101
|
Yin P, Han X, Yu L, Zhou H, Yang J, Chen Y, Zhang T, Wan H. Pharmacokinetic analysis for simultaneous quantification of Saikosaponin A- paeoniflorin in normal and poststroke depression rats: A comparative study. J Pharm Biomed Anal 2023; 233:115485. [PMID: 37267872 DOI: 10.1016/j.jpba.2023.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Bupleurum and Paeonia are common compatibilities for the treatment of depression, most of which are used in classical prescriptions. The main active ingredients saikosaponin A (SSA) and paeoniflorin (PF) have significant therapeutic effects on poststroke depression (PSD). However, the pharmacokinetic (PK) behavior based on the combination of the two components has not been reported in rats. The aim of this study was to compare the pharmacokinetic characteristics of combined administration of SSA and PF in normal and PSD rats. Plasma samples were collected after SSA and PF were injected into the rat tail vein, and plasma pretreatments were analyzed by HPLC. Based on the concentration levels of SSA and PF in plasma, Drug and Statistics 3.2.6 (DAS 3.2.6) software was used to establish the blood drug concentration model. PK data showed that compared with the normal rats, the values of related parameters t1/2α, AUC(0-t), AUC(0-∞) were decreased in diseased rats, while the values of CL1 was increased. These findings suggest that PSD can significantly affect the PK parameters of SSA-PF. This study established a PK model to explore the time-effect relationship, in order to provide experimental and theoretical support for clinical application.
Collapse
Affiliation(s)
- Ping Yin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Han
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
102
|
Guo YX, Xia CY, Yan Y, Han Y, Shi R, He J, Wang YM, Wang ZX, Zhang WK, Xu JK. Loganin improves chronic unpredictable mild stress-induced depressive-like behaviors and neurochemical dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116288. [PMID: 36809822 DOI: 10.1016/j.jep.2023.116288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis Sieb. et Zucc., is a valuable herb commonly used in Chinese medicine clinics. Loganin is a major iridoid glycoside obtained from the traditional Chinese herb Corni Fructus. Loganin, which has been shown to improve depression-like behavior in mice exposed to acute stress, is probably a potential antidepressant candidate. AIM OF THE STUDY Loganin was evaluated for its effect on chronic unpredictable mild stress (CUMS) induced depressive-like mice, and its action mechanisms were explored. MATERIALS AND METHODS ICR mice were subjected to the CUMS stimulation method to induce depression. The therapeutic effect of loganin on depressive-like behavior was evaluated by a series of behavioral tests such as sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST) and open-field test (OFT). In addition, the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using ELISA. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). The levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were measured using western blot analysis. RESULTS The results showed that CUMS induced depressive-like behaviors in mice, as indicated by behavioral tests. Administration of loganin increased the sucrose preference in SPT, as well as decreased the immobility time in FST and TST. Loganin could also improve food intake, and increased crossing times in the OFT. In mechanism, loganin restored the secretion of monoamine neurotransmitters, ACTH and CORT to normal levels. In addition, loganin elevated the expression of BDNF in the hippocampus. In conclusion, loganin exerts antidepressant-like effects in CUMS model mice through modulating monoamine neurotransmitters, ACTH, CORT and BDNF. CONCLUSION Loganin effectively ameliorated depressive-like symptoms in CUMS-exposed mice by increasing 5-hydroxytryptamine (5-HT) and dopamine (DA) levels, alleviating hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and increasing BDNF expression. In conclusion, the findings of the current study extensive evidence for the application of loganin in stress-associated disorders, specifically targeting depression.
Collapse
Affiliation(s)
- Yu-Xuan Guo
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yan Han
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Rui Shi
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu-Ming Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Ze-Xing Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
103
|
Ramírez-Rodríguez GB, Meneses San-Juan D, Rico-Becerra AI, González-Olvera JJ, Reyes-Galindo V. Repetitive transcranial magnetic stimulation and fluoxetine reverse depressive-like behavior but with differential effects on Olig2-positive cells in chronically stressed mice. Neuropharmacology 2023; 236:109567. [PMID: 37209812 DOI: 10.1016/j.neuropharm.2023.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/22/2023]
Abstract
Depression is a mood disorder coursing with several behavioral, cellular, and neurochemical alterations. The negative impact of chronic stress may precipitate this neuropsychiatric disorder. Interestingly, downregulation of oligodendrocyte-related genes, abnormal myelin structure, and reduced numbers and density of oligodendrocytes in the limbic system have been identified in patients diagnosed with depression, but also in rodents exposed to chronic mild stress (CMS). Several reports have emphasized the importance of pharmacological or stimulation-related strategies in influencing oligodendrocytes in the hippocampal neurogenic niche. Repetitive transcranial magnetic stimulation (rTMS) has gained attention as an intervention to revert depression. Here, we hypothesized that 5 Hz (Hz) of rTMS or Fluoxetine (Flx) would revert depressive-like behaviors by influencing oligodendrocytes and revert neurogenic alterations caused by CMS in female Swiss Webster mice. Our results showed that 5 Hz rTMS or Flx revert depressive-like behavior. Only rTMS influenced oligodendrocytes by increasing the number of Olig2-positive cells in the hilus of the dentate gyrus and the prefrontal cortex. However, both strategies exerted effects on some events of the hippocampal neurogenic processes, such as cell proliferation (Ki67-positive cells), survival (CldU-positive cells), and intermediate stages (doublecortin-positive cells) along the dorsal-ventral axis of this region. Interestingly, the combination of rTMS-Flx exerted antidepressant-like effects, but the increased number of Olig2-positive cells observed in mice treated only with rTMS was canceled. However, rTMS-Flx exerted a synergistic effect by increasing the number of Ki67-positive cells. It also increased the number of CldU- and doublecortin-positive cells in the dentate gyrus. Our results demonstrate that 5 Hz rTMS has beneficial effects, as it reverted depressive-like behavior by increasing the number of Olig2-positive cells and reverting the decrement in hippocampal neurogenesis in CMS-exposed mice. Nevertheless, the effects of rTMS on other glial cells require further investigation.
Collapse
Affiliation(s)
- Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico.
| | - David Meneses San-Juan
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico
| | - Allan Irasek Rico-Becerra
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico; Licenciatura en Neurociencias, Facultad de Medicina. Universidad Nacional Autónoma de México. Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria, Alcaldía Coyoacán, C.P, 04510, Ciudad de México, Mexico
| | - Jorge Julio González-Olvera
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101. Alcaldía Tlalpan, C.P, 14370, Ciudad de México, Mexico
| | - Verónica Reyes-Galindo
- Instituto de Ecología. Universidad Nacional Autónoma de México. Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria. Alcaldía Coyoacán, C.P, 04510, Ciudad de México, Mexico
| |
Collapse
|
104
|
Cheng S, Zhu Z, Li H, Wang W, Jiang Z, Pan F, Liu D, Ho RCM, Ho CSH. Rifaximin ameliorates depression-like behaviour in chronic unpredictable mild stress rats by regulating intestinal microbiota and hippocampal tryptophan metabolism. J Affect Disord 2023; 329:30-41. [PMID: 36842645 DOI: 10.1016/j.jad.2023.02.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Chronic unpredictable mild stress (CUMS) can induce depressive behaviours and alter the composition of the gut microbiome. Although modulating gut microbiota can improve depression-like behaviour in rats, the mechanism of action is unclear. Additionally, gut microbiota can affect brain function through the neuroendocrine pathway. This pathway may function by regulating the secretion of neurotransmitters such as tryptophan (TRP). Metabolites of TRP, such as 5-hydroxytryptamine (5-HT) and kynurenine (KYN), are related to the pathophysiological process of depression. Indoleamine-2, 3-dioxygenase-1 (IDO1) and Tryptophan hydroxylase 2 (TPH2) are the key rate-limiting enzymes in TRP metabolism and play an important role in KYN and 5-HT metabolism. METHODS Rats were subjected to four weeks of CUMS and given rifaximin150 mg/kg by oral gavage daily. After modelling, we investigated the rat's behaviours, composition of the faecal microbiome, neurotransmitter metabolism and key metabolic enzymes of the TRP pathway in the hippocampus (HIP). RESULTS Rifaximin administration improved depressive behaviour in rats, corrected intestinal microbiota disorders and HIP TRP metabolism and regulated the expression of IDO1 and TPH2 in the HIP. CONCLUSIONS Rifaximin improves depression-like behaviour in CUMS rats by influencing the gut microbiota and tryptophan metabolism.
