101
|
Mondal R, Ghosh SK, Choudhury JH, Seram A, Sinha K, Hussain M, Laskar RS, Rabha B, Dey P, Ganguli S, NathChoudhury M, Talukdar FR, Chaudhuri B, Dhar B. Mitochondrial DNA copy number and risk of oral cancer: a report from Northeast India. PLoS One 2013; 8:e57771. [PMID: 23469236 PMCID: PMC3587625 DOI: 10.1371/journal.pone.0057771] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/24/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the sixth most common cancer globally. Tobacco consumption and HPV infection, both are the major risk factor for the development of oral cancer and causes mitochondrial dysfunction. Genetic polymorphisms in xenobiotic-metabolizing enzymes modify the effect of environmental exposures, thereby playing a significant role in gene-environment interactions and hence contributing to the individual susceptibility to cancer. Here, we have investigated the association of tobacco - betel quid chewing, HPV infection, GSTM1-GSTT1 null genotypes, and tumour stages with mitochondrial DNA (mtDNA) content variation in oral cancer patients. METHODOLOGY/PRINCIPAL FINDINGS The study comprised of 124 cases of OSCC and 140 control subjects to PCR based detection was done for high-risk HPV using a consensus primer and multiplex PCR was done for detection of GSTM1-GSTT1 polymorphism. A comparative ΔCt method was used for determination of mtDNA content. The risk of OSCC increased with the ceased mtDNA copy number (Ptrend = 0.003). The association between mtDNA copy number and OSCC risk was evident among tobacco - betel quid chewers rather than tobacco - betel quid non chewers; the interaction between mtDNA copy number and tobacco - betel quid was significant (P = 0.0005). Significant difference was observed between GSTM1 - GSTT1 null genotypes (P = 0.04, P = 0.001 respectively) and HPV infection (P<0.001) with mtDNA content variation in cases and controls. Positive correlation was found with decrease in mtDNA content with the increase in tumour stages (P<0.001). We are reporting for the first time the association of HPV infection and GSTM1-GSTT1 null genotypes with mtDNA content in OSCC. CONCLUSION Our results indicate that the mtDNA content in tumour tissues changes with tumour stage and tobacco-betel quid chewing habits while low levels of mtDNA content suggests invasive thereby serving as a biomarker in detection of OSCC.
Collapse
Affiliation(s)
- Rosy Mondal
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Sankar Kumar Ghosh
- Department of Biotechnology, Assam University, Silchar, Assam, India
- * E-mail:
| | | | - Anil Seram
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Kavita Sinha
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Marine Hussain
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | | | - Bijuli Rabha
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Pradip Dey
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Sabitri Ganguli
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | | | | | | | - Bishal Dhar
- Department of Biotechnology, Assam University, Silchar, Assam, India
| |
Collapse
|
102
|
Cao N, Yao ZX. Oligodendrocyte N-methyl-D-aspartate receptor signaling: insights into its functions. Mol Neurobiol 2013; 47:845-56. [PMID: 23345133 DOI: 10.1007/s12035-013-8408-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/13/2013] [Indexed: 12/21/2022]
Abstract
Myelination by oligodendrocytes facilitates rapid nerve conduction. Loss of oligodendrocytes and failure of myelination lead to nerve degeneration and numerous demyelinating white matter diseases. N-methyl-D-aspartate (NMDA) receptors, which are key regulators on neuron survival and functions, have been recently identified to express in oligodendrocytes, especially in the myelin sheath. NMDA receptor signaling in oligodendrocytes plays crucial roles in energy metabolism and myelination. In the present review, we highlight the subcellular location-specific impairment of excessive NMDA receptor signaling on oligodendrocyte energy metabolism in soma and myelin, and the mechanisms including Ca(2+) overload, acidotoxicity, mitochondria dysfunction, and impairment of respiratory chains. Conversely, physiological NMDA receptor signaling regulates differentiation and migration of oligodendrocytes. How can we use above knowledge to treat excitotoxic oligodendrocyte loss, congenital myelination deficiency, or postnatal demyelination? A thorough understanding of NMDA receptor signaling-mediated cellular events in oligodendrocytes at the pathophysiological level will no doubt aid in exploring effective therapeutic strategies for demyelinating white matter diseases.
Collapse
Affiliation(s)
- Nian Cao
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | | |
Collapse
|
103
|
Xie H, Lev D, Gong Y, Wang S, Pollock RE, Wu X, Gu J. Reduced mitochondrial DNA copy number in peripheral blood leukocytes increases the risk of soft tissue sarcoma. Carcinogenesis 2013; 34:1039-43. [DOI: 10.1093/carcin/bgt023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
104
|
Malik AN, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 2012; 13:481-92. [PMID: 23085537 DOI: 10.1016/j.mito.2012.10.011] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is central to numerous diseases of oxidative stress. Changes in mitochondrial DNA (MtDNA) content, often measured as mitochondrial genome to nuclear genome ratio (Mt/N) using real time quantitative PCR, have been reported in a broad range of human diseases, such as diabetes and its complications, obesity, cancer, HIV complications, and ageing. We propose the hypothesis that MtDNA content in body fluids and tissues could be a biomarker of mitochondrial dysfunction and review the evidence supporting this theory. Increased reactive oxygen species resulting from an external trigger such as hyperglycaemia or increased fat in conditions of oxidative stress could lead to enhanced mitochondrial biogenesis, and increased Mt/N. Altered MtDNA levels may contribute to enhanced oxidative stress and inflammation and could play a pathogenic role in mitochondrial dysfunction and disease. Changes in Mt/N are detectable in circulating cells such as peripheral blood mononuclear cells and these could be used as surrogate to predict global changes in tissues and organs. We review a large number of studies reporting changes in MtDNA levels in body fluids such as circulating blood cells, cell free serum, saliva, sperm, and cerebrospinal fluid as well as in tumour and normal tissue samples. However, the data are often conflicting as the current methodology used to measure Mt/N can give false results because of one or more of the following reasons (1) use of mitochondrial primers which co-amplify nuclear pseudogenes (2) use of nuclear genes which are variable and/or duplicated in numerous locations (3) a dilution bias caused by the differing genome sizes of the mitochondrial and nuclear genome and (4) template preparation protocols which affect the yields of nuclear and mitochondrial genomes. Development of robust and reproducible methodology is needed to test the hypothesis that MtDNA content in body fluids is biomarker of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Afshan N Malik
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, School of Medicine, King's college London, London, UK.
| | | |
Collapse
|
105
|
Mitochondrial roles and cytoprotection in chronic liver injury. Biochem Res Int 2012; 2012:387626. [PMID: 22745910 PMCID: PMC3382253 DOI: 10.1155/2012/387626] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/20/2012] [Accepted: 04/11/2012] [Indexed: 02/06/2023] Open
Abstract
The liver is one of the richest organs in terms of number and density of mitochondria. Most chronic liver diseases are associated with the accumulation of damaged mitochondria. Hepatic mitochondria have unique features compared to other organs' mitochondria, since they are the hub that integrates hepatic metabolism of carbohydrates, lipids and proteins. Mitochondria are also essential in hepatocyte survival as mediator of apoptosis and necrosis. Hepatocytes have developed different mechanisms to keep mitochondrial integrity or to prevent the effects of mitochondrial lesions, in particular regulating organelle biogenesis and degradation. In this paper, we will focus on the role of mitochondria in liver physiology, such as hepatic metabolism, reactive oxygen species homeostasis and cell survival. We will also focus on chronic liver pathologies, especially those linked to alcohol, virus, drugs or metabolic syndrome and we will discuss how mitochondria could provide a promising therapeutic target in these contexts.
Collapse
|
106
|
Johnston IG, Gaal B, Neves RPD, Enver T, Iborra FJ, Jones NS. Mitochondrial variability as a source of extrinsic cellular noise. PLoS Comput Biol 2012; 8:e1002416. [PMID: 22412363 PMCID: PMC3297557 DOI: 10.1371/journal.pcbi.1002416] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/20/2012] [Indexed: 11/19/2022] Open
Abstract
We present a study investigating the role of mitochondrial variability in generating noise in eukaryotic cells. Noise in cellular physiology plays an important role in many fundamental cellular processes, including transcription, translation, stem cell differentiation and response to medication, but the specific random influences that affect these processes have yet to be clearly elucidated. Here we present a mechanism by which variability in mitochondrial volume and functionality, along with cell cycle dynamics, is linked to variability in transcription rate and hence has a profound effect on downstream cellular processes. Our model mechanism is supported by an appreciable volume of recent experimental evidence, and we present the results of several new experiments with which our model is also consistent. We find that noise due to mitochondrial variability can sometimes dominate over other extrinsic noise sources (such as cell cycle asynchronicity) and can significantly affect large-scale observable properties such as cell cycle length and gene expression levels. We also explore two recent regulatory network-based models for stem cell differentiation, and find that extrinsic noise in transcription rate causes appreciable variability in the behaviour of these model systems. These results suggest that mitochondrial and transcriptional variability may be an important mechanism influencing a large variety of cellular processes and properties.
