101
|
Stepanichev MY, Onufriev MV, Piskunov AK, Moiseeva YV, Lazareva NA, Moiseenok AG, Gusev PV, Gulyaeva NV. The effects of derivatives of pantothenic acid on free-radical processes and the corticosterone level in the hippocampus and neocortex of rats after interoceptive stress. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413020062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
102
|
Twenty-five years of research on the behavioural malaise associated with influenza and the common cold. Psychoneuroendocrinology 2013; 38:744-51. [PMID: 23021498 PMCID: PMC7130811 DOI: 10.1016/j.psyneuen.2012.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/03/2012] [Accepted: 09/03/2012] [Indexed: 01/05/2023]
Abstract
Minor illnesses such as the common cold and influenza are frequent and widespread. As well as specific symptoms such as nasal problems and fever, these illnesses are associated with a behavioural malaise. One feature of this malaise is reduced alertness and this has been confirmed using subjective reports and objective measures of performance. Such effects have been obtained with both experimentally induced infections and in studies of naturally occurring illnesses. The mechanisms underlying the effects are unclear but possibly reflect effects of cytokines on the CNS which result in changes in neurotransmitter functioning that lead to reduced alertness. The malaise induced by these illnesses has many real-life consequences and activities such as driving and safety at work may be at risk. These illnesses not only have direct effects on performance and mood but also make the person more sensitive to effects of other negative influences such as noise, alcohol and prolonged work. Countermeasures include ingestion of caffeine and other drugs known to increase alertness.
Collapse
|
103
|
Coltart I, Tranah TH, Shawcross DL. Inflammation and hepatic encephalopathy. Arch Biochem Biophys 2013; 536:189-96. [PMID: 23583306 DOI: 10.1016/j.abb.2013.03.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/13/2013] [Accepted: 03/19/2013] [Indexed: 12/12/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome associated with both acute and chronic liver dysfunction, spanning a spectrum that ranges from mild neuropsychological disturbances to coma. The central role of ammonia in the pathogenesis of HE remains incontrovertible however, there is a robust evidence base indicating the important role of inflammation in exacerbating the neurological effects of HE. Inflammation can arise directly within the brain itself as a result of deranged nitrogen and energy homeostasis, with resultant neuronal, astrocyte and microglial dysfunction. Inflammation may also originate in the peripheral circulation and exert effects on the brain indirectly, via the release of pro-inflammatory mediators which directly signal to the brain via the vagus nerve. This review summarises the data that demonstrate the synergistic relationship of inflammation and ammonia that culminates in the manifestation of HE. Sterile inflammation arising from the inflamed or necrotic liver, circulating endotoxin arising from the gut (bacterial translocation) inducing immune dysfunction, and superimposed sepsis will be comprehensively discussed. Finally, this review will provide an overview of the existing and novel treatments on the horizon which can target the inflammatory response, and how they might translate into clinical practise as therapies in the prophylaxis and treatment of HE.
Collapse
Affiliation(s)
- Iona Coltart
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | | | | |
Collapse
|
104
|
Kranjac D, Koster KM, Kahn MS, Eimerbrink MJ, Womble BM, Cooper BG, Chumley MJ, Boehm GW. Peripheral administration of d-cycloserine rescues memory consolidation following bacterial endotoxin exposure. Behav Brain Res 2013; 243:38-43. [DOI: 10.1016/j.bbr.2012.12.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/12/2022]
|
105
|
Brewster AL, Lugo JN, Patil VV, Lee WL, Qian Y, Vanegas F, Anderson AE. Rapamycin reverses status epilepticus-induced memory deficits and dendritic damage. PLoS One 2013; 8:e57808. [PMID: 23536771 PMCID: PMC3594232 DOI: 10.1371/journal.pone.0057808] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/26/2013] [Indexed: 12/27/2022] Open
Abstract
Cognitive impairments are prominent sequelae of prolonged continuous seizures (status epilepticus; SE) in humans and animal models. While often associated with dendritic injury, the underlying mechanisms remain elusive. The mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated following SE. This pathway modulates learning and memory and is associated with regulation of neuronal, dendritic, and glial properties. Thus, in the present study we tested the hypothesis that SE-induced mTORC1 hyperactivation is a candidate mechanism underlying cognitive deficits and dendritic pathology seen following SE. We examined the effects of rapamycin, an mTORC1 inhibitor, on the early hippocampal-dependent spatial learning and memory deficits associated with an episode of pilocarpine-induced SE. Rapamycin-treated SE rats performed significantly better than the vehicle-treated rats in two spatial memory tasks, the Morris water maze and the novel object recognition test. At the molecular level, we found that the SE-induced increase in mTORC1 signaling was localized in neurons and microglia. Rapamycin decreased the SE-induced mTOR activation and attenuated microgliosis which was mostly localized within the CA1 area. These findings paralleled a reversal of the SE-induced decreases in dendritic Map2 and ion channels levels as well as improved dendritic branching and spine density in area CA1 following rapamycin treatment. Taken together, these findings suggest that mTORC1 hyperactivity contributes to early hippocampal-dependent spatial learning and memory deficits and dendritic dysregulation associated with SE.
Collapse
Affiliation(s)
- Amy L. Brewster
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joaquin N. Lugo
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vinit V. Patil
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wai L. Lee
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yan Qian
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fabiola Vanegas
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anne E. Anderson
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
106
|
Xu M, Sulkowski ZL, Parekh P, Khan A, Chen T, Midha S, Iwasaki T, Shimokawa N, Koibuchi N, Zavacki AM, Sajdel-Sulkowska EM. Effects of Perinatal Lipopolysaccharide (LPS) Exposure on the Developing Rat Brain; Modeling the Effect of Maternal Infection on the Developing Human CNS. THE CEREBELLUM 2013; 12:572-86. [DOI: 10.1007/s12311-013-0465-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
107
|
Tranah TH, Vijay GKM, Ryan JM, Shawcross DL. Systemic inflammation and ammonia in hepatic encephalopathy. Metab Brain Dis 2013; 28:1-5. [PMID: 23224356 DOI: 10.1007/s11011-012-9370-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/26/2012] [Indexed: 02/07/2023]
Abstract
Infection and inflammation have been associated with the development of delirium for many centuries and there is a rapidly growing evidence base supporting the role of inflammation in exacerbating the neurological manifestations of both acute and chronic liver failure. Inflammation in the context of hepatic encephalopathy (HE) can arise directly within the brain itself resulting in astrocytic, microglial and neuronal dysfunction, impacting on the development of 'brain failure'. Inflammation may also develop systemically and indirectly influence brain function. Systemic inflammation develops following liver injury, resulting in hyperammonemia and a 'cytotoxic soup' of pro-inflammatory mediators which are released into the circulation and modulate the impact of ammonia on the brain. The aim of this review is to summarise the current evidence base supporting the synergistic role of systemic inflammation and hyperammonemia in the pathogenesis of hepatic encephalopathy. Systemic inflammation and ammonia induce neutrophil degranulation and release reactive oxygen species into the peripheral circulation that may ultimately cross the blood brain barrier. Circulating endotoxin arising from the gut (bacterial translocation), superimposed sepsis, and hyperammonemia upregulate the expression of microbial pattern recognition receptors such as Toll-like receptors. The early recognition and management of systemic inflammation may not only facilitate improved outcomes in HE but supports the development of novel therapeutic strategies that reduce circulating endotoxemia and immune cell dysfunction.
Collapse
Affiliation(s)
- Thomas H Tranah
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, King's College Hospital, Denmark Hill, London, UK
| | | | | | | |
Collapse
|
108
|
Gibney SM, McGuinness B, Prendergast C, Harkin A, Connor TJ. Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav Immun 2013. [PMID: 23201589 DOI: 10.1016/j.bbi.2012.11.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this study we characterised the ability of the viral mimetic poly I:C to induce a neuroinflammatory response and induce symptoms of depression and anxiety in rats. Furthermore, the ability of poly I:C to deplete central tryptophan and serotonin via induction of indolamine 2,3 dioxygenase (IDO), and also the ability of poly I:C to impact upon expression of the neurotrophin BDNF and its receptor TrkB were examined as potential mechanisms to link inflammation to depression. Poly I:C induced a neuroinflammatory response characterised by increased expression of IL-1β, IL-6, TNF-α and CD11b in frontal cortex and hippocampus. In the first 24h following poly I:C administration rats displayed sickness behaviour characterised by reduced locomotor activity and weight gain. Anhedonia measured using the saccharin preference test was used as an indicator of depressive behaviour, and poly I:C induced depressive behaviour that persisted for up to 72h following administration. Anxiety was measured using the open field test and anxious behaviour was observed 24h following poly I:C, a time-point when sickness behaviour had resolved. These behavioural changes were accompanied by decreased expression of BDNF and TrkB in hippocampus and frontal cortex. In addition, poly I:C increased central IDO expression and increased concentrations of tryptophan, and its metabolite kynurenine. However this activation of the kynurenine pathway did not result in reduced central serotonin concentrations. These findings suggest that depressive and anxiety-like behaviours elicited by poly I:C are associated with a reduction in BDNF signalling, and activation of the kynurenine pathway, but not a reduction in serotonin.
