101
|
Ashby K, Navarro Almario EE, Tong W, Borlak J, Mehta R, Chen M. Review article: therapeutic bile acids and the risks for hepatotoxicity. Aliment Pharmacol Ther 2018; 47:1623-1638. [PMID: 29701277 DOI: 10.1111/apt.14678] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/17/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bile acids play important roles in cholesterol metabolism and signal through farnesoid X receptor and G protein-coupled receptors. Given their importance in liver biology, bile acid therapy enables therapeutic applications beyond the treatment of cholestatic liver disease. However, predicting hepatotoxicity of bile acids in humans is obscured due to inconsistent extrapolations of animal data to humans. AIM To review the evidence that could explain discordant bile acids hepatotoxicity observed in humans and animals. METHOD Literature search was conducted in PubMed using keywords "bile acid," "transporter," "hepatotoxicity," "clinical study," "animal study," "species difference," "mechanism," "genetic disorder." Relevant articles were selected for review. RESULTS Clinically significant hepatotoxicity was reported in response to certain bile acids, namely chenodeoxycholic acid, which was given a boxed warning for potential hepatotoxicity. The chemical structure, specifically the number and orientation of hydroxyl groups, significantly affects their hydrophobicity, an important factor in bile acid toxicity. Experimental studies show that hydrophobic bile acids can lead to liver injury through various mechanisms, such as death receptor signalling, mitochondrial dysfunction and inflammation. Although animal studies play a central role in investigating bile acid safety, there are considerable differences in bile acid composition, metabolism and hepatobiliary disposition across species. This does not allow appropriate safety inference, especially for predicting hepatotoxicity in humans. Exploring evidences stemming from inborn errors, genetic models of disease and toxicology studies further improves an understanding of bile acid hepatotoxicity. CONCLUSION Species differences should be considered in the development of bile acid related therapeutics. Although the mechanism of bile acid hepatotoxicity is still not fully understood, continued mechanistic studies will deepen our understanding.
Collapse
Affiliation(s)
- K Ashby
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - E E Navarro Almario
- Office of Computational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - W Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - J Borlak
- Hannover Medical School, Center of Pharmacology and Toxicology, Hannover, Germany
| | - R Mehta
- Division of Gastroenterology and Inborn Error Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - M Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
102
|
Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2018; 1865:895-911. [PMID: 29782919 DOI: 10.1016/j.bbadis.2018.05.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Abstract
The use of animal models, particularly genetically modified mice, continues to play a critical role in studying the relationship between bile acid metabolism and human liver disease. Over the past 20 years, these studies have been instrumental in elucidating the major pathways responsible for bile acid biosynthesis and enterohepatic cycling, and the molecular mechanisms regulating those pathways. This work also revealed bile acid differences between species, particularly in the composition, physicochemical properties, and signaling potential of the bile acid pool. These species differences may limit the ability to translate findings regarding bile acid-related disease processes from mice to humans. In this review, we focus primarily on mouse models and also briefly discuss dietary or surgical models commonly used to study the basic mechanisms underlying bile acid metabolism. Important phenotypic species differences in bile acid metabolism between mice and humans are highlighted.
Collapse
Affiliation(s)
- Jianing Li
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States
| | - Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
103
|
Passioura T, Watashi K, Fukano K, Shimura S, Saso W, Morishita R, Ogasawara Y, Tanaka Y, Mizokami M, Sureau C, Suga H, Wakita T. De Novo Macrocyclic Peptide Inhibitors of Hepatitis B Virus Cellular Entry. Cell Chem Biol 2018; 25:906-915.e5. [PMID: 29779957 DOI: 10.1016/j.chembiol.2018.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) constitutes a significant public health burden, and currently available treatment options are not generally curative, necessitating the development of new therapeutics. Here we have applied random non-standard peptide integrated discovery (RaPID) screening to identify small macrocyclic peptide inhibitors of HBV entry that target the cell-surface receptor for HBV, sodium taurocholate cotransporting polypeptide (NTCP). In addition to their anti-HBV activity, these molecules also inhibit cellular entry by the related hepatitis D virus (HDV), and are active against diverse strains of HBV (including clinically relevant nucleos(t)ide analog-resistant and vaccine escaping strains). Importantly, these macrocyclic peptides, in contrast to other NTCP-binding HBV entry inhibitors, exhibited no inhibition of NTCP-mediated bile acid uptake, making them appealing candidates for therapeutic development.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda 278-8510, Japan; JST CREST, Saitama 332-0012, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | - Satomi Shimura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., Matsuyama 790-8577, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University, Graduate School of Medicinal Sciences, Nagoya 467-8601, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, INSERM U1134, Paris 75015, France
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; JST CREST, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|
104
|
Miyakawa K, Matsunaga S, Yamaoka Y, Dairaku M, Fukano K, Kimura H, Chimuro T, Nishitsuji H, Watashi K, Shimotohno K, Wakita T, Ryo A. Development of a cell-based assay to identify hepatitis B virus entry inhibitors targeting the sodium taurocholate cotransporting polypeptide. Oncotarget 2018; 9:23681-23694. [PMID: 29805766 PMCID: PMC5955094 DOI: 10.18632/oncotarget.25348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) is a major entry receptor of hepatitis B virus (HBV) and one of the most attractive targets for anti-HBV drugs. We developed a cell-mediated drug screening method to monitor NTCP expression on the cell surface by generating a HepG2 cell line with tetracycline-inducible expression of NTCP and a monoclonal antibody that specifically detects cell-surface NTCP. Using this system, we screened a small molecule library for compounds that protected against HBV infection by targeting NTCP. We found that glabridin, a licorice-derived isoflavane, could suppress viral infection by inducing caveolar endocytosis of cell-surface NTCP with an IC50 of ~40 μM. We also found that glabridin could attenuate the inhibitory effect of taurocholate on type I interferon signaling by depleting the level of cell-surface NTCP. These results demonstrate that our screening system could be a powerful tool for discovering drugs targeting HBV entry.
Collapse
Affiliation(s)
- Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Yutaro Yamaoka
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan.,Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Kanagawa 259-1146, Japan
| | - Mina Dairaku
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Gunma 370-0006, Japan
| | - Tomoyuki Chimuro
- Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Kanagawa 259-1146, Japan
| | - Hironori Nishitsuji
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| |
Collapse
|
105
|
Bakhaus K, Fietz D, Kliesch S, Weidner W, Bergmann M, Geyer J. The polymorphism L204F affects transport and membrane expression of the sodium-dependent organic anion transporter SOAT (SLC10A6). J Steroid Biochem Mol Biol 2018; 179:36-44. [PMID: 28951225 DOI: 10.1016/j.jsbmb.2017.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023]
Abstract
Sodium-dependent organic anion transporter (SOAT) represents a membrane transporter specific for sulfated steroid hormones, which are supposed to participate in the regulation of reproductive processes. In man, SOAT shows predominant mRNA expression in the testis and here was localized to primary spermatocytes. SOAT mRNA expression is significantly downregulated in different disorders of spermatogenesis, including hypospermatogenesis. The resulting decline of SOAT-mediated transport of sulfated steroids may participate in the impairment of functional spermatogenesis. Apart from downregulation of SOAT mRNA expression, genetic polymorphisms affecting the transport function of SOAT may have the same negative effect on spermatogenesis. Therefore, in the present study we searched for functionally relevant SOAT polymorphisms, aiming to comparatively analyze their occurrence in patients with impaired spermatogenesis vs. patients with intact spermatogenesis. We found that the SOAT polymorphism L204F showed a significantly reduced transport function for DHEAS when expressed in HEK293 cells. Although the Km value was identical with that of the SOAT wildtype, the Vmax value dramatically declined for the SOAT-L204F variant (942.5 vs. 313.6pmol×mg protein-1×min-1). Although the same amount of total SOAT-L204F protein was detected in transfected HEK293 cells compared to the SOAT wildtype, plasma membrane expression was significantly reduced, which points to a plasma membrane sorting defect of the SOAT-L204F variant. Groups of 20 subjects with normal spermatogenesis and 26 subjects with hypospermatogenesis were genotyped for this polymorphism. Both groups showed nearly identical distributions of the SOAT-L204F polymorphism (∼10% heterozygous and ∼5% homozygous), indicating that this polymorphism seems not be causative for hypospermatogenesis.
Collapse
Affiliation(s)
- Katharina Bakhaus
- Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Germany
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Germany
| | - Sabine Kliesch
- Department of Clinical Andrology, Centre for Reproductive Medicine and Andrology, University Hospital Münster, Germany
| | - Wolfgang Weidner
- Clinic for Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Germany
| | - Martin Bergmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Germany.
| |
Collapse
|
106
|
Li H, Qiu JW, Lin GZ, Deng M, Lin WX, Cheng Y, Song YZ. [Clinical and genetic analysis of a pediatric patient with sodium taurocholate cotransporting polypeptide deficiency]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018. [PMID: 29658451 DOI: 10.7499/j.issn.1008-8830.2018.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) deficiency is an inborn error of bile acid metabolism caused by mutations of SLC10A1 gene. This paper reports the clinical and genetic features of a patient with this disease. A 3.3-month-old male infant was referred to the hospital with the complaint of jaundiced skin and sclera over 3 months. Physical examination revealed moderate jaundice of the skin and sclera. The liver was palpable 3.5 cm below the right subcostal margin with a medium texture. Serum biochemistry analysis revealed markedly elevated bilirubin (predominantly direct bilirubin) and total bile acids (TBA), as well as decreased 25-OH-VitD level. On pathological analysis of the biopsied liver tissue, hepatocyte ballooning and cholestatic multinucleate giant cells were noted. The lobular architecture was distorted. Infiltration of inflammatory cells, predominantly lymphocytes, was seen in the portal tracts. In response to the anti-inflammatory and liver protective drugs as well as fat-soluble vitamins over 2 months, the bilirubin and transaminases levels were improved markedly while the TBA kept elevated. Because of persisting hypercholanemia on the follow-up, SLC10A1 gene analysis was performed at his age of 17.2 months. The child proved to be a homozygote of the reportedly pathogenic variant c.800C>T (p. Ser267Phe), while the parents were both carriers. NTCP deficiency was thus diagnosed. The infant was followed up until 34.3 months old. He developed well in terms of the anthropometric indices and neurobehavioral milestones. The jaundice disappeared completely. The liver size, texture and function indices all recovered. However, the hypercholanemia persisted, and the long-term outcome needs to be observed.
