101
|
Islam SMA, Ahmed KT, Manik MK, Wahid MA, Kamal CSI. A comparative study of the antioxidant, antimicrobial, cytotoxic and thrombolytic potential of the fruits and leaves of Spondias dulcis. Asian Pac J Trop Biomed 2014; 3:682-91. [PMID: 23998007 DOI: 10.1016/s2221-1691(13)60139-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the antioxidant, antimicrobial, cytotoxic and thrombolytic property of the fruits and leaves of Spondias dulcis (S. dulcis). METHODS Methanolic extracts of fruits and leaves of S. dulcis were partitioned with chloroform and dichloromethane. The antioxidant potential of the crude extract and partitioned fractions were evaluated in terms of total phenolic content, total flavonoid content, DPPH radical scavenging potential, reducing potential and total antioxidant capacity by specific standard procedures. The antimicrobial activity was evaluated using disc diffusion method. The cytotoxicity was evaluated by using brine shrimp lethality bioassay and compared with vincristine sulfate. The thrombolytic activity was compared with streptokinase. RESULTS The methanolic fruit extract exhibited the highest phenolic content, flavonoid content and antioxidant capacity, among the other extracts, with the highest DPPH radical scavenging activity at a concentration of 10 µg/mL (IC50: 1.91 µg/mL) and maximum reducing power at a concentration of 100 µg/mL (EC50: 3.58 µg/mL). Though all extract showed moderate antimicrobial activity against the bacterial strains, weak or no activity against fungus. The range of LC50 value of all extracts was 1.335-14.057 µg/mL which was far lower than the cut off index for cytotoxicity. All extracts exhibited statistically significant (P<0.001) thrombolytic activity. CONCLUSIONS Our study suggested that S. dulcis exhibits antimicrobial activities against a wide variety of strains while it possesses significant antioxidant, cytotoxic and thrombolytic activity.
Collapse
|
102
|
Zhou J, Yoshitomi H, Liu T, Zhou B, Sun W, Qin L, Guo X, Huang L, Wu L, Gao M. Isoquercitrin activates the AMP-activated protein kinase (AMPK) signal pathway in rat H4IIE cells. Altern Ther Health Med 2014; 14:42. [PMID: 24490657 PMCID: PMC3914011 DOI: 10.1186/1472-6882-14-42] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/31/2014] [Indexed: 12/18/2022]
Abstract
Background Isoquercitrin, a flavonoid compound that is widely distributed in medicinal and dietary plants, possesses many biological activities, including inhibition of adipocyte differentiation. In this study, we investigated the effect of isoquercitrin on lipid accumulation and its molecular mechanisms in rat hepatoma H4IIE cells. Methods To investigate the effect of isoquercitrin on lipid accumulation, H4IIE cells were induced by FFA and the total lipid levels were detected by Oil Red O staining. Furthermore, The protein levels of AMPK and acetyl-CoA carboxylase (ACC), the gene expressions of transcriptional factor, lipogenic genes, and adiponectin receptor 1 (AdipoR1) were analyzed by Western blotting and quantitative real-time PCR. To further confirm the pathway of isoquercitrin-mediated hepatic lipid metabolism, H4IIE cells were treated with an AMPK inhibitor and AdipoR1 siRNA. Results Isoquercitrin significantly enhances AMPK phosphorylation, downregulates sterol regulatory element binding protein transcription factor 1 (SREBP-1) and fatty acid synthase (FAS) gene expressions. Pretreatment with AMPK inhibitor, significantly decreased the AMPK phosphorylation and increased FAS expression stimulated by isoquercitrin. Isoquercitrin might also upregulate the expression of AdipoR1 dose-dependently via AMPK in the presence of an AMPK inhibitor and AdipoR1 siRNA. Conclusions Isoquercitrin appears to regulate AMPK activation, thereby enhancing AdipoR1 expression, suppressing SREBP-1 and FAS expressions, and resulting in the regulation of lipid accumulation. These results suggest that isoquercitrin is a novel dietary compound that can be potentially be used to prevent lipid metabolic disorder and nonalcoholic fatty liver disease.
Collapse
|
103
|
Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. Sci Rep 2014; 4:3708. [PMID: 24424211 PMCID: PMC3892443 DOI: 10.1038/srep03708] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023] Open
Abstract
Lemon (Citrus limon) contains various bioactive flavonoids, and prevents obesity and obesity-associated metabolic diseases. We focused on eriocitrin (eriodictyol 7-rutinoside), a powerful antioxidative flavonoid in lemon with lipid-lowering effects in a rat model of high-fat diet. To investigate the mechanism of action of eriocitrin, we conducted feeding experiments on zebrafish with diet-induced obesity. Oral administration of eriocitrin (32 mg/kg/day for 28 days) improved dyslipidaemia and decreased lipid droplets in the liver. DNA microarray analysis revealed that eriocitrin increased mRNA of mitochondrial biogenesis genes, such as mitochondria transcription factor, nuclear respiratory factor 1, cytochrome c oxidase subunit 4, and ATP synthase. In HepG2 cells, eriocitrin also induced the corresponding orthologues, and reduced lipid accumulation under conditions of lipid loading. Eriocitrin increased mitochondrial size and mtDNA content, which resulted in ATP production in HepG2 cells and zebrafish. In summary, dietary eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis.