Collapse
Affiliation(s)
- Iain G. Johnston
- Department of Physics, Clarendon Laboratory, Oxford, United Kingdom
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, Oxford, United Kingdom
| | - Bernadett Gaal
- Department of Physics, Clarendon Laboratory, Oxford, United Kingdom
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Biomaterials and Stem Cell-based Therapeutics Group and Biocant – Center of Innovation and Biotechnology, Cantanhede, Portugal
| | - Tariq Enver
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Francisco J. Iborra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nick S. Jones
- Department of Physics, Clarendon Laboratory, Oxford, United Kingdom
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, Oxford, United Kingdom
- Department of Mathematics, Imperial College London, London, United Kingdom
| |
Collapse
|
107
|
Asmyhr MG, Cooper SJB. Difficulties barcoding in the dark: the case of crustacean stygofauna from eastern Australia. INVERTEBR SYST 2012. [DOI: 10.1071/is12032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The eastern Australian aquifers remain mostly unexplored; however, recent surveys suggest that there could be substantial levels of subterranean biodiversity hidden in these aquifers. Groundwater fauna (stygofauna) is often characterised by short-range endemism. Furthermore, high levels of cryptic species, and lack of formal taxonomic descriptions and taxonomic expertise for many of the groups demand innovative approaches for assessing subterranean biodiversity. Here we evaluate the potential of using DNA barcoding as a rapid biodiversity assessment tool for the subterranean groundwater fauna of New South Wales, Australia. We experienced low amplification success using universal and more taxon-specific primers for PCR amplification of the barcoding gene (COI) in a range of crustacean stygofauna. Sequence comparisons of the most commonly used COI universal primers in selected crustacean taxa revealed high levels of variability. Our results suggest that successful amplification of the COI region from crustacean stygofauna is not straightforward using the standard ‘universal’ primers. We propose that the development of a multiprimer (taxon specific) and multigene approach for DNA barcode analyses, using next-generation sequencing methodologies, will help to overcome many of the technical problems reported here and provide a basis for using DNA barcoding for rapid biodiversity assessments of subterranean aquatic ecosystems.
Collapse
|
108
|
Abstract
Nervous system is a great oxygen consumer, but the site of oxygen absorption has remained elusive. Four proteomic studies have shown that the respiratory complexes I to V may be expressed in isolated myelin. Myelin is an outgrowth of glial cells, surrounding many axons in multiple spires both in peripheral and central nervous system. Recent quantitative analyses strongly support the daring hypothesis that myelin is functional in aerobic ATP production, to supply the neuron with chemical energy. A vision of myelin sheath as a structure devoted to the oxygen absorbance for glucose combustion in nervous system thank to its enormous surface, would be also supported by an impressive series of characteristics and properties of myelin that do not presently find an explanation, all of which are herein examined.
Collapse
Affiliation(s)
- Alessandro Morelli
- Department of Biology, Faculty of Sciences, University of Genova, Viale Benedetto XV-3, 16132 Genoa, Italy.
| | | | | |
Collapse
|
109
|
Gianotti TF, Castaño G, Gemma C, Burgueño AL, Rosselli MS, Pirola CJ, Sookoian S. Mitochondrial DNA copy number is modulated by genetic variation in the signal transducer and activator of transcription 3 (STAT3). Metabolism 2011; 60:1142-9. [PMID: 21310444 DOI: 10.1016/j.metabol.2010.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 12/25/2022]
Abstract
The regulation of mitochondrial DNA (mtDNA) copy number not only is critical for the maintenance of the normal mitochondrial function but has a strong clinical significance. A recent report revealed that the signal transducer and activator of transcription 3 (STAT3) is involved in the regulation of the mitochondrial function and is required for the optimal function of the electron transport chain. In this study, we explored whether gene variants in the STAT3 influence the leukocyte mtDNA copy number. Clinical data and blood samples were collected from 179 subjects (aged 52.8 ± 0.9 years). Mitochondrial DNA quantification using nuclear DNA (nDNA) as a reference was carried out by a real-time quantitative polymerase chain reaction method; results are presented as the mtDNA/nDNA ratio. We selected 3 tag single nucleotide polymorphisms showing a minor allele frequency greater than 10% (rs2293152 C/G, rs6503695 C/T, and rs9891119 A/C), representing 24 polymorphic sites of the STAT3 (r(2) > 0.8). We observed a significant association between mtDNA/nDNA ratio and both rs6503695 and rs9891119, adjusted by age and homeostasis model assessment index. The proportion of the total variance of the mtDNA/nDNA ratio accounted for by the rs6503695 and rs9891119 genotypes was 4.7% and 6.53%, respectively. Common variation in the STAT3 may influence mtDNA copy number.
Collapse
Affiliation(s)
- Tomas Fernández Gianotti
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
110
|
Zhao S, Yang Y, Liu J, Liu H, Ge N, Yang H, Zhang H, Xing J. Association of mitochondrial DNA content in peripheral blood leukocyte with hepatitis B virus-related hepatocellular carcinoma in a Chinese Han population. Cancer Sci 2011; 102:1553-8. [PMID: 21521418 DOI: 10.1111/j.1349-7006.2011.01968.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Increasing epidemiological evidence has indicated that inherited variations of mtDNA content could affect the genetic susceptibility of many malignancies in a tumor-specific manner. However, the association between mtDNA content and hepatocellular carcinoma (HCC) remains undetermined. In this study, mtDNA content of peripheral blood leukocytes was determined using quantitative real-time PCR in a case-control study consisting of 274 HCC cases, 126 non-cancer patient controls with chronic liver diseases (CLD), and 258 healthy controls. We found that HCC cases had a significant lower mtDNA content than CLD controls (median [range]: 0.77 [0.17-2.30] vs 0.84 [0.32-3.37]; P = 0.012) and healthy controls (0.77 [0.17-2.30] vs 0.84 [0.35-3.44]; P = 0.035). There was no difference in mtDNA content between CLD and healthy controls (0.84 [0.32-3.37] vs 0.84 [0.35-3.44]; P = 0.261). We further assessed the association between mtDNA content and HCC and found that, compared to individuals with high mtDNA content, those with low mtDNA content had a significantly increased risk of HCC when health controls (adjusted odds ratio [aOR] = 1.64, 95% confidence interval [CI] = 1.06-2.55), CLD controls (aOR = 1.57, 95% CI = 1.10-2.25) or combined controls (aOR = 1.55, 95% CI = 1.12-2.14) were used as reference. In addition, stratified analyses showed that the significant association was only evident in younger individuals, male individuals, ever-smokers, and never-drinkers. Collectively, our findings provided the first epidemiological evidence that mtDNA content in peripheral blood leukocytes is significantly associated with HCC, which warrants further validation in prospective studies.
Collapse
Affiliation(s)
- Siyuan Zhao
- Department of Interventional Radiology, Tangdu Hospital State Key Laboratory of Cancer Biology and Department of Cell Biology and Cell Engineering Research Center, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Ravera S, Panfoli I, Aluigi MG, Calzia D, Morelli A. Characterization of Myelin Sheath F(o)F(1)-ATP synthase and its regulation by IF(1). Cell Biochem Biophys 2011; 59:63-70. [PMID: 20809181 DOI: 10.1007/s12013-010-9112-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
F(o)F(1)-ATP synthase is the nanomotor responsible for most of ATP synthesis in the cell. In physiological conditions, it carries out ATP synthesis thanks to a proton gradient generated by the respiratory chain in the inner mitochondrial membrane. We previously reported that isolated myelin vesicles (IMV) contain functional F(o)F(1)-ATP synthase and respiratory chain complexes and are able to conduct an aerobic metabolism, to support the axonal energy demand. In this study, by biochemical assay, Western Blot (WB) analysis and immunofluorescence microscopy, we characterized the IMV F(o)F(1)-ATP synthase. ATP synthase activity decreased in the presence of the specific inhibitors (olygomicin, DCCD, FCCP, valynomicin/nigericin) and respiratory chain inhibitors (antimycin A, KCN), suggesting a coupling of oxygen consumption and ATP synthesis. ATPase activity was inhibited in low pH conditions. WB and microscopy analyses of both IMV and optic nerves showed that the Inhibitor of F(1) (IF(1)), a small protein that binds the F(1) moiety in low pH when of oxygen supply is impaired, is expressed in myelin sheath. Data are discussed in terms of the role of IF(1) in the prevention of the reversal of ATP synthase in myelin sheath during central nervous system ischemic events. Overall, data are consistent with an energetic role of myelin sheath, and may shed light on the relationship among demyelination and axonal degeneration.
Collapse
|
112
|
Qu F, Liu X, Zhou F, Yang H, Bao G, He X, Xing J. Association between mitochondrial DNA content in leukocytes and colorectal cancer risk: a case-control analysis. Cancer 2011; 117:3148-55. [PMID: 21246538 DOI: 10.1002/cncr.25906] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Compelling epidemiological evidence indicated that alterations of mitochondrial DNA (mtDNA), including mutations and abnormal content of mtDNA, were implicated in the tumorigenesis of several malignancies in a tumor-specific manner, such as lung cancer, breast cancer, and non-Hodgkin lymphoma. This study was undertaken to investigate whether mtDNA content in peripheral blood lymphocytes (PBLs) could be used as a risk predictor for colorectal cancer (CRC). METHODS The mtDNA content was measured by using quantitative real-time polymerase chain reaction in PBLs from 320 CRC patients and 320 matched controls. RESULTS The authors found that CRC patients exhibited statistically significantly higher mtDNA content than matched controls (median, 1.03 vs .86; P < .001). They further assessed the association between mtDNA content and CRC risk using multivariate logistic regression. By using the median value in controls as the cutoff point, they found that, compared with low mtDNA content, high mtDNA content was associated with a significantly increased CRC risk (adjusted odds ratio, 2.03; 95% confidence interval, 1.41-2.81). In a trend analysis, they found a statistically significant dose-response relationship between higher mtDNA content and increased CRC risk (P for trend <.001). Stratified analysis showed that the association between mtDNA content and CRC risk was not modulated by major host characteristics. CONCLUSIONS These findings provide the first epidemiological evidence linking the high mtDNA content in PBLs to elevated CRC risk.
Collapse
Affiliation(s)
- Falin Qu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
113
|
Fernández-Vizarra E, Enríquez JA, Pérez-Martos A, Montoya J, Fernández-Silva P. Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion 2010; 11:207-13. [PMID: 20933104 DOI: 10.1016/j.mito.2010.09.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/03/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
Each cell type develops and maintains a specific oxidative phosphorylation (OXPHOS) capacity to satisfy its metabolic and energetic demands. This implies that there are differences between tissues in mitochondrial number, function, protein composition and morphology. The OXPHOS system biogenesis requires the coordinated expression of both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) expression can be regulated at different levels (replication, transcription, translation and post-translational levels) to contribute to the final observed OXPHOS activities. By analyzing five mammalian tissues, we evaluated the differences in the cellular amount of mtDNA and its correlation with the final observed mitochondrial activity.
