. Cata
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Anesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| |
Collapse
|
133
|
Armstrong-Jr R, Ricardo-da-Silva FY, Vidal-Dos-Santos M, da Anunciação LF, Ottens PJ, Correia CJ, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. Comparison of acute kidney injury following brain death between male and female rats. Clinics (Sao Paulo) 2023; 78:100222. [PMID: 37257364 DOI: 10.1016/j.clinsp.2023.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Clinical reports associate kidneys from female donors with worse prognostic in male recipients. Brain Death (BD) produces immunological and hemodynamic disorders that affect organ viability. Following BD, female rats are associated with increased renal inflammation interrelated with female sex hormone reduction. Here, the aim was to investigate the effects of sex on BD-induced Acute Kidney Injury (AKI) using an Isolated Perfused rat Kidney (IPK) model. METHODS Wistar rats, females, and males (8 weeks old), were maintained for 4h after BD. A left nephrectomy was performed and the kidney was preserved in a cold saline solution (30 min). IPK was performed under normothermic temperature (37°C) for 90 min using WME as perfusion solution. AKI was assessed by morphological analyses, staining of complement system components and inflammatory cell markers, perfusion flow, and creatinine clearance. RESULTS BD-male kidneys had decreased perfusion flow on IPK, a phenomenon that was not observed in the kidneys of BD-females (p < 0.0001). BD-male kidneys presented greater proximal (p = 0.0311) and distal tubule (p = 0.0029) necrosis. However, BD-female kidneys presented higher expression of eNOS (p = 0.0060) and greater upregulation of inflammatory mediators, iNOS (p = 0.0051), and Caspase-3 (p = 0.0099). In addition, both sexes had increased complement system formation (C5b-9) (p=0.0005), glomerular edema (p = 0.0003), and nNOS (p = 0.0051). CONCLUSION The present data revealed an important sex difference in renal perfusion in the IPK model, evidenced by a pronounced reduction in perfusate flow and low eNOS expression in the BD-male group. Nonetheless, the upregulation of genes related to the proinflammatory cascade suggests a progressive inflammatory process in BD-female kidneys.
Collapse
Affiliation(s)
- Roberto Armstrong-Jr
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Fernanda Yamamoto Ricardo-da-Silva
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marina Vidal-Dos-Santos
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands; Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Lucas Ferreira da Anunciação
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Petra J Ottens
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Cristiano Jesus Correia
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Luiz Felipe Pinho Moreira
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
134
|
Kaur A, Sharma GS, Kumbala DR. Acute kidney injury in diabetic patients: A narrative review. Medicine (Baltimore) 2023; 102:e33888. [PMID: 37233407 PMCID: PMC10219694 DOI: 10.1097/md.0000000000033888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Diabetes mellitus (DM) is the most common cause of chronic kidney disease, which leads to end-stage renal failure worldwide. Glomerular damage, renal arteriosclerosis, and atherosclerosis are the contributing factors in diabetic patients, leading to the progression of kidney damage. Diabetes is a distinct risk factor for acute kidney injury (AKI) and AKI is associated with faster advancement of renal disease in patients with diabetes. The long-term consequences of AKI include the development of end-stage renal disease, higher cardiovascular and cerebral events, poor quality of life, and high morbidity and mortality. In general, not many studies discussed extensively "AKI in DM." Moreover, articles addressing this topic are scarce. It is also important to know the cause of AKI in diabetic patients so that timely intervention and preventive strategies can be implemented to decrease kidney injury. Aim of this review article is to address the epidemiology of AKI, its risk factors, different pathophysiological mechanisms, how AKI differs between diabetic and nondiabetic patients and its preventive and therapeutic implications in diabetics. The increasing occurrence and prevalence of AKI and DM, as well as other pertinent issues, motivated us to address this topic.