Collapse
Affiliation(s)
- Hua Li
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | | | | | | | | | | | |
Collapse
|
107
|
Sargiacomo C, El-Kehdy H, Pourcher G, Stieger B, Najimi M, Sokal E. Age-dependent glycosylation of the sodium taurocholate cotransporter polypeptide: From fetal to adult human livers. Hepatol Commun 2018; 2:693-702. [PMID: 29881821 PMCID: PMC5983131 DOI: 10.1002/hep4.1174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/25/2022] Open
Abstract
Sodium taurocholate cotransporter polypeptide (NTCP), mainly expressed on the sinusoidal membrane of hepatocytes, is one of the major transporters responsible for liver bile acid (BA) re-uptake. NTCP transports conjugated BA from the blood into hepatocytes and is crucial for correct enterohepatic circulation. Studies have shown that insufficient hepatic clearance of BA correlates with elevated serum BA in infants younger than 1 year of age. In the current study, we investigated human NTCP messenger RNA and protein expression by using reverse-transcription quantitative polymerase chain reaction and immunoblotting in isolated and cryopreserved human hepatocytes from two different age groups, below and above 1 year of age. Here, we show that NTCP messenger RNA expression is not modulated whereas NTCP protein posttranslational glycosylation is modulated in an age-dependent manner. These results were confirmed by quantification analysis of NTCP 55-kDa N-glycosylated bands, which showed significantly less total NTCP protein in donors below 1 year of age compared to donors older than 1 year. NTCP tissue localization was also analyzed by means of immunofluorescence. This revealed that NTCP cellular localization in fetal samples was mainly perinuclear, suggesting that NTCP is not glycosylated, while its postnatal localization on the plasma membrane is age dependent compared to multidrug resistant protein 2, which is apical starting in fetal life. Conclusion: After birth, the NTCP age-dependent maturation process requires approximately 1 year to complete NTCP glycosylation in human hepatocytes. Therefore, NTCP late posttranslational glycosylation appears to be important for correct NTCP membrane localization, which might explain physiologic cholestasis in neonatal life and might play a central role for HBV infection after birth. (Hepatology Communications 2018;2:693-702).
Collapse
Affiliation(s)
- Camillo Sargiacomo
- Institute of Experimental and Clinical Research, Laboratory of Pediatric Hepatology and Cell Therapy Université Catholique de Louvain Brussels Belgium
| | - Hoda El-Kehdy
- Institute of Experimental and Clinical Research, Laboratory of Pediatric Hepatology and Cell Therapy Université Catholique de Louvain Brussels Belgium
| | - Guillaume Pourcher
- Department of Digestive Diseases, Institut Mutualiste Montsouris Paris Descartes University Paris France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology University Hospital Zurich Zurich Switzerland
| | - Mustapha Najimi
- Institute of Experimental and Clinical Research, Laboratory of Pediatric Hepatology and Cell Therapy Université Catholique de Louvain Brussels Belgium
| | - Etienne Sokal
- Institute of Experimental and Clinical Research, Laboratory of Pediatric Hepatology and Cell Therapy Université Catholique de Louvain Brussels Belgium
| |
Collapse
|
108
|
Tan HJ, Deng M, Qiu JW, Wu JF, Song YZ. Monozygotic Twins Suffering From Sodium Taurocholate Cotransporting Polypeptide Deficiency: A Case Report. Front Pediatr 2018; 6:354. [PMID: 30525015 PMCID: PMC6256173 DOI: 10.3389/fped.2018.00354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022] Open
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) is a carrier protein encoded by the human SLC10A1 gene, acting as the principal transporter of conjugated bile salts from the plasma into hepatocytes. Although NTCP was cloned as early as in 1994 and its function has been studied extensively, clinical description of NTCP deficiency remains rather limited thus far. The patients in this paper were 2 female monozygotic twins, who were referred to our hospital at the age 2 years with the complaint of persistently-raised total bile acids (TBA) for 21 months. At age 3 months, they were both diagnosed to have cholestatic liver disease due to raised serum TBA and direct bilirubin (DBIL) with the fraction >20% of the elevated total bilirubin (TBIL). Thereafter, their jaundice subsided and the DBIL levels recovered gradually, while serum TBA remained raised persistently. In view of their refractory hypercholanemia but negative symptoms and signs, SLC10A1 genetic analysis was performed for all family members to evaluate the possibility of NTCP deficiency. As a result, the twins were both homozygotes, while the parents, carriers, of the reportedly pathogenic variant c.800C>T (p.Ser267Phe). These findings suggested that NTCP deficiency may be a unique genetic factor causing transient cholestasis in early infancy, as well as, persistent hypercholanemia in pediatric patients.
Collapse
Affiliation(s)
- Hui-Jun Tan
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mei Deng
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jian-Wu Qiu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun-Feng Wu
- Department of Infectious Diseases, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
109
|
Qiu JW, Deng M, Cheng Y, Atif RM, Lin WX, Guo L, Li H, Song YZ. Sodium taurocholate cotransporting polypeptide (NTCP) deficiency: Identification of a novel SLC10A1 mutation in two unrelated infants presenting with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia. Oncotarget 2017; 8:106598-106607. [PMID: 29290974 PMCID: PMC5739759 DOI: 10.18632/oncotarget.22503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022] Open
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) is encoded by the gene SLC10A1 and expressed in the basolateral membrane of the hepatocyte, functioning to uptake bile acids from plasma. Although SLC10A1 has been cloned and NTCP function studied intensively for years, clinical description of NTCP deficiency remains rather limited. This study reported the genotypic and phenotypic features of two neonatal patients with NTCP deficiency. They both presented with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia, and harbored the SLC10A1 variants c.800C>T (p.S267F) and c.263T>C (p.I88T). On genetic analysis of the two family trios, the latter missense variant was detected in trans with the former, a reported loss-of-function variant. Having not been reported in any databases, the c.263T>C (p.I88T) variant demonstrated an allele frequency of 0.67% (1/150) in healthy controls. Moreover, this variant involved a relatively conservative amino acid, and was predicted to be pathogenic or deleterious by changing the conformation of the NTCP molecule. In conclusion, the novel variant c.263T>C (p.I88T) in this study enriched the SLC10A1 mutation spectrum; the clinical findings lent support to the primary role of NTCP in hepatic bile acid clearance, and suggested that NTCP deficiency might be a contributing factor for the development of neonatal indirect hyperbilirubinemia.
Collapse
Affiliation(s)
- Jian-Wu Qiu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Mei Deng
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Cheng
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Raza-Muhammad Atif
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wei-Xia Lin
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Guo
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hua Li
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
110
|
Slijepcevic D, Roscam Abbing RL, Katafuchi T, Blank A, Donkers JM, van Hoppe S, de Waart DR, Tolenaars D, van der Meer JH, Wildenberg M, Beuers U, Oude Elferink RP, Schinkel AH, van de Graaf SF. Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice. Hepatology 2017; 66:1631-1643. [PMID: 28498614 PMCID: PMC5698707 DOI: 10.1002/hep.29251] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022]
Abstract
UNLABELLED The Na+ -taurocholate cotransporting polypeptide (NTCP/SLC10A1) is believed to be pivotal for hepatic uptake of conjugated bile acids. However, plasma bile acid levels are normal in a subset of NTCP knockout mice and in mice treated with myrcludex B, a specific NTCP inhibitor. Here, we elucidated which transport proteins mediate the hepatic uptake of conjugated bile acids and demonstrated intestinal sensing of elevated bile acid levels in plasma in mice. Mice or healthy volunteers were treated with myrcludex B. Hepatic bile acid uptake kinetics were determined in wild-type (WT), organic anion transporting polypeptide (OATP) knockout mice (lacking Slco1a/1b isoforms), and human OATP1B1-transgenic mice. Effects of fibroblast growth factor 19 (FGF19) on hepatic transporter mRNA levels were assessed in rat hepatoma cells and in mice by peptide injection or adeno-associated virus-mediated overexpression. NTCP inhibition using myrcludex B had only moderate effects on bile acid kinetics in WT mice, but completely inhibited active transport of conjugated bile acid species in OATP knockout mice. Cholesterol 7α-hydroxylase Cyp7a1 expression was strongly down-regulated upon prolonged inhibition of hepatic uptake of conjugated bile acids. Fgf15 (mouse counterpart of FGF19) expression was induced in hypercholanemic OATP and NTCP knockout mice, as well as in myrcludex B-treated cholestatic mice, whereas plasma FGF19 was not induced in humans treated with myrcludex B. Fgf15/FGF19 expression was induced in polarized human enterocyte-models and mouse organoids by basolateral incubation with a high concentration (1 mM) of conjugated bile acids. CONCLUSION NTCP and OATPs contribute to hepatic uptake of conjugated bile acids in mice, whereas the predominant uptake in humans is NTCP mediated. Enterocytes sense highly elevated levels of (conjugated) bile acids in the systemic circulation to induce FGF15/19, which modulates hepatic bile acid synthesis and uptake. (Hepatology 2017;66:1631-1643).
Collapse
Affiliation(s)
- Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands
| | | | | | - Antje Blank
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg University HospitalHeidelbergGermany,German Center for Infection Research (DZIF)Heidelberg Partner SiteHeidelbergGermany
| | - Joanne M. Donkers
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands
| | - Stéphanie van Hoppe
- Division of Molecular Oncologythe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Dirk. R. de Waart
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands
| | - Dagmar Tolenaars
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands
| | | | - Manon Wildenberg
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands,Department of Gastroenterology and HepatologyAcademic Medical CenterAmsterdamThe Netherlands
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands,Department of Gastroenterology and HepatologyAcademic Medical CenterAmsterdamThe Netherlands
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands,Department of Gastroenterology and HepatologyAcademic Medical CenterAmsterdamThe Netherlands
| | - Alfred H. Schinkel
- Division of Molecular Oncologythe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands,Department of Gastroenterology and HepatologyAcademic Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
111
|
Dawson PA. Hepatic bile acid uptake in humans and mice: Multiple pathways and expanding potential role for gut-liver signaling. Hepatology 2017; 66. [PMID: 28646543 PMCID: PMC5650520 DOI: 10.1002/hep.29325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Paul A. Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
112
|
Fickert P, Wagner M. Biliary bile acids in hepatobiliary injury - What is the link? J Hepatol 2017; 67:619-631. [PMID: 28712691 DOI: 10.1016/j.jhep.2017.04.026] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
The main trigger for liver injury in acquired cholestatic liver disease remains unclear. However, the accumulation of bile acids (BAs) undoubtedly plays a role. Recent progress in deciphering the pathomechanisms of inborn cholestatic liver diseases, decoding mechanisms of BA-induced cell death, and generating modern BA-derived drugs has improved the understanding of the regulation of BA synthesis and transport. Now is the appropriate time to reassess current knowledge about the specific role of BAs in hepatobiliary injury.
