101
|
Brown JM, Baker LS, Seroogy KB, Genter MB. Intranasal Carnosine Mitigates α-Synuclein Pathology and Motor Dysfunction in the Thy1-aSyn Mouse Model of Parkinson's Disease. ACS Chem Neurosci 2021; 12:2347-2359. [PMID: 34138535 PMCID: PMC9996643 DOI: 10.1021/acschemneuro.1c00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Early symptoms include motor dysfunction and impaired olfaction. Toxic aggregation of α-synuclein (aSyn) in the olfactory bulb (OB) and substantia nigra pars compacta (SNpc) is a hallmark of PD neuropathology. Intranasal (IN) carnosine (2 mg/d for 8 weeks) was previously demonstrated to improve motor behavior and mitochondrial function in Thy1-aSyn mice, a model of PD. The present studies evaluated the efficacy of IN carnosine at a higher dose in slowing progression of motor deficits and aSyn accumulation in Thy1-aSyn mice. After baseline neurobehavioral assessments, IN carnosine was administered (0.0, 2.0, or 4.0 mg/day) to wild-type and Thy1-aSyn mice for 8 weeks. Olfactory and motor behavioral measurements were repeated prior to end point tissue collection. Brain sections were immunostained for aSyn and tyrosine hydroxylase (TH). Immunopositive cells were counted using design-based stereology in the SNpc and OB mitral cell layer (MCL). Behavioral assessments revealed a dose-dependent improvement in motor function with increasing carnosine dose. Thy1-aSyn mice treated with 2.0 or 4.0 mg/d IN carnosine exhibited fewer aSyn-positive (aSyn(+)) cell bodies in the SNpc compared to vehicle-treated mice. Moreover, the number of aSyn(+) cell bodies in carnosine-treated Thy1-aSyn mice was reduced to vehicle-treated wild-type levels in the SNpc. Carnosine treatment did not affect the number of aSyn(+) cell bodies in the OB-MCL or the number of TH(+) cells in the SNpc. In summary, intranasal carnosine treatment decreased aSyn accumulation in the SNpc, which may underlie its mitigation of motor deficits in the Thy1-aSyn mice.
Collapse
Affiliation(s)
- Josephine M Brown
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, 160 Panzeca Way, Cincinnati, Ohio 45267-0056, United States
| | - Lauren S Baker
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, 160 Panzeca Way, Cincinnati, Ohio 45267-0056, United States
| | - Kim B Seroogy
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0536, United States
| | - Mary Beth Genter
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, 160 Panzeca Way, Cincinnati, Ohio 45267-0056, United States
| |
Collapse
|
102
|
Liu D, Guo JJ, Su JH, Svanbergsson A, Yuan L, Haikal C, Li W, Gouras G, Li JY. Differential seeding and propagating efficiency of α-synuclein strains generated in different conditions. Transl Neurodegener 2021; 10:20. [PMID: 34148543 PMCID: PMC8215826 DOI: 10.1186/s40035-021-00242-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/18/2021] [Indexed: 01/10/2023] Open
Abstract
Background Accumulation of alpha-synuclein (α-syn) is a main pathological hallmark of Parkinson’s and related diseases, which are collectively known as synucleinopathies. Growing evidence has supported that the same protein can induce remarkably distinct pathological progresses and disease phenotypes, suggesting the existence of strain difference among α-syn fibrils. Previous studies have shown that α-syn pathology can propagate from the peripheral nervous system (PNS) to the central nervous system (CNS) in a “prion-like” manner. However, the difference of the propagation potency from the periphery to CNS among different α-syn strains remains unknown and the effect of different generation processes of these strains on the potency of seeding and propagation remains to be revealed in more detail. Methods Three strains of preformed α-syn fibrils (PFFs) were generated in different buffer conditions which varied in pH and ionic concentrations. The α-syn PFFs were intramuscularly (IM) injected into a novel bacterial artificial chromosome (BAC) transgenic mouse line that expresses wild-type human α-syn, and the efficiency of seeding and propagation of these PFFs from the PNS to the CNS was evaluated. Results The three strains of α-syn PFFs triggered distinct propagation patterns. The fibrils generated in mildly acidic buffer led to the most severe α-syn pathology, degeneration of motor neurons and microgliosis in the spinal cord. Conclusions The different α-syn conformers generated in different conditions exhibited strain-specific pathology and propagation patterns from the periphery to the CNS, which further supports the view that α-syn strains may be responsible for the heterogeneity of pathological features and disease progresses among synucleinopathies. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00242-5.
Collapse
Affiliation(s)
- Di Liu
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden.,Experimental Dementia Research, Lund University, BMC B11, 22184, Lund, Sweden
| | - Jian-Jun Guo
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Ji-Hui Su
- Institute of Health Sciences, China Medical University, Shenyang, 110122, China
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden
| | - Lin Yuan
- Institute of Health Sciences, China Medical University, Shenyang, 110122, China
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden
| | - Wen Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden.,Institute of Health Sciences, China Medical University, Shenyang, 110122, China
| | - Gunnar Gouras
- Experimental Dementia Research, Lund University, BMC B11, 22184, Lund, Sweden
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China. .,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden. .,Institute of Health Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
103
|
Deng I, Wiese MD, Zhou XF, Bobrovskaya L. The efficacy of systemic administration of lipopolysaccharide in modelling pre-motor Parkinson's disease in C57BL/6 mice. Neurotoxicology 2021; 85:254-264. [PMID: 34097939 DOI: 10.1016/j.neuro.2021.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/03/2021] [Accepted: 05/28/2021] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterised by the loss of dopaminergic neurons in the substantia nigra. Mounting evidence indicates a crucial role of inflammation and concomitant oxidative stress in the disease progression. Therefore, the aim of this study was to investigate the ability of systemically administered lipopolysaccharide (LPS) to induce motor and non-motor symptoms of PD, inflammation, oxidative stress and major neuropathological hallmarks of the disease in regions postulated to be affected, including the olfactory bulb, hippocampus, midbrain and cerebellum. Twenty-one male C57BL/6 mice, approximately 20 weeks old, received a dose of 0.3 mg/kg/day of LPS systemically on 4 consecutive days and behavioural testing was conducted on days 14-18 post-treatment, followed by tissue collection. Systemically administered LPS increased latency time in the buried food seeking test (indicative of olfactory impairment), and decreased time spent in central zone of the open field (anxiety-like behaviour). However, there was no change in latency time in the rotarod test or the expression of tyrosine hydroxylase (TH) in the midbrain. Systemically administered LPS induced increased glial markers GFAP and Iba-1 and oxidative stress marker 3-nitrotyrosine (3-NT) in the olfactory bulb, hippocampus, midbrain and cerebellum, and there were region specific changes in the expression of NFκB, IL-1β, α-synuclein, TH and BDNF proteins. The model could be useful to further elucidate early non-motor aspects of PD and the possible mechanisms contributing to the non-motor deficits.
Collapse
Affiliation(s)
- Isaac Deng
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Michael D Wiese
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
104
|
Zheng T, Zhang Z. Activated microglia facilitate the transmission of α-synuclein in Parkinson's disease. Neurochem Int 2021; 148:105094. [PMID: 34097990 DOI: 10.1016/j.neuint.2021.105094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and abnormal aggregates of α-synuclein protein called Lewy bodies. To date, there is no drug that can definitely slow down or stop the progression of this disease. The discovery of the cell-to-cell transmission of pathologic α-synuclein seeds offers the possibility to explore novel treatment strategies to prevent the spread of α-synuclein, with the purpose of slowing down the progression of PD in its tracks. Although recent studies have made tremendous progress in understanding how α-synuclein spreads throughout the brain, neuroinflammation seems to play a crucial role in the development of α-synuclein pathology in PD. The activation of microglia, one of the hallmarks of the neuroinflammatory process, is suggested to influence the neuron-to-neuron transmission of α-synuclein. This review summarizes how activated microglia facilitate this process, and focuses on the following mechanisms including the activation of microglia in PD, the reduced ability of activated microglia to clear α-synuclein and increased migratory capacity of microglia in PD, as well as the cooperation between microglia and exosomes in mediating α-synuclein release and propagation. In conclusion, this article help collate information on microglia in-relation to PD.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou 310006, China
| | - Zhengxiang Zhang
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou 310006, China.
| |
Collapse
|
105
|
Cheslow L, Snook AE, Waldman SA. Emerging targets for the diagnosis of Parkinson's disease: examination of systemic biomarkers. Biomark Med 2021; 15:597-608. [PMID: 33988462 DOI: 10.2217/bmm-2020-0654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease (PD) is a highly prevalent and irreversible neurodegenerative disorder that is typically diagnosed in an advanced stage. Currently, there are no approved biomarkers that reliably identify PD patients before they have undergone extensive neuronal damage, eliminating the opportunity for future disease-modifying therapies to intervene in disease progression. This unmet need for diagnostic and therapeutic biomarkers has fueled PD research for decades, but these efforts have not yet yielded actionable results. Recently, studies exploring mechanisms underlying PD progression have offered insights into multisystemic contributions to pathology, challenging the classic perspective of PD as a disease isolated to the brain. This shift in understanding has opened the door to potential new biomarkers from multiple sites in the body. This review focuses on emerging candidates for PD biomarkers in the context of current diagnostic approaches and multiple organ systems that contribute to disease.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
106
|
Vojdani A, Lerner A, Vojdani E. Cross-Reactivity and Sequence Homology Between Alpha-Synuclein and Food Products: A Step Further for Parkinson's Disease Synucleinopathy. Cells 2021; 10:cells10051111. [PMID: 34063062 PMCID: PMC8147930 DOI: 10.3390/cells10051111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Parkinson's disease is characterized by non-motor/motor dysfunction midbrain neuronal death and α-synuclein deposits. The accepted hypothesis is that unknown environmental factors induce α-synuclein accumulation in the brain via the enteric nervous system. MATERIAL AND METHODS Monoclonal antibodies made against recombinant α-synuclein protein or α-synuclein epitope 118-123 were applied to the antigens of 180 frequently consumed food products. The specificity of those antibody-antigen reactions was confirmed by serial dilution and inhibition studies. The Basic Local Alignment Search Tool sequence matching program was used for sequence homologies. RESULTS While the antibody made against recombinant α-synuclein reacted significantly with 86/180 specific food antigens, the antibody made against α-synuclein epitope 118-123 reacted with only 32/180 tested food antigens. The food proteins with the greatest number of peptides that matched with α-synuclein were yeast, soybean, latex hevein, wheat germ agglutinin, potato, peanut, bean agglutinin, pea lectin, shrimp, bromelain, and lentil lectin. Conclusions: The cross-reactivity and sequence homology between α-synuclein and frequently consumed foods, reinforces the autoimmune aspect of Parkinson's disease. It is hypothesized that luminal food peptides that share cross-reactive epitopes with human α-synuclein and have molecular similarity with brain antigens are involved in the synucleinopathy. The findings deserve further confirmation by extensive research.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA;
- Cyrex Laboratories, Phoenix, AZ 85034, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, Zabludowicz Center for Autoimmune Diseases, Tel-Hashomer 52621, Israel
- Correspondence: ; Tel.: +97-25-2591-9484
| | - Elroy Vojdani
- Regenera Medical,11620 Wilshire Blvd., Ste. 470, Los Angeles, CA 90025, USA;
| |
Collapse
|
107
|
Lerner A. The intestinal luminal sources of α-synuclein: a gastroenterologist perspective. Nutr Rev 2021; 80:282-293. [PMID: 33942062 DOI: 10.1093/nutrit/nuab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is characterized by nonmotor/motor dysfunction, midbrain dopaminergic neuronal death, and α-synuclein (aSN) deposits. The current hypothesis is that aSN accumulates in the enteric nervous system to reach the brain. However, invertebrate, vertebrate, and nutritional sources of aSN reach the luminal compartment. Submitted to local amyloidogenic forces, the oligomerized proteins' cargo can be sensed and sampled by a specialized mucosal cell to be transmitted to the adjacent enteric nervous system, starting their upward journey to the brain. The present narrative review extends the current mucosal origin of Parkinson's disease, presenting the possibility that the disease starts in the intestinal lumen. If substantiated, eliminating the nutritional sources of aSN (eg, applying a vegetarian diet) might revolutionize the currently used dopaminergic pharmacologic therapy.