Collapse
Affiliation(s)
- Amninder Kaur
- Senior Resident, Department of Nephrology, All India Institute of Medical Sciences Rishikesh, Uttarakhand, India
| | - Gaurav Shekhar Sharma
- Assistant Professor, Department of Nephrology, All India Institute of Medical Sciences Rishikesh, Uttrakhand, India
| | - Damodar R Kumbala
- Diagnostic and Interventional Nephrologist, Renal Associates of Baton Rogue, Baton Rogue, LA
| |
Collapse
|
135
|
Xu X, Zhang B, Wang Y, Shi S, Lv J, Fu Z, Gao X, Li Y, Wu H, Song Q. Renal fibrosis in type 2 cardiorenal syndrome: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2023; 164:114901. [PMID: 37224755 DOI: 10.1016/j.biopha.2023.114901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a state of coexisting heart failure and renal insufficiency in which acute or chronic dysfunction of the heart or kidney lead to acute or chronic dysfunction of the other organ.It was found that renal fibrosis is an important pathological process in the progression of type 2 CRS to end-stage renal disease, and progressive renal impairment accelerates the deterioration of cardiac function and significantly increases the hospitalization and mortality rates of patients. Previous studies have found that Hemodynamic Aiteration, RAAS Overactivation, SNS Dysfunction, Endothelial Dysfunction and Imbalance of natriuretic peptide system contribute to the development of renal disease in the decompensated phase of heart failure, but the exact mechanisms is not clear. Therefore, in this review, we focus on the molecular pathways involved in the development of renal fibrosis due to heart failure and identify the canonical and non-canonical TGF-β signaling pathways and hypoxia-sensing pathways, oxidative stress, endoplasmic reticulum stress, pro-inflammatory cytokines and chemokines as important triggers and regulators of fibrosis development, and summarize the therapeutic approaches for the above signaling pathways, including SB-525334 Sfrp1, DKK1, IMC, rosarostat, 4-PBA, etc. In addition, some potential natural drugs for this disease are also summarized, including SQD4S2, Wogonin, Astragaloside, etc.
Collapse
Affiliation(s)
- Xia Xu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajiao Wang
- College of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiya Gao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
136
|
Shan D, Wang YY, Chang Y, Cui H, Tao M, Sheng Y, Kang H, Jia P, Song J. Dynamic cellular changes in acute kidney injury caused by different ischemia time. iScience 2023; 26:106646. [PMID: 37168554 PMCID: PMC10165188 DOI: 10.1016/j.isci.2023.106646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Ischemia reperfusion injury (IRI), often related to surgical procedures, is one of the important causes of acute kidney injury (AKI). To decipher the dynamic process of AKI caused by IRI (with prolonged ischemia phase), we performed single-cell RNA sequencing (scRNA-seq) of clinically relevant IRI murine model with different ischemic intervals. We discovered that Slc5a2hi proximal tubular cells were susceptible to AKI and highly expressed neutral amino acid transporter gene Slc6a19, which was dramatically decreased over the time course. With the usage of mass spectrometry-based metabolomic analysis, we detected that the level of neutral amino acid isoleucine dropped off in AKI mouse plasma metabolites. And the reduction of plasma isoleucine was also verified in patients with cardiac surgery-associated acute kidney injury (CSA-AKI). The findings advanced the understanding of dynamic process of AKI and introduced reduction of isoleucine as a potential biomarker for CSA-AKI.
Collapse
Affiliation(s)
- Dan Shan
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yin-Ying Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Menghao Tao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yixuan Sheng
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Cardiovascular Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Corresponding author
| |
Collapse
|
137
|
Yashchenko A, Bland SJ, Song CJ, Ahmed UKB, Sharp R, Darby IG, Cordova AM, Smith ME, Lever JM, Li Z, Aloria EJ, Khan S, Maryam B, Liu S, Crowley MR, Jones KL, Zenewicz LA, George JF, Mrug M, Crossman DK, Hopp K, Stavrakis S, Humphrey MB, Ginhoux F, Zimmerman KA. Cx3cr1 controls kidney resident macrophage heterogeneity. Front Immunol 2023; 14:1082078. [PMID: 37256130 PMCID: PMC10225589 DOI: 10.3389/fimmu.2023.1082078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Kidney macrophages are comprised of both monocyte-derived and tissue resident populations; however, the heterogeneity of kidney macrophages and factors that regulate their heterogeneity are poorly understood. Herein, we performed single cell RNA sequencing (scRNAseq), fate mapping, and parabiosis to define the cellular heterogeneity of kidney macrophages in healthy mice. Our data indicate that healthy mouse kidneys contain four major subsets of monocytes and two major subsets of kidney resident macrophages (KRM) including a population with enriched Ccr2 expression, suggesting monocyte origin. Surprisingly, fate mapping data using the newly developed Ms4a3Cre Rosa Stopf/f TdT model indicate that less than 50% of Ccr2+ KRM are derived from Ly6chi monocytes. Instead, we find that Ccr2 expression in KRM reflects their spatial distribution as this cell population is almost exclusively found in the kidney cortex. We also identified Cx3cr1 as a gene that governs cortex specific accumulation of Ccr2+ KRM and show that loss of Ccr2+ KRM reduces the severity of cystic kidney disease in a mouse model where cysts are mainly localized to the kidney cortex. Collectively, our data indicate that Cx3cr1 regulates KRM heterogeneity and niche-specific disease progression.