Collapse
Affiliation(s)
- Peter Fickert
- Department of Gastroenterology and Hepatology, Medical University Graz, Austria.
| | - Martin Wagner
- Department of Gastroenterology and Hepatology, Medical University Graz, Austria
| |
Collapse
|
113
|
Homozygous p.Ser267Phe in SLC10A1 is associated with a new type of hypercholanemia and implications for personalized medicine. Sci Rep 2017; 7:9214. [PMID: 28835676 PMCID: PMC5569087 DOI: 10.1038/s41598-017-07012-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
SLC10A1 codes for the sodium-taurocholate cotransporting polypeptide (NTCP), which is a hepatocellular transporter for bile acids (BAs) and the receptor for hepatitis B and D viruses. NTCP is also a target of multiple drugs. We aimed to evaluate the medical consequences of the loss of function mutation p.Ser267Phe in SLC10A1. We identified eight individuals with homozygous p.Ser267Phe mutation in SLC10A1 and followed up for 8–90 months. We compared their total serum BAs and 6 species of BAs with 170 wild-type and 107 heterozygous healthy individuals. We performed in-depth medical examinations and exome sequencing in the homozygous individuals. All homozygous individuals had persistent hypercholanemia (P = 5.8 × 10–29). Exome sequencing excluded the involvement of other BA metabolism-associated genes in the hypercholanemia. Although asymptomatic, all individuals had low vitamin D levels. Of six adults that were subjected to bone mineral density analysis, three presented with osteoporosis/osteopenia. Sex hormones and blood lipids were deviated in all subjects. Homozygosity of p.Ser267Phe in SLC10A1 is associated with asymptomatic hypercholanemia. Individuals with homozygous p.Ser267Phe in SLC10A1 are prone to vitamin D deficiency, deviated sex hormones and blood lipids. Surveillance of these parameters may also be needed in patients treated with drugs targeting NTCP.
Collapse
|
114
|
Lempp FA, Urban S. Hepatitis Delta Virus: Replication Strategy and Upcoming Therapeutic Options for a Neglected Human Pathogen. Viruses 2017; 9:E172. [PMID: 28677645 PMCID: PMC5537664 DOI: 10.3390/v9070172] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
The human Hepatitis Delta Virus (HDV) is unique among all viral pathogens. Encoding only one protein (Hepatitis Delta Antigen; HDAg) within its viroid-like self-complementary RNA, HDV constitutes the smallest known virus in the animal kingdom. To disseminate in its host, HDV depends on a helper virus, the human Hepatitis B virus (HBV), which provides the envelope proteins required for HDV assembly. HDV affects an estimated 15-20 million out of the 240 million chronic HBV-carriers and disperses unequally in disparate geographical regions of the world. The disease it causes (chronic Hepatitis D) presents as the most severe form of viral hepatitis, leading to accelerated progression of liver dysfunction including cirrhosis and hepatocellular carcinoma and a high mortality rate. The lack of approved drugs interfering with specific steps of HDV replication poses a high burden for gaining insights into the molecular biology of the virus and, consequently, the development of specific novel medications that resiliently control HDV replication or, in the best case, functionally cure HDV infection or HBV/HDV co-infection. This review summarizes our current knowledge of HBV molecular biology, presents an update on novel cell culture and animal models to study the virus and provides updates on the clinical development of the three developmental drugs Lonafarnib, REP2139-Ca and Myrcludex B.
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
115
|
Li M, Cai SY, Boyer JL. Mechanisms of bile acid mediated inflammation in the liver. Mol Aspects Med 2017; 56:45-53. [PMID: 28606651 DOI: 10.1016/j.mam.2017.06.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023]
Abstract
Bile acids are synthesized in the liver and are the major component in bile. Impaired bile flow leads to cholestasis that is characterized by elevated levels of bile acid in the liver and serum, followed by hepatocyte and biliary injury. Although the causes of cholestasis have been extensively studied, the molecular mechanisms as to how bile acids initiate liver injury remain controversial. In this chapter, we summarize recent advances in the pathogenesis of bile acid induced liver injury. These include bile acid signaling pathways in hepatocytes as well as the response of cholangiocytes and innate immune cells in the liver in both patients with cholestasis and cholestatic animal models. We focus on how bile acids trigger the production of molecular mediators of neutrophil recruitment and the role of the inflammatory response in this pathological process. These advances point to a number of novel targets where drugs might be judged to be effective therapies for cholestatic liver injury.
Collapse
Affiliation(s)
- Man Li
- The Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shi-Ying Cai
- The Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - James L Boyer
- The Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
116
|
Van Herpe F, Waterham HR, Adams CJ, Mannens M, Bikker H, Vaz FM, Cassiman D. NTCP deficiency and persistently raised bile salts: an adult case. J Inherit Metab Dis 2017; 40:313-315. [PMID: 28283843 DOI: 10.1007/s10545-017-0031-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Filip Van Herpe
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Hans R Waterham
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Christopher J Adams
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD, USA
| | - Marcel Mannens
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Academic Medical Center, Amsterdam, The Netherlands
| | - Hennie Bikker
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Academic Medical Center, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - David Cassiman
- Department of Gastroenterology-Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
117
|
Shimura S, Watashi K, Fukano K, Peel M, Sluder A, Kawai F, Iwamoto M, Tsukuda S, Takeuchi JS, Miyake T, Sugiyama M, Ogasawara Y, Park SY, Tanaka Y, Kusuhara H, Mizokami M, Sureau C, Wakita T. Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J Hepatol 2017; 66:685-692. [PMID: 27890789 PMCID: PMC7172969 DOI: 10.1016/j.jhep.2016.11.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The sodium taurocholate co-transporting polypeptide (NTCP) is the main target of most hepatitis B virus (HBV) specific entry inhibitors. Unfortunately, these agents also block NTCP transport of bile acids into hepatocytes, and thus have the potential to cause adverse effects. We aimed to identify small molecules that inhibit HBV entry while maintaining NTCP transporter function. METHODS We characterized a series of cyclosporine (CsA) derivatives for their anti-HBV activity and NTCP binding specificity using HepG2 cells overexpressing NTCP and primary human hepatocytes. The four most potent derivatives were tested for their capacity to prevent HBV entry, but maintain NTCP transporter function. Their antiviral activity against different HBV genotypes was analysed. RESULTS We identified several CsA derivatives that inhibited HBV infection with a sub-micromolar IC50. Among them, SCY446 and SCY450 showed low activity against calcineurin (CN) and cyclophilins (CyPs), two major CsA cellular targets. This suggested that instead, these compounds interacted directly with NTCP to inhibit viral attachment to host cells, and have no immunosuppressive function. Importantly, we found that SCY450 and SCY995 did not impair the NTCP-dependent uptake of bile acids, and inhibited multiple HBV genotypes including a clinically relevant nucleoside analog-resistant HBV isolate. CONCLUSIONS This is the first example of small molecule selective inhibition of HBV entry with no decrease in NTCP transporter activity. It suggests that the anti-HBV activity can be functionally separated from bile acid transport. These broadly active anti-HBV molecules are potential candidates for developing new drugs with fewer adverse effects. LAY SUMMARY In this study, we identified new compounds that selectively inhibited hepatitis B virus (HBV) entry, and did not impair bile acid uptake. Our evidence offers a new strategy for developing anti-HBV drugs with fewer side effects.
Collapse
Affiliation(s)
- Satomi Shimura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; SCYNEXIS, Inc., Durham, NC 27713, USA
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Applied Biological Science, Tokyo University of Sciences, Noda 278-8510, Japan; CREST, Japan Science and Technology Agency (J.S.T.), Saitama 332-0012, Japan.
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | | | | | - Fumihiro Kawai
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Masashi Iwamoto
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Applied Biological Science, Tokyo University of Sciences, Noda 278-8510, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako 351-0198, Japan
| | - Junko S Takeuchi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takeshi Miyake
- The University of Tokyo, Graduate School of Pharmaceutical Sciences, Tokyo 113-0033, Japan
| | - Masaya Sugiyama
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medicinal Sciences, Nagoya 467-8601, Japan
| | - Hiroyuki Kusuhara
- The University of Tokyo, Graduate School of Pharmaceutical Sciences, Tokyo 113-0033, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine (INTS), Paris, France
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
118
|
Verrier ER, Schuster C, Baumert TF. Advancing hepatitis B virus entry inhibitors. J Hepatol 2017; 66:677-679. [PMID: 27965159 PMCID: PMC5362280 DOI: 10.1016/j.jhep.2016.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Eloi R. Verrier
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et
Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et
Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et
Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle
Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg,
France,Corresponding author. Address: Inserm Unit 1110,
Université de Strasbourg, 3 Rue Koeberlé, 67000 Strasbourg, France. Tel.:
+33 3 68 85 37 03; fax: +33 3 68 85 37 24. (T.F.
Baumert)
| |
Collapse
|
119
|
Trauner M, Fuchs CD, Halilbasic E, Paumgartner G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 2017; 65:1393-1404. [PMID: 27997980 DOI: 10.1002/hep.28991] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022]
Abstract
The identification of the key regulators of bile acid (BA) synthesis and transport within the enterohepatic circulation has revealed potential targets for pharmacological therapies of cholestatic liver diseases. Novel drug targets include the bile BA receptors, farnesoid X receptor and TGR5, the BA-induced gut hormones, fibroblast growth factor 19 and glucagon-like peptide 1, and the BA transport systems, apical sodium-dependent bile acid transporter and Na+ -taurocholate cotransporting polypeptide, within the enterohepatic circulation. Moreover, BA derivatives undergoing cholehepatic shunting may allow improved targeting to the bile ducts. This review focuses on the pathophysiological basis, mechanisms of action, and clinical development of novel pharmacological strategies targeting BA transport and signaling in cholestatic liver diseases. (Hepatology 2017;65:1393-1404).
