101
|
Kotcherlakota R, Srinivasan DJ, Mukherjee S, Haroon MM, Dar GH, Venkatraman U, Patra CR, Gopal V. Engineered fusion protein-loaded gold nanocarriers for targeted co-delivery of doxorubicin and erbB2-siRNA in human epidermal growth factor receptor-2+ ovarian cancer. J Mater Chem B 2017; 5:7082-7098. [DOI: 10.1039/c7tb01587a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gold nanoparticle based targeted drug delivery system (TDDS) for transporting DX and siRNA in HER2+ ovarian cancer.
Collapse
Affiliation(s)
- Rajesh Kotcherlakota
- Department of Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | | - Sudip Mukherjee
- Department of Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | | | | | | - Chitta Ranjan Patra
- Department of Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Vijaya Gopal
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad 500007
- India
| |
Collapse
|
102
|
Babu A, Muralidharan R, Amreddy N, Mehta M, Munshi A, Ramesh R. Nanoparticles for siRNA-Based Gene Silencing in Tumor Therapy. IEEE Trans Nanobioscience 2016; 15:849-863. [PMID: 28092499 PMCID: PMC6198667 DOI: 10.1109/tnb.2016.2621730] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene silencing through RNA interference (RNAi) has emerged as a potential strategy in manipulating cancer causing genes by complementary base-pairing mechanism. Small interfering RNA (siRNA) is an important RNAi tool that has found significant application in cancer therapy. However due to lack of stability, poor cellular uptake and high probability of loss-of-function due to degradation, siRNA therapeutic strategies seek safe and efficient delivery vehicles for in vivo applications. The current review discusses various nanoparticle systems currently used for siRNA delivery for cancer therapy, with emphasis on liposome based gene delivery systems. The discussion also includes various methods availed to improve nanoparticle based-siRNA delivery with target specificity and superior efficiency. Further this review describes challenges and perspectives on the development of safe and efficient nanoparticle based-siRNA-delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Anish Babu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Ranganayaki Muralidharan
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Narsireddy Amreddy
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Meghna Mehta
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA, and Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA ()
| |
Collapse
|
103
|
Ortega-Muñoz M, Giron-Gonzalez MD, Salto-Gonzalez R, Jodar-Reyes AB, De Jesus SE, Lopez-Jaramillo FJ, Hernandez-Mateo F, Santoyo-Gonzalez F. Polyethyleneimine-Coated Gold Nanoparticles: Straightforward Preparation of Efficient DNA Delivery Nanocarriers. Chem Asian J 2016; 11:3365-3375. [PMID: 27685032 DOI: 10.1002/asia.201600951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/09/2016] [Indexed: 11/10/2022]
Abstract
A novel one-pot method for the synthesis of polyethyleneimine (PEI)-coated gold nanoparticles (AuPEI-NPs) that combines the reductant-stabilizer properties of PEI with microwave irradiation starting from hydrogen tetrachloroaurate acid (HAuCl4 ) and branched PEI 25 kDa (b25kPEI) was explored. The method was straightforward, green, and low costing, for which the Au/PEI ratio (1:1 to 1:128 w/w) was a key parameter to modulate their capabilities as DNA delivery nanocarriers. Transfection assays in CHO-k1 cells demonstrated that AuPEI-NPs with 1:16 and 1:32 w/w ratios behaved as effective DNA gene vectors with improved transfection efficiencies (twofold) and significantly lower toxicity than unmodified b25kPEI and Lipofectamine 2000. The transfection mediated by these AuPEI-NP-DNA polyplexes preferentially used the caveolae-mediated route for intracellular internalization, as shown by studies performed by using specific internalization inhibitors as well as colocalization with markers of clathrin- and caveolae-dependent pathways. The AuPEI-NP polyplexes preferentially used the more efficient caveolae internalization pathway to promote transfection, a fact that supports their higher transfection efficiency relative to that of Lipofectamine 2000. In addition, intracellular trafficking of the AuPEI-NPs was studied by transmission electron microscopy.
Collapse
Affiliation(s)
- Mariano Ortega-Muñoz
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - M Dolores Giron-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Rafael Salto-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Ana Belen Jodar-Reyes
- Biocolloid and Fluid Physics Group, Department of Applied Physics, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Samantha E De Jesus
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - F Javier Lopez-Jaramillo
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Fernando Hernandez-Mateo
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Francisco Santoyo-Gonzalez
- Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| |
Collapse
|
104
|
Aji Alex MR, Veeranarayanan S, Poulose AC, Nehate C, Kumar DS, Koul V. Click modified amphiphilic graft copolymeric micelles of poly(styrene-alt-maleic anhydride) for combinatorial delivery of doxorubicin and plk-1 siRNA in cancer therapy. J Mater Chem B 2016; 4:7303-7313. [PMID: 32263732 DOI: 10.1039/c6tb02094a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The anti-apoptotic defense mechanism of cancer cells poses a major hurdle which makes chemotherapy less effective. Combinatorial delivery of drugs and siRNAs targeting anti-apoptotic proteins is a vital means for improving therapeutic effects. The present study aims at designing a suitable carrier which can effectively co-deliver doxorubicin and plk1 siRNA to tumor cells. Low molecular weight poly(styrene-alt-maleic anhydride) was chemically modified via a click reaction to obtain a cationic amphiphilic polymer for the co-delivery of therapeutic agents. Short glycol chains were utilized as linker molecules for grafting which in turn imparted a stealth nature and minimized plasma protein adsorption to the polymeric surface. Isonicotinic acid was grafted to the polymer due to its ability to penetrate the endolysosomal membrane and arginine-lysine conjugates were embedded for complexing siRNA. The polymer was able to self-assemble in to smooth, spherical micellar structures with a CMC of ∼3 μg mL-1. The particle size of the micelles was ∼14-30 nm as depicted using TEM and FESEM. Atomic force microscopic analysis showed an average height of ∼12 nm for the polymeric micelles. An optimum doxorubicin loading of ∼9% w/w was achieved with the micelles using a dialysis method. Effective complexation of siRNA occurred above a polymer/siRNA weight ratio of 10 without any significant change in the particle size. Doxorubicin and fluorescent labeled siRNA loaded micelles exhibited excellent co-localization within the cytoplasm of MCF-7 cells. The synergistic effect of the active agents in inhibiting tumor cell proliferation was depicted using an MTT assay and visualized using calcein/propidium iodide staining of the treated cells. Co-administration of doxorubicin and plk1 siRNA in EAT tumor bearing Swiss albino mice using the cationic micelles significantly enhanced the antitumor efficacy.
Collapse
Affiliation(s)
- M R Aji Alex
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | | | | | | | | | | |
Collapse
|
105
|
Ho W, Zhang XQ, Xu X. Biomaterials in siRNA Delivery: A Comprehensive Review. Adv Healthc Mater 2016; 5:2715-2731. [PMID: 27700013 DOI: 10.1002/adhm.201600418] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Indexed: 01/31/2023]
Abstract
With the dearth of effective treatment options for prominent diseases including Ebola and cancer, RNA interference (RNAi), a sequence-specific mechanism for genetic regulation that can silence nearly any gene, holds the promise of unlimited potential in treating illness ever since its discovery in 1999. Given the large size, unstable tertiary structure in physiological conditions and negative charge of small interfering RNAs (siRNAs), the development of safe and effective delivery vehicles is of critical importance in order to drive the widespread use of RNAi therapeutics into clinical settings. Immense amounts of time and billions of dollars have been devoted into the design of novel and diverse delivery strategies, and there are a handful of delivery systems that have been successfully translated into clinic. This review provides an introduction to the in vivo barriers that need to be addressed by siRNA delivery systems. We also discuss the progress up to the most effective and clinically advanced siRNA delivery systems including liposomal, polymeric and siRNA conjugate delivery systems, as well as their design to overcome the challenges.