Collapse
Affiliation(s)
- Erika Fernández-Vizarra
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna, 12. 50009 Zaragoza, Spain
| | | | | | | | | |
Collapse
|
114
|
Kirstein-Miles J, Morimoto RI. Caenorhabditis elegans as a model system to study intercompartmental proteostasis: Interrelation of mitochondrial function, longevity, and neurodegenerative diseases. Dev Dyn 2010; 239:1529-38. [PMID: 20419784 DOI: 10.1002/dvdy.22292] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The protein quality control system, composed of molecular chaperones and proteases, is of vital importance for the maintenance and function of the proteome and the health of the cell. To achieve this, the cellular proteostasis network integrates the protein folding machinery across all compartments of the eukaryotic cell to enable efficient communication and coordinate a rapid response of folding capacity. Quality control in the mitochondria, however, differs from its cytosolic counterpart due to its prokaryotic origin, and is entirely encoded by the nuclear genome. The control and regulatory cross-talk of mitochondrial function in cellular proteostasis is essential for cellular metabolism, organismal development, and lifespan. Consequently, mitochondrial dysfunction has dramatic effects on the development and progression of a number of neurodegenerative diseases, such as Friedreich's ataxia and Parkinson's disease. Studies using Caenorhabditis elegans as a model system have greatly contributed to our current knowledge of inter-compartmental proteostasis on the cellular and organismal levels.
Collapse
Affiliation(s)
- Janine Kirstein-Miles
- Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
115
|
Pyle A, Burn DJ, Gordon C, Swan C, Chinnery PF, Baudouin SV. Fall in circulating mononuclear cell mitochondrial DNA content in human sepsis. Intensive Care Med 2010; 36:956-62. [PMID: 20224905 PMCID: PMC4034433 DOI: 10.1007/s00134-010-1823-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 01/19/2010] [Indexed: 12/30/2022]
Abstract
PURPOSE Loss of mitochondrial DNA (mtDNA) has been described in whole blood samples from a small number of patients with sepsis, but the underlying mechanism and clinical implications of this observation are not clear. We have investigated the cellular basis of the mtDNA depletion in sepsis, and determined clinical correlates with mtDNA depletion. METHODS Whole blood samples were obtained from 147 consecutive patients with severe sepsis admitted to a General Critical Care Unit in a University Hospital and 83 healthy controls. In a separate study of 13 patients with severe sepsis, blood was obtained for immediate cell sorting by flow cytometry. MtDNA content was determined in whole blood DNA by PCR methods, and subsequently in the 13 samples where white cell subtypes were separated. RESULTS The mtDNA content of peripheral blood in human subjects was lower in patients with sepsis than controls (P < 0.0001). By studying leukocyte subsets in a subgroup of 13 patients, we showed that this was largely due to an increase in the proportion of circulating neutrophils, which contained approximately 3-fold less mtDNA than mononuclear leukocytes. However, isolated monocytes (P = 0.041) and lymphocytes (P = 0.021) from septic patients showed clear evidence of mtDNA depletion, which correlated with the APACHE II score (P = 0.015). CONCLUSIONS In severe sepsis much of the apparent whole blood mtDNA depletion is due to a change in the differential leukocyte count. However mtDNA depletion in mononuclear cells occurs in patients with sepsis and correlates with disease severity.
Collapse
Affiliation(s)
- Angela Pyle
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Framlington Place, Newcastle, NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
116
|
Abstract
The pathophysiology of type 2 diabetes mellitus (DM) is varied and complex. However, the association of DM with obesity and inactivity indicates an important, and potentially pathogenic, link between fuel and energy homeostasis and the emergence of metabolic disease. Given the central role for mitochondria in fuel utilization and energy production, disordered mitochondrial function at the cellular level can impact whole-body metabolic homeostasis. Thus, the hypothesis that defective or insufficient mitochondrial function might play a potentially pathogenic role in mediating risk of type 2 DM has emerged in recent years. Here, we summarize current literature on risk factors for diabetes pathogenesis, on the specific role(s) of mitochondria in tissues involved in its pathophysiology, and on evidence pointing to alterations in mitochondrial function in these tissues that could contribute to the development of DM. We also review literature on metabolic phenotypes of existing animal models of impaired mitochondrial function. We conclude that, whereas the association between impaired mitochondrial function and DM is strong, a causal pathogenic relationship remains uncertain. However, we hypothesize that genetically determined and/or inactivity-mediated alterations in mitochondrial oxidative activity may directly impact adaptive responses to overnutrition, causing an imbalance between oxidative activity and nutrient load. This imbalance may lead in turn to chronic accumulation of lipid oxidative metabolites that can mediate insulin resistance and secretory dysfunction. More refined experimental strategies that accurately mimic potential reductions in mitochondrial functional capacity in humans at risk for diabetes will be required to determine the potential pathogenic role in human insulin resistance and type 2 DM.
Collapse
|
117
|
Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ, Solano RM, Gómez A, Perucho J, Cuervo AM, García de Yébenes J, Mena MA. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 2010; 39:423-38. [PMID: 20546895 DOI: 10.1016/j.nbd.2010.05.014] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/29/2010] [Accepted: 05/11/2010] [Indexed: 01/14/2023] Open
Abstract
Tauopathies are neurodegenerative diseases, sporadic or familial, mainly characterized by dementia and parkinsonism associated to atrophy of the frontotemporal cortex and the basal ganglia, with deposition of abnormal tau in brain. Hereditary tauopathies are related with mutations of the tau gene. Up to the present, these diseases have not been helped by any disease-modifying treatment, and patients die a few years after the onset of symptoms. We have developed and characterized a mouse model of tauopathy with parkinsonism, overexpressing human mutated tau protein with deletion of parkin (PK(-/-)/Tau(VLW)). At 3 months of age, these mice present abnormal dopamine-related behavior, severe dropout of dopamine neurons in the ventral midbrain, reduced dopamine levels in the striatum and abundant phosphorylated tau-positive neuritic plaques, neurofibrillary tangles, astrogliosis, and, at 12 months old, plaques of murine beta-amyloid in the hippocampus. Trehalose is a natural disaccharide that increases the removal of abnormal proteins through enhancement of autophagy. In this work, we tested if 1% trehalose in the drinking water reverts the PK(-/-)/Tau(VLW) phenotype. The treatment with trehalose of 3-month-old PK(-/-)/Tau(VLW) mice for 2.5 months reverted the dropout of dopamine neurons, which takes place in the ventral midbrain of vehicle treated PK(-/-)/Tau(VLW) and the reduced dopamine-related proteins levels in the midbrain and striatum. The number of phosphorylated tau-positive neuritic plaques and the levels of phosphorylated tau decreased, as well as astrogliosis in brain regions. The autophagy markers in the brain, the autophagic vacuoles isolated from the liver, and the electron microscopy data indicate that these effects of trehalose are mediated by autophagy. The treatment with trehalose for 4 months of 3-month-old PK(-/-)/Tau(VLW) mice maintained the amelioration of the tau pathology and astrogliosis but failed to revert DA-related pathology in the striatum. Furthermore, the 3-week treatment with trehalose of 14-month-old PK(-/-)/Tau(VLW) mice, at the limit of their life expectancy, improved the motor behavior and anxiety of these animals, and reduced their levels of phosphorylated tau and the number of murine beta-amyloid plaques. Trehalose is neuroprotective in this model of tauopathy. Since trehalose is free of toxic effects at high concentrations, this study opens the way for clinical studies of the effects of trehalose in human tauopathies.
Collapse
|
118
|
Chan YHM, Marshall WF. Scaling properties of cell and organelle size. Organogenesis 2010; 6:88-96. [PMID: 20885855 PMCID: PMC2901812 DOI: 10.4161/org.6.2.11464] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/08/2010] [Indexed: 11/19/2022] Open
Abstract
How size is controlled is a fundamental question in biology. In this review, we discuss the use of scaling relationships-for example, power-laws of the form y∝x(α)-to provide a framework for comparison and interpretation of size measurements. Such analysis can illustrate the biological and physical principles underlying observed trends, as has been proposed for the allometric dependence of metabolic rate or limb structure on organism mass. Techniques for measuring size at smaller length-scales continue to improve, leading to more data on the control of size in cells and organelles. Size scaling of these structures is expected to influence growth patterns, functional capacity and intracellular transport. Furthermore, organelles such as the nucleus, mitochondria and endoplasmic reticulum show widely varying morphologies that affect their scaling properties. We provide brief summaries of these issues for individual organelles, and conclude with a discussion on how to apply this concept to better understand the mechanisms of size control in the cellular environment.
Collapse
Affiliation(s)
- Yee-Hung M Chan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
119
|
Shen J, Platek M, Mahasneh A, Ambrosone CB, Zhao H. Mitochondrial copy number and risk of breast cancer: a pilot study. Mitochondrion 2009; 10:62-8. [PMID: 19788937 DOI: 10.1016/j.mito.2009.09.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/14/2009] [Accepted: 09/23/2009] [Indexed: 02/03/2023]
Abstract
It has been proposed that the copy number of mitochondria DNA (mtDNA) per cell reflects gene-environment interactions between unknown hereditary factors and exposures affecting levels of oxidative stress. However, whether copy number of mtDNA could be a risk predictor of oxidative stress-related human cancers, such as breast cancer, remains to be determined. To explore the role of mtDNA copy number in breast cancer etiology, we analyzed mtDNA copy number in whole blood from 103 patients with breast cancer and 103 matched control subjects and examined in relation to endogenous antioxidants. Case patients with breast cancer had a statistically significantly higher mtDNA copy number than control subjects (median: 1.29 vs. 0.80, P<0.01). High mtDNA copy number (above the median in controls) was associated with a statistically significantly increased risk of breast cancer, compared with low copy number (Odds ratio (OR)=4.67, 95% CI: 2.45-8.92), with a statistically significant dose-response relationship in trend analysis (P<0.01). Moreover, mtDNA copy number was significantly inversely associated with several important endogenous oxidants and antioxidants in blood in either the cases (total glutathione, CuZn-SOD activity and myeloperoxidase (MPO)) or the controls (catalase (CAT) activity). These results suggest the mtDNA copy number could be associated with risk of breast cancer, perhaps through an oxidative stress mechanism.