Collapse
Affiliation(s)
- Aaron Lerner
- A. Lerner is with the Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
108
|
Murros KE, Huynh VA, Takala TM, Saris PEJ. Desulfovibrio Bacteria Are Associated With Parkinson's Disease. Front Cell Infect Microbiol 2021; 11:652617. [PMID: 34012926 PMCID: PMC8126658 DOI: 10.3389/fcimb.2021.652617] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is the most prevalent movement disorder known and predominantly affects the elderly. It is a progressive neurodegenerative disease wherein α-synuclein, a neuronal protein, aggregates to form toxic structures in nerve cells. The cause of Parkinson's disease (PD) remains unknown. Intestinal dysfunction and changes in the gut microbiota, common symptoms of PD, are evidently linked to the pathogenesis of PD. Although a multitude of studies have investigated microbial etiologies of PD, the microbial role in disease progression remains unclear. Here, we show that Gram-negative sulfate-reducing bacteria of the genus Desulfovibrio may play a potential role in the development of PD. Conventional and quantitative real-time PCR analysis of feces from twenty PD patients and twenty healthy controls revealed that all PD patients harbored Desulfovibrio bacteria in their gut microbiota and these bacteria were present at higher levels in PD patients than in healthy controls. Additionally, the concentration of Desulfovibrio species correlated with the severity of PD. Desulfovibrio bacteria produce hydrogen sulfide and lipopolysaccharide, and several strains synthesize magnetite, all of which likely induce the oligomerization and aggregation of α-synuclein protein. The substances originating from Desulfovibrio bacteria likely take part in pathogenesis of PD. These findings may open new avenues for the treatment of PD and the identification of people at risk for developing PD.
Collapse
Affiliation(s)
- Kari E. Murros
- Neurological Outpatient Clinic of Terveystalo Healthcare, Helsinki, Finland
| | - Vy A. Huynh
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Timo M. Takala
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Per E. J. Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
109
|
Li X, Feng X, Jiang Z, Jiang Z. Association of small intestinal bacterial overgrowth with Parkinson's disease: a systematic review and meta-analysis. Gut Pathog 2021; 13:25. [PMID: 33863370 PMCID: PMC8051095 DOI: 10.1186/s13099-021-00420-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Objective Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease (AD) worldwide. The prevalence of small intestinal bacterial overgrowth (SIBO) in PD patients is high. We conducted this comprehensive systematic review and meta-analysis to determine the association between SIBO and PD. Methods A comprehensive literature search of the PubMed, Cochrane Library and EMBASE databases was performed to identify studies correlating SIBO with PD. Studies were screened, and relevant data were extracted and analysed. We calculated the pooled prevalence of SIBO in all individuals with PD and compared the prevalence of SIBO between the two groups to calculate an odds ratio (OR) and 95% confidence interval (CI). Egger’s test was performed to assess publication bias. Results Eleven studies with 973 participants met the inclusion criteria. The pooled prevalence of SIBO in patients with PD was 46% (95% CI 36–56). A random-effects model was applied given the heterogeneity (I2 = 83%) detected among the studies. Egger’s test indicated no publication bias (p = 0.0657). Subgroup analyses showed that the prevalence of SIBO was greater in studies including patients diagnosed using the lactulose hydrogen breath test (LBT) (51%, 95% CI 37–65) than in those including patients diagnosed using the glucose hydrogen breath test (GBT) (35%, 95% CI 20–50), and the prevalence of SIBO in PD was highest (55%, 95% CI 38–72) in patients diagnosed by the LBT and GBT. The prevalence of SIBO was 52% (95% CI 40–64) among patients from Western countries and 33% (95% CI 22–43) among patients from Eastern countries. The pooled OR of SIBO in PD patients compared with healthy controls was 5.22 (95% CI 3.33–8.19, p < 0.00001). We did not identify an obvious predictor of SIBO in PD patients. Conclusion In conclusion, our meta-analysis found a strong association between SIBO and PD with approximately half of PD patients testing positive for SIBO. These relationships significantly differed based on diagnostic test and geographic area.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xin Feng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhongxiang Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
110
|
Wang Q, Luo Y, Chaudhuri KR, Reynolds R, Tan EK, Pettersson S. The role of gut dysbiosis in Parkinson's disease: mechanistic insights andtherapeutic options. Brain 2021; 144:2571-2593. [PMID: 33856024 DOI: 10.1093/brain/awab156] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disease in which gastrointestinal symptoms may appear prior to motor symptoms. The gut microbiota of patients with Parkinson's disease shows unique changes, which may be used as early biomarkers of disease. Alteration in gut microbiota composition may be related to the cause or effect of motor or non-motor symptoms, but the specific pathogenic mechanisms are unclear. The gut microbiota and its metabolites have been suggested to be involved in the pathogenesis of Parkinson's disease by regulating neuroinflammation, barrier function and neurotransmitter activity. There is bidirectional communication between the enteric nervous system and the central nervous system, and the microbiota-gut-brain axis may provide a pathway for the transmission of α-synuclein. We highlight recent discoveries and alterations of the gut microbiota in Parkinson's disease, and highlight current mechanistic insights on the microbiota-gut-brain axis in disease pathophysiology. We discuss the interactions between production and transmission of α-synuclein and gut inflammation and neuroinflammation. In addition, we also draw attention to diet modification, use of probiotics and prebiotics and fecal microbiota transplantation as potential therapeutic approaches that may lead to a new treatment paradigm for Parkinson's disease.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | - Sven Pettersson
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore.,LKC School of Medicine, NTU, Singapore.,Sunway University, Department of Medical Sciences, Kuala Lumpur, Malaysia
| |
Collapse
|
111
|
Kakoty V, K C S, Dubey SK, Yang CH, Kesharwani P, Taliyan R. The gut-brain connection in the pathogenicity of Parkinson disease: Putative role of autophagy. Neurosci Lett 2021; 753:135865. [PMID: 33812929 DOI: 10.1016/j.neulet.2021.135865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 01/09/2023]
Abstract
Parkinson disease (PD) is a progressive movement functionality disorder resulting in tremor and inability to execute voluntary functions combined with the preponderant non-motor disturbances encompassing constipation and gastrointestinal irritation. Despite continued research, the pathogenesis of PD is not yet clear. The available class of drugs for effective symptomatic management of PD includes a combination of levodopa and carbidopa. In recent past, the link between gut with PD has been explored. According to recent preclinical evidence, pathogens such as virus or bacterium may initiate entry into the gut via the nasal cavity that may aggravate lewy pathology in the gut that eventually propagates and progresses towards the brain via the vagus nerve resulting in the prodromal non-motor symptoms. Additionally, experimental evidence also suggests that alpha-synuclein misfolding commences at a very early stage in the gut and is transported via the vagus nerve prior to seeding PD pathology in the brain. However, this progression and resultant deterioration of the neurones can effectively be altered by an autophagy inducer, Trehalose, although the mechanism behind it is still enigmatic. Hence, this review will mainly focus on analysing the basic components of the gut that might be responsible for aggravating lewy pathology, the mediator(s) responsible for transmission of PD pathology from gut to brain and the important role of trehalose in ameliorating gut dysbiosis related PD complications that would eventually pave the way for therapeutic management of PD.
Collapse
Affiliation(s)
- Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Sarathlal K C
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, Kolkatta, India; Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Chih Hao Yang
- Department of Pharmacology, Taipei Medical University, Taiwan
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India.
| |
Collapse
|
112
|
Tan AH, Hor JW, Chong CW, Lim S. Probiotics for Parkinson's disease: Current evidence and future directions. JGH Open 2021; 5:414-419. [PMID: 33860090 PMCID: PMC8035463 DOI: 10.1002/jgh3.12450] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
The gut-brain axis is a hot topic in Parkinson's disease (PD). It has been postulated that gut pathogens and dysbiosis can contribute to peripheral inflammatory states or trigger downstream metabolic effects that exacerbate the neurodegenerative process in PD. Several preclinical and clinical studies have demonstrated disrupted intestinal permeability, intestinal inflammation, altered gut microbiome, and reduced fecal short-chain fatty acids in PD. In this regard, microbial-directed therapies such as probiotics are emerging as potential therapeutic options. Probiotic supplementation is postulated to confer a variety of health benefits due to the diverse functions of these live microorganisms, including inhibition of pathogen colonization, modulation/"normalization" of the microbiome and/or its function, immunomodulatory effects (e.g. reducing inflammation), and improved host epithelial barrier function. Interestingly, several PD animal model studies have demonstrated the potential neuroprotective effects of probiotics in reducing dopaminergic neuronal degeneration. Notably, two randomized placebo-controlled trials have provided class I evidence for probiotics as a treatment for constipation in PD. However, the effects of probiotics on other PD aspects, such as motor disability and cognitive function, and its long-term efficacy (including effects on PD drug absorption in the gut) have not been investigated adequately. Further targeted animal and human studies are also warranted to understand the mechanisms of actions of probiotics in PD and to tailor probiotic therapy based on individual host profiles to improve patient outcomes in this disabling disorder.