Collapse
Affiliation(s)
- Sinead M Gibney
- Neuroimmunology Research Group, Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
109
|
Busanello ENB, Pettenuzzo L, Botton PH, Pandolfo P, de Souza DOG, Woontner M, Goodman S, Koeller D, Wajner M. Neurodevelopmental and cognitive behavior of glutaryl-CoA dehydrogenase deficient knockout mice. Life Sci 2013. [DOI: 10.1016/j.lfs.2012.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
110
|
Impairment of lithium chloride-induced conditioned gaping responses (anticipatory nausea) following immune system stimulation with lipopolysaccharide (LPS) occurs in both LPS tolerant and LPS non-tolerant rats. Brain Behav Immun 2013; 27:123-32. [PMID: 23064080 DOI: 10.1016/j.bbi.2012.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/17/2012] [Accepted: 10/04/2012] [Indexed: 12/26/2022] Open
Abstract
Anticipatory nausea is a classically conditioned response to a context that has been previously paired with toxin-induced nausea and/or vomiting. When injected with a nausea-inducing drug, such as lithium chloride (LiCl), rats will show a distinctive conditioned gaping response that has been suggested to be an index of nausea. Previous studies have found that immune system activation with an endotoxin, such as lipopolysaccharide (LPS), attenuates LiCl-induced conditioned gaping in rats. The present study examined the acquisition of LiCl-induced conditioned gaping in rats that were either LPS tolerant or LPS non-tolerant, as little is known about the effects of endotoxin tolerance on learning and memory. Male Long-Evan rats were given four systemic injections of LPS (200 μg/kg) or isotonic saline (NaCl) to induce LPS tolerance, indexed with 24 h changes in body weight following treatment. The animals were then given 4 acquisition trials in a LiCl-induced conditioned gaping paradigm. On conditioning days animals were treated with LPS (200 μg/kg) or saline followed 90 min later by injection of LiCl (127 mg/kg) or saline and then placed in a distinctive context for 30 min and their behavior video-recorded. On a drug free test day all animals were again placed in the distinctive context for 10 min and behavior was video-recorded. Gaping responses were scored for all acquisition days and the test day. Spleen and body weights were also obtained for all rats at the end of the experiment. Gaping responses were attenuated in rats treated with LPS in both the LPS tolerant and LPS non-tolerant groups. There were significant negative correlations between spleen weight as well as spleen/body weight ratios, and levels of conditioned gaping responses in LiCl treated rats, but not control rats. These results show that LPS interferes with learning/memory in the anticipatory nausea paradigm in rats that are both LPS tolerant and LPS non-tolerant.
Collapse
|
111
|
Zhuang L, Liu X, Xu X, Yue C, Shu H, Bai F, Yu H, Shi Y, Zhang Z. Association of the interleukin 1 beta gene and brain spontaneous activity in amnestic mild cognitive impairment. J Neuroinflammation 2012. [PMID: 23199001 PMCID: PMC3541073 DOI: 10.1186/1742-2094-9-263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Purpose The inflammatory response has been associated with the pathogenesis of Alzheimer’s disease (AD). The purpose of this study is to determine whether the rs1143627 polymorphism of the interleukin-1 beta (IL-1β) gene moderates functional magnetic resonance imaging (fMRI)-measured brain regional activity in amnestic mild cognitive impairment (aMCI). Methods Eighty older participants (47 with aMCI and 33 healthy controls) were recruited for this study. All of the participants were genotyped for variant rs1143627 in the IL1B gene and were scanned using resting-state fMRI. Brain activity was assessed by amplitude of low-frequency fluctuation (ALFF). Results aMCI patients had abnormal ALFF in many brain regions, including decreases in the inferior frontal gyrus, the superior temporal lobe and the middle temporal lobe, and increases in the occipital cortex (calcarine), parietal cortex (Pcu) and cerebellar cortex. The regions associated with an interaction of group X genotypes of rs1143627 C/T were the parietal cortex (left Pcu), frontal cortex (left superior, middle, and medial gyrus, right anterior cingulum), occipital cortex (left middle lobe, left cuneus) and the bilateral posterior lobes of the cerebellum. Regarding the behavioral significance, there were significant correlations between ALFF in different regions of the brain and with the cognitive scores of each genotype group. Conclusions The present study provided evidence that aMCI patients had abnormal ALFF in many brain regions. Specifically, the rs1143627 C/T polymorphism of the IL1B gene may modulate regional spontaneous brain activity in aMCI patients.
Collapse
Affiliation(s)
- Liying Zhuang
- Medical School of Southeast University, Nanjing, Jiangsu 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Walker FR. A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? Neuropharmacology 2012; 67:304-17. [PMID: 23085335 DOI: 10.1016/j.neuropharm.2012.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 08/21/2012] [Accepted: 10/04/2012] [Indexed: 12/27/2022]
Abstract
The selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed pharmacological treatment for depression. Since their introduction many have considered the primary mechanism by which the SSRIs produced therapeutic improvement in depression is their effect on monoaminergic signalling. In recent years, however, the credibility of the monoamine theory and the therapeutic efficacy of these compounds in the treatment of depression has been extensively criticized. In the current review the legitimacy of these criticisms is critically examined, in many instances the evidence base used to support these criticisms is found to be weak. Nevertheless, the apparent 'failure' of the monoamine theory has been of benefit in motivating research into alternative mechanisms through which the SSRIs may act. Given research demonstrating that depressive symptoms are intimately linked with disturbances in pro-inflammatory signalling, perhaps the most promising discovery has been the realisation that SSRIs posses significant anti-inflammatory properties. These recent findings are discussed and contextualised with respect to the neurogenic, neurotrophic and gluatamatergic effects that these drugs also possess.
Collapse
Affiliation(s)
- Frederick Rohan Walker
- Laboratory of Affective Neuroscience and Neuroimmunology, School of Biomedical Sciences and Pharmacy, Priority Research Centre for Brain and Mental Health, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
113
|
Béraud D, Hathaway HA, Trecki J, Chasovskikh S, Johnson DA, Johnson JA, Federoff HJ, Shimoji M, Mhyre TR, Maguire-Zeiss KA. Microglial activation and antioxidant responses induced by the Parkinson's disease protein α-synuclein. J Neuroimmune Pharmacol 2012; 8:94-117. [PMID: 23054368 PMCID: PMC3582877 DOI: 10.1007/s11481-012-9401-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/06/2012] [Indexed: 12/29/2022]
Abstract
Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder typified by tremor, rigidity, akinesia and postural instability due in part to the loss of dopamine within the nigrostriatal system. The pathologic features of this disorder include the loss of substantia nigra dopamine neurons and attendant striatal terminals, the presence of large protein-rich neuronal inclusions containing fibrillar α-synuclein and increased numbers of activated microglia. Evidence suggests that both misfolded α-synuclein and oxidative stress play an important role in the pathogenesis of sporadic PD. Here we review evidence that α-synuclein activates glia inducing inflammation and that Nrf2-directed phase-II antioxidant enzymes play an important role in PD. We also provide new evidence that the expression of antioxidant enzymes regulated in part by Nrf2 is increased in a mouse model of α-synuclein overexpression. We show that misfolded α-synuclein directly activates microglia inducing the production and release of the proinflammatory cytokine, TNF-α, and increasing antioxidant enzyme expression. Importantly, we demonstrate that the precise structure of α-synuclein is important for induction of this proinflammatory pathway. This complex α-synuclein-directed glial response highlights the importance of protein misfolding, oxidative stress and inflammation in PD and represents a potential locus for the development of novel therapeutics focused on induction of the Nrf2-directed antioxidant pathway and inhibition of protein misfolding.