Collapse
Affiliation(s)
- Jie Shen
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
120
|
Abstract
PURPOSE Accumulation of mitochondrial DNA deletions and the resultant impaired oxidative phosphorylation may play a pathogenic role in the mediation of age-related sarcopenia. METHODS Twenty four participants of the New Mexico Aging Process Study were classified as normal lean (n = 15) or sarcopenic (n = 9) based on body composition determined by Dual Energy x-ray Absorptiometry. Complex I and Complex IV activities were measured in the skeletal muscle samples obtained from gastrocnemius muscle. A two-stage nested polymerase chain reaction strategy was used to identify the mitochondrial DNA deletions in the entire mitochondrial genome in the skeletal muscle samples. RESULTS Although Complex I activity was not significantly different (5.5 +/- 0.9 vs. 4.6 +/- 0.7 mU/mg protein, P > 0.05), Complex IV activity was higher in sarcopenic subjects (1.4 +/- 0.3 vs. 1.0 +/- 0.1 mU/mg protein, P < 0.05). Mitochondrial DNA deletions were mostly located in the region of Complex I and spanned from nicotinamide adenine dinucleotide dehydrogenase 1 to nicotinamide adenine dinucleotide dehydrogenase 6. Deletions in the 8,577-10,407 bp and 10,233-11,249 bp regions were associated with a significant decrease in Complex I activity (P < 0.05 and P = 0.02, respectively). Total cumulative deletion, defined as the sum of individual length of deletions in a subject, was comparable in subjects with and without sarcopenia (1760 +/- 726 vs. 1782 +/- 888 bp, P > 0.05). The magnitude of mitochondrial DNA deletion, however, correlated positively with lean body mass (r = 0.43, P < 0.05). CONCLUSION Thus, mitochondrial DNA deletions are common in elderly subjects and are negatively related to Complex I activity. The positive association between mitochondrial DNA deletions and lean body mass needs to be confirmed by studies in a larger study population.
Collapse
|
121
|
Bartzokis G. Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 2009; 32:1341-71. [PMID: 19775776 DOI: 10.1016/j.neurobiolaging.2009.08.007] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
The amyloid hypothesis (AH) of Alzheimer's disease (AD) posits that the fundamental cause of AD is the accumulation of the peptide amyloid beta (Aβ) in the brain. This hypothesis has been supported by observations that genetic defects in amyloid precursor protein (APP) and presenilin increase Aβ production and cause familial AD (FAD). The AH is widely accepted but does not account for important phenomena including recent failures of clinical trials to impact dementia in humans even after successfully reducing Aβ deposits. Herein, the AH is viewed from the broader overarching perspective of the myelin model of the human brain that focuses on functioning brain circuits and encompasses white matter and myelin in addition to neurons and synapses. The model proposes that the recently evolved and extensive myelination of the human brain underlies both our unique abilities and susceptibility to highly prevalent age-related neuropsychiatric disorders such as late onset AD (LOAD). It regards oligodendrocytes and the myelin they produce as being both critical for circuit function and uniquely vulnerable to damage. This perspective reframes key observations such as axonal transport disruptions, formation of axonal swellings/sphenoids and neuritic plaques, and proteinaceous deposits such as Aβ and tau as by-products of homeostatic myelin repair processes. It delineates empirically testable mechanisms of action for genes underlying FAD and LOAD and provides "upstream" treatment targets. Such interventions could potentially treat multiple degenerative brain disorders by mitigating the effects of aging and associated changes in iron, cholesterol, and free radicals on oligodendrocytes and their myelin.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
122
|
Zampolla T, Spikings E, Zhang T, Rawson DM. Effect of methanol and Me2SO exposure on mitochondrial activity and distribution in stage III ovarian follicles of zebrafish (Danio rerio). Cryobiology 2009; 59:188-94. [PMID: 19595995 DOI: 10.1016/j.cryobiol.2009.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/29/2009] [Accepted: 07/02/2009] [Indexed: 11/27/2022]
Abstract
In this study the effect of cryoprotectants that have been shown to be the least toxic to zebrafish ovarian follicles (methanol and Me(2)SO), on mitochondria of stage III ovarian follicles was evaluated. The mitochondrial distributional arrangement, mitochondrial membrane potential, mtDNA copy number, ATP levels and ADP/ATP ratios were assessed following exposure to cryoprotectants for 30 min at room temperature. Results obtained by confocal microscopy showed that 30 min exposure to 2M methanol induced a loss of membrane potential, although viability tests showed no decrease in survival even after 5h post-exposure incubation. Higher concentrations of methanol (3 and 4M) induced not only a decrease in mitochondrial membrane potential but also the loss of mitochondrial distributional arrangement, which suggested a compromised mitochondrial function. Furthermore 3 and 4M treatments resulted in a decrease in viability assessed by Fluorescein diacetate-Propidium iodide (FDA-PI) and in a decrease in mtDNA copy number and ADP/ATP ratio after 5h incubation following methanol exposure, indicating a delayed effect. The use of Me(2)SO, which is considered to be a more toxic CPA to zebrafish ovarian follicles than methanol, caused a decrease in viability and a sustained decrease in ATP levels accompanied by failure to maintain mtDNA copy number within 1h post-exposure incubation. These results indicated that even CPAs that are considered to have no toxicity as determined by Trypan blue (TB) and FDA-PI tests can have a deleterious effect on mitochondrial activity, potentially compromising oocyte growth and embryo development.
Collapse
Affiliation(s)
- T Zampolla
- LIRANS Institute of Research in the Applied Natural Sciences, University of Bedfordshire, Luton, Bedfordshire, United Kingdom
| | | | | | | |
Collapse
|
123
|
Aiken CE, Cindrova-Davies T, Johnson MH. Variations in mouse mitochondrial DNA copy number from fertilization to birth are associated with oxidative stress. Reprod Biomed Online 2009; 17:806-13. [PMID: 19079965 DOI: 10.1016/s1472-6483(10)60409-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondria are inherited maternally via the oocyte, which in the mouse contains 150-250 x 10(3) copies of mitochondrial DNA (mtDNA). The number of mtDNA copies/embryo is thought to be stable during cleavage, being progressively diluted/cell with each round of cell division, until replication begins at an undefined time post-implantation. Post-natally, tissues differ in copy number of mtDNA/cell, but when and how these differences arise is unclear. A ratiometric quantitative real-time polymerase chain reaction assay of the levels of a single mitochondrial gene against a single copy nuclear gene was used to estimate the average copy value of mtDNA/per cell from zygote to birth. A novel Bayesian statistical model was used to identify day 5.15-6.15 as the time at which replication recommences, consistent with the viability patterns of embryos carrying mitochondrial mutations. Mitochondrial DNA copy number/cell in a range of post-day 9.5 fetal and placental tissues showed tissue-specific temporal expression patterns. Western blotting was used to quantify post-day 9.5 tissue markers for oxidative stress and manganese superoxide dismutase, and revealed correlations with the changes in mtDNA copy number. These findings have potential implications for fetal programming, in-vitro embryo culture, and the mechanism underlying the mitochondrial bottleneck.
Collapse
Affiliation(s)
- Catherine Em Aiken
- Department of Physiology, Development and Neuroscience, and Centre for Trophoblast Research, The Anatomy School, Downing Street, Cambridge CB2 3DY, UK
| | | | | |
Collapse
|
124
|
Evidence for aerobic ATP synthesis in isolated myelin vesicles. Int J Biochem Cell Biol 2009; 41:1581-91. [PMID: 19401152 DOI: 10.1016/j.biocel.2009.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/15/2008] [Accepted: 01/14/2009] [Indexed: 11/23/2022]
Abstract
Even though brain represents only 2-3% of the body weight, it consumes 20% of total body oxygen, and 25% of total body glucose. This sounds surprising, in that mitochondrial density in brain is low, while mitochondria are thought to be the sole site of aerobic energy supply. These data would suggest that structures other than mitochondria are involved in aerobic ATP production. Considering that a sustained aerobic metabolism needs a great surface extension and that the oxygen solubility is higher in neutral lipids, we have focused our attention on myelin sheath, the multilayered membrane produced by oligodendrocytes, hypothesizing it to be an ATP production site. Myelin has long been supposed to augment the speed of conduction, however, there is growing evidence that it exerts an as yet unexplained neuro-trophic role. In this work, by biochemical assays, Western Blot analysis, confocal laser microscopy, we present evidence that isolated myelin vesicles (IMV) are able to consume O(2) and produce ATP through the operation of a proton gradient across their membranes. Living optic nerve sections were exposed to MitoTracker, a classical mitochondrial dye, by a technique that we have developed and it was found that structures closely resembling nerve axons were stained. By immunohistochemistry we show that ATP synthase and myelin basic protein colocalize on both IMV and optic nerves. The complex of data suggests that myelin sheath may be the site of oxygen absorption and aerobic metabolism for the axons.