Collapse
Affiliation(s)
- Alex Yashchenko
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sarah J. Bland
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Cheng J. Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ummey Khalecha Bintha Ahmed
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rachel Sharp
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Isabella G. Darby
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Audrey M. Cordova
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Morgan E. Smith
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jeremie M. Lever
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ernald J. Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shuja Khan
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Bibi Maryam
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael R. Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth L. Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - James F. George
- Department of Surgery, Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michal Mrug
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Veterans Affairs Medical Center, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension, Polycystic Kidney Disease Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stavros Stavrakis
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mary B. Humphrey
- Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, Singapore
| | - Kurt A. Zimmerman
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
138
|
Afolabi JM, Kanthakumar P, Williams JD, Kumar R, Soni H, Adebiyi A. Post-injury Inhibition of Endothelin-1 Dependent Renal Vasoregulation Mitigates Rhabdomyolysis-Induced Acute Kidney Injury. FUNCTION 2023; 4:zqad022. [PMID: 37342410 PMCID: PMC10278989 DOI: 10.1093/function/zqad022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 06/22/2023] Open
Abstract
In patients with rhabdomyolysis, the overwhelming release of myoglobin into the circulation is the primary cause of kidney injury. Myoglobin causes direct kidney injury as well as severe renal vasoconstriction. An increase in renal vascular resistance (RVR) results in renal blood flow (RBF) and glomerular filtration rate (GFR) reduction, tubular injury, and acute kidney injury (AKI). The mechanisms that underlie rhabdomyolysis-induced AKI are not fully understood but may involve the local production of vasoactive mediators in the kidney. Studies have shown that myoglobin stimulates endothelin-1 (ET-1) production in glomerular mesangial cells. Circulating ET-1 is also increased in rats subjected to glycerol-induced rhabdomyolysis. However, the upstream mechanisms of ET-1 production and downstream effectors of ET-1 actions in rhabdomyolysis-induced AKI remain unclear. Vasoactive ET-1 is generated by ET converting enzyme 1 (ECE-1)-induced proteolytic processing of inactive big ET to biologically active peptides. The downstream ion channel effectors of ET-1-induced vasoregulation include the transient receptor potential cation channel, subfamily C member 3 (TRPC3). This study demonstrates that glycerol-induced rhabdomyolysis in Wistar rats promotes ECE-1-dependent ET-1 production, RVR increase, GFR decrease, and AKI. Rhabdomyolysis-induced increases in RVR and AKI in the rats were attenuated by post-injury pharmacological inhibition of ECE-1, ET receptors, and TRPC3 channels. CRISPR/Cas9-mediated knockout of TRPC3 channels attenuated ET-1-induced renal vascular reactivity and rhabdomyolysis-induced AKI. These findings suggest that ECE-1-driven ET-1 production and downstream activation of TRPC3-dependent renal vasoconstriction contribute to rhabdomyolysis-induced AKI. Hence, post-injury inhibition of ET-1-mediated renal vasoregulation may provide therapeutic targets for rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Jeremiah M Afolabi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jada D Williams
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ravi Kumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
139
|
Cheng AS, Li X. The Potential Biotherapeutic Targets of Contrast-Induced Acute Kidney Injury. Int J Mol Sci 2023; 24:8254. [PMID: 37175958 PMCID: PMC10178966 DOI: 10.3390/ijms24098254] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) is manifested by an abrupt decline in kidney function as a consequence of intravascular exposure to contrast media. With the increased applicability of medical imaging and interventional procedures that utilize contrast media for clinical diagnosis, CI-AKI is becoming the leading cause of renal dysfunction. The pathophysiological mechanism associated with CI-AKI involves renal medullary hypoxia, the direct toxicity of contrast agents, oxidative stress, apoptosis, inflammation, and epigenetic regulation. To date, there is no effective therapy for CI-AKI, except for the development of strategies that could reduce the toxicity profiles of contrast media. While most of these strategies have failed, evidence has shown that the proper use of personalized hydration, contrast medium, and high-dose statins may reduce the occurrence of CI-AKI. However, adequate risk predication and attempts to develop preventive strategies can be considered as the key determinants that can help eliminate CI-AKI. Additionally, a deeper understanding of the pathophysiological mechanism of CI-AKI is crucial to uncover molecular targets for the prevention of CI-AKI. This review has taken a step further to solidify the current known molecular mechanisms of CI-AKI and elaborate the biomarkers that are used to detect early-stage CI-AKI. On this foundation, this review will analyze the molecular targets relating to apoptosis, inflammation, oxidative stress, and epigenetics, and, thus, provide a strong rationale for therapeutic intervention in the prevention of CI-AKI.