Collapse
Affiliation(s)
- William Ho
- Department of Chemical, Biological and Pharmaceutical Engineering; Newark School of Engineering; New Jersey Institute of Technology; Newark NJ 07102 USA
| | - Xue-Qing Zhang
- Department of Chemical, Biological and Pharmaceutical Engineering; Newark School of Engineering; New Jersey Institute of Technology; Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical, Biological and Pharmaceutical Engineering; Newark School of Engineering; New Jersey Institute of Technology; Newark NJ 07102 USA
| |
Collapse
|
106
|
Wang A, Perera YR, Davidson MB, Fitzkee NC. Electrostatic Interactions and Protein Competition Reveal a Dynamic Surface in Gold Nanoparticle-Protein Adsorption. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:24231-24239. [PMID: 27822335 PMCID: PMC5096844 DOI: 10.1021/acs.jpcc.6b08469] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gold nanoparticle- (AuNP-) protein conjugates are potentially useful in a broad array of diagnostic and therapeutic applications, but the physical basis of the simultaneous adsorption of multiple proteins onto AuNP surfaces remains poorly understood. Here, we investigate the contribution of electrostatic interactions to protein-AuNP binding by studying the pH-dependent binding behavior of two proteins, GB3 and ubiquitin. For both proteins, binding to 15-nm citrate-coated AuNPs closely tracks with the predicted net charge using standard pKa values, and a dramatic reduction in binding is observed when lysine residues are chemically methylated. This suggests that clusters of basic residues are involved in binding, and using this hypothesis, we model the pKa shifts induced by AuNP binding. Then, we employ a novel NMR-based approach to monitor the binding competition between GB3 and ubiquitin in situ at different pH values. In light of our model, the NMR measurements reveal that the net charge, binding association constant, and size of each protein play distinct roles at different stages of protein adsorption. When citrate-coated AuNPs and proteins first interact, net charge appears to dominate. However, as citrate molecules are displaced by protein, the surface chemistry changes, and the energetics of binding becomes far more complex. In this case, we observed that GB3 is able to displace ubiquitin at intermediate time scales, even though it has a lower net charge. The thermodynamic model for binding developed here could be the first step toward predicting the binding behavior in biological fluids, such as blood plasma.
Collapse
|
107
|
Tavahodi M, Ortiz R, Schulz C, Ekhtiari A, Ludwig R, Haghighi B, Gorton L. Direct Electron Transfer of Cellobiose Dehydrogenase on Positively Charged Polyethyleneimine Gold Nanoparticles. Chempluschem 2016; 82:546-552. [PMID: 31961594 DOI: 10.1002/cplu.201600453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/07/2016] [Indexed: 01/24/2023]
Abstract
Efficient conjugation between biomolecules and electrode materials is one of the main challenges in the field of biosensors. Cellobiose dehydrogenase (CDH) is a monomeric enzyme, which consists of two separate domains: one catalytic dehydrogenase domain (DHCDH ) carrying strongly bound flavin adenine dinucleotide (FAD) in the active site and a cytochrome domain (CYTCDH ) carrying a b-type heme connected by a flexible linker region. Herein, we report on the development of a lactose biosensor, based on direct electron transfer (DET) from CDH from Phanerochaete sordida (PsCDH) electrostatically attached onto polyethyleneimine-stabilized gold nanoparticles (PEI@AuNPs) used to cover a conventional polycrystalline solid gold disk electrode. PEI@AuNPs were synthesized in aqueous solution using PEI as reducing agent for AuIII and as stabilizer for the nanoparticles. The heterogeneous electron-transfer (ET) rate (ks ) for the redox reaction of immobilized PsCDH at the modified electrodes was calculated based on the Laviron theory and was found to be (39.6±2.5) s-1 . The proposed lactose biosensor exhibits good long term stability as well as high and reproducible sensitivity to lactose with a response time less than 5 s and a linear range from 1 to 100 μm.
Collapse
Affiliation(s)
- Mojtaba Tavahodi
- Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, P.O. Box 124, 22100, Lund, Sweden.,Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan, 45195-1159, Iran
| | - Roberto Ortiz
- Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Christopher Schulz
- Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Ali Ekhtiari
- Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Roland Ludwig
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Wien, Austria
| | - Behzad Haghighi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan, 45195-1159, Iran.,Department of Chemistry, Shiraz University, Shiraz, 71454, Iran
| | - Lo Gorton
- Department of Analytical Chemistry, Biochemistry and Structural Biology, Lund University, P.O. Box 124, 22100, Lund, Sweden
| |
Collapse
|
108
|
Předota M, Machesky ML, Wesolowski DJ. Molecular Origins of the Zeta Potential. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10189-10198. [PMID: 27643625 DOI: 10.1021/acs.langmuir.6b02493] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The zeta potential (ZP) is an oft-reported measure of the macroscopic charge state of solid surfaces and colloidal particles in contact with solvents. However, the origin of this readily measurable parameter has remained divorced from the molecular-level processes governing the underlying electrokinetic phenomena, which limits its usefulness. Here, we connect the macroscopic measure to the microscopic realm through nonequilibrium molecular dynamics simulations of electroosmotic flow between parallel slabs of the hydroxylated (110) rutile (TiO2) surface. These simulations provided streaming mobilities, which were converted to ZP via the commonly used Helmholtz-Smoluchowski equation. A range of rutile surface charge densities (0.1 to -0.4 C/m2), corresponding to pH values between about 2.8 and 9.4, in RbCl, NaCl, and SrCl2 aqueous solutions, were modeled and compared to experimental ZPs for TiO2 particle suspensions. Simulated ZPs qualitatively agree with experiment and show that "anomalous" ZP values and inequalities between the point of zero charge derived from electrokinetic versus pH titration measurements both arise from differing co- and counterion sorption affinities. We show that at the molecular level the ZP arises from the delicate interplay of spatially varying dynamics, structure, and electrostatics in a narrow interfacial region within about 15 Å of the surface, even in dilute salt solutions. This contrasts fundamentally with continuum descriptions of such interfaces, which predict the ZP response region to be inversely related to ionic strength. In reality the properties of this interfacial region are dominated by relatively immobile and structured water. Consequently, viscosity values are substantially greater than in the bulk, and electrostatic potential profiles are oscillatory in nature.
Collapse
Affiliation(s)
- Milan Předota
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia , Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Michael L Machesky
- University of Illinois , Illinois State Water Survey, 2204 Griffith Drive, Champaign, Illinois 61820-7495, United States
| | - David J Wesolowski
- Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6110, United States
| |
Collapse
|
109
|
Pan T, Song W, Gao H, Li T, Cao X, Zhong S, Wang Y. miR-29b-Loaded Gold Nanoparticles Targeting to the Endoplasmic Reticulum for Synergistic Promotion of Osteogenic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19217-19227. [PMID: 27399270 DOI: 10.1021/acsami.6b02969] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Precise control of stem cells, such as human bone marrow-derived mesenchymal stem cells (hMSCs), is critical for the development of effective cellular therapies for tissue engineering and regeneration medicine. Emerging evidence suggests that several miRNAs act as key regulators of diverse biological processes, including differentiation of various stem cells. In this study, we have described a delivery system for miR-29b using PEI-capped gold nanoparticles (AuNPs) to synergistically promote osteoblastic differentiation. The cell proliferation assay revealed that AuNPs and AuNPs/miR-29b exert negligible cytotoxicity to hMSCs and MC3T3-E1 cells. With the assistance of AuNPs as a delivery vector, miR-29b could efficiently enter the cytoplasm and regulate osteogenesis. AuNPs/miR-29b more effectively promoted osteoblast differentiation and mineralization through induced the expression of osteogenesis genes (RUNX2, OPN, OCN, ALP) for the long-term, compared to the widely used commercial transfection reagent, Lipofectamine. With no obvious cytotoxicity, PEI-capped AuNPs showed great potential as an adequate miRNA vector for osteogenesis differentiation. Interestingly, we observed loading of AuNPs as well as AuNPs/miR-29b into the lumen of the endoplasmic reticulum (ER). Our findings collectively suggest that AuNPs, together with miR-29b, exert a synergistic promotory effect on osteogenic differentiation of hMSCs and MC3T3-E1 cells.
Collapse
Affiliation(s)
- Ting Pan
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
| | - Wenjing Song
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou, 510006, China
| | - Huichang Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
| | - Tianjie Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
| | - Shizhen Zhong
- School of Basic Medical Sciences, Southern Medical University , Guangzhou 510515, People's Republic of China
| | - Yingjun Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
| |
Collapse
|
110
|
Kong J, Yu X, Hu W, Hu Q, Shui S, Li L, Han X, Xie H, Zhang X, Wang T. A biomimetic enzyme modified electrode for H2O2 highly sensitive detection. Analyst 2016; 140:7792-8. [PMID: 26462299 DOI: 10.1039/c5an01335f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An efficient catalyst based on artificial bionic peroxidase was synthesized for electrocatalysis. A poly(ethyleneimine)/Au nanoparticle composite (PEI-AuNP) was prepared and it was then linked to hemin via a coupling reaction between carboxyl groups in hemin and amino groups in PEI without the activation of a carboxyl group by carbodiimide. Fourier transform infrared (FTIR) spectroscopy verified the formation of amido bonds within the structure. The presence of AuNPs contributed greatly in establishing the amido bonds within the composite. Transmission electron microscopy (TEM) and UV-visible spectroscopy were also used to characterize the PEI-AuNP-hemin catalyst. PEI-AuNP-hemin exhibited intrinsic peroxidase-like catalytic activities. The PEI-AuNP-hemin deposited on a glass carbon electrode had strong sensing for H2O2 with a well-defined linear relationship between the amperometric response and H2O2 concentration in the range from 1 μM to 0.25 mM. The detection limit was 0.247 nM with a high sensitivity of 0.347 mA mM(-1) cm(-2). The peroxidase-like catalytic activity of PEI-AuNP-hemin is discussed in relation to its microstructure. The study suggests that PEI-AuNP-hemin may have promising application prospects in biocatalysis and bioelectronics.