Collapse
Affiliation(s)
- Shuyue Cheng
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Haonan Li
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhijun Jiang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| | - Roger C M Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Cyrus S H Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
105
|
Chronic oral ketamine prevents anhedonia and alters neuronal activation in the lateral habenula and nucleus accumbens in rats under chronic unpredictable mild stress. Neuropharmacology 2023; 228:109468. [PMID: 36813161 DOI: 10.1016/j.neuropharm.2023.109468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Acute injections of ketamine lead to rapid but transient antidepressant effects. Chronic oral treatment at low doses, a promising non-invasive alternative, may prolong this therapeutic effect. Here, we examine the antidepressant effects of chronic oral ketamine in rats under chronic unpredictable mild stress (CUMS), and reveal their neuronal correlates. Male Wistar rats were divided into control, ketamine, CUMS, and CUMS-ketamine groups. The CUMS protocol was applied to the latter two groups for 9 weeks, and ketamine (0.013 mg/ml) was provided ad libitum to the ketamine and CUMS-ketamine groups for 5 weeks. The sucrose consumption test, forced swim test, open field test, elevated plus maze, and Morris water maze were respectively used to assess anhedonia, behavioral despair, general locomotor activity, anxiety-like behavior and spatial reference memory. CUMS caused a reduction of sucrose consumption and impaired spatial memory, accompanied by increased neuronal activation in the lateral habenula (LHb) and paraventricular thalamic nucleus (PVT). Oral ketamine prevented behavioral despair and CUMS-induced anhedonia. Reward-triggered c-Fos immunoreactivity was decreased in the LHb and increased in the nucleus accumbens shell (NAcSh) in the CUMS-ketamine group compared to the CUMS group. Ketamine did not produce a differential effect in the OFT, EPM and MWM. These results show that chronic oral ketamine at low doses prevents anhedonia without impairing spatial reference memory. The observed neuronal activation changes in the LHb and NAcSh may be involved in the preventive effects of ketamine on anhedonia. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
|
106
|
Verharen JPH, de Jong JW, Zhu Y, Lammel S. A computational analysis of mouse behavior in the sucrose preference test. Nat Commun 2023; 14:2419. [PMID: 37105954 PMCID: PMC10140068 DOI: 10.1038/s41467-023-38028-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The sucrose preference test (SPT) measures the relative preference of sucrose over water to assess hedonic behaviors in rodents. Yet, it remains uncertain to what extent the SPT reflects other behavioral components, such as learning, memory, motivation, and choice. Here, we conducted an experimental and computational decomposition of mouse behavior in the SPT and discovered previously unrecognized behavioral subcomponents associated with changes in sucrose preference. We show that acute and chronic stress have sex-dependent effects on sucrose preference, but anhedonia was observed only in response to chronic stress in male mice. Additionally, reduced sucrose preference induced by optogenetics is not always indicative of anhedonia but can also reflect learning deficits. Even small variations in experimental conditions influence behavior, task outcome and interpretation. Thus, an ostensibly simple behavioral task can entail high levels of complexity, demonstrating the need for careful dissection of behavior into its subcomponents when studying the underlying neurobiology.
Collapse
Affiliation(s)
- Jeroen P H Verharen
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Yichen Zhu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
107
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
108
|
Chowdhury A, Rao BSS, Laxmi TR. Risky Decision-taking Task: a novel paradigm to assess the risk-taking behaviour in rats predisposed to early-life stress. J Neurosci Methods 2023; 392:109864. [PMID: 37080434 DOI: 10.1016/j.jneumeth.2023.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
One of the characteristic features of adolescence is risk-taking behavioural traits. Uncontrolled risk-taking without proper assessment may have harmful impact on mental health later in life. Therefore, it is essential to identify it early for the preventable health problems. In the present study, we have designed a novel paradigm, viz. Risky Decision-taking Task (RDTT), to evaluate the spontaneous risk-taking behavioural repertoire in adolescent rodents. The task was designed based on both risk and cognitive factors. To validate and compare the risk-taking tendency, we have used early maternal separation and isolation (MS) stress model, as it is known to increase anxiety and curiosity-like behaviour at adolescence. We have used Sprague-Dawley rats of both sexes. Rats were exposed to MS stress for 10 days daily for six hours during stress hyporesponsive period (SHRP) from postnatal day 4 to 13. These rats were subjected to RDTT during adolescence. This task is a reward-based task where the latency to collect reward in the presence or absence of a risk factor is assessed. It consists of habituation, training to find the location of small and large rewards, reward preference for small and large reward and testing period under risky situation. Rats were trained individually to retrieve the valuation-based rewards under the risky, but innate aversive environments. The results from RDTT showed that as compared to controls, MS rats from both sexes showed reduced latency to collect large reward in the presence of a risk element and a reduced risk-index which is indicative of a higher risk-taking tendency in these rats. In addition, MS rats showed a trend towards anxiety-like behaviour as compared to controls in the Light-Dark Test. These results together show decreased risk latency for the large reward and reduced risk assessment in MS rats which is suggestive of more risk-taking tendency in these rats. Thus, we propose that RDTT paradigm can be used to evaluate the spontaneous risk-taking behavioural repertoire based on innate, spontaneous aversion and cognitive factors in rats.
Collapse
Affiliation(s)
- Abanti Chowdhury
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru - 560 029
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru - 560 029
| | - T R Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru - 560 029.
| |
Collapse
|
109
|
Creutzberg KC, Begni V, Marchisella F, Papp M, Riva MA. Early effects of lurasidone treatment in a chronic mild stress model in male rats. Psychopharmacology (Berl) 2023; 240:1001-1010. [PMID: 36820870 PMCID: PMC10006266 DOI: 10.1007/s00213-023-06343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
RATIONALE Stress represents a major contributor to the development of mental illness. Accordingly, exposure of adult rats to chronic stress represents a valuable tool to investigate the ability of a pharmacological intervention to counteract the adverse effects produced by stress exposure. OBJECTIVES The aim of this study was to perform a time course analysis of the treatment with the antipsychotic drug lurasidone in normalizing the anhedonic phenotype in the chronic mild stress (CMS) model in order to identify early mechanisms that may contribute to its therapeutic activity. METHODS Male Wistar rats were exposed to CMS or left undisturbed for 7 weeks. After two weeks of stress, both controls and CMS rats were randomly divided into two subgroups that received vehicle or lurasidone for five weeks. Weekly measures of sucrose intake were recorded to evaluate anhedonic behavior, and animals were sacrificed at different weeks of treatment for molecular analyses. RESULTS We found that CMS-induced anhedonia was progressively improved by lurasidone treatment. Interestingly, after two weeks of lurasidone treatment, 50% of the animals showed a full recovery of the phenotype, which was associated with increased activation of the prefrontal and recruitment of parvalbumin-positive cells that may lead to a restoration of excitatory/inhibitory balance. CONCLUSION These results suggest that the capacity of lurasidone to normalize anhedonia at an early stage of treatment may depend on its ability to modulate the function of the prefrontal cortex.