Collapse
Affiliation(s)
- Alice Shasha Cheng
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
140
|
Yoo JJ, Park MY, Kim SG. Acute kidney injury in patients with acute-on-chronic liver failure: clinical significance and management. Kidney Res Clin Pract 2023; 42:286-297. [PMID: 37313610 DOI: 10.23876/j.krcp.22.264] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 06/15/2023] Open
Abstract
Acute-on-chronic-liver failure (ACLF) refers to a phenomenon in which patients with chronic liver disease develop multiple organ failure due to acute exacerbation of underlying liver disease. More than 10 definitions of ACLF are extant around the world, and there is lack of consensus on whether extrahepatic organ failure is a main component or a consequence of ACLF. Asian and European consortiums have their own definitions of ACLF. The Asian Pacific Association for the Study of the Liver ACLF Research Consortium does not consider kidney failure as a diagnostic criterion for ACLF. Meanwhile, the European Association for the Study of the Liver Chronic Liver Failure and the North American Consortium for the Study of End-stage Liver Disease do consider kidney failure as an important factor in diagnosing and assessing the severity of ACLF. When kidney failure occurs in ACLF patients, treatment varies depending on the presence and stage of acute kidney injury (AKI). In general, the diagnosis of AKI in cirrhotic patients is based on the International Club of Ascites criteria: an increase of 0.3 mg/dL or more within 48 hours or a serum creatinine increase of 50% or more within one week. This study underscores the importance of kidney failure or AKI in patients with ACLF by reviewing its pathophysiology, prevention methods, and treatment approaches.
Collapse
Affiliation(s)
- Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| | - Moo Yong Park
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| | - Sang Gyune Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| |
Collapse
|
141
|
Nesovic Ostojic J, Zivotic M, Kovacevic S, Ivanov M, Brkic P, Mihailovic-Stanojevic N, Karanovic D, Vajic UJ, Miloradovic Z, Jovovic D, Radojevic Skodric S. Immunohistochemical Pattern of Histone H2A Variant Expression in an Experimental Model of Ischemia-Reperfusion-Induced Acute Kidney Injury. Int J Mol Sci 2023; 24:ijms24098085. [PMID: 37175793 PMCID: PMC10179385 DOI: 10.3390/ijms24098085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is a frequent cause of AKI, resulting in vasoconstriction, cellular dysfunction, inflammation and the induction of oxidative stress. DNA damage, including physical DNA strand breaks, is also a potential consequence of renal IRI. The histone H2A variants, primary H2AX and H2AZ participate in DNA damage response pathways to promote genome stability. The aim of this study was to evaluate the immunohistochemical pattern of histone H2A variants' (H2AX, γH2AX(S139), H2AXY142ph and H2AZ) expression in an experimental model of ischemia-reperfusion-induced acute kidney injury in spontaneously hypertensive rats. Comparing the immunohistochemical nuclear expression of γH2AX(S139) and H2AXY142ph in AKI, we observed that there is an inverse ratio of these two histone H2AX variants. If we follow different regions from the subcapsular structures to the medulla, there is an increasing extent gradient in the nuclear expression of H2AXY142ph, accompanied by a decreasing nuclear expression of γH2AX. In addition, we observed that different structures dominated when γH2AX and H2AXY142ph expression levels were compared. γH2AX was expressed only in the proximal tubule, with the exception of when they were dilated. In the medulla, H2AXY142ph is predominantly expressed in the loop of Henle and the collecting ducts. Our results show moderate sporadic nuclear H2AZ expression mainly in the cells of the distal tubules and the collecting ducts that were surrounded by dilated tubules with PAS (periodic acid-Schiff stain)-positive casts. These findings may indicate the degree of DNA damage, followed by postischemic AKI, with potential clinical and prognostic implications regarding this condition.
Collapse
Affiliation(s)
- Jelena Nesovic Ostojic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Maja Zivotic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sanjin Kovacevic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Ivanov
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Predrag Brkic
- Department of Medical Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nevena Mihailovic-Stanojevic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Karanovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Una Jovana Vajic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Miloradovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Djurdjica Jovovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | | |
Collapse
|
142
|
Wu M, Jiang X, Du K, Xu Y, Zhang W. Ensemble machine learning algorithm for predicting acute kidney injury in patients admitted to the neurointensive care unit following brain surgery. Sci Rep 2023; 13:6705. [PMID: 37185782 PMCID: PMC10130041 DOI: 10.1038/s41598-023-33930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Acute kidney injury (AKI) is a common postoperative complication among patients in the neurological intensive care unit (NICU), often resulting in poor prognosis and high mortality. In this retrospective cohort study, we established a model for predicting AKI following brain surgery based on an ensemble machine learning algorithm using data from 582 postoperative patients admitted to the NICU at the Dongyang People's Hospital from March 1, 2017, to January 31, 2020. Demographic, clinical, and intraoperative data were collected. Four machine learning algorithms (C5.0, support vector machine, Bayes, and XGBoost) were used to develop the ensemble algorithm. The AKI incidence in critically ill patients after brain surgery was 20.8%. Intraoperative blood pressure; postoperative oxygenation index; oxygen saturation; and creatinine, albumin, urea, and calcium levels were associated with the postoperative AKI occurrence. The area under the curve value for the ensembled model was 0.85. The accuracy, precision, specificity, recall, and balanced accuracy values were 0.81, 0.86, 0.44, 0.91, and 0.68, respectively, indicating good predictive ability. Ultimately, the models using perioperative variables exhibited good discriminatory ability for early prediction of postoperative AKI risk in patients admitted to the NICU. Thus, the ensemble machine learning algorithm may be a valuable tool for forecasting AKI.