Collapse
|
104
|
In Vitro Screening for Antihepatic Steatosis Active Components within Coptidis Rhizoma Alkaloids Extract Using Liver Cell Extraction with HPLC Analysis and a Free Fatty Acid-Induced Hepatic Steatosis HepG2 Cell Assay. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:459390. [PMID: 24454495 PMCID: PMC3878276 DOI: 10.1155/2013/459390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 10/22/2013] [Indexed: 01/28/2023]
Abstract
A high-throughput method was developed and applied to screen for the active antihepatic steatosis components within Coptidis Rhizoma Alkaloids Extract (CAE). This method was a combination of two previously described assays: HepG2 cell extraction with HPLC analysis and a free fatty acid-induced (FFA) hepatic steatosis HepG2 cell assay. Two alkaloids within CAE, berberine and coptisine, were identified by HepG2 cell extraction with HPLC analysis as high affinity components for HepG2. These alkaloids were also determined to be active and potent compounds capable of lowering triglyceride (TG) accumulation in the FFA-induced hepatic steatosis HepG2 cell assay. This remarkable inhibition of TG accumulation (P < 0.01) by berberine and coptisine occurred at concentrations of 0.2 μg/mL and 5.0 μg/mL, respectively. At these concentrations, the effect seen was similar to that of a CAE at 100.0 μg/mL. Another five alkaloids within CAE, palmatine, epiberberine, jateorhizine, columbamine, and magnoline, were found to have a lower affinity for cellular components from HepG2 cells and a lower inhibition of TG accumulation. The finding of two potent and active compounds within CAE indicates that the screening method we developed is a feasible, rapid, and useful tool for studying traditional Chinese medicines (TCMs) in treating hepatic steatosis.
Collapse
|
105
|
Pan MH, Lai CS, Tsai ML, Ho CT. Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds. Mol Nutr Food Res 2013; 58:147-71. [PMID: 24302567 DOI: 10.1002/mnfr.201300522] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/25/2013] [Accepted: 10/09/2013] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a wide spectrum of liver disease that is not from excess alcohol consumption, but is often associated with obesity, type 2 diabetes, and metabolic syndrome. NAFLD pathogenesis is complicated and involves oxidative stress, lipotoxicity, mitochondrial damage, insulin resistance, inflammation, and excessive dietary fat intake, which increase hepatic lipid influx and de novo lipogenesis and impair insulin signaling, thus promoting hepatic triglyceride accumulation and ultimately NAFLD. Overproduction of proinflammatory adipokines from adipose tissue also affects hepatic metabolic function. Current NAFLD therapies are limited; thus, much attention has been focused on identification of potential dietary substances from fruits, vegetables, and edible plants to provide a new strategy for NAFLD treatment. Dietary natural compounds, such as carotenoids, omega-3-PUFAs, flavonoids, isothiocyanates, terpenoids, curcumin, and resveratrol, act through a variety of mechanisms to prevent and improve NAFLD. Here, we summarize and briefly discuss the currently known targets and signaling pathways as well as the role of dietary natural compounds that interfere with NAFLD pathogenesis.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
106
|
Serviddio G, Bellanti F, Vendemiale G. Free radical biology for medicine: learning from nonalcoholic fatty liver disease. Free Radic Biol Med 2013; 65:952-968. [PMID: 23994574 DOI: 10.1016/j.freeradbiomed.2013.08.174] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species, when released under controlled conditions and limited amounts, contribute to cellular proliferation, senescence, and survival by acting as signaling intermediates. In past decades there has been an epidemic diffusion of nonalcoholic fatty liver disease (NAFLD) that represents the result of the impairment of lipid metabolism, redox imbalance, and insulin resistance in the liver. To date, most studies and reviews have been focused on the molecular mechanisms by which fatty liver progresses to steatohepatitis, but the processes leading toward the development of hepatic steatosis in NAFLD are not fully understood yet. Several nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs) α/γ/δ, PPARγ coactivators 1α and 1β, sterol-regulatory element-binding proteins, AMP-activated protein kinase, liver-X-receptors, and farnesoid-X-receptor, play key roles in the regulation of lipid homeostasis during the pathogenesis of NAFLD. These nuclear receptors may act as redox sensors and may modulate various metabolic pathways in response to specific molecules that act as ligands. It is conceivable that a redox-dependent modulation of lipid metabolism, nuclear receptor-mediated, could cause the development of hepatic steatosis and insulin resistance. Thus, this network may represent a potential therapeutic target for the treatment and prevention of hepatic steatosis and its progression to steatohepatitis. This review summarizes the redox-dependent factors that contribute to metabolism alterations in fatty liver with a focus on the redox control of nuclear receptors in normal liver as well as in NAFLD.
