101
|
Rosner M, Hofer K, Kubista M, Hengstschläger M. Cell size regulation by the human TSC tumor suppressor proteins depends on PI3K and FKBP38. Oncogene 2003; 22:4786-98. [PMID: 12894220 DOI: 10.1038/sj.onc.1206776] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
TSC1 and TSC2 are responsible for the tumor suppressor gene syndrome tuberous sclerosis (TSC). Mammalian TSC genes have been shown to be involved in cell cycle regulation. Recently, in Drosophila, these data have been confirmed and TSC genes have further been demonstrated to affect cell size control. Here we provide supporting data for the fact that the latter function is conserved in mammals. Human TSC1 and TSC2 trigger mammalian cell size reduction and a dominant-negative TSC2 mutant induces increased size. These effects occur in all cell cycle phases, are dependent on the activity of the phosphoinositide-3-kinase and are abolished by co-overexpression of a dominant-negative Akt mutant. Two independent naturally occurring and disease-causing mutations within the TSC2 gene eliminate tuberin's capacity to affect cell size control, emphasizing the relevance of this function for the development of the disease. The same mutations have earlier been shown not to affect tuberin's antiproliferative capacity. That the consequences of modulated TSC gene expression on cell proliferation and on cell size can be assigned to separable functions is further supported by two findings: A mutation within the TSC1 gene, earlier shown to still harbor anti-proliferative effects, was found to eliminate the cell size regulating functions. An important mammalian cell size regulator, c-Myc, was found to inhibit tuberin's antiproliferative capacity, but to have no effects on tuberin-dependent cell size control. To obtain further mechanistical insights, microarray screens for genes involved in TSC1- or TSC2-mediated cell size effects were performed. Antisense experiments revealed that the so observed regulation of the FK506-binding protein, FKBP38, plays a role in TSC gene-dependent cell size regulation. These data provide new insights into mammalian cell size regulation and allow a better understanding of the function of human TSC genes.
Collapse
Affiliation(s)
- Margit Rosner
- Obstetrics and Gynecology, University of Vienna, Prenatal Diagnosis and Therapy, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
102
|
Gilchrist DS, Ure J, Hook L, Medvinsky A. Labeling of hematopoietic stem and progenitor cells in novel activatable EGFP reporter mice. Genesis 2003; 36:168-76. [PMID: 12872249 DOI: 10.1002/gene.10209] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Conditional activation and inactivation of genes using the Cre/loxP recombination system is a powerful tool for the analysis of gene function and for tracking cell fate. Here we report a novel silent EGFP reporter mouse line generated by enhancer trap technology using embryonic stem (ES) cells. Following transfection with the silent EGFP reporter construct, positive ES cell clones were treated with Cre recombinase. These "activated clones" were then further selected on the basis of ubiquitous EGFP expression during in vitro differentiation. The parental "silent" clones were then used for generating mice. Upon Cre-mediated activation in ovo tissues tested from these mice express EGFP. Long-term, strong and sustainable expression of EGFP is observed in most myeloid and lymphoid cells. As shown by in vivo transplantation assays, the majority of hematopoietic stem cells (HSCs) and spleen colony-forming units (CFU-S) reside within the EGFP positive fraction. Most in vitro colony-forming units (CFU-Cs) isolated from bone marrow also express EGFP. Thus, these reporter mice are useful for the analysis of Cre-mediated recombination in HSCs and hematopoietic progenitor cells. This, in combination with the high accessibility of the loxP sites, makes these mice a valuable tool for testing cell/tissue-specific Cre-expressing mice. .
Collapse
Affiliation(s)
- Derek S Gilchrist
- Institute for Stem Cell Research, University of Edinburgh, West Main's Road, King's Buildings, Edinburgh, Scotland
| | | | | | | |
Collapse
|
103
|
Moustafa ME, Kumaraswamy E, Zhong N, Rao M, Carlson BA, Hatfield DL. Models for assessing the role of selenoproteins in health. J Nutr 2003; 133:2494S-2496S. [PMID: 12840229 DOI: 10.1093/jn/133.7.2494s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two model systems for examining the role of selenoproteins in health are discussed. One utilizes transgenic mice that carry mutant selenocysteine (Sec) tRNA transgenes that result in the reduction of selenoprotein expression in a protein- and tissue-specific manner. The other utilizes loxP-Cre technology to selectively remove the Sec tRNA gene in mammary epithelium that results in the reduction of only certain selenoproteins in this tissue. Both approaches provide important tools for examining the role of selenoproteins in health.