Collapse
Affiliation(s)
- Muying Wu
- Intensive Care Unit, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuning West Road, Jinhua, Dongyang, Zhejiang, People's Republic of China
| | - Xuandong Jiang
- Intensive Care Unit, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuning West Road, Jinhua, Dongyang, Zhejiang, People's Republic of China.
| | - Kailei Du
- Intensive Care Unit, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuning West Road, Jinhua, Dongyang, Zhejiang, People's Republic of China
| | - Yingting Xu
- Intensive Care Unit, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuning West Road, Jinhua, Dongyang, Zhejiang, People's Republic of China
| | - Weimin Zhang
- Intensive Care Unit, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuning West Road, Jinhua, Dongyang, Zhejiang, People's Republic of China
| |
Collapse
|
143
|
Goel H, Printz RL, Shiota C, Estes SK, Pannala V, AbdulHameed MDM, Shiota M, Wallqvist A. Assessing Kidney Injury Induced by Mercuric Chloride in Guinea Pigs with In Vivo and In Vitro Experiments. Int J Mol Sci 2023; 24:7434. [PMID: 37108594 PMCID: PMC10138559 DOI: 10.3390/ijms24087434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Acute kidney injury, which is associated with high levels of morbidity and mortality, affects a significant number of individuals, and can be triggered by multiple factors, such as medications, exposure to toxic chemicals or other substances, disease, and trauma. Because the kidney is a critical organ, understanding and identifying early cellular or gene-level changes can provide a foundation for designing medical interventions. In our earlier work, we identified gene modules anchored to histopathology phenotypes associated with toxicant-induced liver and kidney injuries. Here, using in vivo and in vitro experiments, we assessed and validated these kidney injury-associated modules by analyzing gene expression data from the kidneys of male Hartley guinea pigs exposed to mercuric chloride. Using plasma creatinine levels and cell-viability assays as measures of the extent of renal dysfunction under in vivo and in vitro conditions, we performed an initial range-finding study to identify the appropriate doses and exposure times associated with mild and severe kidney injuries. We then monitored changes in kidney gene expression at the selected doses and time points post-toxicant exposure to characterize the mechanisms of kidney injury. Our injury module-based analysis revealed a dose-dependent activation of several phenotypic cellular processes associated with dilatation, necrosis, and fibrogenesis that were common across the experimental platforms and indicative of processes that initiate kidney damage. Furthermore, a comparison of activated injury modules between guinea pigs and rats indicated a strong correlation between the modules, highlighting their potential for cross-species translational studies.
Collapse
Affiliation(s)
- Himanshu Goel
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Shanea K. Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Venkat Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
144
|
Embaby EM, Saleh RM, Marghani BH, Barakat N, Awadin W, Elshal MF, Ali IS, Abu-Heakal N. The combined effect of zinc oxide nanoparticles and milrinone on acute renal ischemia/reperfusion injury in rats: Potential underlying mechanisms. Life Sci 2023; 323:121435. [PMID: 37068707 DOI: 10.1016/j.lfs.2023.121435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 04/19/2023]
Abstract
AIM To investigate the efficacy of zinc oxide nanoparticles (ZnO-NPs) and/or milrinone (MIL) on renal ischemia/reperfusion injury (I/RI) in rats and their possible underlying mechanisms. MATERIALS AND METHODS Forty-eight adult male Sprague-Dawley albino rats were randomly assigned into six equal-sized groups (n = 8): normal control, sham-operated, I/R group (45 min/24 h), ZnO-NPs group (10 mg/Kg i.p.), MIL group (0.5 mg/Kg i.p.), and ZnO-NPs + MIL group in the same previous doses. KEY FINDINGS In comparison to the I/R-operated group, administration of either ZnO-NPs or MIL significantly decreased serum creatinine and urea concentrations, and renal vascular permeability (p < 0.05). The oxidative stress was significantly declined, as evidenced by increased GPx, CAT, and SOD activities and decreased MDA and NO concentrations. Renal expressions of TNF-α, NF-κB, KIM-1, NGAL, and caspase-3 decreased significantly, while Nrf2 increased significantly. Histopathology investigation revealed improvement with minimal renal lesions and fibrosis after ZnO-NPs or MIL treatments. The combined treatments synergistically improved the studied parameters more than either treatment alone. These findings were validated by molecular modeling, which revealed that MIL inhibited TNF-α, NF-kB, caspase-3, KIM-1 and NGAL. SIGNIFICANCE Both ZnO-NPs and MIL exerted cytoprotective effects against acute renal I/RI, and a combination of both was found to be even more effective. This renoprotective effect is suggested to be mediated through activation of Nrf2 and the prevention of the NF-κB activation-induced oxidative stress and inflammation, which may strengthen the potential role of ZnO-NPs or MIL in renal I/RI protection during surgical procedures.