Collapse
Affiliation(s)
- Ai Huey Tan
- Division of Neurology and the Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Jia Wei Hor
- Division of Neurology and the Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Chun Wie Chong
- School of PharmacyMonash University MalaysiaSelangorMalaysia
| | - Shen‐Yang Lim
- Division of Neurology and the Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
113
|
Bayer G, Ganobis CM, Allen-Vercoe E, Philpott DJ. Defined gut microbial communities: promising tools to understand and combat disease. Microbes Infect 2021; 23:104816. [PMID: 33785422 DOI: 10.1016/j.micinf.2021.104816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Defined gut microbial communities are emerging tools that allow detailed studies of microbial ecosystems and their interactions with the host. In this article, we review strategies underlying the design of defined consortia and summarize the efforts to introduce simplified communities into in vitro and in vivo models. We conclude by highlighting the potential of defined microbial ecosystems as effective modulation strategies for health benefits.
Collapse
Affiliation(s)
- Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Caroline M Ganobis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
114
|
Chen SJ, Chi YC, Ho CH, Yang WS, Lin CH. Plasma Lipopolysaccharide-Binding Protein Reflects Risk and Progression of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1129-1139. [PMID: 33720853 DOI: 10.3233/jpd-212574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Lipopolysaccharide-binding protein (LBP) presents bacterial endotoxin, lipopolysaccharides, to cellular surface pattern receptors for immune responses in the gut-brain axis of Parkinson's disease (PD). OBJECTIVE We investigated whether plasma LBP levels were associated with PD severity and progression. METHODS This study included 397 participants (248 PD patients and 149 controls). We measured participants' plasma levels of LBP and pro-inflammatory cytokines, including TNF-α, IL-6, andIL-17A. PD patients underwent motor and cognition evaluations at baseline and at a mean follow-up interval of 4.7±2.3 years. We assessed the progression of motor and cognition symptoms based on changes in the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III motor score and Mini-Mental State Examination (MMSE) score, respectively. RESULTS Plasma LBP levels were lower in PD patients than controls (9.08±2.91 vs. 10.10±3.00μg/ml, p < 0.01). A multiple logistic regression model with adjustment for age, sex, and plasma cytokine levels revealed that reduced plasma LBP levels were associated with increased PD risk (odds ratio 0.816, [95% CI 0.717-0.929], p = 0.002). Among PD patients, LBP levels were correlated with MDS-UPDRS part III motor score after adjustment for confounders (coefficient = 0.636, p = 0.017), but not with MMSE score. Adjusted Cox regression analysis showed that higher plasma LBP levels associated with faster motor progression (adjusted hazard ratio 1.084 [95% CI 1.011-1.163], p = 0.024) during follow-up. CONCLUSION Our results demonstrated that plasma LBP levels reflect risk, motor symptom severity and progression in patients with PD.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Yu-Chiao Chi
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chang-Han Ho
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Shiung Yang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
115
|
Effect of Yuzu ( Citrus junos) Seed Limonoids and Spermine on Intestinal Microbiota and Hypothalamic Tissue in the Sandhoff Disease Mouse Model. Med Sci (Basel) 2021; 9:medsci9010017. [PMID: 33799734 PMCID: PMC8005996 DOI: 10.3390/medsci9010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
The effect of limonoids and spermine (Spm) extracted from yuzu (Citrus junos) seeds on the gut and the brain in a mouse model with Sandhoff disease (SD) was investigated. Wild-type and SD mice were fed a normal diet, or a diet supplemented with limonoid, Spm, or limonoid + Spm for 14-18 weeks, and then 16S rRNA gene amplicon sequencing with extracted DNA from their feces was executed. For SD control mice, intestinal microbiota was mostly composed of Lactobacillus and linked to dysbiosis. For SD and wild-type mice fed with limonoids + Spm or limonoids alone, intestinal microbiota was rich in mucin-degrading bacteria, including Bacteroidetes, Verrucomicrobia, and Firmicutes, and displayed a higher production of short-chain fatty acids and immunoglobulin A. Additionally, SD mice fed with limonoids + Spm or limonoids alone had less inflammation in hypothalamic tissues and displayed a greater number of neurons. Administration of limonoids and/or Spm improved the proportions of beneficial intestinal microbiota to host health and reduced neuronal degeneration in SD mice. Yuzu seed limonoids and Spermine may help to maintain the homeostasis of intestinal microbiota and hypothalamic tissue in the SD mouse model.
Collapse
|
116
|
The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol 2021; 42:315-332. [PMID: 33649989 DOI: 10.1007/s10571-021-01066-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a chronic, progressive and second most prevalent neurological disorder affecting the motor system. Cardinal motor impairment and α-synucleinopathy are the characteristic features of PD. Recently, it has been identified that the gut-brain axis is substantially regulated by the gut microbiome (GM) through an immunological, neuroendocrine, and neural mechanism. However, disturbance in the gut-microbiome-brain axis in PD might proceed to gastrointestinal manifestations intermittently leading to the motor system and the PD pathogenesis itself. The gut microbial toxins may induce the production of α-synuclein (α-syn) aggregates in the enteric nervous system (ENS), which may proliferate and propagate in a prion-like-manner through the vagus nerve to the central nervous system (CNS); supporting the hypothesis that, GM might play a pivotal role in PD pathogenesis. Overstimulated innate immune system due to intestinal bacterial overgrowth or gut dysbiosis and the enhanced intestinal permeability may persuade systemic inflammation, while the activation of enteric glial cells and enteric neurons may contribute to α-synucleinopathy. Gut microbiota can bear a significant impact on neurological outcomes such as learning, memory and cognition. In this review paper, we summarize how the alterations in gut microbiota and ENS inflammation are associated with PD pathogenesis. The evidence supporting the causative role played by gut-associated dysbiosis and microbial byproducts, in the onset of PD is also discussed. We have highlighted the landmark discoveries in the field of PD particularly focusing on the gut-brain axis. A better comprehension of the interaction between the gut-brain axis, gut microbiota, and PD can usher in novel therapeutic and diagnostic approaches.
Collapse
|
117
|
Clinical Phenotypes of Parkinson's Disease Associate with Distinct Gut Microbiota and Metabolome Enterotypes. Biomolecules 2021; 11:biom11020144. [PMID: 33499229 PMCID: PMC7911638 DOI: 10.3390/biom11020144] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is a clinically heterogenic disorder characterized by distinct clinical entities. Most studies on motor deficits dichotomize PD into tremor dominant (TD) or non-tremor dominant (non-TD) with akinetic-rigid features (AR). Different pathophysiological mechanisms may affect the onset of motor manifestations. Recent studies have suggested that gut microbes may be involved in PD pathogenesis. The aim of this study was to investigate the gut microbiota and metabolome composition in PD patients in relation to TD and non-TD phenotypes. In order to address this issue, gut microbiota and the metabolome structure of PD patients were determined from faecal samples using 16S next generation sequencing and gas chromatography–mass spectrometry approaches. The results showed a reduction in the relative abundance of Lachnospiraceae, Blautia, Coprococcus, Lachnospira, and an increase in Enterobacteriaceae, Escherichia and Serratia linked to non-TD subtypes. Moreover, the levels of important molecules (i.e., nicotinic acid, cadaverine, glucuronic acid) were altered in relation to the severity of phenotype. We hypothesize that the microbiota/metabolome enterotypes associated to non-TD subtypes may favor the development of gut inflammatory environment and gastrointestinal dysfunctions and therefore a more severe α-synucleinopathy. This study adds important information to PD pathogenesis and emphasizes the potential pathophysiological link between gut microbiota/metabolites and PD motor subtypes.
Collapse
|
118
|
The gut microbiota metabolite propionate ameliorates intestinal epithelial barrier dysfunction-mediated Parkinson's disease via the AKT signaling pathway. Neuroreport 2021; 32:244-251. [PMID: 33470765 DOI: 10.1097/wnr.0000000000001585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Parkinson's disease is a common neurodegenerative disease. Here, we investigated the protective effect and potential mechanisms of propionate on the intestinal epithelial barrier in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease. METHODS Gas chromatography was used to determine short-chain fatty acids (SCFA) concentrations in the fecal samples of Parkinson's disease patients and healthy controls. The stepping test was used to analyze forelimb akinesia, whisker test was used to analyze sensorimotor injury, cylinder test was used to analyze sensorimotor function, and Western blotting was used to analyze protein expression. RESULTS The concentrations of SCFAs, including acetate, butyrate and propionate, were significantly downregulated in the fecal samples of Parkinson's disease patients, and among the SCFAs, propionate decreased the most. Propionate administration improved the stepping test score, whisker test score and cylinder test score of MPTP-induced Parkinson's disease mice. Additionally, propionate administration increased the protein expression of zonula occludens-1 and occludin. Moreover, the effects of propionate on motor behavior and the intestinal epithelial barrier were dependent on the proteirrserinc-threonine kinases (AKT) signaling pathway. More importantly, treatment with SC79, a specific AKT agonist, abolished the effects of propionate on the intestinal epithelial barrier and motor behavior. CONCLUSION Our results demonstrated that propionate, which was decreased in the fecal samples of Parkinson's disease patients, exerted beneficial effects on intestinal epithelial barrier function and improved motor behavior in MPTP-induced Parkinson's disease mice through the AKT signaling pathway.