Collapse
Affiliation(s)
- Dawn Béraud
- Department of Neuroscience, Georgetown University Medical Center, NRB EP08, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology 2012; 37:1491-505. [PMID: 22386198 PMCID: PMC3368999 DOI: 10.1016/j.psyneuen.2012.02.003] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/06/2012] [Accepted: 02/05/2012] [Indexed: 12/24/2022]
Abstract
Repeated social defeat (RSD) activates neuroendocrine pathways that have a significant influence on immunity and behavior. Previous studies from our lab indicate that RSD enhances the inflammatory capacity of CD11b⁺ cells in the brain and promotes anxiety-like behavior in an interleukin (IL)-1 and β-adrenergic receptor-dependent manner. The purpose of this study was to determine the degree to which mice subjected to RSD were more responsive to a secondary immune challenge. Therefore, RSD or control (HCC) mice were injected with saline or lipopolysaccharide (LPS) and activation of brain CD11b⁺ cells and behavioral responses were determined. Peripheral LPS (0.5 mg/kg) injection caused an extended sickness response with exaggerated weight loss and prolonged social withdrawal in socially defeated mice. LPS injection also amplified mRNA expression of IL-1β, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), and CD14 in enriched CD11b⁺ cells isolated from socially defeated mice. In addition, IL-1β mRNA levels in enriched CD11b⁺ cells remained elevated in socially defeated mice 24 h and 72 h after LPS. Moreover, microglia and CNS macrophages isolated from socially defeated mice had the highest CD14 expression after LPS injection. Both social defeat and LPS injection increased the percentage of CD11b⁺/CD45(high) macrophages in the brain and the number of inflammatory macrophages (CD11b⁺/CD45(high)/CCR2⁺) was highest in RSD-LPS mice. Anxiety-like behavior was increased by social defeat, but was not exacerbated by the LPS challenge. Nonetheless, reduced locomotor activity and increased social withdrawal were still present in socially defeated mice 72 h after LPS. Last, LPS-induced microglia activation was most evident in the hippocampus of socially defeated mice. Taken together, these findings demonstrate that repeated social defeat enhanced the neuroinflammatory response and caused prolonged sickness following innate immune challenge.
Collapse
|
115
|
Peng M, Wang YL, Wang FF, Chen C, Wang CY. The cyclooxygenase-2 inhibitor parecoxib inhibits surgery-induced proinflammatory cytokine expression in the hippocampus in aged rats. J Surg Res 2012; 178:e1-8. [PMID: 22959208 DOI: 10.1016/j.jss.2012.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 07/20/2012] [Accepted: 08/15/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Neuroinflammatory response triggered by surgery has been increasingly reported to be associated with postoperative cognitive dysfunction. Proinflammatory cytokines, such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), play a pivotal role in mediating surgery-induced neuroinflammation. The role of cyclooxygenase-2 (COX-2), a critical regulator in inflammatory response, in surgery-induced neuroinflammation is still unknown. The aim of the study was to investigate the changes of COX-2 expression and prostaglandin E2 (PGE2) production in the hippocampus in aged rats following partial hepatectomy. The effects of selective COX-2 inhibitor (parecoxib) on hippocampal proinflammatory cytokine expression were also evaluated. METHODS Aged rats were randomly divided into three groups: control (n = 10), surgery (n = 30), and parecoxib (n = 30). Control animals received sterile saline to control for the effects of injection stress. Rats in the surgery group received partial hepatectomy under isoflurane anesthesia and sterile saline injection. Rats in the parecoxib group received surgery and anesthesia similar to surgery group rats, and parecoxib treatment. On postanesthetic days 1, 3, and 7, animals were euthanized to assess levels of hippocampal COX-2 expression, PGE2 production, and cytokines IL-1β and TNF-α expression. The effects of parecoxib on proinflammatory cytokine expression were also assessed. RESULTS Partial hepatectomy significantly increased COX-2 expression, PGE2 production, and proinflammatory cytokine expression in the hippocampus in aged rats on postoperative days 1 and 3. Parecoxib inhibited hippocampal IL-1β and TNF-α expression through downregulation of the COX-2/PGE2 pathway. CONCLUSION COX-2 may play a critical role in surgery-induced neuroinflammation. The COX-2 inhibitor may be a promising candidate for treatment of neuroinflammation caused by surgical trauma.
Collapse
Affiliation(s)
- Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | | | | | | | | |
Collapse
|
116
|
Liu MC, Liu XQ, Wang W, Shen XF, Che HL, Guo YY, Zhao MG, Chen JY, Luo WJ. Involvement of microglia activation in the lead induced long-term potentiation impairment. PLoS One 2012; 7:e43924. [PMID: 22952811 PMCID: PMC3432044 DOI: 10.1371/journal.pone.0043924] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/26/2012] [Indexed: 11/21/2022] Open
Abstract
Exposure of Lead (Pb), a known neurotoxicant, can impair spatial learning and memory probably via impairing the hippocampal long-term potentiation (LTP) as well as hippocampal neuronal injury. Activation of hippocampal microglia also impairs spatial learning and memory. Thus, we raised the hypothesis that activation of microglia is involved in the Pb exposure induced hippocampal LTP impairment and neuronal injury. To test this hypothesis and clarify its underlying mechanisms, we investigated the Pb-exposure on the microglia activation, cytokine release, hippocampal LTP level as well as neuronal injury in in vivo or in vitro model. The changes of these parameters were also observed after pretreatment with minocycline, a microglia activation inhibitor. Long-term low dose Pb exposure (100 ppm for 8 weeks) caused significant reduction of LTP in acute slice preparations, meanwhile, such treatment also significantly increased hippocampal microglia activation as well as neuronal injury. In vitro Pb-exposure also induced significantly increase of microglia activation, up-regulate the release of cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) in microglia culture alone as well as neuronal injury in the co-culture with hippocampal neurons. Inhibiting the microglia activation with minocycline significantly reversed the above-mentioned Pb-exposure induced changes. Our results showed that Pb can cause microglia activation, which can up-regulate the level of IL-1β, TNF-α and iNOS, these proinflammatory factors may cause hippocampal neuronal injury as well as LTP deficits.
Collapse
Affiliation(s)
- Ming-Chao Liu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Xin-Qin Liu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Xue-Feng Shen
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Hong-Lei Che
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Yan-Yan Guo
- Department of pharmacology, Fourth Military Medical University, Xi'an, China
| | - Ming-Gao Zhao
- Department of pharmacology, Fourth Military Medical University, Xi'an, China
| | - Jing-Yuan Chen
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
- * E-mail: (J-YC); (W-JL)
| | - Wen-Jing Luo
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
- * E-mail: (J-YC); (W-JL)
| |
Collapse
|
117
|
Lee HY, Park JH, Lee CH, Yan B, Ahn JH, Lee YJ, Park CW, Cho JH, Choi SY, Won MH. Changes of ribosomal protein S3 immunoreactivity and its new expression in microglia in the mice hippocampus after lipopolysaccharide treatment. Cell Mol Neurobiol 2012; 32:577-86. [PMID: 22274408 DOI: 10.1007/s10571-012-9802-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 01/10/2012] [Indexed: 01/06/2023]
Abstract
Lipopolysaccharide (LPS) has been used as a reagent for a model of systemic inflammatory response. Ribosomal protein S3 (rpS3) is a multi-functional protein that is involved in transcription, metastasis, DNA repair, and apoptosis. In the present study, we examined the changes of rpS3 immunoreactivity in the mouse hippocampus after systemic administration of 1 mg/kg of LPS. From 6 h after LPS treatment, rpS3 immunoreactivity was decreased in pyramidale cells of the hippocampus proper (CA1-CA3 regions) and in granule cells of the dentate gyrus. At this point in time, rpS3 immunoreactivity began to increase in non-pyramidal cells and non-granule cells. From 1 day after LPS treatment, rpS3 immunoreactivity in pyramidal and granule cells was hardly detected; however, strong rpS3 immunoreactivity was shown in non-pyramidal and non-granule cells. Based on double immunofluorescence staining for rpS3/ionized calcium-binding adapter 1 (Iba-1, a marker for microglia) and glial fibrillary acidic protein (GFAP, a marker for astrocytes), strong rpS3 immunoreactivity was expressed in Iba-1-immunoreactive microglia, not in GFAP-immunoreactive astrocytes, at 1 and 2 days after LPS treatment. These results indicate that rpS3 immunoreactivity changes only in pyramidal and granule cells, and rpS3 is expressed only in activated microglia after LPS treatment: this may be associated with the neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Hui Young Lee
- Department of Internal Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Lipopolysaccharide inhibits the simultaneous establishment of LiCl-induced anticipatory nausea and intravascularly conditioned taste avoidance in the rat. Behav Brain Res 2012; 232:278-86. [PMID: 22537776 DOI: 10.1016/j.bbr.2012.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 12/26/2022]
Abstract
This study examined the effects of the bacterial endotoxin, lipopolysaccharide (LPS), on the establishment of anticipatory nausea and conditioned taste avoidance in a simultaneous conditioning paradigm using an intravascular/intraperitoneal saccharin taste. 83 naïve adult male Long-Evans rats were injected (intraperitoneal) with either 200 μg/kg LPS or 0.9% saline (NaCl), 90 min prior to ip treatment with either 64 mg/kg LiCl, 64 mg/kg LiCl+2.0% saccharin, 0.9% NaCl, or 0.9% NaCl+2.0% saccharin, and immediately placed into a distinctive context for 30 min (repeated over 4 conditioning days, spaced 72 h apart). 72 h following the final conditioning day, each animal was re-exposed to the context on a drug-free test day where orofacial responding was recorded. The next day, animals received a 24 h 2-bottle preference test with a choice between water and a palatable 0.2% saccharin solution. Results showed that LPS exposure, prior to LiCl or LiCl+Saccharin treatment, inhibited the establishment of anticipatory nausea, as evidenced by significantly lower conditioned gaping frequencies relative to animals pre-treated with NaCl followed by LiCl or LiCl+Saccharin. LPS pre-treatment also inhibited the formation of LiCl-induced taste avoidance, as evidence by significantly higher saccharin preferences in Group LPS-LiCl+Saccharin relative to Group NaCl-LiCl+Saccharin. The results of the current study provide additional evidence for the deleterious effects of LPS on learning and memory in aversive conditioning.