Collapse
Affiliation(s)
- Eman M Embaby
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Basma H Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Biochemistry, Physiology and Pharmacology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, South of Sinaa 46612, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed F Elshal
- Molecular Biology Department, Genetic Engineering and Biotechnology Institute, University of Sadat City, Sadat City, Egypt
| | - Islam S Ali
- Basic Science Department, Delta University for Science and Technology, Gamasa, Dakahlia, Egypt
| | - Nabil Abu-Heakal
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
145
|
Sutherland MR, Black MJ. The impact of intrauterine growth restriction and prematurity on nephron endowment. Nat Rev Nephrol 2023; 19:218-228. [PMID: 36646887 DOI: 10.1038/s41581-022-00668-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 01/18/2023]
Abstract
In humans born at term, maximal nephron number is reached by the time nephrogenesis is completed - at approximately 36 weeks' gestation. The number of nephrons does not increase further and subsequently remains stable until loss occurs through ageing or disease. Nephron endowment is key to the functional capacity of the kidney and its resilience to disease; hence, any processes that impair kidney development in the developing fetus can have lifelong adverse consequences for renal health and, consequently, for quality and length of life. The timing of nephrogenesis underlies the vulnerability of developing human kidneys to adverse early life exposures. Indeed, exposure of the developing fetus to a suboptimal intrauterine environment during gestation - resulting in intrauterine growth restriction (IUGR) - and/or preterm birth can impede kidney development and lead to reduced nephron endowment. Furthermore, emerging research suggests that IUGR and/or preterm birth is associated with an elevated risk of chronic kidney disease in later life. The available data highlight the important role of early life development in the aetiology of kidney disease and emphasize the need to develop strategies to optimize nephron endowment in IUGR and preterm infants.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
146
|
Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney. Bioact Mater 2023; 22:141-167. [PMID: 36203963 PMCID: PMC9526023 DOI: 10.1016/j.bioactmat.2022.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, there are no clinical drugs available to treat acute kidney injury (AKI). Given the high prevalence and high mortality rate of AKI, the development of drugs to effectively treat AKI is a huge unmet medical need and a research hotspot. Although existing evidence fully demonstrates that reactive oxygen and nitrogen species (RONS) burst at the AKI site is a major contributor to AKI progression, the heterogeneity, complexity, and unique physiological structure of the kidney make most antioxidant and anti-inflammatory small molecule drugs ineffective because of the lack of kidney targeting and side effects. Recently, nanodrugs with intrinsic kidney targeting through the control of size, shape, and surface properties have opened exciting prospects for the treatment of AKI. Many antioxidant nanodrugs have emerged to address the limitations of current AKI treatments. In this review, we systematically summarized for the first time about the emerging nanodrugs that exploit the pathological and physiological features of the kidney to overcome the limitations of traditional small-molecule drugs to achieve high AKI efficacy. First, we analyzed the pathological structural characteristics of AKI and the main pathological mechanism of AKI: hypoxia, harmful substance accumulation-induced RONS burst at the renal site despite the multifactorial initiation and heterogeneity of AKI. Subsequently, we introduced the strategies used to improve renal targeting and reviewed advances of nanodrugs for AKI: nano-RONS-sacrificial agents, antioxidant nanozymes, and nanocarriers for antioxidants and anti-inflammatory drugs. These nanodrugs have demonstrated excellent therapeutic effects, such as greatly reducing oxidative stress damage, restoring renal function, and low side effects. Finally, we discussed the challenges and future directions for translating nanodrugs into clinical AKI treatment. AKI is a common clinical acute syndrome with high morbidity and mortality but without effective clinical drug available. Hypoxia and accumulation of toxic substances are key pathological features of various heterogeneous AKI. Excessive RONS is the core of the pathological mechanism of AKI. The development of nanodrugs is expected to achieve successful treatment in AKI.