Collapse
Affiliation(s)
- Gaetano Serviddio
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
| | - Francesco Bellanti
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Gianluigi Vendemiale
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
107
|
Flavonoids from Tetrastigma obtectum enhancing glucose consumption in insulin-resistance HepG2 cells via activating AMPK. Fitoterapia 2013; 90:240-6. [DOI: 10.1016/j.fitote.2013.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 01/31/2023]
|
108
|
Novak S, Drobne D, Vaccari L, Kiskinova M, Ferraris P, Birarda G, Remškar M, Hočevar M. Effect of ingested tungsten oxide (WOx) nanofibers on digestive gland tissue of Porcellio scaber (Isopoda, Crustacea): fourier transform infrared (FTIR) imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11284-11292. [PMID: 23952740 DOI: 10.1021/es402364w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tungsten nanofibers are recognized as biologically potent. We study deviations in molecular composition between normal and digestive gland tissue of WOx nanofibers (nano-WOx) fed invertebrate Porcellio scaber (Iosopda, Crustacea) and revealed mechanisms of nano-WOx effect in vivo. Fourier Transform Infrared (FTIR) imaging performed on digestive gland epithelium was supplemented by toxicity and cytotoxicity analyses as well as scanning electron microscopy (SEM) of the surface of the epithelium. The difference in the spectra of the Nano-WOx treated and control cells showed up in the central region of the cells and were related to lipid peroxidation, and structural changes of nucleic acids. The conventional toxicity parameters failed to show toxic effects of nano-WOx, whereas the cytotoxicity biomarkers and SEM investigation of digestive gland epithelium indicated sporadic effects of nanofibers. Since toxicological and cytological measurements did not highlight severe effects, the biochemical alterations evidenced by FTIR imaging have been explained as the result of cell protection (acclimation) mechanisms to unfavorable conditions and indication of a nonhomeostatic state, which can lead to toxic effects.
Collapse
Affiliation(s)
- Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana , Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Inhibitory effect of a Cirsium setidens extract on hepatic fat accumulation in mice fed a high-fat diet via the induction of fatty acid β-oxidation. Biosci Biotechnol Biochem 2013; 77:1424-9. [PMID: 23832362 DOI: 10.1271/bbb.130049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cirsium setidens is a perennial medicinal herb that is rich in flavonoids. We investigated in this study the effect of a C. setidens ethanol extract (CSE) on the development of nonalcoholic fatty liver in mice fed a high-fat diet (HF). C57BL/6J mice were fed either a control diet (CON) or HF for 8 weeks, and then fed CON, HF, or HF with 100 mg/kg of BW CSE (HF+CSE) for an additional 7 weeks. The final body weight and adipose tissue weight of the mice in the HF+CSE group were significantly lower than those in the HF group. CSE also markedly diminished both the lipid droplets in the liver tissues and decreased the hepatic and serum triglycerides (TG) concentrations. CSE strongly increased the hepatic mRNA levels of carnitine palmitoyltransferase (CPT1) and medium-chain acyl-CoA dehydrogenase (MCAD), the fatty acid β-oxidation enzymes. The hepatic levels of phosphorylated-AMP-activated protein kinase (AMPK) were significantly higher in the HF+CSF group than in the HF group. These results suggest that CSE inhibited hepatic fat accumulation by up-regulating the expression of the fatty acid β-oxidation genes.