Collapse
|
119
|
Farooq RK, Isingrini E, Tanti A, Le Guisquet AM, Arlicot N, Minier F, Leman S, Chalon S, Belzung C, Camus V. Is unpredictable chronic mild stress (UCMS) a reliable model to study depression-induced neuroinflammation? Behav Brain Res 2012; 231:130-7. [PMID: 22465167 DOI: 10.1016/j.bbr.2012.03.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 12/31/2022]
Abstract
Unipolar depression is one of the leading causes of disability. The pathophysiology of depression is poorly understood. Evidence suggests that inflammation is associated with depression. For instance, pro-inflammatory cytokines are found to be elevated in the peripheral blood of depressed subjects. Cytokine immunotherapy itself is known to induce depressive symptoms. While the epidemiological and biochemical relationship between inflammation and depression is strong, little is known about the possible existence of neuroinflammation in depression. The use of animal models of depression such as the Unpredictable Chronic Mild Stress (UCMS) has already contributed to the elucidation of the pathophysiological mechanisms of depression such as decreased neurogenesis and HPA axis alterations. We used this model to explore the association of depressive-like behavior in mice with changes in peripheral pro-inflammatory cytokines IL-1β, TNFα and IL-6 level as well as the neuroinflammation by quantifying CD11b expression in brain areas known to be involved in the pathophysiology of depression. These areas include the cerebral cortex, the nucleus accumbens, the bed nucleus of the stria terminalis, the caudate putamen, the amygdala and the hippocampus. The results indicate that microglial activation is significantly increased in the infralimbic, cingulate and medial orbital cortices, nucleus accumbens, caudate putamen, amygdala and hippocampus of the mouse brain as a function of UCMS, while levels of pro-inflammatory cytokines did not differ among the groups. This finding suggests that neuroinflammation occurs in depression and may be implicated in the subject's behavioral response. They also suggest that UCMS could be a potentially reliable model to study depression-induced neuroinflammation.
Collapse
|
120
|
Deng XH, Ai WM, Lei DL, Luo XG, Yan XX, Li Z. Lipopolysaccharide induces paired immunoglobulin-like receptor B (PirB) expression, synaptic alteration, and learning-memory deficit in rats. Neuroscience 2012; 209:161-70. [PMID: 22395112 DOI: 10.1016/j.neuroscience.2012.02.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/26/2012] [Accepted: 02/10/2012] [Indexed: 11/19/2022]
Abstract
Some typical immune proteins are expressed in the nervous system, among which the paired-immunoglobulin-like receptor B (PirB) is a receptor for major histocompatibility complex class I antigen (MHC-I), but may play a physiological role in the brain for neuronal circuitry stability by inhibiting synaptic plasticity. Chronic neuroinflammation is common to many neurodegenerative diseases and is often associated with neuronal/synaptic damage and dysfunction. Here we examined the expression of PirB in the rat brain following intracerebral application of lipopolysaccharide (LPS), which has been shown to induce proinflammatory changes and cognitive deficits in rodents. One month after unilateral intrahippocampal LPS injection (10 μg in 4 μl phosphate-buffered saline, PBS), increased protein levels and immunoreactivity of PirB were detected in the ipsilateral hippocampal formation and cortex of the experimental group relative to vehicle (PBS) control. The increased PirB labeling was localized to astrocytes and neurons. Reduced synaptophysin protein levels and immunoreactivity were also found in the ipsilateral hippocampal formation and cortex in LPS-treated rats relative to controls. Morris water maze tests indicated that hippocampus-dependent spatial learning and memory were impaired in LPS-treated animals. Our findings add new experimental data for an upregulation of immune proteins in neuronal and glial cells in the brain in a model of endotoxin-induced neuroinflammation, synaptic alteration, and cognitive decline. The results suggest that PirB modulation may be involved in the pathological process under neurodegenerative conditions.
Collapse
Affiliation(s)
- X-H Deng
- Department of Anatomy and Neurobiology, Central South University, Xiangya School of Medicine, Changsha, Hunan 410013, PR China
| | | | | | | | | | | |
Collapse
|
121
|
Cloutier CJ, Rodowa MS, Cross-Mellor SK, Chan MYT, Kavaliers M, Ossenkopp KP. Inhibition of LiCl-induced conditioning of anticipatory nausea in rats following immune system stimulation: comparing the immunogens lipopolysaccharide, muramyl dipeptide, and polyinosinic: polycytidylic acid. Physiol Behav 2012; 106:243-51. [PMID: 22342813 DOI: 10.1016/j.physbeh.2012.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/18/2012] [Accepted: 02/05/2012] [Indexed: 11/25/2022]
Abstract
The effects of the bacterial endotoxins, lipopolysaccharide (LPS) and muramyl dipeptide (MDP; Experiment 1), and the viral mimetic, polyinosinic: polycytidylic acid (poly I:C; Experiment 2), on the acquisition of "conditioned gaping" behavior in the rodent model of LiCl-induced anticipatory nausea were examined. Experimentally naïve adult male Long-Evans rats were injected (intraperitoneal, i.p.) with either 200 μg/kg LPS, 1.6 mg/kg MDP, or 0.9% saline (Experiment 1), or 4.0 mg/kg poly I:C or 0.9% saline (Experiment 2), 90 min prior to treatment with 127 mg/kg LiCl or saline control and immediately placed into a distinctive context for 30 min (repeated over 4 conditioning days, spaced 72 h apart). On a drug-free test day (72 h following conditioning day 4), each animal was re-exposed to the context for 10 min, and orofacial and aversive behavioral responses were video recorded and analyzed. The results showed that pre-treatment with LPS, MDP (Experiment 1), or poly I:C (Experiment 2) prior to LiCl+context conditioning significantly impaired the establishment of conditioned gaping behavior, thus blocking the acquisition of anticipatory nausea. Results varied in regards to peripheral acute-phase response sickness behaviors, with significantly reduced weight loss in LPS-treated animals, less robust weight loss in poly I:C-treated animals, and no significant reductions in body weight in MDP-treated animals. The learning impairments observed in the current study suggest that endotoxin treatment with bacterial and viral endotoxin may have stronger central effects on learning and memory behavior, relative to peripheral effects on body weight and other sickness-related responses.
Collapse
Affiliation(s)
- Caylen J Cloutier
- Department of Psychology, University of Western Ontario, London, Ontario, Canada N6A5C2.
| | | | | | | | | | | |
Collapse
|
122
|
Swanepoel T, Harvey BH, Harden LM, Laburn HP, Mitchell D. Simulated systemic recurrent Mycoplasma infection in rats induces recurrent sickness responses without residual impairment in spatial learning and memory. Physiol Behav 2012; 105:800-8. [DOI: 10.1016/j.physbeh.2011.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/15/2011] [Accepted: 10/11/2011] [Indexed: 11/28/2022]
|
123
|
Pathogenesis of cognitive dysfunction in patients with obstructive sleep apnea: a hypothesis with emphasis on the nucleus tractus solitarius. SLEEP DISORDERS 2012; 2012:251096. [PMID: 23470865 PMCID: PMC3581091 DOI: 10.1155/2012/251096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/13/2011] [Accepted: 12/22/2011] [Indexed: 02/06/2023]
Abstract
OSA is characterized by the quintessential triad of intermittent apnea, hypoxia, and hypoxemia due to pharyngeal collapse. This paper highlights the upstream mechanisms that may trigger cognitive decline in OSA. Three interrelated steps underpin cognitive dysfunction in OSA patients. First, several risk factors upregulate peripheral inflammation; these crucial factors promote neuroinflammation, cerebrovascular endothelial dysfunction, and oxidative stress in OSA. Secondly, the neuroinflammation exerts negative impact globally on the CNS, and thirdly, important foci in the neocortex and brainstem are rendered inflamed and dysfunctional. A strong link is known to exist between neuroinflammation and neurodegeneration. A unique perspective delineated here underscores the importance of dysfunctional brainstem nuclei in etiopathogenesis of cognitive decline in OSA patients. Nucleus tractus solitarius (NTS) is the central integration hub for afferents from upper airway (somatosensory/gustatory), respiratory, gastrointestinal, cardiovascular (baroreceptor and chemoreceptor) and other systems. The NTS has an essential role in sympathetic and parasympathetic systems also; it projects to most key brain regions and modulates numerous physiological functions. Inflamed and dysfunctional NTS and other key brainstem nuclei may play a pivotal role in triggering memory and cognitive dysfunction in OSA. Attenuation of upstream factors and amelioration of the NTS dysfunction remain important challenges.