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Claudia Daniela Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Gustav Paumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| |
Collapse
|
120
|
Cai SY, Ouyang X, Chen Y, Soroka CJ, Wang J, Mennone A, Wang Y, Mehal WZ, Jain D, Boyer JL. Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. JCI Insight 2017; 2:e90780. [PMID: 28289714 DOI: 10.1172/jci.insight.90780] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mechanisms of bile acid-induced (BA-induced) liver injury in cholestasis are controversial, limiting development of new therapies. We examined how BAs initiate liver injury using isolated liver cells from humans and mice and in-vivo mouse models. At pathophysiologic concentrations, BAs induced proinflammatory cytokine expression in mouse and human hepatocytes, but not in nonparenchymal cells or cholangiocytes. These hepatocyte-specific cytokines stimulated neutrophil chemotaxis. Inflammatory injury was mitigated in Ccl2-/- mice treated with BA or after bile duct ligation, where less hepatic infiltration of neutrophils was detected. Neutrophils in periportal areas of livers from cholestatic patients also correlated with elevations in their serum aminotransferases. This liver-specific inflammatory response required BA entry into hepatocytes via basolateral transporter Ntcp. Pathophysiologic levels of BAs induced markers of ER stress and mitochondrial damage in mouse hepatocytes. Chemokine induction by BAs was reduced in hepatocytes from Tlr9-/- mice, while liver injury was diminished both in conventional and hepatocyte-specific Tlr9-/- mice, confirming a role for Tlr9 in BA-induced liver injury. These findings reveal potentially novel mechanisms whereby BAs elicit a hepatocyte-specific cytokine-induced inflammatory liver injury that involves innate immunity and point to likely novel pathways for treating cholestatic liver disease.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xinshou Ouyang
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yonglin Chen
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carol J Soroka
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Albert Mennone
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wajahat Z Mehal
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dhanpat Jain
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James L Boyer
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
121
|
Song YZ, Deng M. [Sodium taurocholate cotransporting polypeptide deficiency manifesting as cholestatic jaundice in early infancy: a complicated case study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:350-354. [PMID: 28302211 PMCID: PMC7390148 DOI: 10.7499/j.issn.1008-8830.2017.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) deficiency is caused by SLC10A1 mutations impairing the NTCP function to uptake plasma bile salts into the hepatocyte. Thus far, patients with NTCP deficiency were rarely reported. The patient in this paper was a 5-month-19-day male infant with the complaint of jaundiced skin and sclera for 5.5 months as well as abnormal liver function revealed over 4 months. His jaundice was noticed on the second day after birth, and remained visible till his age of 1 month and 13 days, when a liver function test unveiled markedly elevated total, direct and indirect bilirubin as well as total bile acids (TBA). Cholestatic liver disease was thus diagnosed. Due to unsatisfactory response to medical treatment, the patient underwent exploratory laparotomy, cholecystostomy and cholangiography when aged 2 months. This revealed inspissated bile but unobstructed bile ducts. Thereafter, his jaundice subsided, but the aminotransferases and TBA levels gradually rose. Of note, his mother also had mildly elevated plasma TBA. Since the etiology was unclear, no specific medication was introduced. The infant has been followed up over 2 years. The aminotransferases recovered gradually, but TBA levels fluctuated within 23.3-277.7 μmol/L (reference range: 0-10 μmol/L). On SLC10A1 genetic analysis at 2 years and 9 months, both the infant and his mother proved to be homozygous for a pathogenic variant c.800C>T(p.S267F), and NTCP deficiency was thus definitely diagnosed. The findings suggest that, although only mildly increased plasma TBA is presented in adults with NTCP deficiency, pediatric patients with this disorder exhibit persistent and remarkable hypercholanemia, and some patients might manifest as cholestatic jaundice in early infancy.
Collapse
Affiliation(s)
- Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | |
Collapse
|
122
|
Abstract
Bile acids are potent signaling molecules that regulate glucose, lipid and energy homeostasis predominantly via the bile acid receptors farnesoid X receptor (FXR) and transmembrane G protein-coupled receptor 5 (TGR5). The sodium taurocholate cotransporting polypeptide (NTCP) and the apical sodium dependent bile acid transporter (ASBT) ensure an effective circulation of (conjugated) bile acids. The modulation of these transport proteins affects bile acid localization, dynamics and signaling. The NTCP-specific pharmacological inhibitor myrcludex B inhibits hepatic uptake of conjugated bile acids. Multiple ASBT-inhibitors are already in clinical trials to inhibit intestinal bile acid uptake. Here, we discuss current insights into the consequences of targeting bile acid uptake transporters on systemic and intestinal bile acid dynamics and discuss the possible therapeutic applications that evolve as a result.
Collapse
Affiliation(s)
- Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands,*Stan F.J. van de Graaf, Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, NL-1105 BK Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
123
|
Kagawa T, Adachi Y, Hashimoto N, Mitsui H, Ohashi T, Yoneda M, Hasegawa I, Hirose S, Tsuruya K, Anzai K, Mine T. Loss of organic anion transporting polypeptide 1B3 function causes marked delay in indocyanine green clearance without any clinical symptoms. Hepatology 2017; 65:1065-1068. [PMID: 27863442 PMCID: PMC5324621 DOI: 10.1002/hep.28950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 10/07/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Tatehiro Kagawa
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine, Tokai University School of MedicineIseharaJapan
| | - Yukihiko Adachi
- Ueno City General HospitalIgaJapan,Present address: Mitaki General Hospital, Ikuwa‐cho 458‐1Yokkaichi512‐0911Japan
| | | | | | - Tomohiko Ohashi
- Division of Hepatology and PancreatologyDepartment of Internal Medicine, Aichi Medical UniversityNagakuteJapan
| | - Masashi Yoneda
- Division of Hepatology and PancreatologyDepartment of Internal Medicine, Aichi Medical UniversityNagakuteJapan
| | - Izumi Hasegawa
- Department of Gastroenterology and HepatologyJapan Community Health Care Organization, Chukyo HospitalNagoyaJapan
| | - Shunji Hirose
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine, Tokai University School of MedicineIseharaJapan
| | - Kota Tsuruya
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine, Tokai University School of MedicineIseharaJapan
| | - Kazuya Anzai
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine, Tokai University School of MedicineIseharaJapan
| | - Tetsuya Mine
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine, Tokai University School of MedicineIseharaJapan
| |
Collapse
|
124
|
Shen ZW, Luo MY, Hu HH, Zhou H, Jiang HD, Yu LS, Zeng S. Screening and verifying potential NTCP inhibitors from herbal medicinal ingredients using the LLC-PK1 cell model stably expressing human NTCP. Chin J Nat Med 2017; 14:549-60. [PMID: 27507206 DOI: 10.1016/s1875-5364(16)30065-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 12/13/2022]
Abstract
NTCP is specifically expressed on the basolateral membrane of hepatocytes, participating in the enterohepatic circulation of bile salts, especially conjugated bile salts, to maintain bile salts homeostasis. In addition, recent studies have found that NTCP is a functional receptor of HBV and HDV. Therefore, it is important to study the interaction between drugs and NTCP and identify the inhibitors/substrates of NTCP. In the present study, a LLC-PK1 cell model stably expressing human NTCP was established, which was simple and suitable for high throughput screening, and utilized to screen and verify the potential inhibitors of NTCP from 102 herbal medicinal ingredients. The results showed that ginkgolic acid (GA) (13 : 0), GA (15 : 1), GA (17 : 1), erythrosine B, silibinin, and emodin have inhibitory effects on NTCP uptake of TCNa in a concentration-dependent manner. Among them, GA (13 : 0) and GA (15 : 1) exhibited the stronger inhibitory effects, with IC50 values being less than 8.3 and 13.5 μmol·L(-1), respectively, than the classical inhibitor, cyclosporin A (CsA) (IC50 = 20.33 μmol·L(-1)). Further research demonstrated that GA (13 : 0), GA (15 : 1), GA (17 : 1), silibinin, and emodin were not substrates of NTCP. These findings might contribute to a better understanding of the disposition of the herbal ingredients in vivo, especially in biliary excretion.
Collapse
Affiliation(s)
- Zhuo-Wei Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng-Yue Luo
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hai-Hong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui-Di Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu-Shan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
125
|
van der Woerd WL, Houwen RHJ, van de Graaf SFJ. Current and future therapies for inherited cholestatic liver diseases. World J Gastroenterol 2017; 23:763-775. [PMID: 28223721 PMCID: PMC5296193 DOI: 10.3748/wjg.v23.i5.763] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Familial intrahepatic cholestasis (FIC) comprises a group of rare cholestatic liver diseases associated with canalicular transport defects resulting predominantly from mutations in ATP8B1, ABCB11 and ABCB4. Phenotypes range from benign recurrent intrahepatic cholestasis (BRIC), associated with recurrent cholestatic attacks, to progressive FIC (PFIC). Patients often suffer from severe pruritus and eventually progressive cholestasis results in liver failure. Currently, first-line treatment includes ursodeoxycholic acid in patients with ABCB4 deficiency (PFIC3) and partial biliary diversion in patients with ATP8B1 or ABCB11 deficiency (PFIC1 and PFIC2). When treatment fails, liver transplantation is needed which is associated with complications like rejection, post-transplant hepatic steatosis and recurrence of disease. Therefore, the need for more and better therapies for this group of chronic diseases remains. Here, we discuss new symptomatic treatment options like total biliary diversion, pharmacological diversion of bile acids and hepatocyte transplantation. Furthermore, we focus on emerging mutation-targeted therapeutic strategies, providing an outlook for future personalized treatment for inherited cholestatic liver diseases.
Collapse
|
126
|
Jansen PLM, Ghallab A, Vartak N, Reif R, Schaap FG, Hampe J, Hengstler JG. The ascending pathophysiology of cholestatic liver disease. Hepatology 2017; 65:722-738. [PMID: 27981592 DOI: 10.1002/hep.28965] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023]
Abstract
In this review we develop the argument that cholestatic liver diseases, particularly primary biliary cholangitis and primary sclerosing cholangitis (PSC), evolve over time with anatomically an ascending course of the disease process. The first and early lesions are in "downstream" bile ducts. This eventually leads to cholestasis, and this causes bile salt (BS)-mediated toxic injury of the "upstream" liver parenchyma. BS are toxic in high concentration. These concentrations are present in the canalicular network, bile ducts, and gallbladder. Leakage of bile from this network and ducts could be an important driver of toxicity. The liver has a great capacity to adapt to cholestasis, and this may contribute to a variable symptom-poor interval that is often observed. Current trials with drugs that target BS toxicity are effective in only about 50%-60% of primary biliary cholangitis patients, with no effective therapy in PSC. This motivated us to develop and propose a new view on the pathophysiology of primary biliary cholangitis and PSC in the hope that these new drugs can be used more effectively. These views may lead to better stratification of these diseases and to recommendations on a more "tailored" use of the new therapeutic agents that are currently tested in clinical trials. Apical sodium-dependent BS transporter inhibitors that reduce intestinal BS absorption lower the BS load and are best used in cholestatic patients. The effectiveness of BS synthesis-suppressing drugs, such as farnesoid X receptor agonists, is greatest when optimal adaptation is not yet established. By the time cytochrome P450 7A1 expression is reduced these drugs may be less effective. Anti-inflammatory agents are probably most effective in early disease, while drugs that antagonize BS toxicity, such as ursodeoxycholic acid and nor-ursodeoxycholic acid, may be effective at all disease stages. Endoscopic stenting in PSC should be reserved for situations of intercurrent cholestasis and cholangitis, not for cholestasis in end-stage disease. These are arguments to consider a step-wise pathophysiology for these diseases, with therapy adjusted to disease stage. An obstacle in such an approach is that disease stage-defining biomarkers are still lacking. This review is meant to serve as a call to prioritize the development of biomarkers that help to obtain a better stratification of these diseases. (Hepatology 2017;65:722-738).