Collapse
|
110
|
Shao L, Liu K, Huang F, Guo X, Wang M, Liu B. Opposite effects of quercetin, luteolin, and epigallocatechin gallate on insulin sensitivity under normal and inflammatory conditions in mice. Inflammation 2013; 36:1-14. [PMID: 22843013 DOI: 10.1007/s10753-012-9514-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Flavonoids are polyphenolic compounds ubiquitous in plants. Quercetin, luteolin, and epigallocatechin gallate (EGCG) are flavonoids with a number of biochemical and cellular actions relevant to glucose homeostasis, but their regulation of insulin action is still uncertain. This study aims to evaluate the regulation of insulin action by quercetin, luteolin, and EGCG under normal and inflammatory conditions in mice. Oral administration of quercetin, luteolin, and EGCG impaired glucose tolerance and blunted the effect of insulin to low blood glucose. Luteolin and EGCG, but not quercetin, inhibited glucose load-induced insulin receptor substrate-1(IRS-1) tyrosine and Akt phosphorylation in adipose tissue. Meanwhile, insulin-stimulated glucose uptake was also inhibited by these flavonoids. We induced insulin resistance in mice by treatment with activated macrophages-derived conditioned medium (Mac-CM) and observed that quercetin, luteolin, and EGCG reversed glucose intolerance with improving insulin sensitivity. Quercetin, luteolin, and EGCG inhibited inflammation-evoked IKKβ activation and IRS-1 serine phosphorylation in adipose tissue, and thereby effectively restored glucose load-stimulated IRS-1 tyrosine and Akt phosphorylation, leading to an increase in insulin-mediated glucose uptake in adipocytes. The aforementioned results showed opposite effects of quercetin, luteolin, and EGCG on insulin sensitivity in mice. The different modulation of IRS-1 function by phosphorylating modification under normal and inflammatory conditions should be a key controlling for their action in regulation of insulin sensitivity.
Collapse
Affiliation(s)
- Lu Shao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China
| | | | | | | | | | | |
Collapse
|
111
|
Grape seed procyanidins improve β-cell functionality under lipotoxic conditions due to their lipid-lowering effect. J Nutr Biochem 2013; 24:948-53. [DOI: 10.1016/j.jnutbio.2012.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/04/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
|
112
|
Carr RM, Dhir R, Yin X, Agarwal B, Ahima RS. Temporal effects of ethanol consumption on energy homeostasis, hepatic steatosis, and insulin sensitivity in mice. Alcohol Clin Exp Res 2013; 37:1091-9. [PMID: 23398239 DOI: 10.1111/acer.12075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/20/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alcoholic liver disease (ALD) progresses from steatosis to inflammation, fibrosis, and cirrhosis. Although ALD has been associated with insulin resistance, it is unclear whether insulin resistance coincides with the development of steatosis. METHODS We studied the temporal relationship of steatosis and glucose homeostasis in mice fed a Lieber-DeCarli liquid control or ethanol (EtOH) diet for 2, 4, or 8 weeks. We studied the effects of alcohol consumption on energy balance, body composition, and hepatic lipids. Glucose tolerance test was performed, and insulin sensitivity was evaluated with hyperinsulinemic-euglycemic clamp. RESULTS EtOH-fed mice developed hepatic steatosis over time as compared with control-fed mice despite similar energy intake and expenditure, and gain in body weight and fat. EtOH-fed mice developed glucose intolerance as early as 2 weeks, while insulin resistance developed at 4 weeks. A hyperinsulinemic clamp study at 8 weeks revealed both hepatic and peripheral insulin resistance in EtOH-fed mice. Insulin resistance was associated with hepatic steatosis, increased ceramide levels, and Perilipin 2 expression. CONCLUSIONS Chronic EtOH consumption leads to the development of hepatic steatosis, impaired glucose tolerance, and insulin resistance. These changes are independent of energy intake or expenditure, weight, whole body fat content, and inflammation. A better understanding of the processes linking EtOH-induced steatosis and abnormal glucose homeostasis may lead to novel therapies targeting the progression of ALD.
Collapse
Affiliation(s)
- Rotonya M Carr
- Department of Medicine, Gastroenterology Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
113
|
Firdaus M, Prihanto AA, Nurdiani R. Antioxidant and cytotoxic activity of Acanthus ilicifolius flower. Asian Pac J Trop Biomed 2013; 3:17-21. [PMID: 23570011 PMCID: PMC3609388 DOI: 10.1016/s2221-1691(13)60017-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/16/2012] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To investigate the antioxidant and cytotoxic activity of the flower of Acanthus ilicifolius (A. ilicifolius). METHODS Antioxidant activity was determined as antiradical efficiency with diphenyl picrylhydrazil (DPPH) method and cytotoxic assay was undertaken using brine shrimp lethal toxicity test. RESULTS A. ilicifolius flower contained terpenoid, phenolic compounds, and alkaloid. The methanol extract of A. ilicifolius flower showed the highest antiradical efficiency (AE=1.41×10(-3)) against DPPH radicals and the highest cytotoxicity (LC50=22 µg/mL) against brine shrimp nauplii. CONCLUSIONS It is suggested that active compounds of A. ilicifolius flower solved in methanol play a role to inhibit free radical activity and kill Artemia salina nauplii. The substances can be considered as potential antioxidant and cytotoxic agents as well as imminent candidate for cancer therapy.