Collapse
|
124
|
Dysfunctional nucleus tractus solitarius: its crucial role in promoting neuropathogenetic cascade of Alzheimer's dementia--a novel hypothesis. Neurochem Res 2012; 37:846-68. [PMID: 22219130 DOI: 10.1007/s11064-011-0680-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/16/2011] [Accepted: 12/15/2011] [Indexed: 12/22/2022]
Abstract
The pathophysiological mechanism(s) underlying Alzheimer's disease (AD) still remain unclear, and no disease-modifying or prophylactic therapies are currently available. Unraveling the fundamental neuropathogenesis of AD is an important challenge. Several studies on AD have suggested lesions in a number of CNS areas including the basal forebrain, hippocampus, entorhinal cortex, amygdale/insula, and the locus coeruleus. However, plausible unifying studies on the upstream factors that involve these heterogeneous regions and herald the onset of AD pathogenesis are not available. The current article presents a novel nucleus tractus solitarius (NTS) vector hypothesis that underpins several disparate biological mechanisms and neural circuits, and identifies relevant hallmarks of major presumptive causative factor(s) linked to the NTS, in older/aging individuals. Aging, obesity, infection, sleep apnea, smoking, neuropsychological states, and hypothermia-all activate inflammatory cytokines and oxidative stress. The synergistic impact of systemic proinflammatory mediators activates microglia and promotes neuroinflammation. Acutely, the innate immune response is protective defending against pathogens/toxins; however, when chronic, it causes neuroinflammation and neuronal dysfunction, particularly in brainstem and neocortex. The NTS in the brainstem is an essential multiple signaling hub, and an extremely important central integration site of baroreceptor, chemoreceptor, and a multitude of sensory afferents from gustatory, gastrointestinal, cardiac, pulmonary, and upper airway systems. Owing to persistent neuroinflammation, the dysfunctional NTS exerts deleterious impact on nucleus ambiguus, dorsal motor nucleus of vagus, hypoglossal, parabrachial, locus coeruleus and many key nuclei in the brainstem, and the hippocampus, entorhinal cortex, prefrontal cortex, amygdala, insula, and basal forebrain in the neocortex. The neuronal and synaptic dysfunction emanating from the inflamed NTS may affect its interconnected pathways impacting almost the entire CNS--which is already primed by neuroinflammation, thus promoting cognitive and neuropsychiatric symptoms. The upstream factors discussed here may underpin the neuropathopgenesis of AD. AD pathology is multifactorial; the current perspective underscores the value of attenuating disparate upstream factors--in conjunction with anticholinesterase, anti-inflammatory, immunosuppressive, and anti-oxidant pharmacotherapy. Amelioration of the NTS pathology may be of central importance in countering the neuropathological cascade of AD. The NTS, therefore, may be a potential target of novel therapeutic strategies.
Collapse
|
125
|
Miwa M, Tsuboi M, Noguchi Y, Enokishima A, Nabeshima T, Hiramatsu M. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. J Neuroinflammation 2011; 8:153. [PMID: 22053950 PMCID: PMC3273450 DOI: 10.1186/1742-2094-8-153] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 11/04/2011] [Indexed: 11/15/2022] Open
Abstract
Background Betaine (glycine betaine or trimethylglycine) plays important roles as an osmolyte and a methyl donor in animals. While betaine is reported to suppress expression of proinflammatory molecules and reduce oxidative stress in aged rat kidney, the effects of betaine on the central nervous system are not well known. In this study, we investigated the effects of betaine on lipopolysaccharide (LPS)-induced memory impairment and on mRNA expression levels of proinflammatory molecules, glial markers, and GABA transporter 2 (GAT2), a betaine/GABA transporter. Methods Mice were continuously treated with betaine for 13 days starting 1 day before they were injected with LPS, or received subacute or acute administration of betaine shortly before or after LPS injection. Then, their memory function was evaluated using Y-maze and novel object recognition tests 7 and 10-12 days after LPS injection (30 μg/mouse, i.c.v.), respectively. In addition, mRNA expression levels in hippocampus were measured by real-time RT-PCR at different time points. Results Repeated administration of betaine (0.163 mmol/kg, s.c.) prevented LPS-induced memory impairment. GAT2 mRNA levels were significantly increased in hippocampus 24 hr after LPS injection, and administration of betaine blocked this increase. However, betaine did not affect LPS-induced increases in levels of mRNA related to inflammatory responses. Both subacute administration (1 hr before, and 1 and 24 hr after LPS injection) and acute administration (1 hr after LPS injection) of betaine also prevented LPS-induced memory impairment in the Y-maze test. Conclusions These data suggest that betaine has protective effects against LPS-induced memory impairment and that prevention of LPS-induced changes in GAT2 mRNA expression is crucial to this ameliorating effect.
Collapse
Affiliation(s)
- Masaya Miwa
- Laboratory of Neuropsychopharmacology, Graduate School of Environmental and Human Sciences, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan
| | | | | | | | | | | |
Collapse
|
126
|
Dinel AL, André C, Aubert A, Ferreira G, Layé S, Castanon N. Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS One 2011; 6:e24325. [PMID: 21949705 PMCID: PMC3174932 DOI: 10.1371/journal.pone.0024325] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/06/2011] [Indexed: 01/01/2023] Open
Abstract
Converging clinical data suggest that peripheral inflammation is likely involved in the pathogenesis of the neuropsychiatric symptoms associated with metabolic syndrome (MetS). However, the question arises as to whether the increased prevalence of behavioral alterations in MetS is also associated with central inflammation, i.e. cytokine activation, in brain areas particularly involved in controlling behavior. To answer this question, we measured in a mouse model of MetS, namely the diabetic and obese db/db mice, and in their healthy db/+ littermates emotional behaviors and memory performances, as well as plasma levels and brain expression (hippocampus; hypothalamus) of inflammatory cytokines. Our results shows that db/db mice displayed increased anxiety-like behaviors in the open-field and the elevated plus-maze (i.e. reduced percent of time spent in anxiogenic areas of each device), but not depressive-like behaviors as assessed by immobility time in the forced swim and tail suspension tests. Moreover, db/db mice displayed impaired spatial recognition memory (hippocampus-dependent task), but unaltered object recognition memory (hippocampus-independent task). In agreement with the well-established role of the hippocampus in anxiety-like behavior and spatial memory, behavioral alterations of db/db mice were associated with increased inflammatory cytokines (interleukin-1β, tumor necrosis factor-α and interleukin-6) and reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus but not the hypothalamus. These results strongly point to interactions between cytokines and central processes involving the hippocampus as important contributing factor to the behavioral alterations of db/db mice. These findings may prove valuable for introducing novel approaches to treat neuropsychiatric complications associated with MetS.
Collapse
Affiliation(s)
- Anne-Laure Dinel
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Caroline André
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Agnès Aubert
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Guillaume Ferreira
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | - Nathalie Castanon
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, Bordeaux, France
- University of Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
127
|
Hritcu L, Ciobica A, Stefan M, Mihasan M, Palamiuc L, Nabeshima T. Spatial memory deficits and oxidative stress damage following exposure to lipopolysaccharide in a rodent model of Parkinson's disease. Neurosci Res 2011; 71:35-43. [DOI: 10.1016/j.neures.2011.05.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
|
128
|
Ding BJ, Ma WW, He LL, Zhou X, Yuan LH, Yu HL, Feng JF, Xiao R. Soybean isoflavone alleviates β-amyloid 1-42 induced inflammatory response to improve learning and memory ability by down regulation of Toll-like receptor 4 expression and nuclear factor-κB activity in rats. Int J Dev Neurosci 2011; 29:537-42. [PMID: 21515354 DOI: 10.1016/j.ijdevneu.2011.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 02/06/2023] Open
Abstract
β-amyloid 1-42 (Aβ1-42)-induced learning and memory impairment in rats is believed to be associated with inflammation. Cytokine production is a key pathologic event in the progression of inflammatory processes. In this rat study, soybean isoflavones (SIF) was used to investigate it's protective effects on inflammation caused by β-amyloid 1-42 (Aβ1-42), which is associated with learning and memory impairment in Alzheimer disease. We characterized the learning and memory ability. cytokine profiles of circulating interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) in the serum and the expression of Toll like receptor4 (TLR4) and nuclear factor-κB p65 (NF-κB p65) mRNA and protein in the brain tissue following intracerebroventricular administration of Aβ1-42 by miniosmotic pump for 14 days. The results showed that functional deficits of learning and memory in SIF treatment groups were significantly improved compared to the control group without SIF treatment in water maze test. The serum IL-1β and TNF-α level were significantly increased, and the expressions of TLR4 and NF-κB p65 mRNA and protein in the brain were up-regulated, indicating inflammation response was initiated following administration of Aβ1-42. After intragastric pre-treatment with SIF, inflammatory cytokines was significantly reduced and also SIF reversed the Aβ1-42 induced up-regulation of TLR4 and NF-κB p65 mRNA and protein expression in the brain and expression of NF-κB p65 in nuclei. These results suggested that SIF reduced the cytokine cascade and inflammatory response induced by Aβ1-42 which could result in the improvement of spatial learning and memory ability impairment in the rats.