Collapse
|
147
|
Imig JD, Khan MAH, Stavniichuk A, Jankiewicz WK, Goorani S, Yeboah MM, El-Meanawy A. Salt-sensitive hypertension after reversal of unilateral ureteral obstruction. Biochem Pharmacol 2023; 210:115438. [PMID: 36716827 PMCID: PMC10107073 DOI: 10.1016/j.bcp.2023.115438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
The incidence of ureter obstruction is increasing and patients recovering from this kidney injury often progress to chronic kidney injury. There is evidence that a long-term consequence of recovery from ureter obstruction is an increased risk for salt-sensitive hypertension. A reversal unilateral ureteral obstruction (RUUO) model was used to study long-term kidney injury and salt-sensitive hypertension. In this model, we removed the ureteral obstruction at day 10 in mice. Mice were divided into four groups: (1) normal salt diet, (2) high salt diet, (3) RUUO normal salt diet, and (4) RUUO high salt diet. At day 10, the mice were fed a normal or high salt diet for 4 weeks. Blood pressure was measured, and urine and kidney tissue collected. There was a progressive increase in blood pressure in the RUUO high salt diet group. RUUO high salt group had decreased sodium excretion and glomerular injury. Renal epithelial cell injury was evident in RUUO normal and high salt mice as assessed by neutrophil gelatinase-associated lipocalin (NGAL). Kidney inflammation in the RUUO high salt group involved an increase in F4/80 positive macrophages; however, CD3+ positive T cells were not changed. Importantly, RUUO normal and high salt mice had decreased vascular density. RUUO was also associated with renal fibrosis that was further elevated in RUUO mice fed a high salt diet. Overall, these findings demonstrate long-term renal tubular injury, inflammation, decreased vascular density, and renal fibrosis following reversal of unilateral ureter obstruction that could contribute to impaired sodium excretion and salt-sensitive hypertension.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Md Abdul Hye Khan
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anna Stavniichuk
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wojciech K Jankiewicz
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samaneh Goorani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael M Yeboah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashraf El-Meanawy
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
148
|
Dic-Ijiewere EO, Osadolor HB. CYP24A1 and CYP3A4 Levels, Renal, Hepatic Changes, and Incidence of Oxidative Stress in Tramadol-Alcohol Concomitant Misuse. Cureus 2023; 15:e36877. [PMID: 37123794 PMCID: PMC10147408 DOI: 10.7759/cureus.36877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Long-term population-based research has demonstrated a link between heavy drinking and the prevalence of kidney disorders; similarly, alcohol abuse has long been recognized as one of the main causes of liver diseases. A recent trend of concomitant use of the opioid analgesic Tramadol and alcohol among young males in sub-Saharan Africa has emerged. Aim and objectives This study's primary aim was to evaluate the incidence of concomitant use of alcohol and Tramadol among adult males, and observe the role of cytochrome p450 3A4 and CYP24A1 proteins and some oxidative stress indicators such as Malondialdehyde, lactate dehydrogenase, among study participants. The secondary aim was to evaluate the effect of alcohol and Tramadol concomitant use on Liver and kidney indices. Methods Our study population was male subjects with a history of Alcohol and Tramadol concomitant use. Liver enzymes, renal indices, oxidative stress markers, and CYP3A4 and CYP24A1 were determined from the serum of test and control participants. IBM Statistical Package for Social Sciences (SPSS) Statistics (version 21.0) was used to analyze the data obtained. Result One hundred and forty-two male subjects were included in this study. Eighty two (82) were males who admitted to abuse of Alcohol and Tramadol concomitantly for at least a year. The dose of Tramadol commonly used by Test subjects was 200 mg (43.9% of the test population), Tramadol users in the study population were largely Undergraduates (75.6% of Test participants). Gamma-glutamyl transferase and lactate dehydrogenase were significantly higher in Test subjects consuming Tramadol and alcohol combination (43.13±1.02 and 117.29±2.45, respectively) versus control (24.87±0.82; p=0.00 and 101.93±1.25; p=0.00). There was a significant decrease in serum bicarbonate levels of Test subjects (16.19±0.53) versus control (22.60±0.68; p=0.000). Cytochrome P450 24A1, was significantly lower in Test subjects (subjects consuming Tramadol and alcohol combination) (0.90±0.06; p=0.01), and significantly threefold higher in subjects with acute myeloid leukemia (AML) (5.16±0.5; p=0.00), when compared with values of non-drug/alcohol users that served as normal control (1.27±0.07). Conclusion The menace of Tramadol and alcohol concomitant abuse has taken a worrisome dimension in sub-Saharan Africa. In this study 77.4% of participants reported euphoria as reason for combining Alcohol and Tramadol, 6.5% claimed it was for faster pain relief and enhanced sexual performance or prolong penile erection was the response of 58.1% of the test participants. Findings of reduced CYP3A4 with Alcohol and Tramadol concomitant use could be associated with delayed drug inactivation and increased drug euphoric action.