Collapse
Affiliation(s)
| | - Asep Awaludin Prihanto
- Laboratory of Biochemistry, Faculty of Fisheries and Marine Science, Brawijaya University, Malang-65145, Indonesia
| | | |
Collapse
|
114
|
Tzeng TF, Lu HJ, Liou SS, Chang CJ, Liu IM. Cassia tora (Leguminosae) seed extract alleviates high-fat diet-induced nonalcoholic fatty liver. Food Chem Toxicol 2013; 51:194-201. [DOI: 10.1016/j.fct.2012.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 08/28/2012] [Accepted: 09/20/2012] [Indexed: 12/14/2022]
|
115
|
Xu H, Zhang S. Scutellarin-induced apoptosis in HepG2 hepatocellular carcinoma cells via a STAT3 pathway. Phytother Res 2012. [PMID: 23192830 DOI: 10.1002/ptr.4892] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver cancers remain one main reason for the mortality in patients with tumors. Up to now, however, the effective drugs to treat liver cancers are limited. The aim of this study was to study whether Scutellarin which was widely found in many medicinal plants can exert an inhibitory role in HepG2 hepatocellular carcinoma cell lines, and to explore its molecular mechanisms. The MTT assay showed that Scutellarin markedly inhibited the proliferation of HepG2 cells in a concentration- and time-dependent manner. Moreover, Scutellarin-treated cells exhibited typical apoptotic appearance by staining assay. Also, Scutellarin-treated HepG2 cells exhibited the reduction of ROS production, compared with untreated HepG2 cells. Western blot analysis displayed that STAT3 protein was obviously decreased in Scutellarin-treated HepG2 cells. Furthermore, STAT3 transcriptional targets Bcl-XL and Mcl-1 were also downregulated in HepG2 cells treated by Scutellarin. In summary, we found that Scutellarin was able to inhibit the proliferation and induce the apoptosis of HepG2 cells via a STAT3 signal pathway, which provided evident support for developing Scutellarin as an alternative treatment for liver cancer.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, 150086, P.R., China
| | | |
Collapse
|
116
|
Kim HY, Jung SK, Byun S, Son JE, Oh MH, Lee J, Kang MJ, Heo YS, Lee KW, Lee HJ. Raf and PI3K are the molecular targets for the anti-metastatic effect of luteolin. Phytother Res 2012; 27:1481-8. [PMID: 23172826 DOI: 10.1002/ptr.4888] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/12/2012] [Accepted: 10/22/2012] [Indexed: 01/25/2023]
Abstract
Metastases are the primary cause of human cancer deaths. Luteolin, a naturally occurring phytochemical, has chemopreventive and/or anticancer properties in several cancer cell lines. However, anti-metastatic effects of luteolin in vivo and the underlying molecular mechanisms and target(s) remain unknown. Luteolin suppresses matrix metalloproteinase (MMP)-2 and -9 activities and invasion in murine colorectal cancer CT-26 cells. Western blot and kinase assay data revealed that luteolin inhibited Raf and phosphatidylinositol 3-kinase (PI3K) activities and subsequently attenuated phosphorylation of MEK and Akt. A pull-down assay indicated that luteolin non-competitively bound with ATP to suppress Raf activity and competitively bound with ATP to inhibit PI3K activity. GW5074, a Raf inhibitor, and LY294002, a PI3K inhibitor, inhibited MMP-2 and -9 activities and invasion in CT-26 cells. An in vivo mouse study showed that oral administration (10 or 50 mg/kg) of luteolin significantly inhibited tumor nodules and tumor volume of lung metastasis induced by intravenous injection of CT-26 cells. Luteolin also inhibited MMP-9 expression and activity in CT-26-induced mouse lung tissue. These results suggest that luteolin may have considerable potential for development as an anti-metastatic agent.