Collapse
|
125
|
Lin WC, Sandberg DI, Bhatia S, Johnson M, Morrison G, Ragheb J. Optical spectroscopy for in-vitro differentiation of pediatric neoplastic and epileptogenic brain lesions. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:014028. [PMID: 19256716 DOI: 10.1117/1.3080144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The objective of this in vitro tissue study is to investigate the feasibility of using optical spectroscopy to differentiate pediatric neoplastic and epileptogenic brain from normal brain. Specimens are collected from 17 patients with brain tumors, and from 26 patients with intractable epilepsy during surgical resection of epileptogenic cerebral cortex. Fluorescence spectra are measured at excitations of 337, 360, and 440 nm; diffuse reflectance spectra are measured between 400 and 900 nm from each specimen. Pathological analysis is performed to classify abnormalities in brain specimens, and its findings are correlated with spectral data. Statistically significant differences (p<0.01) are found for both raw and normalized diffuse reflectance and fluorescence spectra between 1. neoplastic brain and normal gray matter, 2. epileptogenic brain and normal gray matter, and 3. neoplastic brain and normal white matter. However, no distinct spectral features are identified that effectively separate epileptogenic brain from normal white matter. The outcomes of the study suggest that certain unique compositional and structural characteristics of pediatric neoplastic and epileptogenic brain can be detected using optical spectroscopy in vitro.
Collapse
Affiliation(s)
- Wei-Chiang Lin
- Miami Children's Hospital, Brain Institute and Florida International University, Department of Biomedical Engineering, 10555 West Flagler St, EAS 2673 Miami, Florida 33131, USA.
| | | | | | | | | | | |
Collapse
|
126
|
Abstract
Since the first mitochondrial dysfunction was described in the 1960s, the medicine has advanced in its understanding the role mitochondria play in health and disease. Damage to mitochondria is now understood to play a role in the pathogenesis of a wide range of seemingly unrelated disorders such as schizophrenia, bipolar disease, dementia, Alzheimer's disease, epilepsy, migraine headaches, strokes, neuropathic pain, Parkinson's disease, ataxia, transient ischemic attack, cardiomyopathy, coronary artery disease, chronic fatigue syndrome, fibromyalgia, retinitis pigmentosa, diabetes, hepatitis C, and primary biliary cirrhosis. Medications have now emerged as a major cause of mitochondrial damage, which may explain many adverse effects. All classes of psychotropic drugs have been documented to damage mitochondria, as have stain medications, analgesics such as acetaminophen, and many others. While targeted nutrient therapies using antioxidants or their precursors (e. g., N-acetylcysteine) hold promise for improving mitochondrial function, there are large gaps in our knowledge. The most rational approach is to understand the mechanisms underlying mitochondrial damage for specific medications and attempt to counteract their deleterious effects with nutritional therapies. This article reviews our basic understanding of how mitochondria function and how medications damage mitochondria to create their occasionally fatal adverse effects.
Collapse
Affiliation(s)
- John Neustadt
- Montana Integrative Medicine, Bozeman, MT 59718, USA.
| | | |
Collapse
|
127
|
Wallace KB. Mitochondrial off targets of drug therapy. Trends Pharmacol Sci 2008; 29:361-6. [PMID: 18501972 DOI: 10.1016/j.tips.2008.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 02/07/2023]
Abstract
The bioenergetic features of mitochondria have long been exploited in the design of pharmacological agents suited to accomplish a desired physiological effect; uncoupling of oxidative phosphorylation to induce weight loss, for example. However, more recent experience demonstrates mitochondria to be unintended off targets of other drug therapies and responsible, at least in part, for the dose-limiting adverse events associated with a large array of pharmaceuticals. Review of the fundamentals of mitochondrial molecular biology and bioenergetics reveals a multiplicity of off targets that can be invoked to explain drug-induced mitochondrial failure. It is this redundancy of mitochondrial off targets that complicates identification of discrete mechanisms of toxicity and confounds QSAR-based design of new small molecules devoid of this potential for mitochondrial toxicity. The present review article briefly reviews the molecular biology and biophysics of mitochondrial bioenergetics, which then serves as a platform for identifying the various potential off targets for drug-induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Kendall B Wallace
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|
128
|
D’Souza AD, Parikh N, Kaech SM, Shadel GS. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation. Mitochondrion 2007; 7:374-85. [PMID: 17890163 PMCID: PMC2692272 DOI: 10.1016/j.mito.2007.08.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 12/21/2022]
Abstract
The quantity and activity of mitochondria vary dramatically in tissues and are modulated in response to changing cellular energy demands and environmental factors. The amount of mitochondrial DNA (mtDNA), which encodes essential subunits of the oxidative phosphorylation complexes required for cellular ATP production, is also tightly regulated, but by largely unknown mechanisms. Using murine T cells as a model system, we have addressed how specific signaling pathways influence mitochondrial biogenesis and mtDNA copy number. T cell receptor (TCR) activation results in a large increase in mitochondrial mass and membrane potential and a corresponding amplification of mtDNA, consistent with a vital role for mitochondrial function for growth and proliferation of these cells. Independent activation of protein kinase C (via PMA) or calcium-related pathways (via ionomycin) had differential and sub-maximal effects on these mitochondrial parameters, as did activation of naïve T cells with proliferative cytokines. Thus, the robust mitochondrial biogenesis response observed upon TCR activation requires synergy of multiple downstream signaling pathways. One such pathway involves AMP-activated protein kinase (AMPK), which we show has an unprecedented role in negatively regulating mitochondrial biogenesis that is mammalian target of rapamycin (mTOR)-dependent. That is, inhibition of AMPK after TCR signaling commences results in excessive, but uncoordinated mitochondrial proliferation. Thus mitochondrial biogenesis is not under control of a single master regulatory circuit, but rather requires the convergence of multiple signaling pathways with distinct downstream consequences on the organelle's structure, composition, and function.
Collapse
Affiliation(s)
- Anthony D. D’Souza
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Neal Parikh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Susan M. Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
129
|
Lebedeva MA, Shadel GS. Cell cycle- and ribonucleotide reductase-driven changes in mtDNA copy number influence mtDNA Inheritance without compromising mitochondrial gene expression. Cell Cycle 2007; 6:2048-57. [PMID: 17721079 PMCID: PMC2606055 DOI: 10.4161/cc.6.16.4572] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most eukaryotes maintain multiple copies of mtDNA, ranging from 20-50 in yeast to as many as 10,000 in mammalian cells. The mitochondrial genome encodes essential subunits of the respiratory chain, but the number of mtDNA molecules is apparently in excess of that needed to sustain adequate respiration, as evidenced by the "threshold effect" in mitochondrial diseases. Thus, other selective pressures apparently have contributed to the universal maintenance of multiple mtDNA molecules/cell. Here we analyzed the interplay between the two pathways proposed to regulate mtDNA copy number in Saccharomyces cerevisiae, and the requirement of normal mtDNA copy number for mitochondrial gene expression, respiration, and inheritance. We provide the first direct evidence that upregulation of mtDNA can be achieved by increasing ribonucleotide reductase (RNR) activity via derepression of nuclear RNR gene transcription or elimination of allosteric-feedback regulation. Analysis of rad53 mutant strains also revealed upregulation of mtDNA copy number independent of that resulting from elevated RNR activity. We present evidence that a prolonged cell cycle allows accumulation of mtDNA in these strains. Analysis of multiple strains with increased or decreased mtDNA revealed that mechanisms are in place to prevent significant changes in mitochondrial gene expression and respiration in the face of approximately two-fold alterations in mtDNA copy number. However, depletion of mtDNA in abf2 null strains leads to defective mtDNA inheritance that is partially rescued by replenishing mtDNA via overexpression of RNR1. These results indicate that one role for multiple mtDNA copies is to ensure optimal inheritance of mtDNA during cell division.
Collapse
Affiliation(s)
- Maria A. Lebedeva
- Department of Pathology; Yale University School of Medicine; New Haven, Connecticut USA
- Graduate Program in Genetics; Yale University School of Medicine; New Haven, Connecticut USA
| | - Gerald S. Shadel
- Department of Pathology; Yale University School of Medicine; New Haven, Connecticut USA
| |
Collapse
|
130
|
Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 2007; 83:84-92. [PMID: 17239370 DOI: 10.1016/j.yexmp.2006.09.008] [Citation(s) in RCA: 412] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/25/2006] [Indexed: 12/21/2022]
Abstract
Since the first mitochondrial dysfunction was described in the 1960s, the medicine has advanced in its understanding the role mitochondria play in health, disease, and aging. A wide range of seemingly unrelated disorders, such as schizophrenia, bipolar disease, dementia, Alzheimer's disease, epilepsy, migraine headaches, strokes, neuropathic pain, Parkinson's disease, ataxia, transient ischemic attack, cardiomyopathy, coronary artery disease, chronic fatigue syndrome, fibromyalgia, retinitis pigmentosa, diabetes, hepatitis C, and primary biliary cirrhosis, have underlying pathophysiological mechanisms in common, namely reactive oxygen species (ROS) production, the accumulation of mitochondrial DNA (mtDNA) damage, resulting in mitochondrial dysfunction. Antioxidant therapies hold promise for improving mitochondrial performance. Physicians seeking systematic treatments for their patients might consider testing urinary organic acids to determine how best to treat them. If in the next 50 years advances in mitochondrial treatments match the immense increase in knowledge about mitochondrial function that has occurred in the last 50 years, mitochondrial diseases and dysfunction will largely be a medical triumph.
Collapse
|
131
|
Hudson G, Chinnery PF. Mitochondrial DNA polymerase-gamma and human disease. Hum Mol Genet 2006; 15 Spec No 2:R244-52. [PMID: 16987890 DOI: 10.1093/hmg/ddl233] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The maintenance of mitochondrial DNA (mtDNA) is critically dependent upon polymerase-gamma (pol-gamma), encoded by the nuclear gene POLG. Over the last 5 years, it has become clear that mutations of POLG are a major cause of human disease. Secondary mtDNA defects characterize these disorders, with mtDNA depletion, multiple mtDNA deletions or multiple point mutations of mtDNA in clinically affected tissues. The secondary mtDNA defects cause cell and tissue-specific deficiencies of mitochondrial oxidative phosphorylation, leading to organ dysfunction and human disease. Functional genetic variants of POLG are present in up to approximately 0.5% of the general population, and pathogenic mutations have been described in most exons of the gene. Clinically, POLG mutations can present from early neonatal life to late middle age, with a spectrum of phenotypes that includes common neurological disorders such as migraine, epilepsy and Parkinsonism. Transgenic mice and biochemical studies of recombinant mutated proteins are helping to unravel mechanisms of pathogenesis, and patterns are beginning to emerge relating genotype to phenotype.