Collapse
Affiliation(s)
- B J Ding
- Department of Nutrition & Food Hygiene, School of Public Health and Family Medicine, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing 100069, PR China
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Béraud D, Twomey M, Bloom B, Mittereder A, Ton V, Neitzke K, Chasovskikh S, Mhyre TR, Maguire-Zeiss KA. α-Synuclein Alters Toll-Like Receptor Expression. Front Neurosci 2011; 5:80. [PMID: 21747756 PMCID: PMC3128248 DOI: 10.3389/fnins.2011.00080] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/06/2011] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease, an age-related neurodegenerative disorder, is characterized by the loss of dopamine neurons in the substantia nigra, the accumulation of α-synuclein in Lewy bodies and neurites, and neuroinflammation. While the exact etiology of sporadic Parkinson's disease remains elusive, a growing body of evidence suggests that misfolded α-synuclein promotes inflammation and oxidative stress resulting in neurodegeneration. α-Synuclein has been directly linked to microglial activation in vitro and increased numbers of activated microglia have been reported in an α-synuclein overexpressing mouse model prior to neuronal loss. However, the mechanism by which α-synuclein incites microglial activation has not been fully described. Microglial activation is governed in part, by pattern recognition receptors that detect foreign material and additionally recognize changes in homeostatic cellular conditions. Upon proinflammatory pathway initiation, activated microglia contribute to oxidative stress through release of cytokines, nitric oxide, and other reactive oxygen species, which may adversely impact adjacent neurons. Here we show that microglia are directly activated by α-synuclein in a classical activation pathway that includes alterations in the expression of toll-like receptors. These data suggest that α-synuclein can act as a danger-associated molecular pattern.
Collapse
Affiliation(s)
- Dawn Béraud
- Interdisciplinary Program in Neuroscience, Department of Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
Collapse
|
131
|
Fidalgo AR, Cibelli M, White JPM, Nagy I, Noormohamed F, Benzonana L, Maze M, Ma D. Peripheral orthopaedic surgery down-regulates hippocampal brain-derived neurotrophic factor and impairs remote memory in mouse. Neuroscience 2011; 190:194-9. [PMID: 21699962 DOI: 10.1016/j.neuroscience.2011.05.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/25/2011] [Accepted: 05/30/2011] [Indexed: 12/22/2022]
Abstract
Peripheral orthopaedic surgery induces a profound inflammatory response. This includes a substantial increase in cytokines and, especially, in the level of interleukin (IL)-1β in the hippocampus, which has been shown to impair hippocampal-dependent memory in mice. We have employed two tests of contextual remote memory to demonstrate that the inflammatory response to surgical insult in mice also results in impairment of remote memory associated with prefrontal cortex (PFC). We have also found that, under the conditions presented in the social interaction test, peripheral orthopaedic surgery does not increase anxiety-like behaviour in our animal model. Although such surgery induces an increase in the level of IL-1β in the hippocampus, it fails to do so in the PFC. Peripheral orthopaedic surgery also results in a reduction in the level of hippocampal brain-derived neurotrophic factor (BDNF) and this may contribute, in part, to the memory impairment found after such surgery. Our data suggest that a reduction in the level of hippocampal BDNF and an increase in the level of hippocampal IL-1β following surgery may affect the transference of fear memory in the mouse brain.
Collapse
Affiliation(s)
- A R Fidalgo
- Anaesthesia, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College School of Medicine, 369 Fulham Road, London SW10 9NH, UK
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Conner KR, Forbes ME, Lee WH, Lee YW, Riddle DR. AT1 receptor antagonism does not influence early radiation-induced changes in microglial activation or neurogenesis in the normal rat brain. Radiat Res 2011; 176:71-83. [PMID: 21545290 DOI: 10.1667/rr2560.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS) ameliorate cognitive deficits and some aspects of brain injury after whole-brain irradiation. We investigated whether treatment with the angiotensin II type 1 receptor antagonist L-158,809 at a dose that protects cognitive function after fractionated whole-brain irradiation reduced radiation-induced neuroinflammation and changes in hippocampal neurogenesis, well-characterized effects that are associated with radiation-induced brain injury. Male F344 rats received L-158,809 before, during and after a single 10-Gy dose of radiation. Expression of cytokines, angiotensin II receptors and angiotensin-converting enzyme 2 was evaluated by real-time PCR 24 h, 1 week and 12 weeks after irradiation. At the latter times, microglial density and proliferating and activated microglia were analyzed in the dentate gyrus of the hippocampus. Cell proliferation and neurogenesis were also quantified in the dentate subgranular zone. L-158,809 treatment modestly increased mRNA expression for Ang II receptors and TNF-α but had no effect on radiation-induced effects on hippocampal microglia or neurogenesis. Thus, although L-158,809 ameliorates cognitive deficits after whole-brain irradiation, the drug did not mitigate the neuroinflammatory microglial response or rescue neurogenesis. Additional studies are required to elucidate other mechanisms of normal tissue injury that may be modulated by RAAS blockers.
Collapse
Affiliation(s)
- Kelly R Conner
- Program in Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1010, USA
| | | | | | | | | |
Collapse
|
133
|
Abstract
Encephalopathy and brain edema are serious central nervous system complications of liver failure. Recent studies using molecular probes and antibodies to cell-specific marker proteins have demonstrated the activation of microglial cells in the brain during liver failure and confirmed a central neuroinflammatory response. In animal models of ischemic or toxic liver injury, microglial activation and concomitantly increased expression of genes coding for proinflammatory cytokines in the brain occur early in the progression of encephalopathy and brain edema. Moreover, the prevention of these complications with mild hypothermia or N-acetylcysteine (two treatments known to manifest both peripheral and central cytoprotective properties) averts central neuroinflammation due to liver failure. Recent studies using anti-inflammatory agents such as ibuprofen and indomethacin have shown promise for the treatment of mild encephalopathy in patients with cirrhosis, whereas treatment with minocycline, a potent inhibitor of microglial activation, attenuates the encephalopathy grade and prevents brain edema in experimental acute liver failure. The precise nature of the signaling mechanisms between the failing liver and central neuroinflammation has yet to be fully elucidated; mechanisms involving blood-brain cytokine transfer and receptor-mediated cytokine signal transduction as well as a role for liver-related toxic metabolites such as ammonia have been proposed. The prevention of central proinflammatory processes will undoubtedly herald a new chapter in the development of agents for the prevention and treatment of the central nervous system complications of liver failure.
Collapse
Affiliation(s)
- Roger F Butterworth
- Neuroscience Research Unit, Hôpital Saint-Luc, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
134
|
Okun E, Griffioen KJ, Mattson MP. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 2011; 34:269-81. [PMID: 21419501 DOI: 10.1016/j.tins.2011.02.005] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 01/03/2023]
Abstract
Toll-like receptors (TLRs) are a family of innate immune system receptors that respond to pathogen-derived and tissue damage-related ligands. TLR signaling in immune cells, glia and neurons can play roles in the pathogenesis of stroke, Alzheimer's disease (AD) and multiple sclerosis (MS). Recent findings suggest that TLR signaling also influences multiple dynamic processes in the developing and adult central nervous system including neurogenesis, axonal growth and structural plasticity. In addition, TLRs are implicated in the regulation of behaviors including learning, memory and anxiety. This review describes recently discovered and unexpected roles for TLRs in neuroplasticity, and the implications of these findings for future basic and translational research studies.