Collapse
Affiliation(s)
- Peter L M Jansen
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Research Network of Liver Systems Medicine, Freiburg, Germany
| | - Ahmed Ghallab
- Research Network of Liver Systems Medicine, Freiburg, Germany.,Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Nachiket Vartak
- Research Network of Liver Systems Medicine, Freiburg, Germany.,Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Raymond Reif
- Research Network of Liver Systems Medicine, Freiburg, Germany.,Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Frank G Schaap
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jochen Hampe
- Research Network of Liver Systems Medicine, Freiburg, Germany.,Department of Medicine 1, Technical University Dresden, Dresden, Germany
| | - Jan G Hengstler
- Research Network of Liver Systems Medicine, Freiburg, Germany.,Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
127
|
Appelman MD, Chakraborty A, Protzer U, McKeating JA, van de Graaf SFJ. N-Glycosylation of the Na+-Taurocholate Cotransporting Polypeptide (NTCP) Determines Its Trafficking and Stability and Is Required for Hepatitis B Virus Infection. PLoS One 2017; 12:e0170419. [PMID: 28125599 PMCID: PMC5268470 DOI: 10.1371/journal.pone.0170419] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023] Open
Abstract
The sodium/bile acid cotransporter NTCP was recently identified as a receptor for hepatitis B virus (HBV). NTCP is glycosylated and the role of glycans in protein trafficking or viral receptor activity is not known. NTCP contains two N-linked glycosylation sites and asparagine amino acid residues N5 and N11 were mutated to a glutamine to generate NTCP with a single glycan (NTCP-N5Q or NTCP- N11Q) or no glycans (NTCP- N5,11Q). HepG2 cells expressing NTCP with a single glycan supported HBV infection at a comparable level to NTCP-WT. The physiological function of NTCP, the uptake of bile acids, was also not affected in cells expressing these single glycosylation variants, consistent with their trafficking to the plasma membrane. However, glycosylation-deficient NTCP (NTCP-N5,11Q) failed to support HBV infection, showed minimal cellular expression and was degraded in the lysosome. This affected the physiological bile acid transporter function of NTCP-N5,11Q in a similar fashion. In conclusion, N-glycosylation is required for efficient NTCP localization at the plasma membrane and subsequent HBV infection and these characteristics are preserved in NTCP carrying a single carbohydrate moiety.
Collapse
Affiliation(s)
- Monique D. Appelman
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, the Netherlands
| | - Anindita Chakraborty
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, München, Germany
- Institute for Advanced Study, Technische Universität München, München, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München / Helmholtz Zentrum München, München, Germany
- Institute for Advanced Study, Technische Universität München, München, Germany
| | - Jane A. McKeating
- Institute for Advanced Study, Technische Universität München, München, Germany
- Centre for Human Virology, University of Birmingham, Birmingham, United Kingdom
| | - Stan F. J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, the Netherlands
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
128
|
Yu D, Zhang H, Lionarons DA, Boyer JL, Cai SY. Na +-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate Leucoraja erinacea is not a physiological bile salt transporter. Am J Physiol Regul Integr Comp Physiol 2017; 312:R477-R484. [PMID: 28077388 DOI: 10.1152/ajpregu.00302.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 01/05/2023]
Abstract
The Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na+-dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [3H]TCA uptake assay revealed that skSlc10a1 functioned as a Na+-dependent transporter, but with low affinity for TCA (Km = 92.4 µM) and scymnol sulfate (Ki = 31 µM), compared with hNTCP (TCA, Km = 5.4 µM; Scymnol sulfate, Ki = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na+-dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution.
Collapse
Affiliation(s)
- Dongke Yu
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut; and
| | - Han Zhang
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut; and
| | - Daniel A Lionarons
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut; and
| | - James L Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut; and.,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
129
|
Iwamoto M, Watashi K. Closing the door on hepatitis B and D virus entry: what are our therapeutic options? Future Virol 2016. [DOI: 10.2217/fvl-2016-0097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Masashi Iwamoto
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan
- CREST, Japan Science & Technology Agency (JST), Saitama, 332-0012, Japan
| |
Collapse
|
130
|
Lempp FA, Ni Y, Urban S. Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options. Nat Rev Gastroenterol Hepatol 2016; 13:580-9. [PMID: 27534692 DOI: 10.1038/nrgastro.2016.126] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic hepatitis D is the most severe form of viral hepatitis, affecting ∼20 million HBV-infected people worldwide. The causative agent, hepatitis delta virus (HDV), is a unique human pathogen: it is the smallest known virus; it depends on HBV to disseminate its viroid-like RNA; it encodes only one protein (HDAg), which has both structural and regulatory functions; and it replicates using predominantly host proteins. The failure of HBV-specific nucleoside analogues to suppress the HBV helper function, and the limitations of experimental systems to study the HDV life cycle, have impeded the development of HDV-specific drugs. Thus, the only clinical regimen for HDV is IFNα, which shows some efficacy but long-term virological responses are rare. Insights into the receptor-mediated entry of HDV, and the observation that HDV assembly requires farnesyltransferase, have enabled novel therapeutic strategies to be developed. Interference with entry, for example through blockade of the HBV-HDV-specific receptor sodium/taurocholate cotransporting polypeptide NTCP by Myrcludex B, and inhibition of assembly by blockade of farnesyltransferase using lonafarnib or nucleic acid polymers such as REP 2139-Ca, have shown promising results in phase II studies. In this Review, we summarize our knowledge of HDV epidemiology, pathogenesis and molecular biology, with a particular emphasis on possible future developments.
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
131
|
Deng M, Mao M, Guo L, Chen FP, Wen WR, Song YZ. Clinical and molecular study of a pediatric patient with sodium taurocholate cotransporting polypeptide deficiency. Exp Ther Med 2016; 12:3294-3300. [PMID: 27882152 PMCID: PMC5103782 DOI: 10.3892/etm.2016.3752] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 09/06/2016] [Indexed: 12/14/2022] Open
Abstract
The human solute carrier family 10 member 1 (SLC10A1) gene encodes sodium taurocholate cotransporting polypeptide (NTCP), the principal transporter of conjugated bile salts from the plasma into hepatocytes. Although the function of NTCP has been studied extensively and a number of SLC10A1 variations have been identified in humans, information regarding NTCP deficiency is limited. To date, only one patient with NTCP deficiency has been described; however, in the present study a pediatric patient who experienced intractable and striking hypercholanemia is presented. Analysis of the SLC10A1 gene in the patient revealed a homozygous p.Ser267Phe (c.800C>T) variation, which proved to be a single-nucleotide polymorphism (SNP) in the allele frequency of 4.7% of healthy controls. This variation involved a conserved amino acid residue on the orthologous alignment that was predicted to be ‘disease-causing’ by functional analysis using a number of bioinformatic tools. Next generation sequencing was performed; however, no other genetic causes were identified that would affect the bile acid homeostasis in the patient. Moreover, an adult, with the same genotype as the pediatric patient, was identified for the first time as experiencing mild hypercholanemia. The molecular and clinical findings in the present study suggest, for the first time, that there is an association between p.Ser267Phe SNP and hypercholanemia, and this information may be used to clinically identify NTCP deficiency worldwide.
Collapse
Affiliation(s)
- Mei Deng
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Man Mao
- Department of Laboratory Science, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Li Guo
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Feng-Ping Chen
- Department of Laboratory Science, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Wang-Rong Wen
- Department of Laboratory Science, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
132
|
Bogomolov P, Alexandrov A, Voronkova N, Macievich M, Kokina K, Petrachenkova M, Lehr T, Lempp FA, Wedemeyer H, Haag M, Schwab M, Haefeli WE, Blank A, Urban S. Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: First results of a phase Ib/IIa study. J Hepatol 2016; 65:490-8. [PMID: 27132170 DOI: 10.1016/j.jhep.2016.04.016] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/19/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The therapeutic option for patients with chronic hepatitis delta virus infection (CHD) is limited to interferon alpha with rare curative outcome. Myrcludex B is a first-in-class entry inhibitor inactivating the hepatitis B virus (HBV) and hepatitis D virus (HDV) receptor sodium taurocholate co-transporting polypeptide. We report the interim results of a pilot trial on chronically infected HDV patients treated with myrcludex B, or pegylated interferon alpha (PegIFNα-2a) or their combination. METHODS Twenty-four patients with CHD infection were equally randomized (1:1:1) to receive myrcludex B, or PegIFNα-2a or their combination. Patients were evaluated for virological and biochemical response and tolerability of the study drugs at weeks 12 and 24. RESULTS Myrcludex B was well tolerated and no serious adverse event occurred. Although hepatitis B surface antigen levels remained unchanged, HDV RNA significantly declined at week 24 in all cohorts. HDV RNA became negative in two patients each in the Myrcludex B and PegIFNα-2a cohorts, and in five patients of the Myrcludex B+PegIFNα-2a cohort. ALT decreased significantly in the Myrcludex B cohort (six of eight patients), and HBV DNA was significantly reduced at week 24 in the Myrcludex B+PegIFNα-2a cohort. Virus kinetic modeling suggested a strong synergistic effect of myrcludex B and PegIFNα-2a on both HDV and HBV. CONCLUSIONS Myrcludex B showed a strong effect on HDV RNA serum levels and induced ALT normalization under monotherapy. Synergistic antiviral effects on HDV RNA and HBV DNA in the Myr-IFN cohort indicated a benefit of the combination of entry inhibition with PegIFNα-2a to treat CHD patients. LAY SUMMARY Myrcludex B is a new drug to treat hepatitis B and D infection. After 24weeks of treatment with myrcludex B and/or pegylated interferon α-2a, HDV R NA, a relevant marker for hepatitis D infection, decreased in all patients with chronic hepatitis B and D. Two of eight patients which received either myrcludex B or pegylated interferon α-2a, became negative for HDV RNA, and five of seven patients who received both drugs at the same time became negative. The drug was well tolerated.