Collapse
Affiliation(s)
- Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Xuehua Yu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Weiwen Hu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Qiong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Sailan Shui
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Lianzhi Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Huifang Xie
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Xueji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China. and Chemistry Department, College of Arts and Sciences, University of South Florida, East Fowler Ave, Tampa, Florida 33620-4202, USA
| | - Tianhe Wang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| |
Collapse
|
111
|
Vago R, Collico V, Zuppone S, Prosperi D, Colombo M. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol Res 2016; 111:619-641. [PMID: 27436147 DOI: 10.1016/j.phrs.2016.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.
Collapse
Affiliation(s)
- Riccardo Vago
- Università Vita-Salute San Raffaele, Milano, I-20132, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Veronica Collico
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Stefania Zuppone
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Davide Prosperi
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
112
|
Li Y, Hei M, Xu Y, Qian X, Zhu W. Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. Int J Pharm 2016; 511:689-702. [PMID: 27426108 DOI: 10.1016/j.ijpharm.2016.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 01/12/2023]
Abstract
Effective gene delivery system plays an importmant role in the gene therapy. Mesoporous silica nanoparticle (MSN) has become one potential gene delivery vector because of its high stability, good biodegradability and low cytotoxicity. Herein, MSN-based dual intracellular responsive gene delivery system CMSN-A was designed and fabricated. Short chain ammonium group, which is modified with disulfide bond and amide bond simultaneously, is facilely grafted onto the mesoporous silica nanoparticles. As-synthesized CMSN-A is endowed with small size (80-110nm), large conical pores (15-23nm), and moderate Zeta potential (+25±2mV), which behaves high gene loading capacity, good stability and effectively gene transfection. Moreover, CMSN-A exhibits dual micro-environment responsive (lower pH, more reducing substances) due to the redox-sensitive disulfide bond and pH-sensitive amide bond in the short chain ammonium group. The cellular uptake study indicates that CMSN-A could transfer both plasmid DNA (pDNA) and siRNA into different kinds of tumour cells, which demonstrate the promising potential of CMSN-A as effective and safe gene-delivery vectors.
Collapse
Affiliation(s)
- Yujie Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingyang Hei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
113
|
Peng LH, Huang YF, Zhang CZ, Niu J, Chen Y, Chu Y, Jiang ZH, Gao JQ, Mao ZW. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials 2016; 103:137-149. [PMID: 27376562 DOI: 10.1016/j.biomaterials.2016.06.057] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/03/2016] [Accepted: 06/23/2016] [Indexed: 01/09/2023]
Abstract
Gold nanoparticles (AuNPs) have emerged as attractive non-viral gene vectors. However their application in regenerative medicine is still limited partially due to a lack of an intrinsic capacity to transfect difficult-to-transfect cells such as primary cells or stem cells. In current study, we report the synthesis of antimicrobial peptide conjugated cationic AuNPs (AuNPs@PEP) as highly efficient carriers for gene delivery to stem cells with antibacterial ability. The AuNPs@PEP integrate the advantages of cationic AuNPs and antibacterial peptides: the presence of cationic AuNPs can effectively condense DNA and the antimicrobial peptides are essential for the cellular & nucleus entry enhancement to achieve high transfection efficiency and antibacterial ability. As a result, antimicrobial peptides conjugated AuNPs significantly promoted the gene transfection efficiency in rat mesenchymal stem cells than pristine AuNPs, with a similar extent to those expressed by TAT (a well-known cell-penetrating peptide) modified AuNPs. More interestingly, the combinational system has better antibacterial ability than free antimicrobial peptides in vitro and in vivo, possibly due to the high density of peptides on the surface of AuNPs. Finally we present the concept-proving results that AuPs@PEP can be used as a carrier for in vivo gene activation in tissue regeneration, suggesting its potential as a multifunctional system with both gene delivery and antibacterial abilities in clinic.
Collapse
Affiliation(s)
- Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, PR China.
| | - Yan-Fen Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Chen-Zhen Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jie Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Ying Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yang Chu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, PR China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Zheng-Wei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
114
|
Zhao J, Feng SS. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine (Lond) 2016. [PMID: 26214357 DOI: 10.2217/nnm.15.61] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A major problem in cancer treatment is the multidrug resistance. siRNA inhibitors have great advantages to solve the problem, if the bottleneck of their delivery could be well addressed by the various nanocarriers. Moreover, co-delivery of siRNA together with the various anticancer agents in one nanocarrier may maximize their additive or synergistic effect. This review provides a comprehensive summary on the state-of-the-art of the nanocarriers, which may include prodrugs, micelles, liposomes, dendrimers, nanohydrogels, solid lipid nanoparticles, nanoparticles of biodegradable polymers and nucleic acid nanocarriers for delivery of siRNA and co-delivery of siRNA together with anticancer agents with focus on synthesis of the nanocarrier materials, design and characterization, in vitro and in vivo evaluation, and prospect and challenges of nanocarriers.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Si-Shen Feng
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.,International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
115
|
Shaat H, Mostafa A, Moustafa M, Gamal-Eldeen A, Emam A, El-Hussieny E, Elhefnawi M. Modified gold nanoparticles for intracellular delivery of anti-liver cancer siRNA. Int J Pharm 2016; 504:125-33. [PMID: 27036397 DOI: 10.1016/j.ijpharm.2016.03.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 11/25/2022]
Abstract
To overcome the rapid enzymatic degradation and low transfection efficiency of siRNA, the delivery carriers for siRNA is a therapeutic demand to increase its stability. Gold nanoparticles (AuNPs) modified by branched polyethyleneimine (bPEI) were developed as an efficient and safe intracellular delivery carriers for siRNA. The current study implied that siRNA designed against an oncogene c-Myc could be delivered by a modified AuNPs complex without significant cytotoxicity. The comparative semi-quantitative and quantitative real time PCR were used to measure the c-Myc gene expression after transfection with naked siRNA and siRNA/bPEI/AuNPs, but AuNPs interfered with PCR. However, the c-Myc protein translation was successfully detected in the transfected HuH7 cells with naked siRNA and siRNA/bPEI/AuNPs and it was found to be inhibited by siRNA/bPEI/AuNPs more than naked siRNA. The results validate the successful silencing of c-Myc gene. Accordingly, it may confirm the promising and effective delivery of siRNA by bPEI/AuNPs. The complex enhances the cellular uptake of siRNA without significant cytotoxicity and confirms that bPEI modified AuNPs could be used as a good candidate for safe cellular delivery of siRNA.
Collapse
Affiliation(s)
- Hanan Shaat
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt; Nanomedicine and Tissue Engineering Laboratory, Medical Research Centre of excellence, National Research Centre (NRC), Cairo, Egypt
| | - Amany Mostafa
- Nanomedicine and Tissue Engineering Laboratory, Medical Research Centre of excellence, National Research Centre (NRC), Cairo, Egypt; Ceramics Department, NRC, Dokki, Cairo, Egypt,.
| | - Moustafa Moustafa
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Amira Gamal-Eldeen
- Cancer Biology and Genetics Laboratory Centre of Excellence for Advanced Sciences, NRC, Cairo, Egypt; Biochemistry Department, NRC, Dokki, Cairo, Egypt
| | - Ahmed Emam
- Nanomedicine and Tissue Engineering Laboratory, Medical Research Centre of excellence, National Research Centre (NRC), Cairo, Egypt; Ceramics Department, NRC, Dokki, Cairo, Egypt
| | - Enas El-Hussieny
- Zoology Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemo-Informatics Laboratory, Center of Excellence for advanced Sciences, NRC, Dokki, Cairo, Egypt,; Informatics and System Department, NRC, Dokki, Cairo, Egypt.