Collapse
Affiliation(s)
- Mohamed E Moustafa
- Section on the Molecular Biology of Selenium, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
104
|
Schwenk F, Zevnik B, Brüning J, Röhl M, Willuweit A, Rode A, Hennek T, Kauselmann G, Jaenisch R, Kühn R. Hybrid embryonic stem cell-derived tetraploid mice show apparently normal morphological, physiological, and neurological characteristics. Mol Cell Biol 2003; 23:3982-9. [PMID: 12748299 PMCID: PMC155215 DOI: 10.1128/mcb.23.11.3982-3989.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ES cell-tetraploid (ES) mice are completely derived from embryonic stem cells and can be obtained at high efficiency upon injection of hybrid ES cells into tetraploid blastocysts. This method allows the immediate generation of targeted mouse mutants from genetically modified ES cell clones, in contrast to the standard protocol, which involves the production of chimeras and several breeding steps. To provide a baseline for the analysis of ES mouse mutants, we performed a phenotypic characterization of wild-type B6129S6F(1) ES mice in relation to controls of the same age, sex, and genotype raised from normal matings. The comparison of 90 morphological, physiological, and behavioral parameters revealed elevated body weight and hematocrit as the only major difference of ES mice, which exhibited an otherwise normal phenotype. We further demonstrate that ES mouse mutants can be produced from mutant hybrid ES cells and analyzed within a period of only 4 months. Thus, ES mouse technology is a valid research tool for rapidly elucidating gene function in vivo.
Collapse
Affiliation(s)
- Frieder Schwenk
- Artemis Pharmaceuticals GmbH. Klinik II und Poliklinik für Innere Medizin der Universität Köln and Center of Molecular Medicine, Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Aller MI, Jones A, Merlo D, Paterlini M, Meyer AH, Amtmann U, Brickley S, Jolin HE, McKenzie ANJ, Monyer H, Farrant M, Wisden W. Cerebellar granule cell Cre recombinase expression. Genesis 2003; 36:97-103. [PMID: 12820171 DOI: 10.1002/gene.10204] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The cerebellum maintains balance and orientation, refines motor action, stores motor memories, and contributes to the timing aspects of cognition. We generated two mouse lines for making Cre recombinase-mediated gene disruptions largely confined to adult cerebellar granule cells. For this purpose we chose the GABA(A) receptor alpha6 subunit gene, whose expression marks this cell type. Here we describe mouse lines expressing Cre recombinase generated by 1) Cre knocked into the native alpha6 subunit gene by homologous recombination in embryonic stem cells; and 2) Cre recombined into an alpha6 subunit gene carried on a bacterial artificial chromosome (BAC) genomic clone. The fidelity of Cre expression was tested by crossing the mouse lines with the ROSA26 reporter mice. The particular alpha6BAC clone we identified will be valuable for delivering other gene products to cerebellar granule cells.
Collapse
Affiliation(s)
- M I Aller
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Ryffel GU, Werdien D, Turan G, Gerhards A, Goosses S, Senkel S. Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. Nucleic Acids Res 2003; 31:e44. [PMID: 12682379 PMCID: PMC153756 DOI: 10.1093/nar/gng044] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of Cre and FLP recombinases to analyze embryogenesis and organogenesis in Xenopus has not been applied so far. We report on the generation of transgenic Xenopus animals containing a Cre-activated reporter gene cassette expressing blue fluorescent protein that can be switched over to yellow fluorescent protein expression upon Cre-mediated recombination. By injecting Cre mRNA into the two-cell stage embryo we show that Cre-mediated activation of the yellow fluorescent protein gene occurs. In addition, we observe upon injection an extinction of blue fluorescence in animals expressing the transgene and the induction of blue fluorescence in larvae containing a silent reporter gene. By crossing the reporter strains with animals expressing a muscle-specific Cre transgene we obtained an efficient and specific recombination of the reporter gene that leads to yellow fluorescence in myotomes and myofibrils of the developing larvae. Removal of the tail tips of these larvae allows the continuous recording of muscle cell differentiation in the regenerating tail. We detect a dramatic increase in transgene expression at the site of tissue removal in the tail stump. In the regenerated tail, yellow fluorescence is restricted to the myotomes thus excluding transdifferentiation of muscle cells.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cell Lineage
- Crosses, Genetic
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Female
- Integrases/genetics
- Integrases/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Microinjections
- Microscopy, Fluorescence
- Muscles/cytology
- Muscles/embryology
- Muscles/metabolism
- Plasmids/genetics
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombination, Genetic
- Regeneration
- Tail/embryology
- Tail/physiology
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Xenopus/embryology
- Xenopus/genetics
Collapse
Affiliation(s)
- Gerhart U Ryffel
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
107
|
Abstract
Tolerance is an important component of opiate addiction, but the molecular basis for this phenomenon remains obscure. Here, we report that mice lacking neurotrophin-4 (NT4) display substantially reduced tolerance to morphine compared to wild-type. However, there were no deficits in sensitization and withdrawal, other behaviors relevant to drug addiction. Since NT4 knockout mice also show abnormalities in long-term but not short-term memory, our findings suggest common molecular pathways for some of the enduring changes of drug addiction and memory consolidation.