Collapse
Affiliation(s)
- Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Francesca Marchisella
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125, Brescia, Italy.
| |
Collapse
|
110
|
Dezsi G, Ozturk E, Harris G, Paul C, O'Brien TJ, Jones NC. Metyrapone abolishes spike-wave discharge seizures in genetic absence epilepsy rats from Strasbourg by reducing stress hormones. Epilepsia 2023. [PMID: 36916834 DOI: 10.1111/epi.17584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE Stress is one of the most commonly reported triggers for seizures in patients with epilepsy, although the mechanisms that mediate this effect are not established. The clinical evidence supporting this is derived from patients' subjective experience of stress, and how this influences their own seizures. Animal models can be used to explore this phenomenon in controlled environments, free from subjective bias. Here, we used genetic absence epilepsy rats from Strasbourg (GAERS), a genetic rat model of absence epilepsy, to explore the influence of stress and stress hormones on spontaneous seizures. METHODS Adult male GAERS (n = 38) and nonepileptic control (NEC) rats (n = 4) were used. First, rats were subjected to 30-min restraint stress to assess hypothalamic-pituitary-adrenal axis function. Next, we assessed the effects of 30-min noise stress, and cage tilt stress, on spike-wave discharge seizures in GAERS. We then performed pharmacological experiments to assess the direct effects of stress hormones on seizures, including corticosterone, metyrapone, and deoxycorticosterone. RESULTS GAERS exhibited elevated baseline corticosterone levels, compared to NEC rats. Noise stress and cage tilt stress significantly enhanced seizure incidence (p < .05), but only during stress periods. Exogenous corticosterone administration also significantly increased seizure occurrence (p < .05). Metyrapone, an inhibitor of corticosterone synthesis, completely abolished seizures in GAERS, and seizures remained suppressed for >2 h. However, deoxycorticosterone, the precursor of corticosterone, increased seizures. SIGNIFICANCE These results suggest that GAERS exhibit elevations in stress hormones, and this may contribute to seizures. Inhibiting corticosterone synthesis with metyrapone prevents seizures in GAERS, and shows potential for repurposing this drug as a future antiseizure medication.
Collapse
Affiliation(s)
- Gabi Dezsi
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ezgi Ozturk
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Georgia Harris
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Cornelius Paul
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
111
|
Isingrini E, Guinaudie C, Perret L, Guma E, Gorgievski V, Blum ID, Colby-Milley J, Bairachnaya M, Mella S, Adamantidis A, Storch KF, Giros B. Behavioral and Transcriptomic Changes Following Brain-Specific Loss of Noradrenergic Transmission. Biomolecules 2023; 13:biom13030511. [PMID: 36979445 PMCID: PMC10046559 DOI: 10.3390/biom13030511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Noradrenaline (NE) plays an integral role in shaping behavioral outcomes including anxiety/depression, fear, learning and memory, attention and shifting behavior, sleep-wake state, pain, and addiction. However, it is unclear whether dysregulation of NE release is a cause or a consequence of maladaptive orientations of these behaviors, many of which associated with psychiatric disorders. To address this question, we used a unique genetic model in which the brain-specific vesicular monoamine transporter-2 (VMAT2) gene expression was removed in NE-positive neurons disabling NE release in the entire brain. We engineered VMAT2 gene splicing and NE depletion by crossing floxed VMAT2 mice with mice expressing the Cre-recombinase under the dopamine β-hydroxylase (DBH) gene promotor. In this study, we performed a comprehensive behavioral and transcriptomic characterization of the VMAT2DBHcre KO mice to evaluate the role of central NE in behavioral modulations. We demonstrated that NE depletion induces anxiolytic and antidepressant-like effects, improves contextual fear memory, alters shifting behavior, decreases the locomotor response to amphetamine, and induces deeper sleep during the non-rapid eye movement (NREM) phase. In contrast, NE depletion did not affect spatial learning and memory, working memory, response to cocaine, and the architecture of the sleep-wake cycle. Finally, we used this model to identify genes that could be up- or down-regulated in the absence of NE release. We found an up-regulation of the synaptic vesicle glycoprotein 2c (SV2c) gene expression in several brain regions, including the locus coeruleus (LC), and were able to validate this up-regulation as a marker of vulnerability to chronic social defeat. The NE system is a complex and challenging system involved in many behavioral orientations given it brain wide distribution. In our study, we unraveled specific role of NE neurotransmission in multiple behavior and link it to molecular underpinning, opening future direction to understand NE role in health and disease.
Collapse
Affiliation(s)
- Elsa Isingrini
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, INCC UMR 8002, CNRS, F-75006 Paris, France
| | - Chloé Guinaudie
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Léa Perret
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Elisa Guma
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Victor Gorgievski
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Ian D. Blum
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Jessica Colby-Milley
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Maryia Bairachnaya
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Sébastien Mella
- Cytometry and Biomarkers Platform, Unit of Technology and Service, Institut Pasteur, Université de Paris, F-75015 Paris, France
- Bioinformatics and Biostatistics Hub Platform, Institut Pasteur, Université de Paris, F-75015 Paris, France
| | - Antoine Adamantidis
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Kai-Florian Storch
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, INCC UMR 8002, CNRS, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
112
|
Pang F, Yang Y, Huang S, Yang Z, Zhu Z, Liao D, Guo X, Zhou M, Li Y, Tang C. Electroacupuncture Alleviates Depressive-like Behavior by Modulating the Expression of P2X7/NLRP3/IL-1β of Prefrontal Cortex and Liver in Rats Exposed to Chronic Unpredictable Mild Stress. Brain Sci 2023; 13:brainsci13030436. [PMID: 36979246 PMCID: PMC10046261 DOI: 10.3390/brainsci13030436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Depression is a complex clinical disorder associated with poor outcomes. Electroacupuncture (EA) has been demonstrated to have an important role in both clinical and pre-clinical depression investigations. Evidence has suggested that the P2X7 receptor (P2X7R), NLRP3, and IL-1β play an important role in depressive disorder. Our study is aimed at exploring the role of EA in alleviating depression-like behaviors in rats. We therefore investigated the effects of EA on the prefrontal cortex and liver of rats subjected to chronic unpredictable mild stress (CUMS) through behavior tests, transmission electron microscopy, Nissl staining, HE staining, immunohistochemistry and Western blotting. Five weeks after exposure to CUMS, Sprague-Dawley (SD) rats showed depression-like behavior. Three weeks after treatment with brilliant blue G (BBG) or EA, depressive symptoms were significantly improved. Liver cells and microglia showed regular morphology and orderly arrangement in the BBG and EA groups compared with the CUMS group. Here we show that EA downregulated P2X7R/NLRP3/IL-1β expression and relieved depression-like behavior. In summary, our findings demonstrated the efficacy of EA in alleviating depression-like behaviors induced by CUMS in rats. This suggests that EA may serve as an adjunctive therapy in clinical practice, and that P2X7R may be a promising target for EA intervention on the liver–brain axis in treatment of depression.