| |
Collapse
|
116
|
Zhang Y, Wen S, Zhao L, Li D, Liu C, Jiang W, Gao X, Gu W, Ma N, Zhao J, Shi X, Zhao Q. Ultrastable polyethyleneimine-stabilized gold nanoparticles modified with polyethylene glycol for blood pool, lymph node and tumor CT imaging. NANOSCALE 2016; 8:5567-77. [PMID: 26890691 DOI: 10.1039/c5nr07955a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Development of new long-circulating contrast agents for computed tomography (CT) imaging of different biological systems still remains a great challenge. Here, we report the design and synthesis of branched polyethyleneimine (PEI)-stabilized gold nanoparticles (Au PSNPs) modified with polyethylene glycol (PEG) for blood pool, lymph node, and tumor CT imaging. In this study, thiolated PEI was first synthesized and used as a stabilizing agent to form AuNPs. The formed Au PSNPs were then grafted with PEG monomethyl ether via PEI amine-enabled conjugation chemistry, followed by acetylation of the remaining PEI surface amines. The formed PEGylated Au PSNPs were characterized via different methods. We show that the PEGylated Au PSNPs with an Au core size of 5.1 nm have a relatively long half-decay time (7.8 h), and display a better X-ray attenuation property than conventionally used iodine-based CT contrast agents (e.g., Omnipaque), and are hemocompatible and cytocompatible in a given concentration range. These properties of the Au PSNPs afford their uses as a contrast agent for effective CT imaging of the blood pool and major organs of rats, lymph node of rabbits, and the xenografted tumor model of mice. Importantly, the PEGylated Au PSNPs could be excreted out of the body with time and also showed excellent in vivo stability. These findings suggest that the formed PEGylated Au PSNPs may be used as a promising contrast agent for CT imaging of different biological systems.
Collapse
Affiliation(s)
- Yongxing Zhang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Shihui Wen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Du Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Wenbin Jiang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Xiang Gao
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Wentao Gu
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Nan Ma
- Department of Cardiac Surgery, University of Rostock, 18055, Germany
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China. and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Qinghua Zhao
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China.
| |
Collapse
|
117
|
Fitzgerald KA, Rahme K, Guo J, Holmes JD, O'Driscoll CM. Anisamide-targeted gold nanoparticles for siRNA delivery in prostate cancer - synthesis, physicochemical characterisation and in vitro evaluation. J Mater Chem B 2016; 4:2242-2252. [PMID: 32263220 DOI: 10.1039/c6tb00082g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metastatic prostate cancer is a leading cause of cancer-related death in men and current chemotherapies are largely inadequate in terms of efficacy and toxicity. Hence improved treatments are required. The application of siRNA as a cancer therapeutic holds great promise. However, translation of siRNA into the clinic is dependent on the availability of an effective delivery system. Gold nanoparticles (AuNPs) are known to be effective and non-toxic siRNA delivery agents. In this study, a stable gold nanosphere coated with poly(ethylenimine) (PEI) was prepared to yield PEI capped AuNPs (Au-PEI). The PEI was further conjugated with the targeting ligand anisamide (AA, is known to bind to the sigma receptor overexpressed on the surface of prostate cancer cells) to produce an anisamide-targeted nanoparticle (Au-PEI-AA). The resulting untargeted and targeted nanoparticles (Au-PEI and Au-PEI-AA respectively) were positively charged and efficiently complexed siRNA. Au-PEI-AA mediated siRNA uptake into PC3 prostate cancer cells via binding to the sigma receptor. In addition, the Au-PEI-AA·siRNA complexes resulted in highly efficient knockdown of the RelA gene (∼70%) when cells were transfected in serum-free medium. In contrast, no knockdown was observed in the presence of serum, suggesting that adsorption of serum proteins inhibits the binding of the anisamide moiety to the sigma receptor. This study provides (for the first time) proof of principle that anisamide-labelled gold nanoparticles can target the sigma receptor. Further optimisation of the formulation to increase serum stability will enhance its potential to treat prostate cancer.
Collapse
|
118
|
Liu SG, Li N, Ling Y, Kang BH, Geng S, Li NB, Luo HQ. pH-Mediated Fluorescent Polymer Particles and Gel from Hyperbranched Polyethylenimine and the Mechanism of Intrinsic Fluorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1881-9. [PMID: 26829461 DOI: 10.1021/acs.langmuir.6b00201] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report that fluorescence properties and morphology of hyperbranched polyethylenimine (hPEI) cross-linked with formaldehyde are highly dependent on the pH values of the cross-linking reaction. Under acidic and neutral conditions, water-soluble fluorescent copolymer particles (CPs) were produced. However, under basic conditions, white gels with weak fluorescence emission would be obtained. The water-soluble hPEI-formaldehyde (hPEI-F) CPs show strong intrinsic fluorescence without the conjugation to any classical fluorescent agents. By the combination of spectroscopy and microscopy techniques, the mechanism of fluorescence emission was discussed. We propose that the intrinsic fluorescence originates from the formation of a Schiff base in the cross-linking process between hPEI and formaldehyde. Schiff base bonds are the fluorescence-emitting moieties, and the compact structure of hPEI-F CPs plays an important role in their strong fluorescence emission. The exploration on fluorescence mechanism may provide a new strategy to prepare fluorescent polymer particles. In addition, the investigation shows that the hPEI-F CPs hold potential as a fluorescent probe for the detection of copper ions in aqueous media.
Collapse
Affiliation(s)
- Shi Gang Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Na Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Yu Ling
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Bei Hua Kang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Shuo Geng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| |
Collapse
|
119
|
Couto C, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles and bioconjugation: a pathway for proteomic applications. Crit Rev Biotechnol 2016; 37:238-250. [DOI: 10.3109/07388551.2016.1141392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cláudia Couto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
| | - Rui Vitorino
- Mass Spectrometry Center, Organic Chemistry, Natural and Agro-Food Products Research Unit (QOPNA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
- Department of Medical Sciences, iBiMED - Institute for Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal and
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana L. Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
| |
Collapse
|
120
|
Jiang Y, Huo S, Hardie J, Liang XJ, Rotello VM. Progress and perspective of inorganic nanoparticle-based siRNA delivery systems. Expert Opin Drug Deliv 2016; 13:547-59. [PMID: 26735861 PMCID: PMC4914043 DOI: 10.1517/17425247.2016.1134486] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Small interfering RNA (siRNA) is an effective method for regulating the expression of proteins, even "undruggable" ones that are nearly impossible to target through traditional small molecule therapeutics. Delivery to the cell and then to the cytosol is the primary requirement for realization of therapeutic potential of siRNA. AREAS COVERED We summarize recent advances in the design of inorganic nanoparticle with surface functionality and physicochemical properties engineered for siRNA delivery. Specifically, we discuss the main approaches developed so far to load siRNA into/onto NPs, and NP surface chemistry engineered for enhanced intracellular siRNA delivery, endosomal escape, and targeted delivery of siRNA to disease cells and tissues. EXPERT OPINION Several challenges remain in developing inorganic NPs for efficient and effective siRNA delivery. Getting the material to the chosen site is important, however the greatest hurdle may well be delivery into the cytosol, either through efficient endosomal escape or by direct cytosolic siRNA delivery. Effective delivery at the organismic and cellular level coupled with biocompatible vehicles with low immunogenic response will facilitate the clinical translation of RNAi for the treatment of genetic diseases.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Shuaidong Huo
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11, First North Road, Zhongguancun, Beijing, 100190, China
| | - Joseph Hardie
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11, First North Road, Zhongguancun, Beijing, 100190, China
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
121
|
|
122
|
Zhou B, Shen M, Bányai I, Shi X. Structural characterization of PEGylated polyethylenimine-entrapped gold nanoparticles: an NMR study. Analyst 2016; 141:5390-7. [DOI: 10.1039/c6an00841k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The internal spatial structures of PEGylated polyethylenimine-entrapped gold nanoparticles can be effectively analyzed via advanced NMR techniques.
Collapse
Affiliation(s)
- Benqing Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - István Bányai
- Department of Colloid and Environmental Chemistry
- University of Debrecen
- Debrecen
- Hungary
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
123
|
Adesina SK, Akala EO. Nanotechnology Approaches for the Delivery of Exogenous siRNA for HIV Therapy. Mol Pharm 2015; 12:4175-87. [PMID: 26524196 DOI: 10.1021/acs.molpharmaceut.5b00335] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi) is triggered by oligonucleotides that are about 21-23 nucleotides long and are capable of inducing the destruction of complementary mRNA. The RNAi technique has been successfully utilized to target HIV replication; however, the main limitation to the successful utilization of this technique in vivo is the inability of naked siRNA to cross the cell membrane by diffusion due to its strong anionic charge and large molecular weight. This review describes current nonviral nanotechnological approaches to deliver anti-HIV siRNAs for the treatment of HIV infection.