Collapse
Affiliation(s)
- Gavin Hudson
- Mitochondrial Research Group and Institute of Human Genetics, M41014, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
132
|
Chen FL, Liu Y, Song XY, Hu HY, Xu HB, Zhang XM, Shi JH, Hu J, Shen Y, Lu B, Wang XC, Hu RM. A novel mitochondrial DNA missense mutation at G3421A in a family with maternally inherited diabetes and deafness. Mutat Res 2006; 602:26-33. [PMID: 16949108 DOI: 10.1016/j.mrfmmm.2006.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 07/24/2006] [Accepted: 07/28/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Mutations in mtDNA are thought to be responsible for the pathogenesis of maternally inherited diabetes. Here, we report a family with maternally inherited diabetes and deafness whose members did not harbour the mtDNA A3243G mutation, the most frequent point mutation in mitochondrial diabetic patients. This study aimed to investigate a possible other mtDNA mutation and its prevalence in type 2 diabetic patients. METHODS Height, body weight, waistline, and hip circumference were measured and serum biochemical marks determined in all members of the family. In addition, a 75 g oral glucose tolerance test and electric listening test were conducted in these members. Genomic DNA was prepared from peripheral leukocytes. Direct sequencing of PCR products was used to detect the mtDNA mutation in this family. The prevalence of mtDNA G3421A nucleotide substitutions was investigated by restriction fragment length polymorphism analysis in 1350 unrelated type 2 diabetic patients recruited by random cluster sampling from the central city area of Shanghai, China. RESULTS (1) A new missense homoplasmic mutation of mtDNA G3421A was found in a maternally inherited diabetic family and existed neither in 1350 unrelated type 2 diabetic patients nor in 50 non-diabetic individuals. (2) The mode of mutation and diabetes transmission was typical maternal inheritance in this family. (3) All diabetic family members were found to have an onset at 35-42 years of age, accompanied by deafness of varying degrees. CONCLUSION mtDNA G3421A (Val39Ile) found in a family with maternally inherited diabetes and deafness is a novel missense mutation. Whether this is a diabetogenic mutation and its effect on mitochondrial function needs to be further studied.
Collapse
Affiliation(s)
- F L Chen
- Department of Endocrinology, Institute of Endocrinology and Diabetology, Huashan Hospital, Fu Dan University, 12 Middle Wurumqi Road, Shanghai 200040, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Crespillo M, Paredes MR, Prieto L, Montesino M, Salas A, Albarran C, Alvarez-Iglesias V, Amorin A, Berniell-Lee G, Brehm A, Carril JC, Corach D, Cuevas N, Di Lonardo AM, Doutremepuich C, Espinheira RM, Espinoza M, Gómez F, González A, Hernández A, Hidalgo M, Jimenez M, Leite FPN, López AM, López-Soto M, Lorente JA, Pagano S, Palacio AM, Pestano JJ, Pinheiro MF, Raimondi E, Ramón MM, Tovar F, Vidal-Rioja L, Vide MC, Whittle MR, Yunis JJ, Garcia-Hirschfel J. Results of the 2003–2004 GEP-ISFG collaborative study on mitochondrial DNA: Focus on the mtDNA profile of a mixed semen-saliva stain. Forensic Sci Int 2006; 160:157-67. [PMID: 16243467 DOI: 10.1016/j.forsciint.2005.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 09/17/2005] [Accepted: 09/17/2005] [Indexed: 11/29/2022]
Abstract
We report here a review of the seventh mitochondrial DNA (mtDNA) exercise undertaken by the Spanish and Portuguese working group (GEP) of the International Society for Forensic Genetics (ISFG) corresponding to the period 2003-2004. Five reference bloodstains from five donors (M1-M5), a mixed stain of saliva and semen (M6), and a hair sample (M7) were submitted to each participating laboratory for nuclear DNA (nDNA; autosomal STR and Y-STR) and mtDNA analysis. Laboratories were asked to investigate the contributors of samples M6 and M7 among the reference donors (M1-M5). A total of 34 laboratories reported total or partial mtDNA sequence data from both, the reference bloodstains (M1-M5) and the hair sample (M7) concluding a match between mtDNA profiles of M5 and M7. Autosomal STR and Y-STR profiling was the preferred strategy to investigate the contributors of the semen/saliva mixture (M6). Nuclear DNA profiles were consistent with a mixture of saliva from the donor (female) of M4 and semen from donor M5, being the semen (XY) profile the dominant component of the mixture. Strikingly, and in contradiction to the nuclear DNA analysis, mtDNA sequencing results yield a more simple result: only the saliva contribution (M4) was detected, either after preferential lysis or after complete DNA digestion. Some labs provided with several explanations for this finding and carried out additional experiments to explain this apparent contradictory result. The results pointed to the existence of different relative amounts of nuclear and mtDNAs in saliva and semen. We conclude that this circumstance could strongly influence the interpretation of the mtDNA evidence in unbalanced mixtures and in consequence lead to false exclusions. During the GEP-ISFG annual conference a validation study was planned to progress in the interpretation of mtDNA from different mixtures.
Collapse
Affiliation(s)
- Manuel Crespillo
- Instituto Nacional de Toxicología y Ciencias Forenses, Servicio de Biología, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Qian W, Nishikawa M, Haque AM, Hirose M, Mashimo M, Sato E, Inoue M. Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol 2005; 289:C1466-75. [PMID: 16107504 DOI: 10.1152/ajpcell.00265.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We studied the relationship between the mitochondrial density in the cells and the cellular sensitivity to the toxicity of cis-diaminedichloroplatinum II (cisplatin), a potent anticancer agent. Biochemical analyses revealed that the density of mitochondria in the intestinal epithelium changed markedly along its entire length. The density was the highest at the duodenum, medium at the jejunum, and the lowest at the ileum. The sensitivity of epithelial cells to cisplatin toxicity was the highest at the duodenum, medium at the jejunum, and the lowest at the ileum as judged from the occurrence of apoptosis. Similar correlation between the cisplatin sensitivity and mitochondrial density was also observed with in vitro experiments, in which intestinal epithelial cells (IEC-6) and their rho0 cells with reduced number of mitochondria were used. The rho0 cells had a strong resistance to cisplatin compared with the control cells. Cisplatin markedly increased mitochondrial generation of reactive oxygen species in IEC-6 but not in rho0 cells. We analyzed the sensitivity of eight cell lines with different density of mitochondria to cisplatin and found the same positive correlation. These observations clearly show that cellular density of mitochondria is the key factor for the determination of the anticancer activity and side effects of cisplatin.
Collapse
Affiliation(s)
- Wei Qian
- Dept. of Biochemistry and Molecular Pathology, Osaka City Univ. Medical School, Osaka 545-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
135
|
Zhang M, Sell S, Leffert HL. Hepatic progenitor cell lines from allyl alcohol-treated adult rats are derived from gamma-irradiated mouse STO cells. Stem Cells 2004; 21:449-58. [PMID: 12832698 DOI: 10.1634/stemcells.21-4-449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In attempts to recharacterize several markers of putative rat liver progenitor cells, single-stage reverse transcription-polymerase chain reaction (RT-PCR) analyses failed to confirm the reported immunochemical detection of albumin, alpha(1)-fetoprotein, and cytochrome P450-1A2 in the clonal line, 3(8)#21, and the cloned derivative, 3(8)#21-EGFP (enhanced green fluorescent protein). Undetectable expression occurred whether or not both lines were cultured on or off feeder layers of gamma-irradiated mouse embryonic STO (SIM [Sandoz inbred Swiss mouse] thioguanine-resistant ouabain-resistant) cells. PCR amplification of liver progenitor cell chromosomal (rat and mouse Pigr, rat INS1, mouse INS2) and mitochondrial (rat and mouse COX1) genes revealed only mouse sequences. Further analyses of rat and mouse COX1 sequences in cells from untampered storage vials of all 11 reported liver progenitor cell lines and strains revealed only mouse sequences. In addition, uniquely similar metaphase spreads were observed in STO, 3(8)#21, and 3(8)#21-EGFP cells. The combined results suggest that the previously reported "rat" liver progenitor cell lines were most likely generated during early derivation in cell culture from gamma-radiation-resistant or ineffectively irradiated mouse STO cells used as the feeder layers. These findings reveal new types of artifacts encountered in cocultures of tissue progenitor cells and feeder layer cell lines, and they sound a cautionary note: phenotypic and genotypic properties of feeder layers should be well-characterized before and during coculture with newly derived stem cells and clonal derivatives.
Collapse
Affiliation(s)
- Mingjun Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
136
|
Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, Bolouri MS, Ray HN, Sihag S, Kamal M, Patterson N, Lander ES, Mann M. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2004; 115:629-40. [PMID: 14651853 DOI: 10.1016/s0092-8674(03)00926-7] [Citation(s) in RCA: 698] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mitochondria are tailored to meet the metabolic and signaling needs of each cell. To explore its molecular composition, we performed a proteomic survey of mitochondria from mouse brain, heart, kidney, and liver and combined the results with existing gene annotations to produce a list of 591 mitochondrial proteins, including 163 proteins not previously associated with this organelle. The protein expression data were largely concordant with large-scale surveys of RNA abundance and both measures indicate tissue-specific differences in organelle composition. RNA expression profiles across tissues revealed networks of mitochondrial genes that share functional and regulatory mechanisms. We also determined a larger "neighborhood" of genes whose expression is closely correlated to the mitochondrial genes. The combined analysis identifies specific genes of biological interest, such as candidates for mtDNA repair enzymes, offers new insights into the biogenesis and ancestry of mammalian mitochondria, and provides a framework for understanding the organelle's contribution to human disease.