Collapse
Affiliation(s)
- Pavel Bogomolov
- Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, 61/2 Schepkina str., 129110 Moscow, Russia; Centrosoyuz Clinical Hospital, 57 Gilyarovskogo str., Moscow 129110, Russia
| | | | - Natalia Voronkova
- Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, 61/2 Schepkina str., 129110 Moscow, Russia; Centrosoyuz Clinical Hospital, 57 Gilyarovskogo str., Moscow 129110, Russia
| | - Maria Macievich
- Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, 61/2 Schepkina str., 129110 Moscow, Russia; Centrosoyuz Clinical Hospital, 57 Gilyarovskogo str., Moscow 129110, Russia
| | - Ksenia Kokina
- Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, 61/2 Schepkina str., 129110 Moscow, Russia; Centrosoyuz Clinical Hospital, 57 Gilyarovskogo str., Moscow 129110, Russia
| | - Maria Petrachenkova
- Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, 61/2 Schepkina str., 129110 Moscow, Russia; Centrosoyuz Clinical Hospital, 57 Gilyarovskogo str., Moscow 129110, Russia
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123 Saarbrücken, Germany
| | - Florian A Lempp
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Tübingen Partner Site, E.-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Tübingen Partner Site, E.-Aulhorn-Str. 6, 72076 Tübingen, Germany; Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Walter E Haefeli
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Antje Blank
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Stephan Urban
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| |
Collapse
|
133
|
Shih C, Chou SF, Yang CC, Huang JY, Choijilsuren G, Jhou RS. Control and Eradication Strategies of Hepatitis B Virus. Trends Microbiol 2016; 24:739-749. [DOI: 10.1016/j.tim.2016.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
|
134
|
Jain AK, Sharma A, Arora S, Blomenkamp K, Jun IC, Luong R, Westrich DJ, Mittal A, Buchanan PM, Guzman MA, Long J, Neuschwander-Tetri BA, Teckman J. Preserved Gut Microbial Diversity Accompanies Upregulation of TGR5 and Hepatobiliary Transporters in Bile Acid-Treated Animals Receiving Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2016; 41:198-207. [PMID: 27503935 DOI: 10.1177/0148607116661838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Parenteral nutrition (PN) is a lifesaving therapy but is associated with gut atrophy and cholestasis. While bile acids (BAs) can modulate intestinal growth via gut receptors, the gut microbiome likely influences gut proliferation and inflammation. BAs also regulate the bile salt export pump (BSEP) involved in cholestasis. We hypothesized that the BA receptor agonist oleanolic acid (OA) regulates gut TGR5 receptor and modulates gut microbiota to prevent PN-associated injury. MATERIALS AND METHODS Neonatal piglets were randomized to approximately 2 weeks of isocaloric enteral nutrition (EN), PN, or PN + enteral OA. Serum alanine aminotransferase, bilirubin, BAs, hepatic BSEP, gut TGR5, gut, liver morphology, and fecal microbiome utilizing 16S rRNA sequencing were evaluated. Kruskal-Wallis test, pairwise Mann-Whitney U test, and multilevel logistic regression analysis were performed. RESULTS PN support resulted in gut atrophy substantially prevented by OA. The median (interquartile range) for villous/crypt ratio was as follows: EN, 3.37 (2.82-3.80); PN, 1.73 (1.54-2.27); and OA, 2.89 (2.17-3.34; P = .006). Pairwise comparisons yielded P = .002 (EN vs PN), P = .180 (EN vs OA), P = .026 (PN vs OA). OA upregulated TGR5 and BSEP without significant improvement in serum bilirubin ( P = .095). A decreased microbial diversity and shift toward proinflammatory phylum Bacteroidetes were seen with PN, which was prevented by OA. CONCLUSIONS OA prevented PN-associated gut mucosal injury, Bacterioides expansion, and the decreased microbial diversity noted with PN. This study demonstrates a novel relationship among PN-associated gut dysfunction, BA treatment, and gut microbial changes.
Collapse
Affiliation(s)
- Ajay Kumar Jain
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Abhineet Sharma
- 2 Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sumit Arora
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Keith Blomenkamp
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Ik Chan Jun
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Robert Luong
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - David John Westrich
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | | | - Paula M Buchanan
- 4 Center for Outcomes Research, Saint Louis University, St. Louis, Missouri, USA
| | - Miguel A Guzman
- 5 Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - John Long
- 6 Department of Comparative Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | - Jeffery Teckman
- 1 Department of Pediatrics, Saint Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
135
|
Haeusler RA, Camastra S, Nannipieri M, Astiarraga B, Castro-Perez J, Xie D, Wang L, Chakravarthy M, Ferrannini E. Increased Bile Acid Synthesis and Impaired Bile Acid Transport in Human Obesity. J Clin Endocrinol Metab 2016; 101:1935-44. [PMID: 26684275 PMCID: PMC4870845 DOI: 10.1210/jc.2015-2583] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT Alterations in bile acid (BA) synthesis and transport have the potential to affect multiple metabolic pathways in the pathophysiology of obesity. OBJECTIVE The objective of the study was to investigate the effects of obesity on serum fluctuations of BAs and markers of BA synthesis. DESIGN We measured BA fluctuations in 11 nonobese and 32 obese subjects and BA transporter expression in liver specimens from 42 individuals and specimens of duodenum, jejunum, ileum, colon, and pancreas from nine individuals. MAIN OUTCOME MEASURES We analyzed serum BAs and markers of BA synthesis after overnight fasting, during a hyperinsulinemic-euglycemic clamp, or a mixed-meal tolerance test and the association of BA transporter expression with body mass index. RESULTS BA synthesis markers were 2-fold higher (P < .01) and preferentially 12α-hydroxylated (P < .05) in obese subjects, and both measures were correlated with clamp-derived insulin sensitivity (r = -0.62, P < .0001, and r = -0.39, P = .01, respectively). Insulin infusion acutely reduced serum BAs in nonobese subjects, but this effect was blunted in obese subjects (δBAs -44.2% vs -4.2%, P < .05). The rise in serum BAs postprandially was also relatively blunted in obese subjects (δBAs +402% vs +133%, P < .01). Liver expression of the Na+-taurocholate cotransporting polypeptide and the bile salt export pump were negatively correlated with body mass index (r = -0.37, P = .02, and r = -0.48, P = .001, respectively). CONCLUSIONS Obesity is associated with increased BA synthesis, preferential 12α-hydroxylation, and impaired serum BA fluctuations. The findings reveal new pathophysiological aspects of BA action in obesity that may lend themselves to therapeutic targeting in metabolic disease.
Collapse
Affiliation(s)
- Rebecca A Haeusler
- Department of Pathology and Cell Biology (R.A.H.), Columbia University, New York, New York 10032; Department of Clinical and Experimental Medicine (S.C., M.N., B.A., E.F.), University of Pisa School of Medicine, 56100 Pisa, Italy; Merck Research Laboratories (J.C.-P., D.X., L.W., M.C.), Cardiometabolic Disease, Kenilworth, New Jersey 07033; and CNR Institute of Clinical Physiology (E.F.), 56100 Pisa, Italy
| | - Stefania Camastra
- Department of Pathology and Cell Biology (R.A.H.), Columbia University, New York, New York 10032; Department of Clinical and Experimental Medicine (S.C., M.N., B.A., E.F.), University of Pisa School of Medicine, 56100 Pisa, Italy; Merck Research Laboratories (J.C.-P., D.X., L.W., M.C.), Cardiometabolic Disease, Kenilworth, New Jersey 07033; and CNR Institute of Clinical Physiology (E.F.), 56100 Pisa, Italy
| | - Monica Nannipieri
- Department of Pathology and Cell Biology (R.A.H.), Columbia University, New York, New York 10032; Department of Clinical and Experimental Medicine (S.C., M.N., B.A., E.F.), University of Pisa School of Medicine, 56100 Pisa, Italy; Merck Research Laboratories (J.C.-P., D.X., L.W., M.C.), Cardiometabolic Disease, Kenilworth, New Jersey 07033; and CNR Institute of Clinical Physiology (E.F.), 56100 Pisa, Italy
| | - Brenno Astiarraga
- Department of Pathology and Cell Biology (R.A.H.), Columbia University, New York, New York 10032; Department of Clinical and Experimental Medicine (S.C., M.N., B.A., E.F.), University of Pisa School of Medicine, 56100 Pisa, Italy; Merck Research Laboratories (J.C.-P., D.X., L.W., M.C.), Cardiometabolic Disease, Kenilworth, New Jersey 07033; and CNR Institute of Clinical Physiology (E.F.), 56100 Pisa, Italy
| | - Jose Castro-Perez
- Department of Pathology and Cell Biology (R.A.H.), Columbia University, New York, New York 10032; Department of Clinical and Experimental Medicine (S.C., M.N., B.A., E.F.), University of Pisa School of Medicine, 56100 Pisa, Italy; Merck Research Laboratories (J.C.-P., D.X., L.W., M.C.), Cardiometabolic Disease, Kenilworth, New Jersey 07033; and CNR Institute of Clinical Physiology (E.F.), 56100 Pisa, Italy
| | - Dan Xie
- Department of Pathology and Cell Biology (R.A.H.), Columbia University, New York, New York 10032; Department of Clinical and Experimental Medicine (S.C., M.N., B.A., E.F.), University of Pisa School of Medicine, 56100 Pisa, Italy; Merck Research Laboratories (J.C.-P., D.X., L.W., M.C.), Cardiometabolic Disease, Kenilworth, New Jersey 07033; and CNR Institute of Clinical Physiology (E.F.), 56100 Pisa, Italy
| | - Liangsu Wang
- Department of Pathology and Cell Biology (R.A.H.), Columbia University, New York, New York 10032; Department of Clinical and Experimental Medicine (S.C., M.N., B.A., E.F.), University of Pisa School of Medicine, 56100 Pisa, Italy; Merck Research Laboratories (J.C.-P., D.X., L.W., M.C.), Cardiometabolic Disease, Kenilworth, New Jersey 07033; and CNR Institute of Clinical Physiology (E.F.), 56100 Pisa, Italy
| | - Manu Chakravarthy
- Department of Pathology and Cell Biology (R.A.H.), Columbia University, New York, New York 10032; Department of Clinical and Experimental Medicine (S.C., M.N., B.A., E.F.), University of Pisa School of Medicine, 56100 Pisa, Italy; Merck Research Laboratories (J.C.-P., D.X., L.W., M.C.), Cardiometabolic Disease, Kenilworth, New Jersey 07033; and CNR Institute of Clinical Physiology (E.F.), 56100 Pisa, Italy
| | - Ele Ferrannini
- Department of Pathology and Cell Biology (R.A.H.), Columbia University, New York, New York 10032; Department of Clinical and Experimental Medicine (S.C., M.N., B.A., E.F.), University of Pisa School of Medicine, 56100 Pisa, Italy; Merck Research Laboratories (J.C.-P., D.X., L.W., M.C.), Cardiometabolic Disease, Kenilworth, New Jersey 07033; and CNR Institute of Clinical Physiology (E.F.), 56100 Pisa, Italy
| |
Collapse
|
136
|
Abstract
Cholestatic liver diseases are hereditary or acquired disorders with impaired hepatic excretion and enterohepatic circulation of bile acids and other cholephiles. The distinct pathological mechanisms, particularly for the acquired forms of cholestasis, are not fully revealed, but advances in the understanding of the molecular mechanisms and identification of key regulatory mechanisms of the enterohepatic circulation of bile acids have unraveled common and central mechanisms, which can be pharmacologically targeted. This overview focuses on the central roles of farnesoid X receptor, fibroblast growth factor 19, and apical sodium-dependent bile acid transporter for the enterohepatic circulation of bile acids and their potential as new drug targets for the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Martin Wagner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Wien, Austria
| |
Collapse
|
137
|
Li W, Urban S. Entry of hepatitis B and hepatitis D virus into hepatocytes: Basic insights and clinical implications. J Hepatol 2016; 64:S32-S40. [PMID: 27084034 PMCID: PMC7114860 DOI: 10.1016/j.jhep.2016.02.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/30/2022]
Abstract
For almost three decades following the discovery of the human Hepatitis B Virus (HBV) the early events of virus infection (attachment to hepatocytes, specific binding to a receptor on hepatocytes) remained enigmatic. The gradual improvement of tissue culture systems for HBV has enabled the identification of viral determinants for viral infectivity and facilitated the discovery of the human sodium taurocholate co-transporting polypeptide (hNTCP) as a liver specific receptor of HBV and its satellite, the human Hepatitis Delta Virus (HDV). These findings are currently leading basic and clinical research activities in new directions. (1) Stable hNTCP-expressing cell lines have become a valuable platform to study the full HBV replication cycle from its native template, the cccDNA. (2) The suitability of NTCP complemented cell culture systems for high throughput screening approaches will facilitate identification of novel host factors involved in HBV replication (including those that determine the peculiar host specificity of HBV infection) and will enable identification and development of novel drug candidates for improved therapeutics. (3) Since NTCP is a major host-specific restriction factor for HBV and HDV, hNTCP-expressing animals provide the basis for future susceptible in vivo models. (4) The concept obtained with the entry inhibitor Myrcludex B demonstrates that NTCP is a suitable target for clinical interference with viral entry. This will foster further clinical approaches aiming at curative combination therapies.