Collapse
|
119
|
Kaur G, Behl T, Bungau S, Kumar A, Uddin MS, Mehta V, Zengin G, Mathew B, Shah MA, Arora S. Dysregulation of the Gut-Brain Axis, Dysbiosis and Influence of Numerous Factors on Gut Microbiota Associated Parkinson's Disease. Curr Neuropharmacol 2021; 19:233-247. [PMID: 32504503 PMCID: PMC8033978 DOI: 10.2174/1570159x18666200606233050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) has been one of the substantial social, medical concerns and, burdens of the present time. PD is a gradually devastating neurodegenerative disorder of the neurological function marked with α-synucleinopathy affecting numerous regions of the brain-gut axis, as well as the central, enteric, and autonomic nervous system. Its etiology is a widely disputed topic. OBJECTIVE This review emphasizes to find out the correlation among the microbial composition and the observable disturbances in the metabolites of the microbial species and its impact on the immune response, which may have a concrete implication on the occurrence, persistence and, pathophysiology of PD via the gut-brain axis. METHODS An in-depth research and the database was developed from the available peer-reviewed articles to date (March 2020) utilizing numerous search engines like PubMed, MEDLINE and, other internet sources. RESULTS Progressively increasing shreds of evidence have proved the fact that dysbiosis in the gut microbiome plays a central role in many neurological disorders, such as PD. Indeed, a disordered microbiome-gut-brain axis in PD could be focused on gastrointestinal afflictions that manifest primarily several years prior to the diagnosis, authenticating a concept wherein the pathological pathway progresses from the intestine reaching the brain. CONCLUSION The microbiota greatly affects the bidirectional interaction between the brain and the gut via synchronized neurological, immunological, and neuroendocrine mechanisms. It can be concluded that a multitude of factors discussed in this review steadily induce the onset of dysbacteriosis that may exacerbate the etiologic mechanism of Parkinson's disease.
Collapse
Affiliation(s)
| | - Tapan Behl
- Address correspondence to this author at the Chitkara College of Pharmacy, Chitkara University, Punjab, India; Tel: +91-8527517931;, E-mails: ;
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Follmer C. Viral Infection-Induced Gut Dysbiosis, Neuroinflammation, and α-Synuclein Aggregation: Updates and Perspectives on COVID-19 and Neurodegenerative Disorders. ACS Chem Neurosci 2020; 11:4012-4016. [PMID: 33244974 DOI: 10.1021/acschemneuro.0c00671] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The current pandemic of coronavirus disease 2019 (COVID-19) has gained increased attention in the neuroscience community, especially taking into account the neuroinvasive potential of its causative agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the impact of its infection on the structure and function of the brain. Apart from the neurotropic properties of SARS-CoV-2, it is likewise important the observation that virus infection may perturb specific cellular processes that are believed to play an important role in the pathogenesis of diverse neurological disorders, particularly in Parkinson's disease (PD). In this scenario, viral infection-induced colon inflammation, gut microbial imbalance, and α-synuclein upregulation are of particular interest with regard to the interplay between the gastrointestinal tract and the central nervous system (microbiome-gut-brain axis). In this Perspective, we present a critical view on the different hypotheses that are recently being raised by neuroscientists about the relationship between SARS-CoV-2 infection and long-lasting neurodegenerative disorders, opening the question of whether COVID-19 might represent a risk factor for the development of PD.
Collapse
Affiliation(s)
- Cristian Follmer
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
121
|
Bhattacharyya D, Bhunia A. Gut-Brain axis in Parkinson's disease etiology: The role of lipopolysaccharide. Chem Phys Lipids 2020; 235:105029. [PMID: 33338469 DOI: 10.1016/j.chemphyslip.2020.105029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
Recent studies highlight the initiation of Parkinson's disease (PD) in the gastrointestinal tract, decades before the manifestations in the central nervous system (CNS). This gut-brain axis of neurodegenerative diseases defines the critical role played by the unique microbial composition of the "second brain" formed by the enteric nervous system (ENS). Compromise in the enteric wall can result in the translocation of gut-microbiota along with their metabolites into the system that can affect the homeostatic machinery. The released metabolites can associate with protein substrates affecting several biological pathways. Among these, the bacterial endotoxin from Gram-negative bacteria, i.e., Lipopolysaccharide (LPS), has been implicated to play a definite role in progressive neurodegeneration. The molecular interaction of the lipid metabolites can have a direct neuro-modulatory effect on homeostatic protein components that can be transported to the CNS via the vagus nerve. α-synuclein (α-syn) is one such partner protein, the molecular interactions with which modulate its overall fibrillation propensity in the system. LPS interaction has been shown to affect the protein's aggregation kinetics in an alternative inflammatory pathway of PD pathogenesis. Several other lipid contents from the bacterial membranes could also be responsible for the initiation of α-syn amyloidogenesis. The present review will focus on the intermolecular interactions of α-syn with bacterial lipid components, particularly LPS, with a definite clinical manifestation in PD pathogenesis. However, deconvolution of the sequence of interaction events from the ENS to its propagation in the CNS is not easy or obvious. Nevertheless, the characterization of these lipid-mediated structures is a step towards realizing the novel targets in the pre-emptive diagnoses of PD. This comprehensive description should prompt the correlation of potential risk of amyloidogenesis upon detection of specific paradigm shifts in the microbial composition of the gut.
Collapse
Affiliation(s)
- Dipita Bhattacharyya
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India.
| |
Collapse
|
122
|
Enteric Glia at the Crossroads between Intestinal Immune System and Epithelial Barrier: Implications for Parkinson Disease. Int J Mol Sci 2020; 21:ijms21239199. [PMID: 33276665 PMCID: PMC7730281 DOI: 10.3390/ijms21239199] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Over recent years, several investigations have suggested that Parkinson’s disease (PD) can be regarded as the consequence of a bowel disorder. Indeed, gastrointestinal symptoms can occur at all stages of this neurodegenerative disease and in up to a third of cases, their onset can precede the involvement of the central nervous system. Recent data suggest that enteric glial cells (EGCs) may play a major role in PD-related gastrointestinal disturbances, as well as in the development and progression of the central disease. In addition to their trophic and structural functions, EGCs are crucial for the homeostatic control of a wide range of gastrointestinal activities. The main purpose of this review was to provide a detailed overview of the role of EGCs in intestinal PD-associated alterations, with particular regard for their participation in digestive and central inflammation as well as the dynamic interactions between glial cells and intestinal epithelial barrier. Accumulating evidence suggests that several pathological intestinal conditions, associated with an impairment of barrier permeability, may trigger dysfunctions of EGCs and their shift towards a proinflammatory phenotype. The reactive gliosis is likely responsible for PD-related neuroinflammation and the associated pathological changes in the ENS. Thus, ameliorating the efficiency of mucosal barrier, as well as avoiding IEB disruption and the related reactive gliosis, might theoretically prevent the onset of PD or, at least, counteract its progression.
Collapse
|
123
|
Feng YK, Wu QL, Peng YW, Liang FY, You HJ, Feng YW, Li G, Li XJ, Liu SH, Li YC, Zhang Y, Pei Z. Oral P. gingivalis impairs gut permeability and mediates immune responses associated with neurodegeneration in LRRK2 R1441G mice. J Neuroinflammation 2020; 17:347. [PMID: 33213462 PMCID: PMC7677837 DOI: 10.1186/s12974-020-02027-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background The R1441G mutation in the leucine-rich repeat kinase 2 (LRRK2) gene results in late-onset Parkinson’s disease (PD). Peripheral inflammation and gut microbiota are closely associated with the pathogenesis of PD. Chronic periodontitis is a common type of peripheral inflammation, which is associated with PD. Porphyromonas gingivalis (Pg), the most common bacterium causing chronic periodontitis, can cause alteration of gut microbiota. It is not known whether Pg-induced dysbiosis plays a role in the pathophysiology of PD. Methods In this study, live Pg were orally administrated to animals, three times a week for 1 month. Pg-derived lipopolysaccharide (LPS) was used to stimulate mononuclear cells in vitro. The effects of oral Pg administration on the gut and brain were evaluated through behaviors, morphology, and cytokine expression. Results Dopaminergic neurons in the substantia nigra were reduced, and activated microglial cells were increased in R1441G mice given oral Pg. In addition, an increase in mRNA expression of tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) as well as protein level of α-synuclein together with a decrease in zonula occludens-1 (Zo-1) was detected in the colon in Pg-treated R1441G mice. Furthermore, serum interleukin-17A (IL-17A) and brain IL-17 receptor A (IL-17RA) were increased in Pg-treated R1441G mice. Conclusions These findings suggest that oral Pg-induced inflammation may play an important role in the pathophysiology of LRRK2-associated PD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02027-5.
Collapse
Affiliation(s)
- Yu-Kun Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.,Department of Neurology, Hainan General Hospital; Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Qiong-Li Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan-Wen Peng
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng-Yin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Hua-Jing You
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yi-Wei Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.,Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Ge Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, Guangdong, China
| | - Xue-Jiao Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, Guangdong, China
| | - Shu-Hua Liu
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, Guangdong, China
| | - Yong-Chao Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, Guangdong, China
| | - Yu Zhang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, Guangdong, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
124
|
Binienda A, Twardowska A, Makaro A, Salaga M. Dietary Carbohydrates and Lipids in the Pathogenesis of Leaky Gut Syndrome: An Overview. Int J Mol Sci 2020; 21:ijms21218368. [PMID: 33171587 PMCID: PMC7664638 DOI: 10.3390/ijms21218368] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the recent knowledge on the effects of dietary carbohydrates and lipids on the pathophysiology of leaky gut syndrome (LGS). Alterations in intestinal barrier permeability may lead to serious gastrointestinal (GI) disorders. LGS is caused by intestinal hyperpermeability due to changes in the expression levels and functioning of tight junctions. The influence of dietary habits on intestinal physiology is clearly visible in incidence rates of intestinal diseases in industrial and developing countries. Diseases which are linked to intestinal hyperpermeability tend to localize to Westernized countries, where a diet rich in fats and refined carbohydrates predominates. Several studies suggest that fructose is one of the key carbohydrates involved in the regulation of the intestinal permeability and its overuse may cause harmful effects, such as tight junction protein dysfunction. On the other hand, short chain fatty acids (mainly butyrate) at appropriate concentrations may lead to the reduction of intestinal permeability, which is beneficial in LGS. However, long chain fatty acids, including n-3 and n-6 polyunsaturated fatty acids have unclear properties. Some of those behave as components untightening and tightening the intestinal membrane.