Collapse
Affiliation(s)
- Desmond J Smith
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
108
|
Leneuve P, Colnot S, Hamard G, Francis F, Niwa-Kawakita M, Giovannini M, Holzenberger M. Cre-mediated germline mosaicism: a new transgenic mouse for the selective removal of residual markers from tri-lox conditional alleles. Nucleic Acids Res 2003; 31:e21. [PMID: 12595570 PMCID: PMC149843 DOI: 10.1093/nar/gng021] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The binary Cre-lox conditional knockout system requires an essential part of the target gene to be flanked by loxP sites, enabling excision in vivo upon Cre expression. LoxP sites are introduced by homologous recombination, together with a selectable marker. However, this marker can disturb gene expression and should be removed. The marker is therefore often prepared with a third, flanking loxP site (tri-lox construct), facilitating its selective removal by partial Cre-lox recombination. We have shown that this excision can be achieved in vivo in the germline using EIIaCre transgenic mice, and have described the advantages of in vivo over in vitro removal. We show here that MeuCre40, a new transgenic mouse, more reliably and reproducibly generates an optimal partial mosaic Cre-lox recombination pattern in the early embryo. This mosaicism was transmitted to the germline and to many other tissues. Alleles with partial deletions, in particular floxed alleles from which the selectable marker was removed, were readily recovered in the next generation, after segregation from the transgene. Segregation via paternal or maternal transmission led to successful recovery of the alleles of interest. We also obtained total deletion of the floxed regions in the same experiment, making this transgene a polyvalent Cre-lox tool. We rigorously tested the ability of MeuCre40 to solve tri-lox problems, by using it for the in vivo removal of neo(R)- and hprt-expression cassettes from three different tri-lox mutants.
Collapse
Affiliation(s)
- Patricia Leneuve
- Inserm U515, Hôpital Saint-Antoine, 184 r Fbg St-Antoine, 75571 Paris 12, France
| | | | | | | | | | | | | |
Collapse
|
109
|
Kumaraswamy E, Carlson BA, Morgan F, Miyoshi K, Robinson GW, Su D, Wang S, Southon E, Tessarollo L, Lee BJ, Gladyshev VN, Hennighausen L, Hatfield DL. Selective removal of the selenocysteine tRNA [Ser]Sec gene (Trsp) in mouse mammary epithelium. Mol Cell Biol 2003; 23:1477-88. [PMID: 12588969 PMCID: PMC151713 DOI: 10.1128/mcb.23.5.1477-1488.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice homozygous for an allele encoding the selenocysteine (Sec) tRNA [Ser]Sec gene (Trsp) flanked by loxP sites were generated. Cre recombinase-dependent removal of Trsp in these mice was lethal to embryos. To investigate the role of Trsp in mouse mammary epithelium, we deleted this gene by using transgenic mice carrying the Cre recombinase gene under control of the mouse mammary tumor virus (MMTV) long terminal repeat or the whey acidic protein promoter. While both promoters target Cre gene expression to mammary epithelium, MMTV-Cre is also expressed in spleen and skin. Sec tRNA [Ser]Sec amounts were reduced by more than 70% in mammary tissue with either transgene, while in skin and spleen, levels were reduced only with MMTV-Cre. The selenoprotein population was selectively affected with MMTV-Cre in breast and skin but not in the control tissue, kidney. Moreover, within affected tissues, expression of specific selenoproteins was regulated differently and often in a contrasting manner, with levels of Sep15 and the glutathione peroxidases GPx1 and GPx4 being substantially reduced. Expression of the tumor suppressor genes BRCA1 and p53 was also altered in a contrasting manner in MMTV-Cre mice, suggesting greater susceptibility to cancer and/or increased cell apoptosis. Thus, the conditional Trsp knockout mouse allows tissue-specific manipulation of Sec tRNA and selenoprotein expression, suggesting that this approach will provide a useful tool for studying the role of selenoproteins in health.