Collapse
|
137
|
Kajimoto K, Daikoku T, Kita F, Yamazaki N, Kataoka M, Baba Y, Terada H, Shinohara Y. PCR-select subtraction for characterization of messages differentially expressed in brown compared with white adipose tissue. Mol Genet Metab 2003; 80:255-61. [PMID: 14567975 DOI: 10.1016/j.ymgme.2003.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To understand the energy metabolism occurring in brown adipose tissue (BAT), we subtracted the messages expressed in white adipose tissue (WAT) from those in BAT. Thereby we succeeded in identifying 37 cDNA clones as being significantly expressed in BAT but not in WAT. Of these, 24 clones were found to code for mitochondrial proteins. Since BAT is well known to have a higher mitochondrial content than WAT, these results would seem to reflect simply the differences in mitochondrial content between BAT and WAT. To examine this possibility, we next measured the amount of mitochondrial DNA (mtDNA) in various rat tissues. As a result, the mtDNA copy number per cell was found to be markedly different among the tissues analyzed, and the highest value of about 5.3x10(4) copies per cell was observed with the rat brain. BAT showed a value similar to that of brain, but this value was only about 3.5-fold higher than that for WAT. Since observed differences in mitochondrial content between BAT and WAT was smaller than those observed with transcript levels of proteins, we conclude that the observed differences in the transcript levels of certain proteins between BAT and WAT reflect the functional differences between BAT and WAT, and do not reflect the differences in mitochondrial content between BAT and WAT.
Collapse
Affiliation(s)
- Kazuaki Kajimoto
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima 770-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Lutz-Bonengel S, Schmidt U, Schmitt T, Pollak S. Sequence polymorphisms within the human mitochondrial genes MTATP6, MTATP8 and MTND4. Int J Legal Med 2003; 117:133-42. [PMID: 12734709 DOI: 10.1007/s00414-002-0356-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Accepted: 11/19/2002] [Indexed: 10/25/2022]
Abstract
By sequencing the control region of mitochondrial DNA, the majority of human DNA samples can be differentiated. A further increase in differentiation probability may be possible, e.g. by extending the sequenced region to coding regions of the mitochondrial genome. Restriction to those positions that do not result in a change of the amino acids guarantees that the information thus obtained does not refer to phenotypically relevant information. In the present study the sequence data of the mitochondrial genes MTATP6, MTATP8 and MTND4 were collected from 109 subjects and analyzed in order to define variable positions suitable for identification purposes. There were 32 variable base positions among 850 bases studied from MTATPase genes and 1,200 bases of the MTND4 gene showed 28 variable positions. "Hot spots" for base exchanges were found in both regions and one position (position 11,719 in the MTND4 gene) seems to be suitable for SNP investigation for forensic purposes.
Collapse
Affiliation(s)
- Sabine Lutz-Bonengel
- Institut für Rechtsmedizin, Klinikum der Universität Freiburg, Albertstrasse 9, 79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
139
|
Müller-Höcker J, Schäfer S, Li K. Immunocytochemical localization of mitochondrial single-stranded DNA-binding protein in mitochondria-rich cells of normal and neoplastic human tissue. Appl Immunohistochem Mol Morphol 2001; 9:276-80. [PMID: 11556757 DOI: 10.1097/00129039-200109000-00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mitochondrial single-stranded DNA-binding protein (mtSSB) is necessary for mtDNA replication. So far the protein has been studied mainly in Escherichia coli and in cell cultures of lower mammals. In this investigation, the authors studied the expression of mtSSB in normal and neoplastic human tissue by light and electron immunocytochemistry. mtSSB has been detected in various tissues and particularly in mitochondria-rich tissues such as external eye muscles and parietal cells of the stomach and in mitochondria-rich tumors (oncocytomas) of various origins. Ultraimmunocytochemistry disclosed the specific distribution of immunoreactive mtSSB over the mitochondria. The staining intensity was heterogeneous. Forty-five percent had a labeling index (silver grains/microm2) greater than 1 and less than 3, approximately 20% had an index of 3 or greater, and 15% of mitochondria remained unstained. The mean labeling index was 1.83. Immunolabeling showed a linear correlation with the mitochondrial profile area (r = 0.82). In conclusion, mtSSB is regularly expressed in normal and neoplastic human tissue of different origin, function, and differentiation. The heterogeneous staining pattern most probably reflects the functional heterogeneity of mitochondria.
Collapse
Affiliation(s)
- J Müller-Höcker
- Department of Pathology, Ludwig-Maximilians-Universität München, Germany
| | | | | |
Collapse
|
140
|
Koekemoer TC, Oelofsen W. Properties of porcine white adipose tissue and liver mitochondrial subpopulations. Int J Biochem Cell Biol 2001; 33:889-901. [PMID: 11461831 DOI: 10.1016/s1357-2725(01)00064-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Properties of porcine white adipose tissue heavy and light mitochondrial subpopulations were investigated so as to identify any functional heterogeneity. Liver mitochondrial subpopulations were concurrently evaluated since their properties have been studied in some detail. Mitochondrial subpopulations were isolated by means of differential centrifugation and the relative purity estimated using marker enzymes. Due to the greater contamination of the light mitochondrial fractions, mtDNA content, determined by PCR analysis, was used as a basis to demonstrate any mitochondrial heterogeneity. Enzymatic activity, electron microscopy, lipid analysis and Western blotting were used to characterise the different populations. With the exception of liver cytochrome c oxidase, the enzymatic capacity of adipose and liver heavy mitochondria ranged between approximately two- and threefold higher than the corresponding light fraction. The cardiolipin content and mean mitochondrial diameters paralleled these differences, suggesting an increased mitochondrial mass rather than a functional difference. However, the cytochrome c oxidase activity of the liver heavy mitochondria was 4.75-fold higher relative to the light fraction. A strong correlation between cytochrome c oxidase activity and the subunit I content was evident. Adipose tissue mitochondrial subpopulations would seem to possess a comparable oxidative capacity per gram mitochondrial protein, while liver heavy mitochondria possess an increased oxidative capacity and mass.
Collapse
Affiliation(s)
- T C Koekemoer
- Department of Biochemistry and Microbiology, University of Port Elizabeth 6000, Port Elizabeth, South Africa
| | | |
Collapse
|
141
|
Koekemoer TC, Oelofsen W. Biochemical properties of porcine white adipose tissue mitochondria and relevance to fatty acid oxidation. Comp Biochem Physiol B Biochem Mol Biol 2001; 129:797-807. [PMID: 11435134 DOI: 10.1016/s1096-4959(01)00398-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The capacity of white adipose tissue mitochondria to support a high beta-oxidative flux was investigated by comparison to liver mitochondria. Based on marker enzyme activities and electron microscopy, the relative purity of the isolated mitochondria was similar thus allowing a direct comparison on a protein basis. The results confirm the comparable capacity of adipose tissue and liver mitochondria for palmitoyl-carnitine oxidation. Relative to liver, both citrate synthase and alpha-ketoglutarate dehydrogenase were increased 7.87- and 10.38-fold, respectively. In contrast, adipose tissue NAD-isocitrate dehydrogenase was decreased (2.85-fold). Such modifications in the citric acid cycle are expected to severely restrict citrate oxidation in porcine adipose tissue. Except for cytochrome c oxidase, activities of the enzyme complexes comprising the electron transport chain were not significantly different. The decrease in adipose cytochrome c oxidase activity could partly be attributed to a decreased inner membrane as suggested by lipid and enzyme analysis. In addition, Western blotting indicated that adipose and liver mitochondria possess similar quantities of cytochrome c oxidase protein. Taken together these results indicate that not only is the white adipose tissue protoplasm relatively rich in mitochondria, but that these mitochondria contain comparable enzymatic machinery to support a relatively high beta-oxidative rate.
Collapse
Affiliation(s)
- T C Koekemoer
- Department of Biochemistry & Microbiology, University of Port Elizabeth, P.O. Box 1600, 6000, Port Elizabeth, South Africa
| | | |
Collapse
|
142
|
Jacobs HT, Lehtinen SK, Spelbrink JN. No sex please, we're mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtDNA. Bioessays 2000; 22:564-72. [PMID: 10842310 DOI: 10.1002/(sici)1521-1878(200006)22:6<564::aid-bies9>3.0.co;2-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this article we develop a model for the organization and maintenance of mitochondrial DNA (mtDNA) in mammalian somatic cells, based on the idea that the unit of genetic function comprises a group of mtDNA molecules that are semi-permanently associated as a mitochondrial nucleoid. Different mtDNA molecules within a nucleoid need not be genetically identical. We propose that nucleoids replicate faithfully via a kind of mitochondrial mitosis, generating daughter nucleoids that are identical copies of each other, but which can themselves segregate freely. This model can account for the very slow rates of mitotic segregation observed in cultured, heteroplasmic cell-lines, and also for the apparently poor complementation observed between different mutant mtDNAs co-introduced into rho(0) cells (cells that lack endogenous mtDNA). It also provides a potential system for maintaining the mitochondrial genetic fitness of stem cells in the face of a presumed high somatic mutation rate of mtDNA and many rounds of cell division in the absence of phenotypic selection. BioEssays 22:564-572, 2000.