Collapse
Affiliation(s)
| | | | | | - Maciej Salaga
- Correspondence: ; Tel.: +48-42-272-57-07; Fax: +48-42-272-56-94
| |
Collapse
|
125
|
Affiliation(s)
- Yogesh Bhattarai
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Purna C. Kashyap
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
126
|
Jeon H, Kim HY, Bae CH, Lee Y, Kim S. Korean Red Ginseng Regulates Intestinal Tight Junction and Inflammation in the Colon of a Parkinson's Disease Mouse Model. J Med Food 2020; 23:1231-1237. [PMID: 33121350 DOI: 10.1089/jmf.2019.4640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies have determined that gastrointestinal function contributes to the control of Parkinson's disease (PD). Gastrointestinal dysfunction results in a leaky intestinal barrier, inducing inflammation in the gut. Korean red ginseng (KRG) is widely used for the treatment of numerous afflictions, including inflammation and neurodegenerative disease. We investigated changes in the intestinal tight junctions and proinflammatory cytokines in the colon, and alpha-synuclein (aSyn) in the colon and the substantia nigra (SN) of a PD mouse model. Eight-week-old male C57BL/6 mice were intraperitoneally administered 30 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) once a day for 5 days, and orally given 100 mg/kg of KRG for 12 consecutive days. Alterations in the levels of occludin, zonula occludens-1 (ZO-1), tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in the colon, and the expressions of aSyn and tyrosine hydroxylase (TH) in the colon and the SN were evaluated. Oral administration of KRG significantly prevents the MPTP-induced motor dysfunction, and suppresses the MPTP-induced disruption of occludin and ZO-1, and suppresses the increase in TNF-α and IL-1β in the colon of mice. In addition, KRG prevents accumulation of aSyn and TH in the colon and the SN. These results suggest that KRG has the potential to prevent MPTP-induced leaky gut barrier, inflammation, and accumulation of aSyn.
Collapse
Affiliation(s)
- Hyongjun Jeon
- Department of Korean Medical Science, School of Korean Medicine; Yangsan, Korea.,Korean Medicine Research Center for Healthy Aging; Pusan National University, Yangsan, Korea
| | - Hee-Young Kim
- Korean Medicine Research Center for Healthy Aging; Pusan National University, Yangsan, Korea
| | - Chang-Hwan Bae
- Department of Korean Medical Science, School of Korean Medicine; Yangsan, Korea.,Korean Medicine Research Center for Healthy Aging; Pusan National University, Yangsan, Korea
| | - Yukyoung Lee
- Department of Korean Medical Science, School of Korean Medicine; Yangsan, Korea.,Korean Medicine Research Center for Healthy Aging; Pusan National University, Yangsan, Korea
| | - Seungtae Kim
- Department of Korean Medical Science, School of Korean Medicine; Yangsan, Korea.,Korean Medicine Research Center for Healthy Aging; Pusan National University, Yangsan, Korea
| |
Collapse
|
127
|
Zhang F, Yue L, Fang X, Wang G, Li C, Sun X, Jia X, Yang J, Song J, Zhang Y, Guo C, Ma G, Sang M, Chen F, Wang P. Altered gut microbiota in Parkinson's disease patients/healthy spouses and its association with clinical features. Parkinsonism Relat Disord 2020; 81:84-88. [PMID: 33099131 DOI: 10.1016/j.parkreldis.2020.10.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Increasing evidence shows that gut microbiota dysbiosis may play important roles in the occurrence and progression of Parkinson's disease (PD), but the findings are inconsistent. Besides, the effect of family environment on gut microbiota dysbiosis remains unclear. METHODS We characterized the gut microbial compositions of 63 PD patients, 63 healthy spouses (HS) and 74 healthy people (HP) using 16S rRNA sequencing. Clinical phenotypes and microbial composition were analyzed comprehensively. RESULTS There were markedly different microbial compositions among PD, HS and HP samples by alpha/beta diversity. We also found differential microbial compositions among Hoehn & Yahr stage/disease duration. Eight inflammation-associated microbial genera shared a continuously increase trend with increased Hoehn & Yahr stage and disease duration, indicating characteristic bacteria associated with deterioration in PD. Additionally, seven bacterial markers were identified for accurately differentiating PD patients from the controls (area under the curve [AUC]: 0.856). CONCLUSIONS Our study shows altered gut microbiota in PD patients. Importantly, inflammation-associated microbial genera may play roles in PD progression. Differential microbial compositions in HS and HP samples demonstrate that the gut microbiota are also affected by family environment. Disease-associated metagenomics studies should consider the family environmental factor. Our research provides an important reference and improves the understanding of gut microbiota in PD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Liya Yue
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Xing Fang
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Gengchao Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Xiaodong Sun
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Xinmiao Jia
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jingjing Yang
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Jinhui Song
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Yu Zhang
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Chongye Guo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Guannan Ma
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Ming Sang
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China.
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Puqing Wang
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China.
| |
Collapse
|
128
|
Song S, Liu J, Zhang F, Hong JS. Norepinephrine depleting toxin DSP-4 and LPS alter gut microbiota and induce neurotoxicity in α-synuclein mutant mice. Sci Rep 2020; 10:15054. [PMID: 32929122 PMCID: PMC7490385 DOI: 10.1038/s41598-020-72202-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
This study examined the genetic mutation and toxicant exposure in producing gut microbiota alteration and neurotoxicity. Homozygous α-synuclein mutant (SNCA) mice that overexpress human A53T protein and littermate wild-type mice received a single injection of LPS (2 mg/kg) or a selective norepinephrine depleting toxin DSP-4 (50 mg/kg), then the motor activity, dopaminergic neuron loss, colon gene expression and gut microbiome were examined 13 months later. LPS and DSP-4 decreased rotarod and wirehang activity, reduced dopaminergic neurons in substantia nigra pars compacta (SNpc), and SNCA mice were more vulnerable. SNCA mice had 1,000-fold higher human SNCA mRNA expression in the gut, and twofold higher gut expression of NADPH oxidase (NOX2) and translocator protein (TSPO). LPS further increased expression of TSPO and IL-6 in SNCA mice. Both LPS and DSP-4 caused microbiome alterations, and SNCA mice were more susceptible. The altered colon microbiome approximated clinical findings in PD patients, characterized by increased abundance of Verrucomicrobiaceae, and decreased abundance of Prevotellaceae, as evidenced by qPCR with 16S rRNA primers. The Firmicutes/Bacteroidetes ratio was increased by LPS in SNCA mice. This study demonstrated a critical role of α-synuclein and toxins interactions in producing gut microbiota disruption, aberrant gut pro-inflammatory gene expression, and dopaminergic neuron loss.
Collapse
Affiliation(s)
- Sheng Song
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jie Liu
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA. .,Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Feng Zhang
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
129
|
BDNF and Netrin-1 repression by C/EBPβ in the gut triggers Parkinson's disease pathologies, associated with constipation and motor dysfunctions. Prog Neurobiol 2020; 198:101905. [PMID: 32911010 DOI: 10.1016/j.pneurobio.2020.101905] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 11/21/2022]
Abstract
Chronic constipation is one of the most prominent prodromal symptoms in Parkinson's disease (PD), and Lewy bodies, enriched with aggregated α-Synuclein (α-Syn), propagation from the gut into the brain has been proposed to play a key role in PD etiopathogenesis. BDNF (Brain-derived neurotrophic factor) and Netrin-1 promote both neuronal survival and regulate the gut functions. We hypothesize that C/EBPβ represses BDNF and Netrin-1 in peripheral nervous system and central nervous system, contributing to GI tract and brain malfunctions in PD. To test the hypothesis, we performed the studies in both human PD gut tissues and BDNF or Netrin-1 gut conditional KO mice models. Lewy bodies with α-Syn aggregation and neuro-inflammation were measured in the colon and brain samples from PD patients and healthy controls and rotenone or vehicle-treated WT and CEBPβ (+/-) mice. We show that both BDNF and Netrin-1 are strongly decreased in the brain and the gut of PD patients, and conditional KO of these trophic factors in the gut elicits dopaminergic neuronal loss, constipation and motor dysfunctions. Interestingly, the inflammation and oxidative stress-induced transcription factor C/EBPβ acts as a robust repressor for both BDNF and Netrin-1 and suppresses the expression of trophic factors, and its levels inversely correlate with BDNF and Netrin-1 in PD patients. Our findings support that gut inflammation induces C/EBPβ activation that leads to both BDNF and Netrin-1 reduction and triggers PD non-motor and motor symptoms. Possibly, C/EBPβ-mediated biological events might be early diagnostic biomarkers for PD.
Collapse
|
130
|
Follmer C. Gut Microbiome Imbalance and Neuroinflammation: Impact of COVID-19 on Parkinson's Disease. Mov Disord 2020; 35:1495-1496. [PMID: 32822087 PMCID: PMC7461175 DOI: 10.1002/mds.28231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/11/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Cristian Follmer
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Department of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
131
|
Abstract
The gut microbiome is increasingly implicated in modifying susceptibility to and progression of neurodegenerative diseases (NDs). In this review, we discuss roles for the microbiome in aging and in NDs. In particular, we summarize findings from human studies on microbiome alterations in Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. We assess animal studies of genetic and environmental models for NDs that investigate how manipulations of the microbiome causally impact the development of behavioral and neuropathological endophenotypes of disease. We additionally evaluate the likely immunological, neuronal, and metabolic mechanisms for how the gut microbiota may modulate risk for NDs. Finally, we speculate on cross-cutting features for microbial influences across multiple NDs and consider the potential for microbiome-targeted interventions for NDs.
Collapse
Affiliation(s)
- P Fang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - S A Kazmi
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - K G Jameson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - E Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
132
|
van IJzendoorn SCD, Derkinderen P. The Intestinal Barrier in Parkinson's Disease: Current State of Knowledge. JOURNAL OF PARKINSONS DISEASE 2020; 9:S323-S329. [PMID: 31561386 PMCID: PMC6839484 DOI: 10.3233/jpd-191707] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The intestinal barrier, which primarily consists of epithelial cells stitched together with connecting proteins called tight junctions, plays a critical role in health and disease. It is in close contact with the gut microbiota on its luminal side and with the enteric neurons on the tissue side. Both microbiota and the enteric nervous system are regulatory housekeepers of the intestinal barrier. Therefore, the recently observed enteric neuropathology along with gut dysbiosis in Parkinson's disease have prompted research on intestinal permeability in this neurodegenerative disorder. In this mini-review we attempt to concisely summarize the current knowledge on intestinal barrier in Parkinson's disease. We envision future direction research that should be pursued in order to demonstrate its possible role in disease development and progression.