Collapse
MESH Headings
- Alleles
- Animals
- Blotting, Northern
- Blotting, Western
- Breast/metabolism
- Chromatography
- Crosses, Genetic
- Epithelium/metabolism
- Gene Deletion
- Genes, BRCA1
- Genes, p53/genetics
- Genetic Vectors
- Glutathione Peroxidase/metabolism
- Heterozygote
- Kidney/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Genetic
- Phenotype
- Promoter Regions, Genetic
- Proteins/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Recombination, Genetic
- Selenoproteins
- Tissue Distribution
- Transgenes
Collapse
Affiliation(s)
- Easwari Kumaraswamy
- Section on Molecular Biology of Selenium, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Nagy A, Perrimon N, Sandmeyer S, Plasterk R. Tailoring the genome: the power of genetic approaches. Nat Genet 2003; 33 Suppl:276-84. [PMID: 12610537 DOI: 10.1038/ng1115] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last century, genetics has developed into one of the most powerful tools for addressing basic questions concerning inheritance, development, individual and social operations and death. Here we summarize the current approaches to these questions in four of the most advanced models organisms: Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (worm), Drosophila melanogaster (fly) and Mus musculus (mouse). The genomes of each of these four models have been sequenced, and all have well developed methods of efficient genetic manipulations.
Collapse
Affiliation(s)
- Andras Nagy
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | | | | | | |
Collapse
|
111
|
Seibler J, Zevnik B, Küter-Luks B, Andreas S, Kern H, Hennek T, Rode A, Heimann C, Faust N, Kauselmann G, Schoor M, Jaenisch R, Rajewsky K, Kühn R, Schwenk F. Rapid generation of inducible mouse mutants. Nucleic Acids Res 2003; 31:e12. [PMID: 12582257 PMCID: PMC150244 DOI: 10.1093/nar/gng012] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have generated an optimized inducible recombination system for conditional gene targeting based on a Cre recombinase-steroid receptor fusion. This configuration allows efficient Cre-mediated recombination in most organs of the mouse upon induction, without detectable background activity. An ES cell line, was established that carries the inducible recombinase and a loxP-flanked lacZ reporter gene. Out of this line, completely ES cell-derived mice were efficiently produced through tetraploid blastocyst complementation, without the requirement of mouse breeding. Our findings provide a new concept allowing the generation of inducible mouse mutants within 6 months, as compared to 14 months using the current protocol.
Collapse
Affiliation(s)
- Jost Seibler
- ARTEMIS Pharmaceuticals GmbH, Neurather Ring 1, 51063 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002; 11:115-32. [PMID: 12464688 DOI: 10.1152/physiolgenomics.00067.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to engineer the mouse genome has profoundly transformed biomedical research. During the last decade, conventional transgenic and gene knockout technologies have become invaluable experimental tools for modeling genetic disorders, assigning functions to genes, evaluating drugs and toxins, and by and large helping to answer fundamental questions in basic and applied research. In addition, the growing demand for more sophisticated murine models has also become increasingly evident. Good state-of-principle knowledge about the enormous potential of second-generation conditional mouse technology will be beneficial for any researcher interested in using these experimental tools. In this review we will focus on practice, pivotal principles, and progress in the rapidly expanding area of conditional mouse technology. The review will also present an internet compilation of available tetracycline-inducible mouse models as tools for biomedical research (http://www.zmg.uni-mainz.de/tetmouse/).