Collapse
Affiliation(s)
- Wenhui Li
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany; German Center of Infectious Diseases (DZIF), Heidelberg, Germany.
| |
Collapse
|
138
|
Abstract
In vitro studies have suggested that 4-phenylbutyrate (PBA) may rescue missense mutated proteins that underlie some forms of progressive familial intrahepatic cholestasis. Encouraging preliminary responses to 4-PBA have been reported in liver disease secondary to mutations in ABCB11 and ATP8B1. A 4-year-old boy with Byler disease was treated with 4-PBA in the forms of sodium PBA (5 months) and then glycerol PBA (7 months) as part of expanded access single patient protocols. During this therapy serum total bilirubin fell and his general well-being was reported to be improved, although total serum bile acids were not reduced. Discontinuation of rifampin therapy, which had been used to treat pruritus, resulted in reversible severe acute liver injury that was potentially the result of phenylacetate toxicity. Interactions between 4-PBA and cytochrome P450 enzymes should be considered in the use of this agent with special attention to potential phenylacetate toxicity.
Collapse
|
139
|
Wang YJ, Yang L, Zuo JP. Recent developments in antivirals against hepatitis B virus. Virus Res 2015; 213:205-213. [PMID: 26732483 DOI: 10.1016/j.virusres.2015.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection (CHB) is a major cause of cirrhosis and hepatocellular carcinoma (HCC). Although the availability of HBV vaccines effectively reduces the incidence of HBV infection, the healthcare burden from CHB remains high. Several antiviral agents, such as (pegylated-) interferon-α and nucleos(t)ide analogs are approved by US FDA for chronic HBV infection management. Entecavir (ETV) and tenofovir disoproxil fumarate (TDF) have been recommended as the first-line anti-HBV drugs for excellent viral suppression with a low risk of antiviral resistance, but the cost and need for essentially life-long treatment are considerable challenges. And none of these current treatments can eradicate the intracellular virus. Given these issues, there is still an unmet medical need for an efficient HBV cure. We summarize here the key developments of antivirals against hepatitis B virus, including HBV replication cycle inhibitors and host immune regulators.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555, Shanghai, People's Republic of China
| | - Li Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555, Shanghai, People's Republic of China.
| | - Jian-Ping Zuo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555, Shanghai, People's Republic of China.
| |
Collapse
|
140
|
Liang TJ, Block TM, McMahon BJ, Ghany MG, Urban S, Guo JT, Locarnini S, Zoulim F, Chang KM, Lok AS. Present and future therapies of hepatitis B: From discovery to cure. Hepatology 2015; 62:1893-908. [PMID: 26239691 PMCID: PMC4681668 DOI: 10.1002/hep.28025] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/31/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatitis B virus (HBV) is a significant global pathogen, infecting more than 240 million people worldwide. While treatment for HBV has improved, HBV patients often require lifelong therapies and cure is still a challenging goal. Recent advances in technologies and pharmaceutical sciences have heralded a new horizon of innovative therapeutic approaches that are bringing us closer to the possibility of a functional cure of chronic HBV infection. In this article, we review the current state of science in HBV therapy and highlight new and exciting therapeutic strategies spurred by recent scientific advances. Some of these therapies have already entered into clinical phase, and we will likely see more of them moving along the development pipeline. CONCLUSION With growing interest in developing and efforts to develop more effective therapies for HBV, the challenging goal of a cure may be well within reach in the near future.
Collapse
Affiliation(s)
- T. Jake Liang
- Liver Diseases Branch, NIDDK, NIH, Bethesda, MD. USA
| | | | - Brian J. McMahon
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, AK. USA
| | - Marc G. Ghany
- Liver Diseases Branch, NIDDK, NIH, Bethesda, MD. USA
| | - Stephan Urban
- Dept of Infectious Diseases, Molecular Virology and German Center for Infection Diseases (DZIF), Univ Hospital Heidelberg, Heidelberg, Germany
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA. USA
| | | | - Fabien Zoulim
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne, VIC, Australia
| | - Kyong-Mi Chang
- Dept of Medicine, Philadelphia VAMC & University of Pennsylvania, Philadelphia, PA. USA
| | - Anna S. Lok
- Div of Gastroenterology and Hepatology, Univ of Michigan, Ann Arbor, MI. USA
| |
Collapse
|
141
|
Abstract
Hepatitis B virus (HBV) infection affects 240 million people worldwide. A liver-specific bile acid transporter named the sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV and its satellite, the hepatitis D virus (HDV). NTCP likely acts as a major determinant for the liver tropism and species specificity of HBV and HDV at the entry level. NTCP-mediated HBV entry interferes with bile acid transport in cell cultures and has been linked with alterations in bile acid and cholesterol metabolism in vivo. The human liver carcinoma cell line HepG2, complemented with NTCP, now provides a valuable platform for studying the basic biology of the viruses and developing treatments for HBV infection. This review summarizes critical findings regarding NTCP's role as a viral receptor for HBV and HDV and discusses important questions that remain unanswered.
Collapse
Affiliation(s)
- Wenhui Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China;
| |
Collapse
|
142
|
NTCP opens the door for hepatitis B virus infection. Antiviral Res 2015; 121:24-30. [DOI: 10.1016/j.antiviral.2015.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023]
|
143
|
Sommerfeld A, Mayer PGK, Cantore M, Häussinger D. Regulation of plasma membrane localization of the Na+-taurocholate cotransporting polypeptide (Ntcp) by hyperosmolarity and tauroursodeoxycholate. J Biol Chem 2015; 290:24237-54. [PMID: 26306036 DOI: 10.1074/jbc.m115.666883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 01/05/2023] Open
Abstract
In perfused rat liver, hepatocyte shrinkage induces a Fyn-dependent retrieval of the bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane (Cantore, M., Reinehr, R., Sommerfeld, A., Becker, M., and Häussinger, D. (2011) J. Biol. Chem. 286, 45014-45029) leading to cholestasis. However little is known about the effects of hyperosmolarity on short term regulation of the Na(+)-taurocholate cotransporting polypeptide (Ntcp), the major bile salt uptake system at the sinusoidal membrane of hepatocytes. The aim of this study was to analyze hyperosmotic Ntcp regulation and the underlying signaling events. Hyperosmolarity induced a significant retrieval of Ntcp from the basolateral membrane, which was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes but not of c-Src. Hyperosmotic internalization of Ntcp was sensitive to SU6656 and PP-2, suggesting that Fyn mediates Ntcp retrieval from the basolateral membrane. Hyperosmotic internalization of Ntcp was also found in livers from wild-type mice but not in p47(phox) knock-out mice. Tauroursodeoxycholate (TUDC) and cAMP reversed hyperosmolarity-induced Fyn activation and triggered re-insertion of the hyperosmotically retrieved Ntcp into the membrane. This was associated with dephosphorylation of the Ntcp on serine residues. Insertion of Ntcp by TUDC was sensitive to the integrin inhibitory hexapeptide GRGDSP and inhibition of protein kinase A. TUDC also reversed the hyperosmolarity-induced retrieval of bile salt export pump from the canalicular membrane. These findings suggest a coordinated and oxidative stress- and Fyn-dependent retrieval of sinusoidal and canalicular bile salt transport systems from the corresponding membranes. Ntcp insertion was also identified as a novel target of β1-integrin-dependent TUDC action, which is frequently used in the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Annika Sommerfeld
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Patrick G K Mayer
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Miriam Cantore
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- From the Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
144
|
Haag M, Hofmann U, Mürdter TE, Heinkele G, Leuthold P, Blank A, Haefeli WE, Alexandrov A, Urban S, Schwab M. Quantitative bile acid profiling by liquid chromatography quadrupole time-of-flight mass spectrometry: monitoring hepatitis B therapy by a novel Na(+)-taurocholate cotransporting polypeptide inhibitor. Anal Bioanal Chem 2015; 407:6815-25. [PMID: 26143062 DOI: 10.1007/s00216-015-8853-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/11/2023]
Abstract
A novel analytical approach for the targeted profiling of bile acids (BAs) in human serum/plasma based on liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) is presented. Reversed-phase chromatography enabled the baseline separation of 15 human BA species which could be readily detected by accurate mass analysis in negative ion mode. Blood proteins were removed by methanol precipitation in the presence of deuterium-labeled internal standards which allowed BA quantification in 50 μl plasma/serum. The assay was validated according to FDA guidance achieving quantification limits from 7.8 to 156 nM. Calibration curves prepared in charcoal-stripped serum/plasma showed excellent regression coefficients (R (2) > 0.997) and covered quantities from 7.8 to 10,000 nM depending on the analyzed species. Intra- and inter-day accuracy and precision were below 15 % for all analytes. Apparent extraction recoveries were above 97 %, and ion suppression rates were between 4 and 53 %. Mean BA level in serum/plasma from healthy volunteers ranged from 11 ± 4 nM (tauroursodeoxycholic acid) to 1321 ± 1442 nM (glycochenodeoxycholic acid). As a proof of concept, the assay was applied to plasma samples derived from a clinical phase I study of myrcludex B, a novel first-in-class virus entry inhibitor for the treatment of chronic hepatitis B and D. The results demonstrate that myrcludex-induced inhibition of the hepatic BA transporter Na(+)-taurocholate cotransporting polypeptide (NTCP) significantly affects plasma BA level. These observations provide novel insights into drug-induced metabolic responses and will be indispensable for the assessment of side effects and dose-finding processes during future clinical trials.