Collapse
Affiliation(s)
- Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Pascal Derkinderen
- Inserm, U1235, Nantes, France.,University Nantes, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| |
Collapse
|
133
|
Kang X, Ploner A, Ludvigsson JF, Williams DM, Larsson H, Pedersen NL, Wirdefeldt K. Clostridium difficile infection and risk of Parkinson's disease: a Swedish population-based cohort study. Eur J Neurol 2020; 27:2134-2141. [PMID: 32538502 DOI: 10.1111/ene.14400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Gastrointestinal inflammation has been implicated in Parkinson's disease (PD). The aim of this study was to examine whether individuals with a history of Clostridium difficile infection (CDI) are at elevated risk of PD. METHODS We performed a population-based cohort study using Swedish national register data. Adults aged ≥35 years were identified from the Swedish Population and Housing Census 1990 and followed during the period 1997-2013. Diagnoses of CDI and PD were extracted from the National Patient Register. Associations of CDI history with PD risk were estimated using Cox proportional hazards regression. We also explored whether the association differed by the source of CDI diagnosis (inpatient vs. outpatient), presence of recurrent infections, and pre-infection use of antibiotics. RESULTS Amongst the study population (N = 4 670 423), 34 868 (0.75%) had a history of CDI. A total of 165 and 47 035 incident PD cases were identified from individuals with and without CDI history, respectively. Across the entire follow-up, a 16% elevation of PD risk was observed among the CDI group [hazard ratio 1.16, 95% confidence interval (CI)1.00-1.36], which was mainly driven by increased PD risk within the first 2 years after CDI diagnosis (hazard ratio 1.38, 95% CI 1.12-1.69). In longer follow-up, CDI was not associated with subsequent PD occurrence. This temporal pattern of CDI-PD associations was generally observed across all CDI subgroups. CONCLUSIONS Clostridium difficile may be associated with an increased short-term PD risk, but this might be explained by reverse causation and/or surveillance bias. Our results do not imply that CDI history affects long-term PD risk.
Collapse
Affiliation(s)
- X Kang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - A Ploner
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - J F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - D M Williams
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - H Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,School of Medical Sciences, Örebro University, Örebro, Sweden
| | - N L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - K Wirdefeldt
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
134
|
Nishiwaki H, Ito M, Ishida T, Hamaguchi T, Maeda T, Kashihara K, Tsuboi Y, Ueyama J, Shimamura T, Mori H, Kurokawa K, Katsuno M, Hirayama M, Ohno K. Meta-Analysis of Gut Dysbiosis in Parkinson's Disease. Mov Disord 2020; 35:1626-1635. [PMID: 32557853 DOI: 10.1002/mds.28119] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND PD may begin with the intestinal accumulation of α-synuclein fibrils, which can be causally associated with gut dysbiosis. The variability of gut microbiota across countries prevented us from identifying shared gut dysbiosis in PD. OBJECTIVES To identify gut dysbiosis in PD across countries. METHODS We performed 16S ribosomal RNA gene sequencing analysis of gut microbiota in 223 patients with PD and 137 controls, and meta-analyzed gut dysbiosis by combining our dataset with four previously reported data sets from the United States, Finland, Russia, and Germany. We excluded uncommon taxa from our analyses. For pathway analysis, we developed the Kyoto Encyclopedia of Genes and Genomes orthology set enrichment analysis method. RESULTS After adjusting for confounding factors (body mass index, constipation, sex, age, and catechol-O-methyl transferase inhibitor), genera Akkermansia and Catabacter, as well as families Akkermansiaceae, were increased, whereas genera Roseburia, Faecalibacterium, and Lachnospiraceae ND3007 group were decreased in PD. Catechol-O-methyl transferase inhibitor intake markedly increased family Lactobacillaceae. Inspection of these bacteria in 12 datasets that were not included in the meta-analysis revealed that increased genus Akkermansia and decreased genera Roseburia and Faecalibacterium were frequently observed across countries. Kyoto Encyclopedia of Genes and Genomes orthology set enrichment analysis revealed changes in short-chain fatty acid metabolisms in our dataset. CONCLUSIONS We report that intestinal mucin layer-degrading Akkermansia is increased and that short-chain fatty acid-producing Roseburia and Faecalibacterium are decreased in PD across countries. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Ishida
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Mori
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
135
|
Harsanyiova J, Buday T, Kralova Trancikova A. Parkinson's Disease and the Gut: Future Perspectives for Early Diagnosis. Front Neurosci 2020; 14:626. [PMID: 32625058 PMCID: PMC7313629 DOI: 10.3389/fnins.2020.00626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of dopaminergic neurons, and at the cellular level by the formation of Lewy bodies in the central nervous system (CNS). However, the onset of the disease is believed to be localized to peripheral organs, particularly the gastrointestinal tract (GIT) and the olfactory bulb sooner before neuropathological changes occur in the CNS. Patients already in the pre-motor stage of PD suffer from various digestive problems and/or due to significant changes in the composition of the intestinal microbiome in this early stage of the disease. Detailed analyses of patient biopsies and autopsies as well as animal models of neuropathological changes characteristic of PD provided important information on the pathology or treatment of PD symptoms. However, presently is not clarified (i) the specific tissue in the GIT where the pathological processes associated with PD is initiated; (ii) the mechanism by which these processes are disseminated to the CNS or other tissues within the GIT; and (iii) which neuropathological changes could also serve as a reliable diagnostic marker of the premotor stages of PD, or (iv) which type of GIT tissue would be the most appropriate choice for routine examination of patient biopsies.
Collapse
Affiliation(s)
- Jana Harsanyiova
- Departmet of Pahophysiology, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| | - Tomas Buday
- Departmet of Pahophysiology, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| | - Alzbeta Kralova Trancikova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| |
Collapse
|
136
|
The role of the gut microbiota in the pathophysiology of mental and neurological disorders. Psychiatr Genet 2020; 30:87-100. [DOI: 10.1097/ypg.0000000000000255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
137
|
Qin SM, Bai WQ, Zhang KY, Ding XM, Bai SP, Wang JP, Peng HW, Yang YF, Chen C, Zeng QF. Different microbiomes are found in healthy breeder ducks and those with foot pad dermatitis. Poult Sci 2020; 98:6340-6348. [PMID: 31393583 PMCID: PMC8913756 DOI: 10.3382/ps/pez456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022] Open
Abstract
Foot pad dermatitis (FPD) is a serious problem of the modern poultry industry, negatively affecting birds' welfare and health status, walking and feeding activity, growth performance, carcass quality, and economic performance of meat production. The gut microbiome in poultry with FPD has not been previously investigated. Therefore, we compared the cecal microbiomes of 8 breeding ducks with FPD to 8 control ducks (breeders with apparently healthy feet) by pyrosequencing the bacterial 16S ribosomal RNA gene. The results showed a significant β-diversity (P < 0.05) of cecal microbiota presented between healthy and FPD-affected breeder ducks. The plasma endotoxins, interleukin 1β (IL-1β), IL-17, IL-6, IL-10, and tumor necrosis factor-α concentration, and the abundance of class Clostridia in FPD-affected ducks was markedly higher (P < 0.05), however, the abundance of genus Prevotella, Lactobacillus, Lachnospiraceae UCG-008, and the Firmicutes to Bacteroidetes ratio in FPD-affected ducks was significantly lower (P < 0.05) when compared to healthy ducks. These findings suggest when duck breeders are affected with FPD, ducks show an increased inflammatory response and a difference of structure and composition of the cecal microbiome.
Collapse
Affiliation(s)
- S M Qin
- Institute of Animal Nutrition, Sichuan Agricultural University; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan Province, China
| | - W Q Bai
- Institute of Animal Nutrition, Sichuan Agricultural University; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan Province, China
| | - K Y Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan Province, China
| | - X M Ding
- Institute of Animal Nutrition, Sichuan Agricultural University; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan Province, China
| | - S P Bai
- Institute of Animal Nutrition, Sichuan Agricultural University; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan Province, China
| | - J P Wang
- Institute of Animal Nutrition, Sichuan Agricultural University; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan Province, China
| | - H W Peng
- Institute of Animal Nutrition, Sichuan Agricultural University; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan Province, China
| | - Y F Yang
- Tieqilishi Group Breeding Duck Co. Ltd., Mianyang 610000, Sichuan Province, China
| | - C Chen
- Tieqilishi Group Breeding Duck Co. Ltd., Mianyang 610000, Sichuan Province, China
| | - Q F Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan Province, China
| |
Collapse
|
138
|
D’Antongiovanni V, Pellegrini C, Fornai M, Colucci R, Blandizzi C, Antonioli L, Bernardini N. Intestinal epithelial barrier and neuromuscular compartment in health and disease. World J Gastroenterol 2020; 26:1564-1579. [PMID: 32327906 PMCID: PMC7167418 DOI: 10.3748/wjg.v26.i14.1564] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
A number of digestive and extra-digestive disorders, including inflammatory bowel diseases, irritable bowel syndrome, intestinal infections, metabolic syndrome and neuropsychiatric disorders, share a set of clinical features at gastrointestinal level, such as infrequent bowel movements, abdominal distension, constipation and secretory dysfunctions. Several lines of evidence indicate that morphological and molecular changes in intestinal epithelial barrier and enteric neuromuscular compartment contribute to alterations of both bowel motor and secretory functions in digestive and extra-digestive diseases. The present review has been conceived to provide a comprehensive and critical overview of the available knowledge on the morphological and molecular changes occurring in intestinal epithelial barrier and enteric neuromuscular compartment in both digestive and extra-digestive diseases. In addition, our intent was to highlight whether these morphological and molecular alterations could represent a common path (or share some common features) driving the pathophysiology of bowel motor dysfunctions and related symptoms associated with digestive and extra-digestive disorders. This assessment might help to identify novel targets of potential usefulness to develop original pharmacological approaches for the therapeutic management of such disturbances.