Collapse
Affiliation(s)
- Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University , Washington, DC 20059, United States
| | - Emmanuel O Akala
- Department of Pharmaceutical Sciences, Howard University , Washington, DC 20059, United States
| |
Collapse
|
124
|
Development of nanotheranostics against metastatic breast cancer--A focus on the biology & mechanistic approaches. Biotechnol Adv 2015; 33:1897-911. [PMID: 26454168 DOI: 10.1016/j.biotechadv.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
Abstract
Treatment for metastatic breast cancer still remains to be a challenge since the currently available diagnostic and treatment strategies fail to detect the micro-metastasis resulting in higher mortality rate. Moreover, the lack of specificity to target circulating tumor cells is also a factor. In addition, currently available imaging modalities to identify the secondaries vary with respect to various metastatic anatomic areas and size of the tumor. The drawbacks associated with the existing clinical management of the metastatic breast cancer demands the requirement of multifunctional nanotheranostics, which could diagnose at macro- and microscopic level, target the solid as well as circulating tumor cells and control further progression with the simultaneous evaluation of treatment response in a single platform. However, without the understanding of the biology as well as preferential homing ability of circulating tumor cells at distant organs, it is quite impossible to address the existing challenges in the present diagnostics and therapeutics against the breast cancer metastasis. Hence this review outlines the severity of the problem, basic biology and organ specificity with the sequential steps for the secondary progression of disease followed by the various mechanistic approaches in diagnosis and therapy at different stages.
Collapse
|
125
|
Naha PC, Chhour P, Cormode DP. Systematic in vitro toxicological screening of gold nanoparticles designed for nanomedicine applications. Toxicol In Vitro 2015; 29:1445-53. [PMID: 26031843 PMCID: PMC4553135 DOI: 10.1016/j.tiv.2015.05.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 05/29/2015] [Indexed: 01/28/2023]
Abstract
Gold nanoparticles (AuNP) are increasingly being applied in the biomedical field as therapeutics, contrast agents, and in diagnostic systems, motivating investigations of their toxicity that might arise from accidental exposure. While other work has investigated the toxicological response to gold nanoparticles for industrial purposes, here we have surveyed formulations that have been developed for biomedical use, are in clinical trials or have been FDA-approved. The AuNP library tested contains a range of shapes, including spheres, rods and shells, that possess a range of coatings, such as silica, citrate, lipoprotein, polymaleic acid, polyethylene glycol, DNA and others. Good cytocompatibility for all formulations was observed after 1 h of incubation. However after 24 h exposure, a nanorod and a spherical DNA coated formulation resulted in toxicity. The coating material was the only factor that influenced toxicity. AuNP exposure seemed to have no effect on cell cytoskeleton deformation and cell spreading. Cell uptake, as measured by computed tomography and ICP-OES, as well as TEM images of cells, confirmed strong AuNP uptake for certain formulations, but there was no correlation with toxicity. No glove translocation occurred, therefore, nitrile gloves are an adequate safety precaution for working with the AuNP studied. In conclusion, the majority of AuNP formulations tested have very low adverse effects.
Collapse
Affiliation(s)
- Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Peter Chhour
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Cardiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
126
|
Gui GF, Zhuo Y, Chai YQ, Xiang Y, Yuan R. The Ru complex and hollow gold nanoparticles branched-hydrogel as signal probe for construction of electrochemiluminescent aptasensor. Biosens Bioelectron 2015; 77:7-12. [PMID: 26385731 DOI: 10.1016/j.bios.2015.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/19/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
In this work, a novel Ru complex and hollow gold nanoparticles branched-poly(N-(3-aminopropyl)methacrylamide) hydrogel composites (pNAMA-Ru-HGNPs) were prepared and used as electrogenerated chemiluminescence (ECL) signal probe to construct aptasensor for ultrasensitive detection of thrombin (TB). Herein, [Ru(phen)2(cpaphen)](2+) linked N-(3-aminopropyl)methacrylamide and hollow gold nanoparticles functionalized N-(3-aminopropyl)methacrylamide were used as two polymer monomers to prepare pNAMA-Ru-HGNPs composites via free-radical polymerization. The obtained hydrogel composite, containing amount of Ru complex and HGNPs, were used as effective tag-carriers for the immobilization of thrombin binding aptamer II (TBA II) to form the pNAMA-Ru-HGNPs labeled TBA II (pNAMA-Ru-HGNPs-TBA II). For building the interface of the aptasensor, dendritic gold nanoparticles reduced by poly(ethyleneimine) (PEI@DGNPs) were modified on the carbon nanotube-nafion (CNTs-Nf) coated electrode through electrostatic adsorption, which was used not only as matrix for immobilization of thrombin binding aptamer I (TBA I) but also as enhancer to amplify the ECL signal because PEI is an efficient co-reactant of Ru complex. Target TB was sandwiched between pNAMA-Ru-HGNPs-TBA II and TBA I, resulting in the ECL signals relevant to the TB concentrations. Combining the novel pNAMA-Ru-HGNPs containing amount of Ru complex as the ECL signal probe and PEI@DGNPs as the enhancer for signal amplification, the sandwich ECL aptasensor was constructed for the detection of TB with a wide range of 1.0 fM to 10 pM and a low detection of 0.54 fM.
Collapse
Affiliation(s)
- Guo-Feng Gui
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; College of Chemical Engineering, Guizhou University of Engineering Science, Guizhou 551700, China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
127
|
|
128
|
Lee MS, Kim NW, Lee JE, Lim DW, Suh W, Kim HT, Park JW, Jeong JH. Micelle-templated dendritic gold nanoparticles for enhanced cellular delivery of siRNA. Macromol Res 2015. [DOI: 10.1007/s13233-015-3091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
129
|
Terekhin VV, Senchikhin IN, Dement’eva OV, Rudoy VM. Conjugates of gold nanoparticles and poly(ethylene glycol): Formation in hydrosol, direct transfer to organic medium, and stability of organosols. COLLOID JOURNAL 2015. [DOI: 10.1134/s1061933x15040183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
130
|
Cho TJ, Pettibone JM, Gorham JM, Nguyen TM, MacCuspie RI, Gigault J, Hackley VA. Unexpected Changes in Functionality and Surface Coverage for Au Nanoparticle PEI Conjugates: Implications for Stability and Efficacy in Biological Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7673-7683. [PMID: 26114747 DOI: 10.1021/acs.langmuir.5b01634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cationic polyethylenimine conjugated gold nanoparticles (AuNP-PEI) are a widely studied vector for drug delivery and an effective probe for interrogating NP-cell interactions. However, an inconsistent body of literature currently exists regarding the reproducibility of physicochemical properties, colloidal stability, and efficacy for these species. To address this gap, we systematically examined the preparation, stability, and formation mechanism of PEI conjugates produced from citrate-capped AuNPs. We considered the dependence on relative molar mass, Mr, backbone conformation, and material source. The conjugation mechanism of Au-PEI was probed using attenuated total reflectance FTIR and X-ray photoelectron spectroscopy, revealing distinct fates for citrate when interacting with different PEI species. The differences in residual citrate, PEI properties, and sample preparation resulted in distinct products with differentiated stability. Overall, branched PEI (25 kDa) conjugates exhibited the greatest colloidal stability in all media tested. By contrast, linear PEI (25 kDa) induced agglomeration. Colloidal stability of the products was also observed to correlate with displaced citrate, which supports a glaring knowledge gap that has emerged regarding the role of this commonly used carboxylate species as a "place holder" for conjugation with ligands of broad functionalities. We observed an unexpected and previously unreported conversion of amine functional groups to quaternary ammonium species for 10 kDa branched conjugates. Results suggest that the AuNP surface catalyzes this conversion. The product is known to manifest distinct processes and uptake in biological systems compared to amines and may lead to unintentional toxicological consequences or decreased efficacy as delivery vectors. Overall, comprehensive physicochemical characterization (tandem spectroscopy methods combined with physical measurements) of the conjugation process provides a methodology for elucidating the contributing factors of colloidal stability and chemical functionality that likely influence the previously reported variations in conjugate properties and biological response models.