Collapse
Affiliation(s)
- Ho Young Kim
- WCU Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Ma Y, Yang F, Wang Y, Du Z, Liu D, Guo H, Shen J, Peng H. CaMKKβ is involved in AMP-activated protein kinase activation by baicalin in LKB1 deficient cell lines. PLoS One 2012; 7:e47900. [PMID: 23110126 PMCID: PMC3478266 DOI: 10.1371/journal.pone.0047900] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/18/2012] [Indexed: 12/18/2022] Open
Abstract
AMP-activated protein kinase (AMPK) plays an important role in mediating energy metabolism and is controlled mainly by two upstream kinases, LKB1 or Ca2+/calmodulin-dependent protein kinase kinase-β (CaMKKβ). Previously, we found that baicalin, one of the major flavonoids in a traditional Chinese herb medicine, Scutellaria baicalensis, protects against the development of hepatic steatosis in rats feeding with a high-fat diet by the activation of AMPK, but, the underlying mechanism for AMPK activation is unknown. Here we show that in two LKB1-deficient cells, HeLa and A549 cells, baicalin activates AMPK by α Thr-172 phosphorylation and subsequent phosphorylation of its downstream target, acetyl CoA carboxylase, at Ser-79, to a similar degree as does in HepG2 cells (that express LKB1). Pharmacologic inhibition of CaMKKβ by its selective inhibitor STO-609 markedly inhibits baicalin-induced AMPK activation in both HeLa and HepG2 cells, indicating that CaMKKβ is the responsible AMPK kinase. We also show that treatment of baicalin causes a larger increase in intracellular Ca2+ concentration ([Ca2+]i), although the maximal level of [Ca2+]i is lower in HepG2 cells compared to HeLa cells. Chelation of intracellular free Ca2+ by EDTA and EGTA, or depletion of intracellular Ca2+ stores by the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin abrogates baicalin-induced activation of AMPK in HeLa cells. Neither cellular ATP nor the production of reactive oxygen species is altered by baicalin. Finally, in HeLa cells, baicalin treatment no longer decreases intracellular lipid accumulation caused by oleic acid after inhibition of CaMKKβ by STO-609. These results demonstrate that a potential Ca2+/CaMKKβ dependent pathway is involved in the activation of AMPK by baicalin and suggest that CaMKKβ likely acts as an upstream kinase of AMPK in response to baicalin.
Collapse
Affiliation(s)
- Ying Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Fuzhen Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Ying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Zhiyan Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Daihua Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Hongxia Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Jingkang Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Hongli Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
- * E-mail:
| |
Collapse
|
118
|
Yoon YC, Hwang JT, Sung MJ, Wang S, Munkhtugs D, Rhyu MR, Park JH. Inhibitory effect of luteolin on the odorant-induced cAMP level in HEK293 cells expressing the olfactory receptor. Biofactors 2012; 38:360-4. [PMID: 22593001 DOI: 10.1002/biof.1025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/12/2012] [Indexed: 11/06/2022]
Abstract
Luteolin is a flavonoid in many fruits and vegetables. Although luteolin has important biological functions, including antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities, little is known about the functions of luteolin in the olfactory system. Various odorants can be detected and distinguished by using several molecular processes, including the binding of odorants to odorant receptors, activation of adenylyl cyclase (AC), changes of cyclic adenosine monophosphate (cAMP) and Ca(2+) levels in olfactory sensory neurons, as well as changes in membrane potentials and the transmission of electric signals to the brain. Because AC-cAMP signal transduction plays a pivotal role in the olfactory system, we evaluated the effects of luteolin on the AC-cAMP pathway that had been stimulated by the odorant eugenol. We demonstrated that eugenol caused an upregulation of the cAMP level and the phosphorylation of phosphokinase A (PKA, a downstream target of cAMP) in human embryonic kidney 293 (HEK293) cells expressing the murine eugenol receptor. This upregulation significantly decreased in the presence of luteolin, suggesting that luteolin inhibited the odorant-induced production of cAMP and affected the downstream phosphorylation of PKA.
Collapse
Affiliation(s)
- Yeo Cho Yoon
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Baekhyun-Dong, Bundang-Gu, Sungnam, Kyungki-Do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
119
|
Shin SS, Park D, Lee HY, Hong Y, Choi J, Oh J, Lee H, Lee HR, Kim MR, Shen ZB, Cui HH, Yoon M. The herbal composition GGEx18 from Laminaria japonica, Rheum palmatum, and Ephedra sinica reduces obesity via skeletal muscle AMPK and PPARα. PHARMACEUTICAL BIOLOGY 2012; 50:506-15. [PMID: 22129093 DOI: 10.3109/13880209.2011.618502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Since AMP-activated protein kinase (AMPK) activation in skeletal muscle of obese rodents stimulates fatty acid oxidation, it is reasonable to hypothesize that pharmacological activation of AMPK might be of therapeutic benefit in obesity. OBJECTIVE To investigate the effects of the traditional Korean anti-obesity drug GGEx18, a mixture of three herbs, Laminaria japonica Aresch (Laminariaceae), Rheum palmatum L. (Polygonaceae), and Ephedra sinica Stapf (Ephedraceae), on obesity and the involvement of AMPK in this process. MATERIALS AND METHODS After high fat diet-induced obese mice were treated with GGEx18, we studied the effects of GGEx18 on body weight, fat mass, skeletal muscle lipid accumulation, and the expressions of AMPK, peroxisome proliferator-activated receptor ά (PPARα), and PPARα target genes. The effects of GGEx18 and/or the AMPK inhibitor compound C on lipid accumulation and expression of the above genes were measured in C2C12 skeletal muscle cells. RESULTS Administration of GGEx18 to obese mice for 9 weeks significantly (p < 0.05) decreased body and adipose tissue weights compared with obese control mice (p < 0.05). Lipid accumulation in skeletal muscle was inhibited by GGEx18. GGEx18 significantly (p < 0.05) increased skeletal muscle mRNA levels of AMPKα1 and AMPKα2 as well as PPARα and its target genes. Consistent with the in vivo data, GGEx18 inhibited lipid accumulation, and similar activation of genes was observed in GGEx18-treated C2C12 cells. However, compound C inhibited these effects in C2C12 cells. DISCUSSION AND CONCLUSION These results suggest that GGEx18 improves obesity through skeletal muscle AMPK and AMPK-stimulated expression of PPARα and its target enzymes for fatty acid oxidation.