Collapse
|
113
|
Kumar E N, Marathe PA, Kamat SK, Havaldar H, Eldhose M, Mall P. Experimental evaluation of hypnotic and antidepressant effect of pine needles of Cedrusdeodara. J Ayurveda Integr Med 2023; 14:100707. [PMID: 37201295 PMCID: PMC10203744 DOI: 10.1016/j.jaim.2023.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 05/20/2023] Open
Affiliation(s)
| | - Padmaja A Marathe
- Department of Pharmacology and Therapeutics, Seth GSMC & KEM Hospital, Mumbai, India.
| | - Sandhya K Kamat
- Department of Pharmacology and Therapeutics, Seth GSMC & KEM Hospital, Mumbai, India
| | - Harshitha Havaldar
- Department of Pharmacology and Therapeutics, Seth GSMC & KEM Hospital, Mumbai, India
| | - Merin Eldhose
- Pharmacology, Seth GSMC & KEM Hospital, Mumbai, India
| | | |
Collapse
|
114
|
Pangemanan L, Irwanto I, Maramis MM. Psychological dominant stressor modification to an animal model of depression with chronic unpredictable mild stress. Vet World 2023; 16:595-600. [PMID: 37041835 PMCID: PMC10082728 DOI: 10.14202/vetworld.2023.595-600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/09/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Chronic unpredictable mild stress (CUMS) is a protocol widely used to create an animal model of depression with food deprivation, water deprivation, and physical-dominant stressors as routine procedures. However, human depression mainly involves psychological stressors and does not always involve a lack of food and water; thus, CUMS procedures should be modified accordingly. Therefore, this study aimed to create an animal model of depression, mainly focusing on a psychologically dominant stressor without food and water deprivation. Materials and Methods The CUMS and control groups, respectively, received CUMS modification (psychologically dominant stressors without food and water deprivation) for 21 days. A 24-h sucrose preference test (SPT) was used to assess the successful creation of an animal model of depression. Daily food intake measurements, weekly weight monitoring, and weight gain calculations were performed. Either an independent sample t-test or the Mann-Whitney test was used. Results Of the 42 rats included, 39 completed the study. Chronic unpredictable mild stress procedures for 21 days significantly reduced the SPT (p < 0.05), mean body weight (p < 0.05), and weekly weight gain (p < 0.05) in the CUMS group compared to the control group. However, the weekly average food intake did not statistically differ between the two groups. Conclusion Psychological dominant CUMS modification to an animal model of depression resulted in lower SPT, body weight, and weekly weight gain in the CUMS group than in the control group.
Collapse
Affiliation(s)
- Lisa Pangemanan
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Child Health, Faculty of Medicine, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Irwanto Irwanto
- Department of Child Health, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Corresponding author: Irwanto Irwanto, e-mail: Co-authors: LP: , MMM:
| | - Margarita M. Maramis
- Department of Psychiatry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
115
|
Cheng S, Wang W, Zhu Z, Zhao M, Li H, Liu D, Pan F. Involvement of brain-derived neurotrophic factor methylation in the prefrontal cortex and hippocampus induced by chronic unpredictable mild stress in male mice. J Neurochem 2023; 164:624-642. [PMID: 36453259 DOI: 10.1111/jnc.15735] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Early life stress alters brain-derived neurotrophic factor (BDNF) promoter IV methylation and BDNF expression, which is closely related to the pathophysiological process of depression. However, the role of abnormal methylation of BDNF induced by stress during adolescence due to depression has not yet been clarified. In this study, adolescent mice were exposed to chronic unpredictable mild stress (CUMS). Depression-like behaviors, BDNF promoter IV methylation, expression of DNA methyltransferases (DNMTs), demethylation machinery enzymes, BDNF protein levels, and neuronal development in the prefrontal cortex (PFC) and hippocampus (HIP) were assessed in adolescent and adult mice. The DNMT inhibitor, 5-Aza-2-deoxycytidine (5-AzaD), was used as an intervention. Stress in adolescence induces behavioral dysfunction, elevated methylation levels of BDNF promoter IV, changes in the expression of DNMT, and demethylation machinery enzymes in adolescent and adult mice. Additionally, the stress in adolescence induced lower levels of BDNF and abnormal hippocampal doublecortin (DCX) expression in adolescent and adult mice. However, DNMT inhibitor treatment in adolescent-stressed mice relieved the abnormal behaviors, normalized the methylation level of BDNF promoter IV, BDNF protein expression, expression of DNMTs, and demethylation machinery enzymes, and improved the neuronal development of adult mice. These results suggest that stress in adolescence induces short- and long-term hypermethylation of BDNF promoter IV, which is regulated by DNMTs, and leads to the development of depression.
Collapse
Affiliation(s)
- Shuyue Cheng
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Mingyue Zhao
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Hannao Li
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
116
|
Abstract
This article describes a chronic mild stress (CMS) model for predicting antidepressant response and investigating mechanisms of antidepressant action in rats. Following exposure to a variety of mild stressors for several weeks, the rats' behavior is modified in several ways that parallel symptoms of depression. Among these is a substantial reduction in consumption of a 1% sucrose solution, which models the cardinal symptom of major depression, anhedonia. Our standard procedure employs a battery of behavioral tests, comprising weekly assessment of sucrose intake and, at the end of treatment, the elevated plus-maze and novel object recognition tests to assess the anxiogenic and dyscognitive effects of CMS. Chronic administration of antidepressant drugs reverses the decreased sucrose intake and other behavioral changes in these subjects. Also effective are second-generation antipsychotics. The CMS model can be employed in discovery programs to identify anti-anhedonic drugs (e.g., antidepressants and antipsychotics) that act more quickly than existing agents. While most antidepressants require 3 to 5 weeks to normalize behavior, some treatments provide a faster onset of action. For example, the CMS-induced deficits can be reversed by acute or sub-chronic application of treatments that act rapidly in depressed patients, such as deep brain stimulation (DBS), ketamine, and scopolamine, as well as several compounds that have yet to be tested in humans but have fast-onset antidepressant-like effects in animals, such as the 5-HT-1A biased agonists NLX-101 and GLYX-13. Application of the CMS model in Wistar-Kyoto (WKY) rats causes similar behavioral changes to those seen in Wistars, but these are not reversed by antidepressant treatment. However, WKY rats respond to DBS and ketamine, which are effective in patients who are antidepressant non-responders, establishing CMS in WKY rats as a model of treatment-resistant depression. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Induction of chronic mild stress in rats as a model of depression and treatment-resistant depression.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
117
|
Fermented Wheat Germ Alleviates Depression-like Behavior in Rats with Chronic and Unpredictable Mild Stress. Foods 2023; 12:foods12050920. [PMID: 36900437 PMCID: PMC10000856 DOI: 10.3390/foods12050920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Depression is a chronic mental illness with devastating effects on a person's physical and mental health. Studies have reported that food fermentation with probiotics can enrich the nutritional values of food and produce functional microorganisms that can alleviate depression and anxiety. Wheat germ is an inexpensive raw material that is rich in bioactive ingredients. For example, gamma-aminobutyric acid (GABA) is reported to have antidepressant effects. Several studies concluded that Lactobacillus plantarum is a GABA-producing bacteria and can alleviate depression. Herein, fermented wheat germs (FWGs) were used to treat stress-induced depression. FWG was prepared by fermenting wheat germs with Lactobacillus plantarum. The chronic unpredictable mild stress (CUMS) model was established in rats, and these rats were treated with FWG for four weeks to evaluate the effects of FWG in relieving depression. In addition, the study also analyzed the potential anti-depressive mechanism of FWG based on behavioral changes, physiological and biochemical index changes, and intestinal flora changes in depressed rats. The results demonstrated that FWG improved depression-like behaviors and increased neurotransmitter levels in the hippocampus of CUMS model rats. In addition, FWG effectively altered the gut microbiota structure and remodeled the gut microbiota in CUMS rats, restored neurotransmitter levels in depressed rats through the brain-gut axis, and restored amino acid metabolic functions. In conclusion, we suggest that FWG has antidepressant effects, and its potential mechanism may act by restoring the disordered brain-gut axis.