Collapse
Affiliation(s)
| | | | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
139
|
Deng I, Corrigan F, Zhai G, Zhou XF, Bobrovskaya L. Lipopolysaccharide animal models of Parkinson's disease: Recent progress and relevance to clinical disease. Brain Behav Immun Health 2020; 4:100060. [PMID: 34589845 PMCID: PMC8474547 DOI: 10.1016/j.bbih.2020.100060] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative movement disorders which is characterised neuropathologically by progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of Lewy bodies (made predominately of α-synuclein) in the surviving neurons. Animal models of PD have improved our understanding of the disease and have played a critical role in the development of neuroprotective agents. Neuroinflammation has been strongly implicated in the pathogenesis of PD, and recent studies have used lipopolysaccharide (LPS), a component of gram-negative bacteria and a potent activator of microglia cells, to mimic the inflammatory events in clinical PD. Modulating the inflammatory response could ameliorate PD associated complications and thus, it is essential to understand the extent to which LPS models reflect human PD. This review will outline the routes of administration of LPS such as stereotaxic, systemic and intranasal, their ability to recapitulate neuropathological markers of PD, and mechanisms of LPS induced toxicity. We will also discuss the ability of the models to replicate motor symptoms and non-motor symptoms of PD such as gastrointestinal dysfunction, olfactory dysfunction, anxiety, depression and cognitive dysfunction.
Collapse
Affiliation(s)
- Isaac Deng
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Frances Corrigan
- School of Health Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, 250012, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
140
|
Weis S, Schwiertz A, Unger MM, Becker A, Faßbender K, Ratering S, Kohl M, Schnell S, Schäfer KH, Egert M. Effect of Parkinson's disease and related medications on the composition of the fecal bacterial microbiota. NPJ Parkinsons Dis 2019; 5:28. [PMID: 31815177 PMCID: PMC6884491 DOI: 10.1038/s41531-019-0100-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. PD patients suffer from gastrointestinal dysfunctions and alterations of the autonomous nervous system, especially its part in the gut wall, i.e., the enteric nervous system (ENS). Such alterations and functional gastrointestinal deficits often occur years before the classical clinical symptoms of PD appear. Until now, only little is known about PD-associated changes in gut microbiota composition and their potential implication in PD development. In order to increase knowledge in this field, fecal samples of 34 PD patients and 25 healthy, age-matched control persons were investigated. Here, the V4 and V5 hypervariable region of bacterial 16S rRNA genes was PCR-amplified and sequenced using an Ion Torrent PGM platform. Within the PD group, we observed a relative decrease in bacterial taxa which are linked to health-promoting, anti-inflammatory, neuroprotective or other beneficial effects on the epithelial barrier, such as Faecalibacterium and Fusicatenibacter. Both taxa were lowered in PD patients with elevated levels of the fecal inflammation marker calprotectin. In addition, we observed an increase in shares of the Clostridiales family XI and their affiliated members in these samples. Finally, we found that the relative abundances of the bacterial genera Peptoniphilus, Finegoldia, Faecalibacterium Fusicatenibacter, Anaerococcus, Bifidobacterium, Enterococcus, and Ruminococcus were significantly influenced by medication with L-dopa and entacapone, respectively. Our data confirm previously reported effects of COMT inhibitors on the fecal microbiota of PD patients and suggest a possible effect of L-dopa medication on the relative abundance of several bacterial genera.
Collapse
Affiliation(s)
- Severin Weis
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany
| | | | - Marcus M. Unger
- Department of Neurology, Saarland University, Homburg, Germany
| | - Anouck Becker
- Department of Neurology, Saarland University, Homburg, Germany
| | - Klaus Faßbender
- Department of Neurology, Saarland University, Homburg, Germany
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Matthias Kohl
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Group for Statistics in Biology and Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Karl-Herbert Schäfer
- Department of Biotechnology, ENS Working Group, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
141
|
Sasmita AO. Modification of the gut microbiome to combat neurodegeneration. Rev Neurosci 2019; 30:795-805. [DOI: 10.1515/revneuro-2019-0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022]
Abstract
Abstract
The gut microbiome was extensively researched for its biological variety and its potential role in propagating diseases outside of the gastrointestinal (GI) tract. Recently, a lot of effort was focused on comprehending the gut-brain axis and the bizarre communication between the GI system and the nervous system. Ample amount of studies being carried out also revealed the involvement of the gut microbiome in enhancing the degree of many neurological disorders, including neurodegenerative diseases. It was widely observed that there were distinct microbiome profiles and dysbiosis within patients suffering from Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. Various approaches to re-establish the balance of the gut microbiome, from antibiotic therapy, fecal microbiota transplant, or ingestion of psychobiotics, are discussed within this review within the specific context of combating neurodegenerative diseases. Present studies and clinical trials indicate that although there is an immense potential of gut microbiome modification to be preventive or therapeutic, there are still many intercalated components of the gut-brain axis at play and thus, more research needs to be carried out to delineate microbiome factors that may potentially alleviate symptoms of neurodegeneration.
Collapse
|
142
|
Mertsalmi TH, Pekkonen E, Scheperjans F. Antibiotic Exposure and Risk of Parkinson's Disease in Finland: A Nationwide Case‐Control Study. Mov Disord 2019; 35:431-442. [DOI: 10.1002/mds.27924] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Tuomas H. Mertsalmi
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology)University of Helsinki Helsinki Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology)University of Helsinki Helsinki Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology)University of Helsinki Helsinki Finland
| |
Collapse
|
143
|
Yang D, Zhao D, Ali Shah SZ, Wu W, Lai M, Zhang X, Li J, Guan Z, Zhao H, Li W, Gao H, Zhou X, Yang L. The Role of the Gut Microbiota in the Pathogenesis of Parkinson's Disease. Front Neurol 2019; 10:1155. [PMID: 31781020 PMCID: PMC6851172 DOI: 10.3389/fneur.2019.01155] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
It is well-recognized that the gut microbiota (GM) is crucial for gut function, metabolism, and energy cycles. The GM also has effects on neurological outcomes via many mechanisms, such as metabolite production and the gut-brain axis. Emerging evidence has gradually indicated that GM dysbiosis plays a role in several neurological diseases, such as Parkinson's disease (PD), Alzheimer's disease, depression, and multiple sclerosis. Several studies have observed that PD patients generally suffer from gastrointestinal disorders and GM dysbiosis prior to displaying motor symptoms, but the specific link between the GM and PD is not clearly understood. In this review, we aim to summarize what is known regarding the correlation between the GM and PD pathologies, including direct, and indirect evidence.
Collapse
Affiliation(s)
- Dongming Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Wei Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengyu Lai
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xixi Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiling Guan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huafen Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongli Gao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
144
|
Bullich C, Keshavarzian A, Garssen J, Kraneveld A, Perez-Pardo P. Gut Vibes in Parkinson's Disease: The Microbiota-Gut-Brain Axis. Mov Disord Clin Pract 2019; 6:639-651. [PMID: 31745471 DOI: 10.1002/mdc3.12840] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background The complexity of the pathogenic mechanisms underlying neurodegenerative disorders such as Parkinson's disease (PD) is attributable to multifactorial changes occurring at a molecular level, influenced by genetics and environmental interactions. However, what causes the main hallmarks of PD is not well understood. Recent data increasingly suggest that imbalances in the gut microbiome composition might trigger and/or exacerbate the progression of PD. Objective The present review aims to (1) report emerging literature showing changes in microbiota composition of PD patients compared to healthy individuals and (2) discuss how these changes may initiate and/or perpetuate PD pathology. Methods We analyzed 13 studies published from 2015 and included in this review. Altered microbial taxa were compiled in a detailed table summarizing bacterial changes in fecal/mucosal samples. The methodology was systematically reviewed across the articles and was also included in a table to facilitate comparisons between studies. Results Multiple studies found a reduction in short-chain fatty-acid-producing bacteria that can rescue neuronal damage through epigenetic mechanisms. Overall, the studies showed that changes in the gut microbiota composition might influence colonic inflammation, gut permeability, and α-synuclein aggregation, contributing to the neurogenerative process. Conclusion Further studies with larger cohorts and high-resolution sequencing methods are required to better define gut microbiota changes in PD. Furthermore, additional longitudinal studies are required to determine the causal link between these changes and PD pathogenesis as well as to study the potential of the intestinal microbiota as a biomarker.