Collapse
|
149
|
Arrivi A, Truscelli G, Pucci G, Barillà F, Carnevale R, Nocella C, Sordi M, Dominici M, Tanzilli G, Mangieri E. The Combined Treatment of Glutathione Sodium Salt and Ascorbic Acid for Preventing Contrast-Associated Acute Kidney Injury in ST-Elevation Myocardial Infarction Patients Undergoing Primary PCI: A Hypothesis to Be Validated. Antioxidants (Basel) 2023; 12:antiox12030773. [PMID: 36979021 PMCID: PMC10045886 DOI: 10.3390/antiox12030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The occurrence of Contrast-Associated Acute Kidney Injury (CA-AKI) in patients with ST-Elevation Myocardial Infarction (STEMI) has a negative impact on the length of hospital stay and mortality. Reactive Oxygen Species (ROS) release, along with vasoconstriction and hypoperfusion, play a key role in its development. To date, there is still no validated prophylactic therapy for this disease. The use of antioxidants, based on experimental and clinical studies, looks promising. Taking into consideration previous literature, we speculate that an early, combined and prolonged intravenous administration of both Glutathione (GSH) and ascorbic acid in STEMI patients undergoing primary Percutaneous Coronary Intervention (pPCI) may be of value in counteracting the occurrence of CA-AKI. We aimed at evaluating this hypothesis by applying a multicenter research protocol, using a double-blind randomized, placebo-controlled trial design. The primary endpoint will be to test the efficacy of this combined antioxidant therapy in reducing the occurrence of renal damage, in patients with acute myocardial infarction treated with pPCI. Furthermore, we will investigate the effect of the study compounds on changes in oxidative stress markers and platelet activation levels through bio-humoral analyses.
Collapse
Affiliation(s)
- Alessio Arrivi
- Interventional Cardiology Unit, "Santa Maria" University Hospital, 05100 Terni, Italy
| | | | - Giacomo Pucci
- Unit of Internal Medicine, S. Maria University Hospital, 05100 Terni, Italy
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Francesco Barillà
- Department of Systems Medicine, University Tor Vergata, 00133 Rome, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies Sapienza University, 04100 Latina, Italy
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Martina Sordi
- Interventional Cardiology Unit, "Santa Maria" University Hospital, 05100 Terni, Italy
| | - Marcello Dominici
- Interventional Cardiology Unit, "Santa Maria" University Hospital, 05100 Terni, Italy
| | - Gaetano Tanzilli
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Enrico Mangieri
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
150
|
Zhang T, Li Y, Wise AF, Kulkarni K, Aguilar MI, Samuel CS, Del Borgo M, Widdop RE, Ricardo SD. The protective effects of a novel AT 2 receptor agonist, β-Pro 7Ang III in ischemia-reperfusion kidney injury. Biomed Pharmacother 2023; 161:114556. [PMID: 36948137 DOI: 10.1016/j.biopha.2023.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND AND PURPOSE This study investigated the reno-protective effects of a highly selective AT2R agonist peptide, β-Pro7Ang III in a mouse model of acute kidney injury (AKI). METHODS C57BL/6 J mice underwent either sham surgery or unilateral kidney ischemia-reperfusion injury (IRI) for 40 min. IRI mice were treated with either β-Pro7Ang III or perindopril and at 7 days post-surgery the kidneys analysed for histopathology and the development of fibrosis and matrix metalloproteinase (MMP)-2 and -9 activity. The association of the therapeutic effects of β-Pro7Ang III with macrophage number and phenotype was determined in vivo and in vitro. KEY RESULTS Decreased kidney tubular injury, interstitial matrix expansion and reduced interstitial immune cell infiltration in IRI mice receiving β-Pro7Ang III treatment was observed at day 7, compared to IRI mice without treatment. This correlated to reduced collagen accumulation and MMP-2 activity in IRI mice following β-Pro7Ang III treatment. FACS analysis showed a reduced number and proportion of CD45+CD11b+F4/80+ macrophages in IRI kidneys in response to β-Pro7Ang III, correlating with a significant increase in M2 macrophage markers and decreased M1 markers at day 3 and 7 post-IR injury, respectively. In vitro analysis of cultured THP-1 cells showed that β-Pro7Ang III attenuated lipopolysaccharide (LPS)-induced tumour necrosis factor-α (TNF-α) and interleukin (IL)- 6 production but increased IL-10 secretion, compared to LPS alone. CONCLUSION Administration of β-Pro7Ang III via mini-pump improved kidney structure and reduced interstitial collagen accumulation, in parallel with an alteration of macrophage phenotype and anti-inflammatory cytokine release, therefore mitigating the downstream progression of ischemic AKI.
Collapse
Affiliation(s)
- Tingfang Zhang
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Yifang Li
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mark Del Borgo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|