Collapse
|
118
|
Karvat J, Andrade TES, Kraus SI, Beppler LM, de Jesus GDSC, Ferreira JB, da Silva MD. Drug repositioning: diacerein as a new therapeutic approach in a mice model of sciatic nerve injury. Pharmacol Rep 2023; 75:358-375. [PMID: 36809646 DOI: 10.1007/s43440-023-00461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Peripheral nerve injuries negatively impact the quality of life of patients, with no effective treatment available that accelerates sensorimotor recovery and promotes functional improvement and pain relief. The aim of this study was to evaluate the effects of diacerein (DIA) in an experimental mice model of sciatic nerve crush. METHOD In this study, male Swiss mice were used, randomly separated into six groups as follows: FO (false-operated + vehicle); FO + DIA (false-operated + diacerein 30 mg/kg); SNI (sciatic nerve injury + vehicle); SNI + DIA in doses of 3, 10 and 30 mg/kg (sciatic nerve injury + treatment with diacerein in doses of 3-30 mg/kg). DIA or vehicle was administered 24 h after the surgical procedure, intragastrically, twice a day. The lesion of the right sciatic nerve was generated by crush. RESULTS We found that the treatment of animals with DIA accelerated sensorimotor recovery of the animal. In addition, animals in the sciatic nerve injury + vehicle (SNI) group showed hopelessness, anhedonia, and lack of well-being, which were significantly inhibited by DIA treatment. The SNI group showed a reduction in the diameters of nerve fibers, axons, and myelin sheaths, while DIA treatment recovered all these parameters. In addition, the treatment of animals with DIA prevented an increase the levels of interleukin (IL)-1β and a reduction in the levels of the brain-derived growth factor (BDNF). CONCLUSIONS Treatment with DIA reduces hypersensitivity and depression like behaviors in animals. Furthermore, DIA promotes functional recovery and regulates IL-1β and BDNF concentrations.
Collapse
Affiliation(s)
- Jhenifer Karvat
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Tassiane Emanuelle Servare Andrade
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Scheila Iria Kraus
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Larissa May Beppler
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Gustavo Dos Santos Catarina de Jesus
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Jeane Bachi Ferreira
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Morgana Duarte da Silva
- Laboratory of Neurobiology of Pain and Inflammation (LANDI), Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil. .,Program of Post-Graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
119
|
Ye S, Fang L, Xie S, Hu Y, Chen S, Amin N, Fang M, Hu Z. Resveratrol alleviates postpartum depression-like behavior by activating autophagy via SIRT1 and inhibiting AKT/mTOR pathway. Behav Brain Res 2023; 438:114208. [PMID: 36356720 DOI: 10.1016/j.bbr.2022.114208] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Postpartum depression (PPD) causes maternal mortality, and has a high disability rate. In recent years, studies have suggested the Sirt1 gene to be involved in the pathogenesis of depression. Resveratrol (RSV), an activator of Sirt1, has been investigated in depressive behavior. However, its effect on PPD remains to be thoroughly elucidated. METHODS We employed a mice model with bilateral oophorectomy combined with hormone-simulated pregnancy to assess postpartum depression-like behavior. The behavioral tests were performed 2 days after the withdrawal of estradiol benzoate. RSV was administered subcutaneously to the PPD model mice. Several behavioral tests were executed, including the open field test, forced swimming test, and tail suspension test. Western blot analyses and immunofluorescence staining were used to evaluate protein expression levels of SIRT1, autophagy markers, and the AKT/mTOR. RESULTS Postpartum depressive-like behavior was triggered following the withdrawal of estradiol benzoate after hormone-stimulated-pregnancy. RSV improved postpartum depressive-like behavior of mice via its upregulation of the SIRT1 and autophagy markers, such as Beclin1, ATG5 and LC3B. Also, the downregulation of the p62 protein expression was observed. More importantly, we also detected the inhibition of phosphorylated AKT and mTOR in the hippocampus of postpartum depressive-like mice. CONCLUSION RSV could alleviate postpartum depression-like behavior in mice by stimulating the SIRT1, induce autophagy and inhibit the AKT/ mTOR signaling pathway.
Collapse
Affiliation(s)
- Shan Ye
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li Fang
- Department of Obstetrics and Gynecology, Integrated Chinese and West Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Shiyi Xie
- Department of Obstetrics and Gynecology, First people's Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Yan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shijia Chen
- Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nashwa Amin
- Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiying Hu
- Department of Obstetrics and Gynecology, Integrated Chinese and West Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China.
| |
Collapse
|
120
|
13-cis-Retinoic Acid Affects Brain Perfusion and Function: In Vivo Study. Mol Imaging 2023. [DOI: 10.1155/2023/7855924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Purpose. Study the effects of 13-cis-retinoic acid (13-RA), a synthetic analogue of a vitamin A used for the treatment of severe acne, on the blood flow in the rat brain using technetium-99m hexamethyl propylene amine oxime (99mTc-HMPAO) imaging. Methods. A total of 30 adult male Wistar rats were divided into the control (C), low-dose (L), and high-dose (H) groups. The L and H rats were exposed subcutaneously to 0.3 and 0.5 mg, respectively, of 13-RA per kg of body weight for seven days. Brain blood flow imaging was performed using a gamma camera. Then, a region of interest (ROI) around the brain (target, T), a whole-body region (WB), and a background region (BG) was selected and delimited. The net 99mTc-HMPAO brain counts were calculated as the net target counts,
in all groups. At the end of the 99mTc-HMPAO brain blood flow imaging, the brain, heart, kidney, lung, and liver were rapidly removed, and their uptake was determined. Brain histopathological analysis was performed using hematoxylin and eosin stains. In addition, the plasma fatty acids were studied using gas chromatography/mass spectrometry. Results. There were highly significant differences between L and H in comparison to C and across the groups. The 99mTc-HMPAO radioactivity in the brain showed increased uptake in a dose-dependent manner. There were also significant changes in the brain tissues and decreased free fatty acids among the groups compared to C. Conclusion. 13-RA increases 99mTcHMPAO brain perfusion, uptake, and function and reduces fatty acids.