Collapse
Affiliation(s)
- Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 614-052
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Ethanolic Extract of Vitis thunbergii Exhibits Lipid Lowering Properties via Modulation of the AMPK-ACC Pathway in Hypercholesterolemic Rabbits. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:436786. [PMID: 22536284 PMCID: PMC3320028 DOI: 10.1155/2012/436786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 11/17/2022]
Abstract
Vitis thunbergii (VT) is a wild grape that has been shown to provide various cardioprotective effects. The present study was designed to examine whether a VT extract could reduce serum lipid levels and prevent atherogenesis in a hypercholesterolemic rabbit model. At the end of an 8-week study, our results showed that a VT extract supplement markedly suppressed the serum levels of cholesterol and low-density lipoprotein, reduced lipid accumulation in liver tissues, and limited aortic fatty streaks. Our findings suggest that the VT extract activated AMPK (5′-adenosine monophosphate-activated protein kinase) with subsequent inhibition of the activation of ACC (acetyl-CoA carboxylase). Our results suggest that this VT extract could be further developed as a potential lipid-lowering agent and as a natural health food to prevent atherogenesis.
Collapse
|
121
|
Bioactivity-guided fractionation of the triglyceride-lowering component and in vivo and in vitro evaluation of hypolipidemic effects of Calyx seu Fructus Physalis. Lipids Health Dis 2012; 11:38. [PMID: 22413998 PMCID: PMC3338407 DOI: 10.1186/1476-511x-11-38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/14/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In folklore, some people take the decoction of Calyx seu Fructus Physalis (CSFP) for lowering blood lipids. The present study is designed to evaluate the lipid-lowering activities of CSFP, and search for its pharmacodynamical material. METHODS CSFP was extracted by water and 75% ethanol, respectively. The extracts of CSFP for reducing serum lipid levels were evaluated on mouse model of hyperlipidemia. The optimized extract was subjected to the bioactivity-guided fractionation in which the liquid-liquid extraction, collumn chromatography, the in vivo and in vitro models of hyperlipidemia were utilized. The structure of active component was determined by ¹³C-NMR and ¹H-NMR. RESULTS The 75% ethanol extract of CSFP decreased the serum total cholesterol (TC) and triglyceride (TG) levels in mouse model of hyperlipidemia. Followed a separation process for the 75% ethanol extract of CSFP, the fraction B was proved to be an active fraction for lowering lipid in vivo and in vitro experiments, which could significantly decrease the serum TC and TG levels in mouse model of hyperlipidemia, and remarkably decrease the increase of TG in primary mouse hepatocytes induced by high glucose and the increase of TG in HepG2 cells induced by oleic acid. The fraction B2, isolated from B on bioactivity-guided fractionation, could significantly decrease TG level in HepG2 cells. One compound with the highest content in B2 was isolated and determined as luteolin-7-O-beta-D-glucopyranoside by NMR spectra. It could significantly reduce the TG level in HepG2 cells, and inhibited the accumulation of lipids by oil red O stain. CONCLUSION Our results demonstrated that the 75% ethanol extract of CSFP could improve in vitro and in vivo lipid accumulation. Luteolin-7-O-beta-D-glucopyranoside might be a leading pharmacodynamical material of CSFP for lowering lipids.