Collapse
Affiliation(s)
- Tae Joon Cho
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - John M Pettibone
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Justin M Gorham
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Thao M Nguyen
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Robert I MacCuspie
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Julien Gigault
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vincent A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
131
|
Salazar-González JA, González-Ortega O, Rosales-Mendoza S. Gold nanoparticles and vaccine development. Expert Rev Vaccines 2015; 14:1197-211. [DOI: 10.1586/14760584.2015.1064772] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jorge Alberto Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México
| | - Omar González-Ortega
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México
| | | |
Collapse
|
132
|
Chu Z, Miu K, Lung P, Zhang S, Zhao S, Chang HC, Lin G, Li Q. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. Sci Rep 2015; 5:11661. [PMID: 26123532 PMCID: PMC4485068 DOI: 10.1038/srep11661] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.
Collapse
Affiliation(s)
- Zhiqin Chu
- 1] Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong [2] 3rd Institute of Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Kaikei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Pingsai Lung
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Silu Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Saisai Zhao
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Quan Li
- 1] Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong [2] The Chinese University of Hong Kong ShenZhen Research Institute, ShenZhen, China
| |
Collapse
|
133
|
Fateixa S, Nogueira HIS, Trindade T. Hybrid nanostructures for SERS: materials development and chemical detection. Phys Chem Chem Phys 2015; 17:21046-71. [PMID: 25960180 DOI: 10.1039/c5cp01032b] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review focuses on recent developments in hybrid and nanostructured substrates for SERS (surface-enhanced Raman scattering) studies. Thus substrates composed of at least two distinct types of materials, in which one is a SERS active metal, are considered here aiming at their use as platforms for chemical detection in a variety of contexts. Fundamental aspects related to the SERS effect and plasmonic behaviour of nanometals are briefly introduced. The materials described include polymer nanocomposites containing metal nanoparticles and coupled inorganic nanophases. Chemical approaches to tailor the morphological features of these substrates in order to get high SERS activity are reviewed. Finally, some perspectives for practical applications in the context of chemical detection of analytes using such hybrid platforms are presented.
Collapse
Affiliation(s)
- Sara Fateixa
- Department of Chemistry-CICECO University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | |
Collapse
|
134
|
Marimani MD, Ely A, Buff MCR, Bernhardt S, Engels JW, Scherman D, Escriou V, Arbuthnot P. Inhibition of replication of hepatitis B virus in transgenic mice following administration of hepatotropic lipoplexes containing guanidinopropyl-modified siRNAs. J Control Release 2015; 209:198-206. [PMID: 25937322 DOI: 10.1016/j.jconrel.2015.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022]
Abstract
Chronic infection with hepatitis B virus (HBV) occurs commonly and complications that arise from persistence of the virus are associated with high mortality. Available licensed drugs have modest curative efficacy and advancing new therapeutic strategies to eliminate the virus is therefore a priority. HBV is susceptible to inactivation by exogenous gene silencers that harness RNA interference (RNAi) and the approach has therapeutic potential. To advance RNAi-based treatment for HBV infection, use in vivo of hepatotropic lipoplexes containing siRNAs with guanidinopropyl (GP) modifications is reported here. Lipoplexes contained polyglutamate, which has previously been shown to facilitate formulation and improve efficiency of the non-viral vectors. GP moieties were included in a previously described anti-HBV siRNA that effectively targeted the conserved viral X sequence. Particles had physical properties that were suitable for use in vivo: average diameter was approximately 50-200 nm and surface charge (zeta potential) was +65 mV. Efficient hepatotropic delivery of labeled siRNA was observed following systemic intravenous injection of the particles into HBV transgenic mice. Good inhibition of markers of viral replication was observed without evidence of toxicity. Efficacy of the GP-modified siRNAs was significantly more durable and formulations made up with chemically modified siRNAs were less immunostimulatory. An RNAi-mediated mechanism was confirmed by demonstrating that HBV mRNA cleavage occurred in vivo at the intended target site. Collectively these data indicate that GP-modified siRNAs formulated in anionic polymer-containing lipoplexes are effective silencers of HBV replication in vivo and have therapeutic potential.
Collapse
Affiliation(s)
- Musa D Marimani
- Wits/SA MRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa
| | - Abdullah Ely
- Wits/SA MRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa
| | - Maximilian C R Buff
- Goethe-University, Institute of Organic Chemistry & Chemical Biology, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Stefan Bernhardt
- Goethe-University, Institute of Organic Chemistry & Chemical Biology, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Joachim W Engels
- Goethe-University, Institute of Organic Chemistry & Chemical Biology, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Daniel Scherman
- UTCBS, CNRS UMR8258, INSERM U1022, Université Paris Descartes, Chimie ParisTech, 75006 Paris, France
| | - Virginie Escriou
- UTCBS, CNRS UMR8258, INSERM U1022, Université Paris Descartes, Chimie ParisTech, 75006 Paris, France
| | - Patrick Arbuthnot
- Wits/SA MRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa.
| |
Collapse
|
135
|
Meneksedag-Erol D, Tang T, Uludağ H. Probing the Effect of miRNA on siRNA–PEI Polyplexes. J Phys Chem B 2015; 119:5475-86. [DOI: 10.1021/acs.jpcb.5b00415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deniz Meneksedag-Erol
- Department of Biomedical Engineering, Faculties of Medicine & Dentistry and Engineering, University of Alberta, Alberta, Canada
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Alberta, Canada
| | - Tian Tang
- Department of Biomedical Engineering, Faculties of Medicine & Dentistry and Engineering, University of Alberta, Alberta, Canada
- Department
of Mechanical Engineering, Faculty of Engineering, University of Alberta, Alberta, Canada
| | - Hasan Uludağ
- Department of Biomedical Engineering, Faculties of Medicine & Dentistry and Engineering, University of Alberta, Alberta, Canada
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Alberta, Canada
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| |
Collapse
|
136
|
Lin CM, Kao WC, Yeh CA, Chen HJ, Lin SZ, Hsieh HH, Sun WS, Chang CH, Hung HS. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells. NANOTECHNOLOGY 2015; 26:105101. [PMID: 25693888 DOI: 10.1088/0957-4484/26/10/105101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Benzo[a]pyrene (BaP), a component of cooking oil fumes (COF), promotes lung cancer cell proliferation and survival via the induction of inhibitor of apoptosis protein-2 (IAP-2) proteins. Thus knockdown of IAP-2 would be a promising way to battle against lung cancer caused by COF. Functionalized gold nanoparticle (AuNP) is an effective delivery system for bio-active materials. Here, biocompatible hyaluronic acid (HA) was fabricated into nanoparticles to increase the target specificity by binding to CD44-over-expressed cancer cells. IAP-2-specific small-interfering RNA (siRNAs) or fluorescein isothiocyanate (FITC) were then incorporated into AuNP-HA. Conjugation of IAP-2 siRNA into AuNPs-HA was verified by the UV-vis spectrometer and Fourier transform infrared spectrometer. Further studies showed that AuNP-HA/FITC were effectively taken up by A549 cells through CD44-mediated endocytosis. Incubation of BaP-challenged cells with AuNP-HA-IAP-2 siRNAs silenced the expression of IAP-2, decreased cell proliferation and triggered pronounced cell apoptosis by the decrease in Bcl-2 protein and the increase in Bax protein as well as the active form of caspases-3. The BaP-elicited cell migration and enzymatic activity of the secreted matrix metalloproteinase-2 were also substantially suppressed by treatment with AuNP-HA-IAP-2 siRNAs. These results indicated that IAP-2 siRNAs can be efficiently delivered into A549 cells by functionalized AuNP-HA to repress the IAP-2 expression and BaP-induced oncogenic events, suggesting the potential therapeutic application of IAP-2 siRNA or other siRNA-conjugated AuNP-HA composites to COF-induced lung cancer and other gene-caused diseases in the future.
Collapse
Affiliation(s)
- Chung-Ming Lin
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Kozytskiy AV, Raevskaya AE, Stroyuk OL, Kotenko IE, Skorik NA, Kuchmiy SY. Morphology, optical and catalytic properties of polyethyleneimine-stabilized Au nanoparticles. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2014.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
138
|
Chen Z, Zhang L, He Y, Shen Y, Li Y. Enhanced shRNA delivery and ABCG2 silencing by charge-reversible layered nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:952-962. [PMID: 25330768 DOI: 10.1002/smll.201401397] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/01/2014] [Indexed: 06/04/2023]
Abstract
Polycationic vectors have been used to deliver short hairpin RNAs (shRNAs) to knock-down genes for cancer therapies, but their inefficiency in lysosomal escape and shRNA release causes their low gene transcription efficiency. Herein, a three-layered polyethyleneimine (PEI)-coated gold nanocomplex interlaid with a pH-responsive charge-reversible chitosan-aconitic anhydride (CS-Aco) is constructed: a Au-PEI/CS-Aco/PEI/shRNA nanoparticle. The negatively charged CS-Aco hydrolyzes into positively charged CS in lysosomes, causing the nanocomposite to disassemble. The released Au-PEI nanoparticles efficiently rupture the lysosomes and thus release the PEI/shRNA polyplexes into cytoplasm, where they quickly disassociate because the PEI chains are short (1.2 kDa). As a consequence, the nanocomplexes display higher shRNA delivery efficiency than the 25 kDa PEI, and efficiently deliver shABCG2 to tumors and markedly silence ABCG2 expression, which sensitizes HepG2 cells to the drugs with minimal toxicity.