Collapse
|
121
|
Taylor PS, Campbell DLM, Jurecky E, Devine N, Lee C, Hemsworth PH. Novelty during rearing increased inquisitive exploration but was not related to early ranging behavior of laying hens. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1128792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Range use by free-range laying hen flocks is heterogeneous. We hypothesized that ranging behaviour may be motivated by curiosity and thwarted by fearfulness. This project aimed to increase a hen’s motivation to explore by enriching the rearing environment and identify relationships between exploration, fear and ranging. Day-old Hy-Line chicks (n = 1700) were reared in environments that provided novel items, structures for perching or an industry standard floor rearing environment. Prior to range access, fear and exploratory behaviors were assessed at 18 weeks of age (cohort 1; n = 30 hens/treatment) via novel arena and novel object tests and at 22 weeks of age (cohort 2; n = 30 hens/treatment) using an 8-arm radial maze choice paradigm adapted from previous rodent research. Hens were trained to expect success in two arms (reward) and failure in two arms (mild punishment), the remaining four arms (ambiguous arms) were not available during training. After training, all hens were retested for 8 minutes with access to the four familiar arms only, then for four minutes with access to the ambiguous arms for the first time, in addition to the success and failure arms. Latency to enter the ambiguous arms and the number of ambiguous arms entered were assessed as an indicator of a hen’s willingness to forgo reward and risk punishment to explore a novel area. At 25 weeks of age, hens were provided with range access and individual range access was monitored for three weeks. Latency to access the range and the number of days the range was accessed was not related to rearing treatment (p > 0.05) and was only weakly correlated with behavior during the novel arena, novel object and 8-arm radial maze tests (r < 0.3). However, hens reared in the novelty rearing environment were more willing to forgo reward to explore the ambiguous arms than hens reared in the control environment (p = 0.004). We did not identify strong evidence that exploration or fearfulness was related to early ranging behavior. However, we show that motivation to explore increases when hens are reared in an enriched environment.
Collapse
|
122
|
Abulmeaty MMA, Almajwal AM, Razak S, Al-Ramadhan FR, Wahid RM. Energy Homeostasis-Associated (Enho) mRNA Expression and Energy Homeostasis in the Acute Stress Versus Chronic Unpredictable Mild Stress Rat Models. Biomedicines 2023; 11:biomedicines11020440. [PMID: 36830976 PMCID: PMC9953286 DOI: 10.3390/biomedicines11020440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The energy homeostasis-associated (Enho) gene, the transcript for the Adropin peptide, is usually linked to energy homeostasis, adiposity, glycemia, and insulin resistance. Studies on Enho expression in stressful conditions are lacking. This work aimed to investigate Enho mRNA expression and energy homeostasis in acute stress (AS) versus chronic unpredictable mild stress (CUMS) rat models. A total of thirty male Wistar rats (180-220 g) were fed a balanced diet with free access to water. Rats were divided into three equal groups (n = 10): (a) the normal control (NC) group; (b) the AS group, where one episode of stress for 2 h was applied; and (c) the CUMS group, in which rats were exposed to a variable program of mild stressors for 4 weeks. Energy homeostasis was analyzed by the PhenoMaster system for the automatic measuring of food intake (FI), respiratory O2 volume (VO2), CO2 volume (VCO2), respiratory quotient (RQ), and total energy expenditure (TEE). Finally, liver, whole brain, and adipose (WAT) tissue samples were collected, total RNA was prepared, and RT-PCR analysis of the Enho gene was performed. The CUMS group showed higher VO2 consumption and VCO2 production, and a higher RQ than the AS group. Furthermore, the TEE and FI were higher in the CUMS group compared to the AS group. Enho gene expression in the liver, brain, and WAT was significantly higher in the CUMS group than in the AS and NC groups. We can conclude that in the chew-fed AS rats, hypophagia was evident, with a shift in the RQ toward fat utilization, with no changes in body weight despite the increase in Enho mRNA expression in all studied tissues. In the CUMS group, the marked rise in Enho mRNA expression may have contributed to weight loss despite increased FI and TEE.
Collapse
Affiliation(s)
- Mahmoud M. A. Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
- Department of Medical Physiology, School of Medicine, Zagazig University, Zagazig 44519, Egypt
- Correspondence: ; Tel.: +96-65-4815-5983
| | - Ali M. Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Fatimah R. Al-Ramadhan
- Department of Human Nutrition, College of Agriculture and Food Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Reham M. Wahid
- Department of Medical Physiology, School of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
123
|
Hussein A, Guevara CA, Valle PD, Gupta S, Benson DL, Huntley GW. Non-Motor Symptoms of Parkinson's Disease: The Neurobiology of Early Psychiatric and Cognitive Dysfunction. Neuroscientist 2023; 29:97-116. [PMID: 33966533 PMCID: PMC9338765 DOI: 10.1177/10738584211011979] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that has been recognized for over 200 years by its clinically dominant motor system impairment. There are prominent non-motor symptoms as well, and among these, psychiatric symptoms of depression and anxiety and cognitive impairment are common and can appear earlier than motor symptoms. Although the neurobiology underlying these particular PD-associated non-motor symptoms is not completely understood, the identification of PARK genes that contribute to hereditary and sporadic PD has enabled genetic models in animals that, in turn, have fostered ever deepening analyses of cells, synapses, circuits, and behaviors relevant to non-motor psychiatric and cognitive symptoms of human PD. Moreover, while it has long been recognized that inflammation is a prominent component of PD, recent studies demonstrate that brain-immune signaling crosstalk has significant modulatory effects on brain cell and synaptic function in the context of psychiatric symptoms. This review provides a focused update on such progress in understanding the neurobiology of PD-related non-motor psychiatric and cognitive symptoms.
Collapse
Affiliation(s)
- Ayan Hussein
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher A. Guevara
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Del Valle
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swati Gupta
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deanna L. Benson
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George W. Huntley
- Nash Family Department of Neuroscience and Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
124
|
Healey KL, Kibble S, Dubester K, Bell A, Swartzwelder HS. Adolescent intermittent ethanol exposure enhances adult stress effects in male rats. Pharmacol Biochem Behav 2023; 223:173513. [PMID: 36610590 PMCID: PMC10028459 DOI: 10.1016/j.pbb.2022.173513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Binge patterns of alcohol use, prevalent among adolescents, are associated with a higher probability of developing alcohol use disorders (AUD) and other psychiatric disorders, like anxiety and depression. Additionally, adverse life events strongly predict AUD and other psychiatric disorders. As such, the combined fields of stress and AUD have been well established, and animal models indicate that both binge-like alcohol exposure and stress exposure elevate anxiety-like behaviors. However, few have investigated the interaction of adolescent intermittent ethanol (AIE) and adult stressors. We hypothesized that AIE would increase vulnerability to restraint-induced stress (RS), manifested as increased anxiety-like behavior. After AIE exposure, in adulthood, animals were tested on forced swim (FST) and saccharin preference (SP) and then exposed to either RS (90 min/5 days) or home-cage control. Twenty-four hours after the last RS session, animals began testing on the elevated plus maze (EPM), and were re-tested on FST and SP. A separate group of animals were sacrificed in adulthood after AIE and RS, and brains were harvested for immunoblot analysis of dorsal and ventral hippocampus. Consistent with previous reports, AIE had no significant effect on closed arm time in the EPM (anxiety-like behavior). However, in male rats the interaction of AIE and adult RS increased time spent in the closed arms. No effect was observed among female animals. AIE and RS-specific alterations were found in glial and synaptic markers (GLT-1, FMRP and PSD-95) in male animals. These findings indicate AIE has sex-specific effects on both SP and the interaction of AIE and adult RS, which induces a propensity toward anxiety-like behavior in males. Also, AIE produces persistent hippocampal deficits that may interact with adult RS to cause increased anxiety-like behaviors. Understanding the mechanisms behind this AIE-induced increase in stress vulnerability may provide insight into treatment and prevention strategies for alcohol use disorders.