Collapse
Affiliation(s)
- Ernesto Bockamp
- Laboratory of Molecular Mouse Genetics, Institute of Toxicology, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Schönig K, Schwenk F, Rajewsky K, Bujard H. Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 2002; 30:e134. [PMID: 12466566 PMCID: PMC137989 DOI: 10.1093/nar/gnf134] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Accepted: 10/14/2002] [Indexed: 11/13/2022] Open
Abstract
The strategy of modulating gene activities in vivo via CRE/loxP recombination would greatly profit from subjecting the recombination event to an independent and stringent temporal control. Here, we describe a transgenic mouse line, LC-1, where the expression of the cre and luciferase gene is tightly controlled by the Tet system. Using the R26R mouse line as indicator for CRE activity, and mouse lines expressing tetracycline controlled transactivators (tTA/rtTA) in various tissues, we show that; (i) in the non-induced state CRE recombinase is tightly controlled throughout the development and adulthood of an animal; (ii) upon induction, efficient recombination occurs in the adult animal in all tissues where tTA/rtTA is present, including hepatocytes, kidney cells, neurons and T lymphocytes; and (iii) no position effect appears to be caused by the LC-1 locus. Moreover, using the novel rTA(LAP)-1 mouse line, we show that in hepatocytes, complete deletion of the loxP-flanked insert in R26R animals is achieved less than 48 h after induction. Thus, the LC-1 mouse appears suitable for exploiting two rapidly increasing collections of mouse lines of which one provides tTA/rtTA in specific cell types/tissues, and the other a variety of loxP-flanked genes.
Collapse
Affiliation(s)
- Kai Schönig
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
114
|
Tronche F, Casanova E, Turiault M, Sahly I, Kellendonk C. When reverse genetics meets physiology: the use of site-specific recombinases in mice. FEBS Lett 2002; 529:116-21. [PMID: 12354622 DOI: 10.1016/s0014-5793(02)03266-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of site-specific recombinases enables the precise introduction of defined genetic mutations into the mouse genome. In theory, any deletion, point mutation, inversion or translocation can be modeled in mice. Because gene targeting is controlled both spatially and temporally, the function of a given gene can be studied in the desired cell types and at a specific time point. This 'genetic dissection' allows to define gene function in development, physiology or behavior. In this review, we focus on the technical possibilities of Cre and other site-specific recombinases but also discuss their limitations.
Collapse
Affiliation(s)
- François Tronche
- CNRS FRE2401, Molecular Genetics, Neurophysiology and Behavior, Institute of Biology, Collège de France, 11 place Marcelin Berthelot, 75231 Cedex 5, Paris, France.
| | | | | | | | | |
Collapse
|
115
|
Abstract
The PTEN tumor suppressor gene is a lipid phosphatase that negatively regulates cell survival mediated by the phosphatidyl inositol 3' kinase-protein kinase B/Akt signaling pathway. Recent in vivo studies have revealed a novel role for PTEN in the size control of neurons. Dysregulation of cell growth control by PTEN is associated with the neurological disorder Lhermitte-Duclos disease. PTEN may regulate cell size through effects on protein translation.
Collapse
Affiliation(s)
- Stéphanie Backman
- Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, 610 University Avenue, Toronto, Canada.
| | | | | |
Collapse
|
116
|
Guyonneau L, Rossier A, Richard C, Hummler E, Beermann F. Expression of Cre recombinase in pigment cells. PIGMENT CELL RESEARCH 2002; 15:305-9. [PMID: 12100497 DOI: 10.1034/j.1600-0749.2002.02039.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conditional gene targeting using the Cre/loxP system enables specific deletion of a gene in a tissue of interest. For application of Cre-mediated recombination in pigment cells, Cre expression has to be targeted to pigment cells in transgenic mice. So far, no pigment cell-specific Cre transgenic line has been reported and we present and discuss our first results on use of Cre recombinase in pigment cells. A construct was generated where Cre recombinase is controlled by the promoter of the mouse dopachrome tautomerase (Dct) gene. The construct was functionally tested in vitro and introduced into mice. Following breeding to two reporter mouse strains, we detected Cre recombinase activity in telencephalon, melanoblasts, and retinal pigment epithelium (RPE). Our data demonstrate the feasibility of pigment cell-specific Cre/loxP-mediated recombination.
Collapse
Affiliation(s)
- Laurence Guyonneau
- ISREC (Swiss Institute for Experimental Cancer Research), Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | | | | | | | | |
Collapse
|