Collapse
Affiliation(s)
- Zhenzhen Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | | | | | | | | |
Collapse
|
139
|
Mohammadi M, Salmasi Z, Hashemi M, Mosaffa F, Abnous K, Ramezani M. Single-walled carbon nanotubes functionalized with aptamer and piperazine-polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int J Pharm 2015; 485:50-60. [PMID: 25712164 DOI: 10.1016/j.ijpharm.2015.02.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 12/23/2022]
Abstract
Epithelial cell adhesion molecule (EpCAM) is a glycosylated type 1 membrane protein which is frequently over expressed in most solid tumors and it has recently been identified as a cancer stem cell (CSC) marker. Specific targeting of CSCs using nano-carriers would enhance treatment efficacy of cancer. In this study, we used a RNA aptamer against EpCAM (EpDT3) attached physically to our newly synthesized non-viral vector, based on single-walled carbon nanotube (SWNT) conjugated to piperazine-polyethylenimine derivative. The DNA transfection efficiency and siRNA delivery activity of the synthesized vector was investigated against upregulated BCL9l, which has been associated with breast and colorectal cancers. The complexes of the vector-aptamer/siRNA could specifically induce apoptosis by more than 20% in MCF-7 cell line as a positive EpCAM than MDA-MB-231 cells which are EpCAM negative. The decrease of BCL9l protein level was observed with western blot analysis in MCF-7 cells indicating the targeted silencing activity of the complex.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Zahra Salmasi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran.
| |
Collapse
|
140
|
Zhou LS, Zhao GL, Liu Q, Jiang SC, Wang Y, Zhang DM. Silencing collapsin response mediator protein-2 reprograms macrophage phenotype and improves infarct healing in experimental myocardial infarction model. JOURNAL OF INFLAMMATION-LONDON 2015; 12:11. [PMID: 25685072 PMCID: PMC4328069 DOI: 10.1186/s12950-015-0053-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022]
Abstract
Background Delayed M1 toward M2 macrophage phenotype transition is considered one of the major causes for the impaired healing after myocardial infarction (MI). While searching for molecules that modulate M1 and M2 macrophage polarization, we identified collapsin response mediator protein-2 (CRMP2) as a novel molecule involved in macrophage polarization to M1. In this study, we evaluated the effect of silencing CRMP2 on macrophage polarization, inflammation and fibrosis post myocardial infarction. Methods CRMP2 expression was assessed with Western blotting or immunohistochemistry. Macrophage phenotypes were measured with flow cytometry, quantitative real-time PCR (qPCR), Western blotting or immunohistochemistry. CRMP2 siRNA was delivered into the macrophages infiltrated in the wound of ApoE−/− mice through lipidoid nanoparticle, and fibrosis, leukocyte infiltration and inflammation parameters were measured with qPCR. Infarct size was measured with Masson’s trichrome staining. Echocardiography was performed to assess ventricular systolic dimension, left ventricular diastolic dimension, anterior wall thickness and posterior wall thickness. Student’s t-test (for 2 groups) and ANOVA (for > 2 groups) were used for statistical analyses. Results CRMP2 was expressed in a higher level in M1 macrophages than M2 subsets, and CRMP2 RNA interference (RNAi) resulted in a switch of bone marrow-derived macrophages from M1 to M2 phenotype. High level of CRMP2 was also observed in the macrophages infiltrated in the infarct area 3 days post MI in both wildtype (WT) and ApoE−/− mice, and the expression of CRMP2 retained in the infiltrated macrophages of ApoE−/− mice but not in that of WT mice 10 days after MI. Nanoparticle-mediated delivery of CRMP2 siRNA to ApoE−/− mice with MI resulted in dramatic switch of wound macrophages from M1 to M2 phenotype, marked decrease in inflammation and fibrosis, and significant attenuation of post-MI heart failure and mortality. Conclusion CRMP2 is highly expressed in M1 macrophages and silencing CRMP2 reprograms macrophage phenotype and improves infarct healing in atherosclerotic mice.
Collapse
Affiliation(s)
- Long-Shu Zhou
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, 750004 People's Republic of China
| | - Guo-Long Zhao
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, 750004 People's Republic of China
| | - Qiang Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, 750004 People's Republic of China
| | - Shu-Cai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, 750004 People's Republic of China
| | - Yun Wang
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, 750004 People's Republic of China
| | - Dong-Mei Zhang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, 750004 People's Republic of China
| |
Collapse
|
141
|
Labala S, Mandapalli PK, Kurumaddali A, Venuganti VVK. Layer-by-Layer Polymer Coated Gold Nanoparticles for Topical Delivery of Imatinib Mesylate To Treat Melanoma. Mol Pharm 2015; 12:878-88. [DOI: 10.1021/mp5007163] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Suman Labala
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Praveen Kumar Mandapalli
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Abhinav Kurumaddali
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| |
Collapse
|
142
|
Liang H, Huang Q, Zhou B, He L, Lin L, An Y, Li Y, Liu S, Chen Y, Li B. Self-assembled zein–sodium carboxymethyl cellulose nanoparticles as an effective drug carrier and transporter. J Mater Chem B 2015; 3:3242-3253. [DOI: 10.1039/c4tb01920b] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, biodegradable nanoparticles (NPs) were assembled with sodium carboxymethyl cellulose (CMC) and zein to produce zein–CMC NPs.
Collapse
|
143
|
Wang Y, Yang C, Hu R, Toh HT, Liu X, Lin G, Yin F, Yoon HS, Yong KT. Assembling Mn:ZnSe quantum dots-siRNA nanoplexes for gene silencing in tumor cells. Biomater Sci 2015. [DOI: 10.1039/c4bm00306c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work, we demonstrate the use of manganese doped zinc selenide QDs (Mn:ZnSe d-dots) for gene delivery in vitro.
Collapse
Affiliation(s)
- Yucheng Wang
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Chengbin Yang
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Rui Hu
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Hui Ting Toh
- Division of Structural Biology & Biochemistry
- School of Biological Sciences
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Xin Liu
- Department of Chemical and Biological Engineering
- University at Buffalo (SUNY)
- Buffalo
- USA
| | - Guimiao Lin
- The Engineering Lab of Synthetic Biology and the Key Lab of Biomedical Engineering
- School of Medicine
- Shenzhen University
- Shenzhen
- China
| | - Feng Yin
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Ho Sup Yoon
- Division of Structural Biology & Biochemistry
- School of Biological Sciences
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
144
|
Mudedla SK, Azhagiya Singam ER, Balamurugan K, Subramanian V. Influence of the size and charge of gold nanoclusters on complexation with siRNA: a molecular dynamics simulation study. Phys Chem Chem Phys 2015; 17:30307-17. [DOI: 10.1039/c5cp05034k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The complexation of siRNA with positively charged gold nanoclusters has been studied using classical molecular dynamics simulations.