Collapse
Affiliation(s)
- Kati L Healey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, United States of America.
| | - Sandra Kibble
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Kira Dubester
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Amelia Bell
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - H S Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, United States of America
| |
Collapse
|
125
|
Wang H, Liang L, Yang C, Xiao L, Wang H, Wang G, Zhu Z. The protective role of hippocampal LRP1 knockdown involves synaptic plasticity through the promoting microtubule dynamics and activation of Akt/GSK-3β pathway in depressive rats. J Affect Disord 2023; 322:63-75. [PMID: 36372121 DOI: 10.1016/j.jad.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/14/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND The mechanism by which synaptic plasticity mediates the occurrence of depression is unknown. Low-density lipoprotein receptor-related protein 1 (LRP1) affects axon growth and neurogenesis in the brain, but its role in depressive-like behaviors is poorly understood. METHODS Adeno-associated virus-mediated small interfering RNA was injected into the bilateral hippocampus 14 days before chronic unpredicted mild stress (CUMS). Behavior performance was assessed for depressive-like behaviors. Western blot was conducted to detect levels of LRP1, neurogenesis-related proteins, synaptic markers, microtubule system molecules and Akt/GSK-3β signaling-related proteins. Immunohistochemical staining was performed for LRP1 protein, immunofluorescence staining was conducted to determine the Sox2 protein, Nissl's staining and transmission electron microscope staining were used to observe hippocampal morphological features. RESULTS The expression of hippocampal LRP1 was positively correlated with depressive-like behaviors. Treatment with iAAV-LRP1 exerted protective effects on depressive-like behaviors. LRP1 Knockdown relieved the inhibition of synaptic plasticity induced by CUMS. Expression of Sox2, GluR2 and SYP was significantly increased in iAAV-LRP1 CUMS rats. LRP1 knockdown reduced the p-tau (Ser262 and Thr404) and Acet-tubule levels in depressed rats. Finally, we found that LRP1 knockdown activated the PI3K/Akt pathway and inhibited GSK-3β signal transduction. LIMITATIONS More neurogenesis markers would be considered, and stereotactic injection into hippocampal DG region could be performed to investigate the effects of LRP1. CONCLUSIONS These findings indicated that hippocampal LRP1 deficiency in stressed rats plays an important protective role in depressive-like behavior by increasing synaptic plasticity mediated by microtubule dynamic and activating Akt/GSK-3β signaling pathway. Therefore, LRP1 may represent a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Clinical Psychology, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Can Yang
- Department of Clinical Psychology, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| | - Zhixian Zhu
- Department of Clinical Psychology, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
126
|
Gao M, Wu Y, Yang L, Chen F, Li L, Li Q, Wang Y, Li L, Peng M, Yan Y, Yang J, Yang X. Anti-depressant-like effect of fermented Gastrodia elata Bl. by regulating monoamine levels and BDNF/NMDAR pathways in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115832. [PMID: 36283636 DOI: 10.1016/j.jep.2022.115832] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata Blume (GE) is a Chinese medicinal herb commonly used to treat central nervous system-related diseases, including headaches, dizziness, epilepsy, numbness of the limbs and depression. AIM OF THE STUDY Microbial-based fermentation has been successfully used to increase the extract efficiency of medicinal herbs in recent years. However, no study has hitherto explored the anti-depressant-like effect of GE processed by microorganisms. Herein, this subject aimed to clarify the anti-depressant-like effect of fermented Gastrodia elata Bl. (FGE) and its active chemical constituents. MATERIALS AND METHODS The chronic unpredictable mild stress (CUMS) model, a well-established animal model of depression, was induced in Kunming (KM) mice. The mice were administrated with FGE for 3 weeks. The sucrose preference test (SPT), open field test (OFT) and tail suspension test (TST) were conducted. Moreover, the levels of serotonin (5-HT) and dopamine (DA) in brain tissue homogenates, the concentration of Ca2+ and the activity of MAO in serum, H&E and Nissl staining in the hippocampus, and the hippocampus protein expressions of BDNF, NMDAR1, NMDAR2A and NMDAR2B relevant to depression were detected. Furthermore, chemical constituents of FGE were further isolated, and the protective activity of the obtained compounds against NMDA-induced PC-12 cell damage was assessed. RESULTS FGE could alleviate the depression state in CUMS-induced mice and reduce apoptosis of neuronal cells in the hippocampus. Furthermore, FGE could improve the contents of 5-HT, DA and decrease the concentration of Ca2+ and MAO activity in brain tissue and serum compared with the control group. It could reverse the decreased expression of BDNF, NMDAR2A and NMDAR2B and increase NMDAR1 protein expression. Investigation of the active constituents from FGE yielded two new compounds, (4-(((4-ethoxybenzyl) oxy)methyl)-phenol 1 and 3-((4-hydroxy benzyl)oxy)propane-1,2-diol) 2, with twelve known compounds (3-14). The compounds (3-((4-hydroxybenzyl)oxy)propane-1,2-diol 2, 4, 4'-dihydroxyd iphenyl methane 3, and bungein A 4) protected against NMDA-induced PC-12 cells damage. CONCLUSION This study demonstrated that FGE could improve the depressive behavior of CUMS-induced mice and exert a protective effect on nerve cells in the brain. Importantly, compounds 2-4 are the active components of FGE. Overall, the above findings suggest that FGE has huge prospects for application in treating depression-related diseases.
Collapse
Affiliation(s)
- Ming Gao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Yi Wu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Lishou Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Faju Chen
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Liangqun Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Qiji Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Yu Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Lilang Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Mei Peng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Yanfang Yan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Juan Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China
| | - Xiaosheng Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, PR China.
| |
Collapse
|
127
|
Almutabagani LF, Almanqour RA, Alsabhan JF, Alhossan AM, Alamin MA, Alrajeh HM, Alonazi AS, El-Malky AM, Alrasheed NM. Inflammation and Treatment-Resistant Depression from Clinical to Animal Study: A Possible Link? Neurol Int 2023; 15:100-120. [PMID: 36648973 PMCID: PMC9844360 DOI: 10.3390/neurolint15010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to investigate the relationship between treatment-resistant depression (TRD) and inflammation in humans and experimental models. For the human study, a retrospective cohort study was conducted with 206 participants; half were on antidepressants for major depressive disorder. The patients were divided into healthy and depressed groups. Inflammation was assessed based on the values of the main inflammatory biomarkers (CRP, WBC and ESR). For the animal experiments, 35 adult male Wistar rats were assigned to stressed and non-stressed groups. Inflammation and stress were induced using lipopolysaccharide and chronic unpredictable mild stress. A 10 mg/kg intraperitoneal injection of fluoxetine (FLX), a known antidepressant, was simultaneously administered daily for 4 weeks. Behavioral tests were performed. The plasma levels of inflammatory and stress biomarkers were measured and were significantly higher in the stressed and non-responsive groups in both studies. This study provides evidence of the link between inflammation and TRD. We further observed a possible link via the Phosphorylated Janus Kinase 2 and Phosphorylated Signal Transducer and Activator of Transcription 3 (P-JAK2/P-STAT3) signaling pathway and found that chronic stress and high inflammation hinder the antidepressant effects of FLX. Thus, non-response to antidepressants could be mitigated by treating inflammation to improve the antidepressant effect in patients with TRD.