Collapse
Affiliation(s)
- Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, 70376 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Kosters A, Dawson PA. The Na(+) -taurocholate cotransporting polypeptide knockout mouse: A new tool for study of bile acids and hepatitis B virus biology. Hepatology 2015; 62:19-21. [PMID: 25761948 PMCID: PMC4482799 DOI: 10.1002/hep.27780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 02/22/2015] [Accepted: 03/07/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Astrid Kosters
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Paul A. Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
146
|
Slijepcevic D, Kaufman C, Wichers CGK, Gilglioni EH, Lempp FA, Duijst S, de Waart DR, Oude Elferink RPJ, Mier W, Stieger B, Beuers U, Urban S, van de Graaf SFJ. Impaired uptake of conjugated bile acids and hepatitis b virus pres1-binding in na(+) -taurocholate cotransporting polypeptide knockout mice. Hepatology 2015; 62:207-19. [PMID: 25641256 PMCID: PMC4657468 DOI: 10.1002/hep.27694] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/07/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED The Na(+) -taurocholate cotransporting polypeptide (NTCP) mediates uptake of conjugated bile acids (BAs) and is localized at the basolateral membrane of hepatocytes. It has recently been recognized as the receptor mediating hepatocyte-specific entry of hepatitis B virus and hepatitis delta virus. Myrcludex B, a peptide inhibitor of hepatitis B virus entry, is assumed to specifically target NTCP. Here, we investigated BA transport and Myrcludex B binding in the first Slc10a1-knockout mouse model (Slc10a1 encodes NTCP). Primary Slc10a1(-/-) hepatocytes showed absence of sodium-dependent taurocholic acid uptake, whereas sodium-independent taurocholic acid uptake was unchanged. In vivo, this was manifested as a decreased serum BA clearance in all knockout mice. In a subset of mice, NTCP deficiency resulted in markedly elevated total serum BA concentrations, mainly composed of conjugated BAs. The hypercholanemic phenotype was rapidly triggered by a diet supplemented with ursodeoxycholic acid. Biliary BA output remained intact, while fecal BA excretion was reduced in hypercholanemic Slc10a1(-/-) mice, explained by increased Asbt and Ostα/β expression. These mice further showed reduced Asbt expression in the kidney and increased renal BA excretion. Hepatic uptake of conjugated BAs was potentially affected by down-regulation of OATP1A1 and up-regulation of OATP1A4. Furthermore, sodium-dependent taurocholic acid uptake was inhibited by Myrcludex B in wild-type hepatocytes, while Slc10a1(-/-) hepatocytes were insensitive to Myrcludex B. Finally, positron emission tomography showed a complete abrogation of hepatic binding of labeled Myrcludex B in Slc10a1(-/-) mice. CONCLUSION The Slc10a1-knockout mouse model supports the central role of NTCP in hepatic uptake of conjugated BAs and hepatitis B virus preS1/Myrcludex B binding in vivo; the NTCP-independent hepatic BA uptake machinery maintains a (slower) enterohepatic circulation of BAs, although it is occasionally insufficient to clear BAs from the circulation.
Collapse
Affiliation(s)
- Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Christina Kaufman
- Department of Infectious Diseases and of Molecular Virology, University Hospital HeidelbergHeidelberg, Germany,Department of Nuclear Medicine, University Hospital HeidelbergHeidelberg, Germany
| | - Catharina GK Wichers
- Department of Molecular Cancer Research, Section of Metabolic Diseases, University Medical Center UtrechtUtrecht, The Netherlands
| | - Eduardo H Gilglioni
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Florian A Lempp
- Department of Infectious Diseases and of Molecular Virology, University Hospital HeidelbergHeidelberg, Germany
| | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Ronald PJ Oude Elferink
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital HeidelbergHeidelberg, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital ZurichZurich, Switzerland
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| | - Stephan Urban
- Department of Infectious Diseases and of Molecular Virology, University Hospital HeidelbergHeidelberg, Germany,German Center for Infection Research, Heidelberg UniversityHeidelberg, Germany
| | - Stan FJ van de Graaf
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMCAmsterdam, The Netherlands
| |
Collapse
|
147
|
Li T, Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:263-302. [PMID: 26233910 DOI: 10.1016/bs.apha.2015.04.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid-soluble vitamins. Bile acid synthesis, transport, and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis, and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug, and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport, and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration, and carcinogenesis.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
148
|
Yan H, Li W. Sodium taurocholate cotransporting polypeptide acts as a receptor for hepatitis B and D virus. Dig Dis 2015; 33:388-96. [PMID: 26045274 DOI: 10.1159/000371692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Infection of hepatitis B virus (HBV) remains a major public health problem worldwide. Understanding the viral infection and developing antivirals against HBV have been hampered by the lack of convenient culture systems and animal models for the infection. Sodium taurocholate cotransporting polypeptide (NTCP), a key bile acid transporter expressed in liver, was recently identified as a critical receptor for viral entry of HBV and its satellite virus hepatitis D virus (HDV). This finding enabled a reliable cell culture system for the viruses. Detailed studies have shown that NTCP is the major determinant for the species specificity of HBV and HDV at entry level. NTCP is responsible for most sodium-dependent bile salt uptake in liver. The molecular determinant critical for HBV/HDV infection overlaps with that for bile acids transporting on NTCP. We evaluated bile acids as potential antivirals for HBV and HDV infection, and developed bile acid derivatives that effectively block taurocholate transporting as well as viral infections. The discovery that NTCP acts as a receptor for HBV has opens a new door for future studies towards the ultimate goal of curative treatment of HBV infection.
Collapse
Affiliation(s)
- Huan Yan
- National Institute of Biological Sciences, Beijing, China
| | | |
Collapse
|
149
|
Peng H, Zhu QS, Zhong S, Levy D. Transcription of the Human Microsomal Epoxide Hydrolase Gene (EPHX1) Is Regulated by PARP-1 and Histone H1.2. Association with Sodium-Dependent Bile Acid Transport. PLoS One 2015; 10:e0125318. [PMID: 25992604 PMCID: PMC4439041 DOI: 10.1371/journal.pone.0125318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/18/2015] [Indexed: 01/06/2023] Open
Abstract
Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes. These compounds are involved in cholesterol homeostasis, lipid digestion, excretion of xenobiotics and the regulation of several nuclear receptors and signaling transduction pathways. Previous studies have demonstrated the critical role of GATA-4, a C/EBPα-NF/Y complex and an HNF-4α/CAR/RXR/PSF complex in the transcriptional regulation of the mEH gene (EPHX1). Studies also identified heterozygous mutations in human EPHX1 that resulted in a 95% decrease in mEH expression levels which was associated with a decrease in bile acid transport and severe hypercholanemia. In the present investigation we demonstrate that EPHX1 transcription is significantly inhibited by two heterozygous mutations observed in the Old Order Amish population that present numerous hypercholanemic subjects in the absence of liver damage suggesting a defect in bile acid transport into the hepatocyte. The identity of the regulatory proteins binding to these sites, established using biotinylated oligonucleotides in conjunction with mass spectrometry was shown to be poly(ADP-ribose)polymerase-1 (PARP-1) bound to the EPHX1 proximal promoter and a linker histone complex, H1.2/Aly, bound to a regulatory intron 1 site. These sites exhibited 71% homology and may represent potential nucleosome positioning domains. The high frequency of the H1.2 site polymorphism in the Amish population results in a potential genetic predisposition to hypercholanemia and in conjunction with our previous studies, further supports the critical role of mEH in mediating bile acid transport into hepatocytes.
Collapse
Affiliation(s)
- Hui Peng
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Qin-shi Zhu
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Shuping Zhong
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Daniel Levy
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
150
|
Abstract
OBJECTIVES Byler disease, originally described in Amish kindred, results from mutations in ATPase Class I Type 8b Member 1 (ATP8b1). Specific clinical reports of Amish Byler disease were last published 40 years ago. These investigations were directed at the present detailed clinical understanding of the early course of hepatic manifestations of Byler disease. METHODS This study analyzed routine clinical practice and outcomes of children with Byler disease (defined by homozygous c.923G>T mutation in ATP8b1), who initially presented to Children's Hospital of Pittsburgh of UPMC between January 2007 and October 2014. Data were analyzed to the earlier of 24 months of age or partial external biliary diversion. RESULTS Six children presented between 1 and 135 days of life: 2 presented with newborn direct hyperbilirubinemia, 2 had complications of coagulopathy, 1 had failure to thrive and rickets, and 1 sibling was identified by newborn genetic testing. Intensive fat-soluble vitamin supplementation was required to prevent insufficiencies in vitamins D, E, and K. Hyperbilirubinemia was variable both over time and between children. Serum bile acid levels were elevated, whereas γ-glutamyltranspeptidase levels were low normal. Scratching behavior (pruritus) was intractable in 4 of 6 children with onset between 6 and 12 months of age. Features of portal hypertension were not observed. Partial external biliary diversion was used during the second year of life in 4 children. CONCLUSIONS Detailed analysis of Byler disease revealed varied disease presentation and course. Nutritional issues and pruritus dominated the clinical picture in the first 2 years of life.
Collapse
|