Collapse
Affiliation(s)
- Sathish Kumar Mudedla
- Chemical Laboratory
- CSIR-Central Leather Research Institute
- Adyar
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | | | | - Venkatesan Subramanian
- Chemical Laboratory
- CSIR-Central Leather Research Institute
- Adyar
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
145
|
Guo J, Armstrong MJ, O'Driscoll CM, Holmes JD, Rahme K. Positively charged, surfactant-free gold nanoparticles for nucleic acid delivery. RSC Adv 2015. [DOI: 10.1039/c4ra16294c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of positively charged, surfactant-free, not cytotoxic 2–200 nm gold nanoparticles in water by seeding growth method; a powerful candidate for nucleic acid delivery application.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery group
- School of Pharmacy
- University College Cork
- Cork
- Ireland
| | - Mark J. Armstrong
- Materials Chemistry and Analysis Group
- Department of Chemistry and the Tyndall National Institute
- University College Cork
- Cork
- Ireland
| | | | - Justin D. Holmes
- Materials Chemistry and Analysis Group
- Department of Chemistry and the Tyndall National Institute
- University College Cork
- Cork
- Ireland
| | - Kamil Rahme
- Materials Chemistry and Analysis Group
- Department of Chemistry and the Tyndall National Institute
- University College Cork
- Cork
- Ireland
| |
Collapse
|
146
|
Niikura K, Kobayashi K, Takeuchi C, Fujitani N, Takahara S, Ninomiya T, Hagiwara K, Mitomo H, Ito Y, Osada Y, Ijiro K. Amphiphilic gold nanoparticles displaying flexible bifurcated ligands as a carrier for siRNA delivery into the cell cytosol. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22146-54. [PMID: 25466488 DOI: 10.1021/am505577j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nanoparticle-based delivery of siRNA with a noncationic outermost surface at a low particle concentration is greatly desired. We newly synthesized a bifurcated ligand (BL) possessing hydrophobic and hydrophilic arms as a surface ligand for gold nanoparticles (AuNPs) to allow siRNA delivery. The concept underlying the design of this ligand is that amphiphilic property should allow AuNPs to permeate the cell cytosol thorough the endosomal membrane. BLs and quaternary cationic ligands were codisplayed on 40 nm AuNPs, which were subsequently coated with siRNA via electrostatic interaction. The number of siRNAs immobilized on a single nanoparticle was 26, and the conjugate showed a negative zeta potential due to siRNAs on the outermost surface of the AuNPs. Apparent gene silencing of luciferase expression in HeLa cells was achieved at an AuNP concentration as low as 60 pM. Almost no gene silencing was observed for AuNPs not displaying BLs. To reveal the effect of the BL, we compared the number of AuNPs internalized into HeLa cells and the localization in the cytosol between AuNPs displaying and those not displaying BLs. These analyses indicated that the role of BLs is not only the simple promotion of cellular uptake but also involves the enhancement of AuNPs permeation into the cytosol from the endosomes, leading to effective gene silencing.
Collapse
Affiliation(s)
- Kenichi Niikura
- Research Institute for Electronic Science (RIES), Hokkaido University , Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Lin G, Zhu W, Yang L, Wu J, Lin B, Xu Y, Cheng Z, Xia C, Gong Q, Song B, Ai H. Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Biomaterials 2014; 35:9495-9507. [PMID: 25155545 DOI: 10.1016/j.biomaterials.2014.07.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/23/2014] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) is one of the major barriers in cancer chemotherapy. P-glycoprotein (P-gp), a cell membrane protein in MDR, also a member of ATP-Binding cassette (ABC) transporter, can increase the efflux of various hydrophobic anticancer drugs. In this study, polycation/iron oxide nanocomposites, were chosen as small interfering RNA (siRNA) carriers to overcome MDR through silencing of the target messenger RNA and subsequently reducing the expression of P-gp. Amphiphilic low molecular weight polyethylenimine was designed with different alkylation groups and alkylation degree to form various nanocarriers with clustered iron oxide nanoparticles inside and carrying siRNA through electrostatic interaction. A few optimized formulations can form stable nanocomplexes with siRNA and protect them from degradation during delivery, and lead to effective silencing effect that comparable to a commercial golden standard transfection agent, Lipofectamine 2000. Human breast cancer MCF-7/ADR cells can be vulnerable to doxorubicin treatment after the strong downregulation of P-gp through siRNA tranfection. Once transfected with these nanocomplexes, the cells displayed significant contrast enhancement against non-transfected cells under a 3T clinical MRI scanner. These nanocomposites also demonstrated their downregulation efficacy of P-gp in a MCF-7/ADR orthotopic tumor model in mice.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Survival
- Down-Regulation
- Doxorubicin/pharmacology
- Drug Delivery Systems
- Drug Resistance, Neoplasm
- Female
- Gene Silencing
- Humans
- MCF-7 Cells
- Magnetic Resonance Imaging
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Weight
- Nanostructures/chemistry
- Polyethyleneimine/chemistry
- Polyethyleneimine/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Transfection
Collapse
Affiliation(s)
- Gan Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Wencheng Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jun Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bingbing Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ye Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhuzhong Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
148
|
Hong CA, Nam YS. Functional nanostructures for effective delivery of small interfering RNA therapeutics. Am J Cancer Res 2014; 4:1211-32. [PMID: 25285170 PMCID: PMC4183999 DOI: 10.7150/thno.8491] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/23/2014] [Indexed: 02/04/2023] Open
Abstract
Small interfering RNA (siRNA) has proved to be a powerful tool for target-specific gene silencing via RNA interference (RNAi). Its ability to control targeted gene expression gives new hope to gene therapy as a treatment for cancers and genetic diseases. However, siRNA shows poor pharmacological properties, such as low serum stability, off-targeting, and innate immune responses, which present a significant challenge for clinical applications. In addition, siRNA cannot cross the cell membrane for RNAi activity because of its anionic property and stiff structure. Therefore, the development of a safe, stable, and efficient system for the delivery of siRNA therapeutics into the cytoplasm of targeted cells is crucial. Several nanoparticle platforms for siRNA delivery have been developed to overcome the major hurdles facing the therapeutic uses of siRNA. This review covers a broad spectrum of non-viral siRNA delivery systems developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and discusses their characteristics and opportunities for clinical applications of therapeutic siRNA.
Collapse
|
149
|
Ramos J, Potta T, Scheideler O, Rege K. Parallel synthesis of poly(amino ether)-templated plasmonic nanoparticles for transgene delivery. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14861-14873. [PMID: 25084138 PMCID: PMC4160262 DOI: 10.1021/am5017073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/01/2014] [Indexed: 06/03/2023]
Abstract
Plasmonic nanoparticles have been increasingly investigated for numerous applications in medicine, sensing, and catalysis. In particular, gold nanoparticles have been investigated for separations, sensing, drug/nucleic acid delivery, and bioimaging. In addition, silver nanoparticles demonstrate antibacterial activity, resulting in potential application in treatments against microbial infections, burns, diabetic skin ulcers, and medical devices. Here, we describe the facile, parallel synthesis of both gold and silver nanoparticles using a small set of poly(amino ethers), or PAEs, derived from linear polyamines, under ambient conditions and in absence of additional reagents. The kinetics of nanoparticle formation were dependent on PAE concentration and chemical composition. In addition, yields were significantly greater in case of PAEs when compared to 25 kDa poly(ethylene imine), which was used as a standard catonic polymer. Ultraviolet radiation enhanced the kinetics and the yield of both gold and silver nanoparticles, likely by means of a coreduction effect. PAE-templated gold nanoparticles demonstrated the ability to deliver plasmid DNA, resulting in transgene expression, in 22Rv1 human prostate cancer and MB49 murine bladder cancer cell lines. Taken together, our results indicate that chemically diverse poly(amino ethers) can be employed for rapidly templating the formation of metal nanoparticles under ambient conditions. The simplicity of synthesis and chemical diversity make PAE-templated nanoparticles useful tools for several applications in biotechnology, including nucleic acid delivery.
Collapse
Affiliation(s)
- James Ramos
- Biomedical
Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-6106, United States
| | - Thrimoorthy Potta
- Chemical
Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106, United States
| | - Olivia Scheideler
- Department
of Biological Systems Engineering, University
of Nebraska—Lincoln, Lincoln, Nebraska 68583-0726, United States
| | - Kaushal Rege
- Chemical
Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106, United States
| |
Collapse
|
150
|
Ku SH, Kim K, Choi K, Kim SH, Kwon IC. Tumor-targeting multifunctional nanoparticles for siRNA delivery: recent advances in cancer therapy. Adv Healthc Mater 2014; 3:1182-93. [PMID: 24577795 DOI: 10.1002/adhm.201300607] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/20/2014] [Indexed: 11/06/2022]
Abstract
RNA interference (RNAi) is a naturally occurring regulatory process that controls posttranscriptional gene expression. Small interfering RNA (siRNA), a common form of RNAi-based therapeutics, offers new opportunities for cancer therapy via silencing specific genes, which are associated to cancer progress. However, clinical applications of RNAi-based therapy are still limited due to the easy degradation of siRNA during body circulation and the difficulty in the delivery of siRNA to desired tissues and cells. Thus, there have been many efforts to develop efficient siRNA delivery systems, which protect siRNA from serum nucleases and deliver siRNA to the intracellular region of target cells. Here, the recent advances in siRNA nanocarriers, which possess tumor-targeting ability are reviewed; various nanoparticle systems and their antitumor effects are summarized. The development of multifunctional nanocarriers for theranostics or combinatorial therapy is also discussed.
Collapse
Affiliation(s)
- Sook Hee Ku
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Kuiwon Choi
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| |
Collapse
|