Collapse
|
122
|
Park CM, Jin KS, Cho CW, Lee YW, Huh GH, Cha YS, Song YS. Luteolin inhibits inflammatory responses by downregulating the JNK, NF-κB, and AP-1 pathways in TNF-α activated HepG2 cells. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0037-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
123
|
Kim JH, Lee HJ, Jeong SJ, Lee MH, Kim SH. Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase. Phytother Res 2012; 26:1314-9. [PMID: 22275303 DOI: 10.1002/ptr.3734] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 11/07/2022]
Abstract
Hyperlipidemia is an important factor to induce metabolic syndrome such as obesity, diabetes and cardiovascular diseases. Recently, some antihyperlipidemic agents from herbal medicines have been in the spotlight in the medical science field. Thus, the present study evaluated the antihyperlipidemic activities of the essential oil from the leaves of Pinus koraiensis SIEB (EOPK) that has been used as a folk remedy for heart disease. The reverse transcription polymerase chain reaction (RT-PCR) revealed that EOPK up-regulated low density lipoprotein receptor (LDLR) at the mRNA level as well as negatively suppressed the expression of sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) involved in lipid metabolism in HepG2 cells. Also, western blotting showed that EOPK activated LDLR and attenuated the expression of FAS at the protein level in the cells. Consistently, EOPK significantly inhibited the level of human acylcoenzyme A: cholesterol acyltransferase (hACAT)1 and 2 and reduced the low-density lipoprotein (LDL) oxidation activity. Furthermore, chromatography-mass spectrometry (GC-MS) analysis showed that EOPK, an essential oil mixture, contained camphene (21.11%), d-limonene (21.01%), α-pinene (16.74%) and borneol (11.52%). Overall, the findings suggest that EOPK can be a potent pharmaceutical agent for the prevention and treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- College of Oriental Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, South Korea
| | | | | | | | | |
Collapse
|
124
|
Pan MH, Lai CS, Tsai ML, Wu JC, Ho CT. Molecular mechanisms for anti-aging by natural dietary compounds. Mol Nutr Food Res 2011; 56:88-115. [PMID: 22083941 DOI: 10.1002/mnfr.201100509] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/20/2011] [Accepted: 09/02/2011] [Indexed: 12/11/2022]
Abstract
Aging is defined as a normal decline in survival with advancing age; however, the recent researches have showed that physiological functions of the body change during the aging process. Majority of the changes are often subject to a higher risk of developing diseases, such as cardiovascular disease, type II diabetes, Alzheimer's disease, Parkinson's disease, as well as the dysregulated immune and inflammatory disorders. Aging process is controlled by a complicated and precise signaling network that involved in energy homeostasis, cellular metabolism and stress resistance. Over the past few decades, research in natural dietary compounds by various organism and animal models provides a new strategy for anti-aging. Natural dietary compounds act through a variety mechanisms to extend lifespan and prevent age-related diseases. This review summarizes the current understanding on signaling pathways of aging and knowledge and underlying mechanism of natural dietary compounds that provide potential application on anti-aging and improve heath in human.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan.
| | | | | | | | | |
Collapse
|
125
|
|
126
|
Qin N, Li CB, Jin MN, Shi LH, Duan HQ, Niu WY. Synthesis and biological activity of novel tiliroside derivants. Eur J Med Chem 2011; 46:5189-95. [DOI: 10.1016/j.ejmech.2011.07.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 07/18/2011] [Accepted: 07/31/2011] [Indexed: 02/05/2023]
|
127
|
Ding D, Zhang B, Meng T, Ma Y, Wang X, Peng H, Shen J. Novel synthetic baicalein derivatives caused apoptosis and activated AMP-activated protein kinase in human tumor cells. Org Biomol Chem 2011; 9:7287-91. [PMID: 21901221 DOI: 10.1039/c1ob06094e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Studies on the anti-proliferative activities of novel baicalein derivatives demonstrated that compounds 8 and 9 were able to activate AMPK by enhancing the levels of phosphorylated AMPKα, and showed more potent anti-proliferative effects than baicalein and AICAR in A431, SK-OV-3, DU 145 and HeLa cells, suggesting an alternative therapeutic approach for benzyl baicalein in cancer therapy.
Collapse
Affiliation(s)
- Derong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Over a decade of intense research in the field of obesity has led to the knowledge that chronic, excessive adipose tissue expansion leads to an increase in the risk for CVD, type 2 diabetes mellitus and cancer. This is primarily thought to stem from the low-grade, systemic inflammatory response syndrome that characterises adipose tissue in obesity, and this itself is thought to arise from the complex interplay of factors including metabolic endotoxaemia, increased plasma NEFA, hypertrophic adipocytes and localised hypoxia. Plasma concentrations of vitamins and antioxidants are lower in obese individuals than in the non-obese, which is hypothesised to negatively affect the development of inflammation and disease in obesity. This paper provides a review of the current literature investigating the potential of nutraceuticals to ameliorate the development of oxidative stress and inflammation in obesity, thereby limiting the onset of obesity complications. Research has found nutraceuticals able to positively modulate the activity of adipocyte cell lines and further positive effects have been found in other aspects of pathogenic obesity. While their ability to affect weight loss is still controversial, it is clear that they have a great potential to reverse the development of overweight and obesity-related comorbidities; this, however, still requires much research especially that utilising well-structured randomised controlled trials.
Collapse
|