Collapse
Affiliation(s)
- Eitan Okun
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Biomedical Research Center, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
135
|
Derecki NC, Quinnies KM, Kipnis J. Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain Behav Immun 2011; 25:379-85. [PMID: 21093578 PMCID: PMC3039052 DOI: 10.1016/j.bbi.2010.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 01/23/2023] Open
Abstract
It was recently shown that adaptive immunity plays a key role in cognitive function. T cells appear to be major players in learning and memory; thus, mice devoid of functional T cells are impaired in performance of cognitive tasks such as Morris water maze (MWM), Barnes maze and others. This is a reversible phenomenon; injection of immune deficient mice with T cells from wild type counterparts improves their cognitive function. Recently we described a critical role for T cell-derived IL-4 as having beneficial effects on learning and memory through regulation of meningeal myeloid cell phenotype. In the absence of IL-4, meningeal myeloid cells acquire a pro-inflammatory skew. Thus, the presence of IL-4 in the meningeal spaces maintains a delicate balance of pro- and anti-inflammatory myeloid cell phenotype. Here we show that macrophages alternatively activated in vitro (M2 cells) can circumvent the need for 'pro-cognitive' T cells when injected intravenously into immune deficient mice. These results show for the first time that M2 myeloid cells are new and unexpected players in cognitive function, conferring beneficial effects on learning and memory without adaptive immune influence. These results might lead to development of new therapeutic approaches for cognitive pathologies associated with malfunction of adaptive immunity, such as chemo-brain, age-related dementia, HIV-dementia, and others.
Collapse
Affiliation(s)
- Noel C Derecki
- Graduate Program in Neuroscience, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
136
|
Lipopolysaccharide attenuates phrenic long-term facilitation following acute intermittent hypoxia. Respir Physiol Neurobiol 2011; 176:130-5. [PMID: 21334467 DOI: 10.1016/j.resp.2011.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 11/23/2022]
Abstract
Lipopolysaccharide (LPS) induces inflammatory responses, including microglial activation in the central nervous system. Since LPS impairs certain forms of hippocampal and spinal neuroplasticity, we hypothesized that LPS would impair phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) in outbred Sprague-Dawley (SD) and inbred Lewis (L) rats. Approximately 3h following a single LPS injection (i.p.), the phrenic response during hypoxic episodes is reduced in both rat strains versus vehicle treated, control rats (SD: 84 ± 7% vs. 128 ± 14% baseline for control, p < 0.05; L: 62 ± 10% vs. 90 ± 9% baseline for control, p < 0.05). At 60 min post-AIH, pLTF is also diminished by LPS in both strains: (SD: 22 ± 5% vs. 73.5 ± 14% baseline for control, p < 0.05; L: 18 ± 15% vs. 56 ± 8% baseline for control, p < 0.05). LPS alone does not affect phrenic burst frequency in either rat strain, suggesting that acute LPS injection has minimal effect on brainstem respiratory rhythm generation. Thus, systemic LPS injections and (presumptive) inflammation impair pLTF, a form of spinal neuroplasticity in respiratory motor control. These results suggest that ongoing infection or inflammation must be carefully considered in studies of respiratory plasticity, or during attempts to harness spinal plasticity as a therapeutic tool in the treatment of respiratory insufficiency, such as spinal cord injury.
Collapse
|
137
|
Park SE, Dantzer R, Kelley KW, McCusker RH. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflammation 2011; 8:12. [PMID: 21306618 PMCID: PMC3045937 DOI: 10.1186/1742-2094-8-12] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/09/2011] [Indexed: 01/12/2023] Open
Abstract
Exogenous administration of insulin-like growth factor (IGF)-I has anti-depressant properties in rodent models of depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified. We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF) while decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng) was administered intracerebroventricularly (i.c.v.) to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng). Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression. Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail suspension test (TST). Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß), tumor necrosis factor-(TNF)α, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I parallel its ability to diminish depressive-like behavior.
Collapse
Affiliation(s)
- Sook-Eun Park
- Integrated Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3873, USA
| | | | | | | |
Collapse
|
138
|
Tanaka S, Kondo H, Kanda K, Ashino T, Nakamachi T, Sekikawa K, Iwakura Y, Shioda S, Numazawa S, Yoshida T. Involvement of interleukin-1 in lipopolysaccaride-induced microglial activation and learning and memory deficits. J Neurosci Res 2011; 89:506-14. [PMID: 21290410 DOI: 10.1002/jnr.22582] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/16/2010] [Accepted: 11/11/2010] [Indexed: 11/11/2022]
Abstract
We have developed an animal model of learning and memory impairment associated with activation of microglia in the mouse brain. Injection of lipopolysaccharide into the CA1 region of the mouse hippocampus resulted in an increased production of inflammatory cytokines, such as interleukin-1β. Immunostaining for interleukin-1β revealed an increase in the signal at 6 hr after lipopolysaccharide injection. Immunopositive cells for interleukin-1β were colocalized with those immunopositive for CD11b. When subacute lipopolysaccharide treatment (20 μg/2 μl/injection, bilaterally for 5 consecutive days) was performed, long-term activation of microglia and learning and memory deficits as evaluated using a step-through passive avoidance test were observed in the wild-type mice. Gene expression of the N-methyl-D-aspartate receptor NR1 and NR2A subunits was also decreased by the lipopolysaccharide treatment. In contrast, activation of microglia and the associated behavioral deficits were not observed in mice lacking interleukin-1α and -1β following the subacute lipopolysaccharide treatment, together with little change in the gene expression of NR1 and NR2A subunits. However, the subacute lipopolysaccharide treatment produced almost similar changes in those parameters in the tumor necrosis factor-α knockout mice as in the wild-type animals. The injection of interleukin-1β neutralizing antibody with lipopolysaccharide for 5 consecutive days resulted in the improvement of lipopolysaccharide-induced learning and memory deficits. These findings suggest that the expression of interleukin-1 plays an important role in lipopolysaccharide-induced activation of microglia and the associated functional deficits in learning and memory.
Collapse
Affiliation(s)
- S Tanaka
- Department of Biochemical Toxicology, School of Pharmacy, Showa University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Espinosa-Oliva A, de Pablos R, Villarán R, Argüelles S, Venero J, Machado A, Cano J. Stress is critical for LPS-induced activation of microglia and damage in the rat hippocampus. Neurobiol Aging 2011; 32:85-102. [DOI: 10.1016/j.neurobiolaging.2009.01.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 11/28/2022]
|
140
|
Cao XZ, Ma H, Wang JK, Liu F, Wu BY, Tian AY, Wang LL, Tan WF. Postoperative cognitive deficits and neuroinflammation in the hippocampus triggered by surgical trauma are exacerbated in aged rats. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1426-32. [PMID: 20691747 DOI: 10.1016/j.pnpbp.2010.07.027] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/05/2010] [Accepted: 07/27/2010] [Indexed: 11/24/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is characterized by the progressive deterioration of intellectual/cognitive function following surgery. It has been suggested that the senile brain, which characteristically expresses higher levels of central proinflammatory cytokines, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, is more susceptible to additional insult following surgery. The authors of this study investigated the expression of central cytokines IL-1β, IL-6 and TNF-α and hippocampal glial cell activation in aged and adult rats following partial hepatectomy. Cognitive function was assessed in a reversal-learning version of the Morris water maze (MWM) before and after surgery. Hippocampal pro-inflammatory cytokines IL-1β, IL-6 and TNF-α and glial cell activation markers glial fibrillary acidic protein (GFAP) and S100β were measured at each time point; CD200 and CD200R were also measured to explore potential mechanisms of glial cell activation. Surgical trauma resulted in impairments in distance and latency only on postoperative day 1 (p<0.001, respectively) in adult rats. Aged rats exhibited impairments on day 1 (p<0.001) that persisted until postoperative day 3 (p=0.002 and p=0.001, respectively). All significant impairments paralleled upregulated cytokine IL-1β and IL-6 expression. Immunohistochemistry assay further showed more hippocampal glial cell activation in aged rats compared to that in adults. Overall, these findings suggest that surgical trauma, rather than anesthesia, resulted in cognitive function impairment potentiated by aging. Hippocampal pro-inflammatory cytokines and glial cell activation might mediate trauma-induced POCD.