Collapse
Affiliation(s)
- H T Jacobs
- Institute of Medical Technology and Tampere University Hospital, 33101 Tampere, Finland.
| | | | | |
Collapse
|
143
|
Abstract
Approximately 5% of the world's human population have an increased risk for developing liver cancer and cirrhosis as a direct consequence of chronic infection with the hepatitis B virus (HBV). Antiviral chemotherapy remains the only option for controlling infection in these individuals, for whom the current licensed hepatitis B vaccines provide no benefit. Interferon (IFN)-alpha has proven benefit in a well-defined group of those with hepatitis B but has made little impact on the global burden of chronic liver disease. The development of more effective chemotherapy for treatment of chronic hepatitis B infection has proven to be extremely challenging, the result of both virus- and host-dependent factors, which will be reviewed in this article. Past attempts to treat chronic hepatitis B infection using nucleoside analogues were disappointing, but more recently, several nucleoside (or nucleotide) analogues have been identified that are potent and selective inhibitors of HBV replication. These agents fall into two broad categories: (1) nucleoside/nucleotides that have modified sugar residues in either cyclic or acyclic configurations and (2) stereoisomers of nucleosides in the "unnatural" L-configuration. Of the analogues that have been used clinically, representatives of the first category are purine derivatives, e.g., adefovir dipivoxil and famciclovir, whereas representatives of the second category are pyrimidine derivatives, such as lamivudine.
Collapse
Affiliation(s)
- J Torresi
- Victorian Infectious Diseases Reference Laboratory, North Melbourne, Australia
| | | |
Collapse
|
144
|
Howell N. Human mitochondrial diseases: answering questions and questioning answers. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 186:49-116. [PMID: 9770297 DOI: 10.1016/s0074-7696(08)61051-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the first identification in 1988 of pathogenic mitochondrial DNA (mtDNA) mutations, the mitochondrial diseases have emerged as a major clinical entity. The most striking feature of these disorders is their marked heterogeneity, which extends to their clinical, biochemical, and genetic characteristics. The major mitochondrial encephalomyopathies include MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes), MERRF (myoclonic epilepsy with ragged red fibers), KSS/CPEO (Kearns-Sayre syndrome/chronic progressive external ophthalmoplegia), and NARP/MILS (neuropathy, ataxia, and retinitis pigmentosum/maternally inherited Leigh syndrome) and they typically present highly variable multisystem defects that usually involve abnormalities of skeletal muscle and/or the CNS. The primary emphasis here is to review recent investigations of these mitochondrial diseases from the standpoint of how the complexities of mitochondrial genetics and biogenesis might determine their varied features. In addition, the mitochondrial encephalomyopathies are compared and contrasted to Leber hereditary optic neuropathy, a mitochondrial disease in which the pathogenic mtDNA mutations produce a more uniform and focal neuropathology. All of these disorders involve, at some level, a mitochondrial respiratory chain dysfunction. Because mitochondrial genetics differs so strikingly from the Mendelian inheritance of chromosomes, recent research on the origin and subsequent segregation and transmission of mtDNA mutations is reviewed.
Collapse
Affiliation(s)
- N Howell
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston 77555, USA.
| |
Collapse
|
145
|
Abstract
Human mitochondrial DNA has become a useful tool in forensic investigations. Its polymorphic nature and maternal inheritance are characteristics that have, combined with its sequence information, enabled investigators to identify missing persons, war casualties and individuals involved in mass disasters and criminal cases. Various screening procedures have been developed to reduce the need to sequence samples that do not match, but DNA-sequence information is still necessary to verify a match. Even though several challenges remain before mitochondrial-DNA-sequence information can be used unambiguously, comparative mitochondrial-DNA-sequence analysis appears to be a reliable and powerful means for human identification.
Collapse
Affiliation(s)
- J M Butler
- Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | |
Collapse
|
146
|
Hamblet NS, Castora FJ. Elevated levels of the Kearns-Sayre syndrome mitochondrial DNA deletion in temporal cortex of Alzheimer's patients. Mutat Res 1997; 379:253-62. [PMID: 9357554 DOI: 10.1016/s0027-5107(97)00158-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A mitochondrial hypothesis of Alzheimer's disease (AD) has been proposed based on a number of studies which establish altered oxidative phosphorylation (OXPHOS) and ATP synthesis in AD tissue. Four out of five complexes in the OXPHOS pathway are partly encoded by mitochondrial DNA (mtDNA); thus, this may be a crucial site of lesions that alter brain activity. We examined temporal cortex autopsy tissue for deleted mtDNA by PCR-based methods and Southern analysis. AD tissue was obtained from autopsy-confirmed cases that had a postmortem delay ranging from 5 to 27 h. Using a rat brain model system to examine postmortem effects by Southern analysis, no evidence of mtDNA degradation after 30 h of postmortem delay at room temperature was found. Nine tissue samples taken from AD autopsy brain (average age 68 years) and nine age-matched controls (average age 66 years) were assessed by serial dilution PCR for the 5 kb deletion (mtDNA delta 4977) previously associated with Kearns-Sayre syndrome. Using this method we determined that AD temporal cortex had a 6.5-fold greater frequency of mtDNA delta 4977 than controls (0.0593% vs. 0.0092%, p = 0.0269, one-tailed; p = 0.0530, two-tailed), indicating that damaged mtDNA preferentially accumulates in AD compared to aged brain.
Collapse
Affiliation(s)
- N S Hamblet
- Department of Biochemistry, Eastern Virginia Medical School, Norfolk 23507-1696, USA
| | | |
Collapse
|
147
|
Manfredi G, Thyagarajan D, Papadopoulou LC, Pallotti F, Schon EA. The fate of human sperm-derived mtDNA in somatic cells. Am J Hum Genet 1997; 61:953-60. [PMID: 9382109 PMCID: PMC1715995 DOI: 10.1086/514887] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inheritance of animal mtDNA is almost exclusively maternal, most likely because sperm-derived mitochondria are actively eliminated from the ovum, either at or soon after fertilization. How such elimination occurs is currently unknown. We asked whether similar behavior could be detected in somatic cells, by following the fate of mitochondria and mtDNAs after entry of human sperm into transformed cells containing mitochondria but lacking endogenous mtDNAs (rho0 cells). We found that a high proportion (10%-20%) of cells contained functioning sperm mitochondria soon after sperm entry. However, under selective conditions permitting only the survival of cells harboring functional mtDNAs, only approximately 1/10(5) cells containing sperm mitochondria survived and proliferated. These data imply that mitochondria in sperm can enter somatic cells relatively easily, but they also suggest that mechanisms exist to eliminate sperm-derived mtDNA from somatic cells, mechanisms perhaps similar to those presumed to operate in the fertilized oocyte.
Collapse
Affiliation(s)
- G Manfredi
- H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Disorders, and Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
148
|
Fischel-Ghodsian N, Bykhovskaya Y, Taylor K, Kahen T, Cantor R, Ehrenman K, Smith R, Keithley E. Temporal bone analysis of patients with presbycusis reveals high frequency of mitochondrial mutations. Hear Res 1997; 110:147-54. [PMID: 9282897 DOI: 10.1016/s0378-5955(97)00077-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Presbycusis is a histologically and genetically heterogenous group of disorders, which lead to progressive, primarily sensorineural hearing loss with aging. Acquired mitochondrial DNA defects have been proposed as important determinants of aging, particularly in neuro-muscular tissues. The spiral ganglion and membranous labyrinth from archival temporal bones of 5 patients with presbycusis were examined for mutations within the mitochondrially-encoded cytochrome oxidase II gene. When compared to controls, results indicate that mitochondrial mutations in the peripheral auditory system occur commonly with age-related hearing loss, that there is great individual variability in both quantity and location of mutation accumulation, and that at least a proportion of presbycusis patients have a highly significant load of mutations in auditory tissue. This work supports the hypothesis that acquired mitochondrial mutations are a determinant of hearing loss in a subgroup of presbycusis patients.
Collapse
Affiliation(s)
- N Fischel-Ghodsian
- Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
The discovery that mutations in mitochondrial DNA (mtDNA) can be pathogenic in humans has increased interest in understanding mtDNA maintenance. The functional state of mtDNA requires a great number of factors for gene expression, DNA replication, and DNA repair. These processes are ultimately controlled by the cell nucleus, because the requisite proteins are all encoded by nuclear genes and imported into the mitochondrion. DNA replication and transcription are linked in vertebrate mitochondria because RNA transcripts initiated at the light-strand promoter are the primers for mtDNA replication at the heavy-strand origin. Study of this transcription-primed DNA replication mechanism has led to isolation of key factors involved in mtDNA replication and transcription and to elucidation of unique nucleic acid structures formed at this origin. Because features of a transcription-primed mechanism appear to be conserved in vertebrates, a general model for initiation of vertebrate heavy-strand DNA synthesis is proposed. In many organisms, mtDNA maintenance requires not only faithful mtDNA replication, but also mtDNA repair and recombination. The extent to which these latter two processes are involved in mtDNA maintenance in vertebrates is also appraised.
Collapse
Affiliation(s)
- G S Shadel
- Department of Biochemistry, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
150
|
Shaw T, Locarnini SA. Hepatic purine and pyrimidine metabolism: implications for antiviral chemotherapy of viral hepatitis. LIVER 1995; 15:169-84. [PMID: 8544639 DOI: 10.1111/j.1600-0676.1995.tb00667.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The use of nucleoside analogues as antiviral agents is expanding. For most nucleoside analogues, intracellular phosphorylation is the major prerequisite for activity. Antiviral activity may be limited by poor uptake, absence of appropriate activating enzymes, catabolism, and competition from endogenous nucleotides. Appreciation of these factors, which are species-, tissue- and cell-specific is important in the understanding of the pharmacology and toxicology of nucleoside analogues. The use of nucleoside analogues against the agents of viral hepatitis is inherently problematic for many reasons including active hepatic nucleoside catabolism, probable absence of virus-specific activating enzymes, competition from endogenous nucleotides synthesised de novo or derived from RNA turnover, and factors related to mitochondrial toxicity. Despite these drawbacks, some nucleoside analogues have been found efficacious against hepatitis B virus and it is likely that as knowledge of their mechanism of action accumulates, their efficacy can be improved both by rational drug design and by use in combination with other drugs, including interferon.
Collapse
Affiliation(s)
- T Shaw
- Macfarlane Burnet Centre for Medical Research, Fairfield Hospital, Victoria, Australia
| | | |
Collapse
|