Collapse
Affiliation(s)
- Clara Bullich
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Utrecht The Netherlands
| | - Ali Keshavarzian
- Department of Medicine, Division of Allergy-Immunology Rush University Medical Center Chicago Illinois USA
| | - Johan Garssen
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Utrecht The Netherlands.,Nutricia Reasearch Utrecht The Netherlands
| | - Aletta Kraneveld
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Utrecht The Netherlands.,Institute for Risk Assessment Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences, Faculty of Science Utrecht University Utrecht The Netherlands
| |
Collapse
|
145
|
Mulak A, Koszewicz M, Panek-Jeziorna M, Koziorowska-Gawron E, Budrewicz S. Fecal Calprotectin as a Marker of the Gut Immune System Activation Is Elevated in Parkinson's Disease. Front Neurosci 2019; 13:992. [PMID: 31611762 PMCID: PMC6776883 DOI: 10.3389/fnins.2019.00992] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction Alpha-synucleinopathy constituting a characteristic feature of Parkinson’s disease (PD) occurs at all levels of the brain-gut axis including the enteric nervous system (ENS). Lesions in the ENS may be connected with gut inflammation, increased intestinal permeability and dysmotility contributing to the pathogenesis of PD and its gastrointestinal manifestations. Aims To evaluate fecal calprotectin and zonulin as biomarkers of gut inflammation and intestinal barrier dysfunction in PD patients. Methods Quantitative evaluation of fecal biomarkers was performed by ELISA tests in 35 PD patients and 20 healthy controls. Additionally, patients filled out a short questionnaire concerning gastrointestinal symptoms. Results Median fecal calprotectin level (μg/g) was significantly higher in PD patients compared to the controls: 54.5 (29.0–137.9) vs. 9.7 (5.2–23.3), p < 0.0001. Applying age-related reference ranges, the increased fecal calprotectin level was found in 43% of PD patients and in none of the control subjects (p < 0.001). No correlation between fecal calprotectin level and PD duration was observed. No statistically significant difference between the groups regarding zonulin level was found. The most frequent bowel symptoms reported by PD patients included constipation (69% of subjects), feeling of incomplete evacuation (51%), bloating (51%), abdominal pain (20%), and alternating bowel movement pattern (17%). Conclusion The evaluation of fecal calprotectin level may be a useful tool to detect the signs of gut immune system activation present in a remarkable number of PD patients, also in the early stage of the disease. Calprotectin may constitute a critical link between amyloid formation and neuroinflammatory cascades serving as a prospective diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Agata Mulak
- Department of Gastroenterology and Hepatology, Wrocław Medical University, Wrocław, Poland
| | | | | | | | | |
Collapse
|
146
|
Abstract
The endotoxin hypothesis of neurodegeneration is the hypothesis that endotoxin causes or contributes to neurodegeneration. Endotoxin is a lipopolysaccharide (LPS), constituting much of the outer membrane of gram-negative bacteria, present at high concentrations in gut, gums and skin and in other tissue during bacterial infection. Blood plasma levels of endotoxin are normally low, but are elevated during infections, gut inflammation, gum disease and neurodegenerative disease. Adding endotoxin at such levels to blood of healthy humans induces systemic inflammation and brain microglial activation. Adding high levels of endotoxin to the blood or body of rodents induces microglial activation, priming and/or tolerance, memory deficits and loss of brain synapses and neurons. Endotoxin promotes amyloid β and tau aggregation and neuropathology, suggesting the possibility that endotoxin synergises with different aggregable proteins to give different neurodegenerative diseases. Blood and brain endotoxin levels are elevated in Alzheimer's disease, which is accelerated by systemic infections, including gum disease. Endotoxin binds directly to APOE, and the APOE4 variant both sensitises to endotoxin and predisposes to Alzheimer's disease. Intestinal permeability increases early in Parkinson's disease, and injection of endotoxin into mice induces α-synuclein production and aggregation, as well as loss of dopaminergic neurons in the substantia nigra. The gut microbiome changes in Parkinson's disease, and changing the endotoxin-producing bacterial species can affect the disease in patients and mouse models. Blood endotoxin is elevated in amyotrophic lateral sclerosis, and endotoxin promotes TDP-43 aggregation and neuropathology. Peripheral diseases that elevate blood endotoxin, such as sepsis, AIDS and liver failure, also result in neurodegeneration. Endotoxin directly and indirectly activates microglia that damage neurons via nitric oxide, oxidants and cytokines, and by phagocytosis of synapses and neurons. The endotoxin hypothesis is unproven, but if correct, then neurodegeneration may be reduced by decreasing endotoxin levels or endotoxin-induced neuroinflammation.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
147
|
George S, Rey NL, Tyson T, Esquibel C, Meyerdirk L, Schulz E, Pierce S, Burmeister AR, Madaj Z, Steiner JA, Escobar Galvis ML, Brundin L, Brundin P. Microglia affect α-synuclein cell-to-cell transfer in a mouse model of Parkinson's disease. Mol Neurodegener 2019; 14:34. [PMID: 31419995 PMCID: PMC6697982 DOI: 10.1186/s13024-019-0335-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 08/08/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cell-to-cell propagation of α-synuclein (α-syn) aggregates is thought to contribute to the pathogenesis of Parkinson's disease (PD) and underlie the spread of α-syn neuropathology. Increased pro-inflammatory cytokine levels and activated microglia are present in PD and activated microglia can promote α-syn aggregation. However, it is unclear how microglia influence α-syn cell-to-cell transfer. METHODS We developed a clinically relevant mouse model to monitor α-syn prion-like propagation between cells; we transplanted wild-type mouse embryonic midbrain neurons into a mouse striatum overexpressing human α-syn (huα-syn) following adeno-associated viral injection into the substantia nigra. In this system, we depleted or activated microglial cells and determined the effects on the transfer of huα-syn from host nigrostriatal neurons into the implanted dopaminergic neurons, using the presence of huα-syn within the grafted cells as a readout. RESULTS First, we compared α-syn cell-to-cell transfer between host mice with a normal number of microglia to mice in which we had pharmacologically ablated 80% of the microglia from the grafted striatum. With fewer host microglia, we observed increased accumulation of huα-syn in grafted dopaminergic neurons. Second, we assessed the transfer of α-syn into grafted neurons in the context of microglia activated by one of two stimuli, lipopolysaccharide (LPS) or interleukin-4 (IL-4). LPS exposure led to a strong activation of microglial cells (as determined by microglia morphology, cytokine production and an upregulation in genes involved in the inflammatory response in the LPS-injected mice by RNA sequencing analysis). LPS-injected mice had significantly higher amounts of huα-syn in grafted neurons. In contrast, injection of IL-4 did not change the proportion of grafted dopamine neurons that contained huα-syn relative to controls. As expected, RNA sequencing analysis on striatal tissue revealed differential gene expression between LPS and IL-4-injected mice; with the genes upregulated in tissue from mice injected with LPS including several of those involved in an inflammatory response. CONCLUSIONS The absence or the hyperstimulation of microglia affected α-syn transfer in the brain. Our results suggest that under resting, non-inflammatory conditions, microglia modulate the transfer of α-syn. Pharmacological regulation of neuroinflammation could represent a future avenue for limiting the spread of PD neuropathology.
Collapse
Affiliation(s)
- Sonia George
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, Michigan 49503 USA
| | - Nolwen L. Rey
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, Michigan 49503 USA
- Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, 92265 Fontenay-aux-Roses, France
| | - Trevor Tyson
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, Michigan 49503 USA
| | - Corinne Esquibel
- Optical Imaging Core, Van Andel Research Institute, Grand Rapids, MI USA
| | - Lindsay Meyerdirk
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, Michigan 49503 USA
| | - Emily Schulz
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, Michigan 49503 USA
| | - Steven Pierce
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, Michigan 49503 USA
| | - Amanda R. Burmeister
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, Michigan 49503 USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI USA
| | - Jennifer A. Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, Michigan 49503 USA
| | - Martha L. Escobar Galvis
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, Michigan 49503 USA
| | - Lena Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, Michigan 49503 USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, Michigan 49503 USA
| |
Collapse
|
148
|
Reza MM, Finlay BB, Pettersson S. Gut microbes, ageing & organ function: a chameleon in modern biology? EMBO Mol Med 2019; 11:e9872. [PMID: 31410991 PMCID: PMC6728600 DOI: 10.15252/emmm.201809872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
All species, including humans, are cohabited by a myriad of microbial species, which massively influences body function in a diet‐, exercise‐ and age‐dependent manner. The microbiome composition differs between individuals, partly due to the polymorphic immune system, as well as the environment, making the microbe–host interplay unique in each one of us. Ageing is a gradual loss of function in part due to reduced repair mechanisms and accumulation of tissue damage through mechanisms largely unknown. Accumulating evidence suggests that our indigenous microbes, a known major regulator of human physiology, are also connected to regulate the ageing process through signalling pathways and metabolites though the biological mechanisms are unknown. At an ageing meeting in Singapore in 2018, investigators discussed the current understanding of microbe regulation and its impact on healthy ageing. This review summarizes the highlights from the meeting and conveys some of the new ideas that emerged around gut microbes and the biology of ageing. While highly speculative, an idea emerged in which gut microbes constantly respond and evolve to environmental cues, as part of an ageing process, thus serving as a second messenger to support and attenuate organ decline in a diet‐, gender‐ and age‐dependent manner.
Collapse
Affiliation(s)
- Musarrat Maisha Reza
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.,School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - B Brett Finlay
- Michael Smith Laboratories and the Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sven Pettersson
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
149
|
Gorecki AM, Preskey L, Bakeberg MC, Kenna JE, Gildenhuys C, MacDougall G, Dunlop SA, Mastaglia FL, Akkari PA, Koengten F, Anderton RS. Altered Gut Microbiome in Parkinson's Disease and the Influence of Lipopolysaccharide in a Human α-Synuclein Over-Expressing Mouse Model. Front Neurosci 2019; 13:839. [PMID: 31440136 PMCID: PMC6693556 DOI: 10.3389/fnins.2019.00839] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The interaction between the gut microbiota and alpha-synuclein (αSyn) aggregation in Parkinson’s disease (PD) is receiving increasing attention. The objective of this study was to investigate gut microbiota, and effects of an inflammatory lipopolysaccharide (LPS) trigger in a human αSyn over-expressing mouse model of PD (Thy1-αSyn). Stool samples from patients with confirmed PD and Thy1-αSyn mice were analyzed using 16S ribosomal RNA sequencing. Compared to healthy controls, the relative abundance of mucin-degrading Verrucomicrobiae and LPS-producing Gammaproteobacteria were greater in PD patients. In mice, the abundance of Gammaproteobacteria was negligible in both Thy1-αSyn and wild-type (WT) animals, while Verrucomicrobiae were reduced in Thy1-αSyn mice. The effect of LPS on intestinal barrier function was investigated in vitro using intestinal epithelial (IEC-6) cells, and in vivo via administration of LPS in drinking water to Thy1-αSyn mice. Acute exposure to LPS in vitro resulted in a reduction and altered distribution of the tight junction markers ZO-1 and e-Cadherin around the cell membrane in IEC-6 cells, as shown by immunohistochemistry. LPS administration in Thy1-αSyn mice resulted in the emergence of early motor manifestations at 10 weeks, compared to untreated mice who were still asymptomatic at this age. This study reaffirms that an altered microbiome exists in patients with PD, and supports the notion of a proinflammatory gut microbiome environment as a trigger for PD pathogenesis.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia
| | - Leah Preskey
- Ozgene Pty Ltd., Bentley, WA, Australia.,School of Medicine, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Megan C Bakeberg
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia
| | - Jade E Kenna
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia
| | - Christi Gildenhuys
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Institute for Health Research and School of Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Gabriella MacDougall
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Institute for Health Research and School of Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Sarah A Dunlop
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Biological Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia
| | - P Anthony Akkari
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia.,The Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Frank Koengten
- Ozgene Pty Ltd., Bentley, WA, Australia.,School of Medicine, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia.,Institute for Health Research and School of Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
150
|
Shin C, Yang HK, Park S, Lee HJ, Kong SH, Suh YS, Huh YJ, Kim YJ, Park SY, Ahn TB, Lee SH, Kim HJ, Jeon B. Prospective cohort study of patients with early gastric cancer to detect prodromal Parkinson disease (EGC-PPD): A study protocol and baseline characteristics. J Clin Neurosci 2019; 66:26-32. [DOI: 10.1016/j.jocn.2019.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/21/2019] [Indexed: 01/27/2023]
|