Collapse
Affiliation(s)
- Xue-Zhao Cao
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 2010; 640:206-10. [DOI: 10.1016/j.ejphar.2010.04.041] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 04/08/2010] [Accepted: 04/25/2010] [Indexed: 11/21/2022]
|
142
|
Gong QH, Wang Q, Pan LL, Liu XH, Huang H, Zhu YZ. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: A pro-inflammatory pathway in rats. Pharmacol Biochem Behav 2010; 96:52-8. [DOI: 10.1016/j.pbb.2010.04.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/31/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
|
143
|
Patanella AK, Zinno M, Quaranta D, Nociti V, Frisullo G, Gainotti G, Tonali PA, Batocchi AP, Marra C. Correlations between peripheral blood mononuclear cell production of BDNF, TNF-alpha, IL-6, IL-10 and cognitive performances in multiple sclerosis patients. J Neurosci Res 2010; 88:1106-12. [PMID: 19885866 DOI: 10.1002/jnr.22276] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study was to investigate the role of Brain Derived Neurotrophic Factor (BDNF) and inflammatory factors in the development of cognitive dysfunctions in Multiple Sclerosis (MS). We correlated peripheral blood mononuclear cell (PBMC) production of BDNF, Tumor Necrosis Factor-alpha (TNF-alpha), Interleukin (IL)-6 and IL-10 with performances on specific neuropsychological tasks in a selected series of MS patients. We studied a sample of 30 patients with relapsing-remitting (RR)MS, segregated by gender and matched for age, education, disease duration, type of immunomodulating therapy, degree of disability and overall cognitive status. We found that low BDNF levels were correlated with increased time of execution on a divided attention and visual scanning task whereas high levels of IL-6 were correlated with low Mini Mental State Examination scores. We did not observe any significant correlations between IL-10, TNF-alpha levels and cognitive performances in our patients. In conclusion our study shows a correlation between low BDNF and high IL-6 production by PBMCs and poorer performances in cognitive tasks in RRMS patients suggesting a possible role of these factors in cognitive impairment in MS.
Collapse
Affiliation(s)
- A K Patanella
- Institute of Neurology, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
The neuroinflammatory hypothesis of delirium. Acta Neuropathol 2010; 119:737-54. [PMID: 20309566 DOI: 10.1007/s00401-010-0674-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/08/2010] [Accepted: 03/13/2010] [Indexed: 01/08/2023]
Abstract
Delirium is a neuropsychiatric syndrome characterized by a sudden and global impairment in consciousness, attention and cognition. It is particularly frequent in elderly subjects with medical or surgical conditions and is associated with short- and long-term adverse outcomes. The pathophysiology of delirium remains poorly understood as it involves complex multi-factorial dynamic interactions between a diversity of risk factors. Several conditions associated with delirium are characterized by activation of the inflammatory cascade with acute release of inflammatory mediators into the bloodstream. There is compelling evidence that acute peripheral inflammatory stimulation induces activation of brain parenchymal cells, expression of proinflammatory cytokines and inflammatory mediators in the central nervous system. These neuroinflammatory changes induce neuronal and synaptic dysfunction and subsequent neurobehavioural and cognitive symptoms. Furthermore, ageing and neurodegenerative disorders exaggerate microglial responses following stimulation by systemic immune stimuli such as peripheral inflammation and/or infection. In this review we explore the neuroinflammatory hypothesis of delirium based on recent evidence derived from animal and human studies.
Collapse
|
145
|
MPTP-induced dopaminergic degeneration and deficits in object recognition in rats are accompanied by neuroinflammation in the hippocampus. Pharmacol Biochem Behav 2010; 95:158-65. [DOI: 10.1016/j.pbb.2009.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/12/2009] [Accepted: 12/22/2009] [Indexed: 02/01/2023]
|
146
|
Shawcross DL, Shabbir SS, Taylor NJ, Hughes RD. Ammonia and the neutrophil in the pathogenesis of hepatic encephalopathy in cirrhosis. Hepatology 2010; 51:1062-9. [PMID: 19890967 DOI: 10.1002/hep.23367] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatic encephalopathy (HE) constitutes a neuropsychiatric syndrome which remains a major clinical problem in patients with cirrhosis. In the severest form of HE, cirrhotic patients may develop varying degrees of confusion and coma. Ammonia has been regarded as the key precipitating factor in HE, and astrocytes have been the most commonly affected cells neuropathologically. Although the evidence base supporting a pivotal role of ammonia is robust, in everyday clinical practice a consistent correlation between the concentration of ammonia in the blood and the manifest symptoms of HE is not observed. More recently the synergistic role of inflammation and infection in modulating the cerebral effects of ammonia has been shown to be important. Furthermore, it has been recognized that infection impairs brain function both in the presence and absence of liver disease. Thus it could be postulated that in the presence of ammonia, the brain is sensitized to a systemic inflammatory stimulus and is able to elicit an inflammatory response involving both proinflammatory and neurotransmitter pathways. Ammonia is not only directly toxic to astrocytes but induces neutrophil dysfunction with the release of reactive oxygen species, which contribute to oxidative stress and systemic inflammation. This may further exacerbate the cerebral effects of ammonia and potentially reduce the capacity of the neutrophil to fight microbial attack, thus inducing a vicious circle. This evidence supports the neutrophil in addition to ammonia as being culpable in the pathogenesis of HE, making the neutrophil a target for future anti-inflammatory therapeutic strategies in addition to ammonia lowering therapies.
Collapse
Affiliation(s)
- Debbie L Shawcross
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, 3rd Floor Cheyne Wing, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
| | | | | | | |
Collapse
|
147
|
Involvement of NMDA receptors in both MPTP-induced neuroinflammation and deficits in episodic-like memory in Wistar rats. Behav Brain Res 2010; 208:38-46. [DOI: 10.1016/j.bbr.2009.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/27/2009] [Accepted: 11/01/2009] [Indexed: 11/15/2022]
|
148
|
Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, Bruce-Keller AJ. Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol 2010; 219:25-32. [PMID: 20004026 PMCID: PMC2823983 DOI: 10.1016/j.jneuroim.2009.11.010] [Citation(s) in RCA: 433] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/11/2009] [Accepted: 11/11/2009] [Indexed: 02/07/2023]
Abstract
C57Bl/6 mice were administered a high fat, Western diet (WD, 41% fat) or a very high fat lard diet (HFL, 60% fat), and evaluated for cognitive ability using the Stone T-maze and for biochemical markers of brain inflammation. WD consumption resulted in significantly increased body weight and astrocyte reactivity, but not impaired cognition, microglial reactivity, or heightened cytokine levels. HFL increased body weight, and impaired cognition, increased brain inflammation, and decreased BDNF. Collectively, these data suggest that while different diet formulations can increase body weight, the ability of high fat diets to disrupt cognition is linked to brain inflammation.
Collapse
Affiliation(s)
- Paul J. Pistell
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Christopher D. Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Sunita Gupta
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Alecia G. Knight
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Donald K. Ingram
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | | |
Collapse
|
149
|
Frank MG, Barrientos RM, Hein AM, Biedenkapp JC, Watkins LR, Maier SF. IL-1RA blocks E. coli-induced suppression of Arc and long-term memory in aged F344xBN F1 rats. Brain Behav Immun 2010; 24:254-62. [PMID: 19822205 PMCID: PMC2818379 DOI: 10.1016/j.bbi.2009.10.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 10/03/2009] [Accepted: 10/05/2009] [Indexed: 11/29/2022] Open
Abstract
In normal aging, a peripheral immune challenge induces a sensitized and protracted neuroinflammatory response in parallel with long-term memory (LTM) impairments. Pro-inflammatory mediators of neuroinflammation impair LTM, synaptic plasticity and LTP. The immediate early gene Arc is considered a critical protein regulating LTM and synaptic plasticity. The present investigation examined whether (1) a peripheral Escherichia coli infection suppresses hippocampal Arc expression, and (2) central pro-inflammatory cytokines (IL-1beta and IL-6) mediate the effects of peripheral E. coli infection on Arc and LTM. In 24 months F344xBN F1 rats, E. coli infection suppressed basal Arc gene expression as well as contextual fear conditioning-induced Arc expression. E. coli treatment failed to alter either basal or conditioning-induced c-Fos expression. At 24h post-infection, intra-cisterna magna (ICM) treatment with the anti-inflammatory cytokine IL-1RA blocked the E. coli-induced suppression of hippocampal Arc and increases in IL-6 protein. At 4-day post-infection, IL-1RA blocked the E. coli-induced LTM impairments and increases in IL-6 protein. The present results suggest that central pro-inflammatory cytokines play a salient role in the suppression of Arc and impairments of LTM by a peripheral immune challenge in older animals.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Center for Neuroscience, Campus Box 345, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | |
Collapse
|
150
|
Gong QH, Li F, Jin F, Shi JS. Resveratrol Attenuates Neuroinflammation-mediated Cognitive Deficits in Rats. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qi-Hai Gong
- Department of Pharmacology, Zunyi Medical College
- The Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College
| | - Fei Li
- Department of Pharmacology, Zunyi Medical College
| | - Feng Jin
- Department of Pharmacology, Zunyi Medical College
- The Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College
| | - Jing-Shan Shi
- Department of Pharmacology, Zunyi Medical College
- The Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College
| |
Collapse
|