Collapse
Affiliation(s)
- Lara F. Almutabagani
- PharmD. Program, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Raghad A. Almanqour
- PharmD. Program, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Jawza F. Alsabhan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Abdulaziz M. Alhossan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Maha A. Alamin
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Haya M. Alrajeh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Asma S. Alonazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Ahmed M. El-Malky
- Public Health and Community Medicine, Morbidity and Mortality Review Unit, King Saud University Medical City, Riyadh P.O. Box 145111, Saudi Arabia
| | - Nouf M. Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| |
Collapse
|
128
|
CHIBA S, NUMAKAWA T, MURATA T, KAWAMINAMI M, HIMI T. Enhanced social reward response and anxiety-like behavior with downregulation of nucleus accumbens glucocorticoid receptor in BALB/c mice. J Vet Med Sci 2023; 85:30-39. [PMID: 36403974 PMCID: PMC9887208 DOI: 10.1292/jvms.22-0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Social anhedonia is a psychological state with difficulty in experiencing pleasure from social interactions and is observed in various diseases, such as depressive disorders. Although the relationships between social reward responses and anxiety- and depression-like behaviors have remained unclear, a social reward conditioned place preference (SCPP) test can be used to analyze the rewarding nature of social interactions. To elucidate these relationships, we used 5-week-old male mice of AKR, BALB/c, and C57BL/6J strains and conducted behavioral tests in the following order: elevated plus-maze test (EPM), open field test (OFT), SCPP, saccharin preference test (SPT), and passive avoidance test. The nucleus accumbens of these mice were collected 24 hr after these behavioral tests and were used for western blotting to determine the levels of receptors for brain-derived neurotrophic factors and glucocorticoids. BALB/c mice displayed the highest levels of anxiety-like behavior in EPM and OFT as well as physical anhedonia-like behaviors in SPT. They also showed increased responses to social rewards and huddling behaviors in SCPP, with downregulated glucocorticoid receptor (GR). Regression analysis results revealed positive influences of anxiety- and physical anhedonia-like behaviors and expressions of GR on social reward responses. Collectively, temperament associated with anxiety and physical anhedonia may affect social reward responses, which possibly is influenced by the expression of GR that can modify these psychological traits.
Collapse
Affiliation(s)
- Shuichi CHIBA
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Tadahiro NUMAKAWA
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takuya MURATA
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | | | - Toshiyuki HIMI
- Faculty of Pharmacy and Research Institute of Pharmaceutical Science, Musashino University, Tokyo, Japan
| |
Collapse
|
129
|
Xia J, Wang H, Zhang C, Liu B, Li Y, Li K, Li P, Song C. The comparison of sex differences in depression-like behaviors and neuroinflammatory changes in a rat model of depression induced by chronic stress. Front Behav Neurosci 2023; 16:1059594. [PMID: 36703721 PMCID: PMC9872650 DOI: 10.3389/fnbeh.2022.1059594] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Background Clinical prevalence of major depression is higher in women than men, while the psychoneuroimmunological mechanisms underlying the differences between the two sexes are not fully understood. Methods The present study explored sex differences in the behaviors and depressive pathological mechanisms induced by chronic unpredictable mild stress (CUMS). Depression- and anxiety-like behaviors were assessed by the sucrose preference test (SPT), force swimming test (FST), open field test (OFT), and elevated plus-maze (EPM). The enzyme-linked immunosorbent assay (ELISA) was used to measure cytokine concentrations, high-performance liquid chromatography (HPLC) was used to measure monoamine neurotransmitters and metabolite contents, and real-time quantitative PCR (qPCR) and western blotting (WB) were used to measure glial parameters in the hippocampus. Results Under control conditions, female rats exhibited shorter immobility times in the FST, lower interferon (IFN)-γ, and interleukin (IL)-4 levels in the hippocampus, lower norepinephrine (NE) and homovanillic acid (HVA), and higher p75 and glial-derived neurotrophic factor (GDNF) expression than male rats. CUMS markedly reduced rat body weight gain, sucrose preference, locomotor activity, number of entries into the central zone and rearing in the OFT, as well as the number of entries into and time spent in open arms of the EPM; however, CUMS increased the immobility times of the rats of both sexes in the FST. Interestingly, more pronounced changes in sucrose preference and locomotor activity were observed in female rats than in males. Consistently, CUMS-increased glucocorticoid concentration, M1 microglial marker CD11b, and peripheral IL-1β and IL-4, while decreased hippocampal IL-10, serotonin (5-HT), dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), and norepinephrine metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) were more significant in females than in males. Conclusion These data revealed possible mechanisms by which females suffer more depression than males at least in a stressful environment.
Collapse
Affiliation(s)
- Juan Xia
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China,Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haoyin Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Baiping Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yuyu Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Kangwei Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Peng Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China,Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China,Marine Medicine Research and Development Center of Shenzhen Institutes, Guangdong Ocean University, Shenzhen, China,*Correspondence: Cai Song,
| |
Collapse
|
130
|
Redei EE, Udell ME, Solberg Woods LC, Chen H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr Neuropharmacol 2023; 21:1884-1905. [PMID: 36453495 PMCID: PMC10514523 DOI: 10.2174/1570159x21666221129120902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.
Collapse
Affiliation(s)
- Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah C. Solberg Woods
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
131
|
Hales CA, Stuart SA, Griffiths J, Bartlett J, Arban R, Hengerer B, Robinson ES. Investigating neuropsychological and reward-related deficits in a chronic corticosterone-induced model of depression. Psychoneuroendocrinology 2023; 147:105953. [PMID: 36334546 PMCID: PMC10465973 DOI: 10.1016/j.psyneuen.2022.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Chronic stress is a known risk factor for the development of major depression (MDD) and is commonly used to induce a depression-like phenotype in rodents. Similar phenotypic effects are also observed in rodents when treated chronically with the stress hormone corticosterone. In this study, we investigated the neuropsychological consequences of chronic corticosterone treatment in male rats using two translational rodent assays of affective bias, the judgement bias task (JBT) and affective bias test (ABT). We also used the reward learning assay (RLA) and sucrose preference test (SPT) to quantify reward-related behaviours. Negative biases in decision-making were observed in the chronic corticosterone-treated group but only when the treatment was given shortly before each behavioural session. The same dose of corticosterone, when given daily after completion of the behavioural session had no effects. Chronic corticosterone treatment did not potentiate negative affective biases in the ABT induced by either an acute pharmacological or stress manipulation but both reward learning and reward sensitivity were blunted. Analysis of the brain tissue from animals receiving chronic corticosterone found reduced hippocampal neurogenesis consistent with previous studies suggesting corticosterone-induced neurotrophic deficits. Taken together, these data suggest chronic corticosterone treatment induces neuropsychological effects related to changes in reward learning, memory and negative biases in decision making, but these decision-making biases depend on whether rewarding outcomes were experienced during the acute effects of the drug. These findings suggest an important interaction between psychological and biological factors resulting in negative biases in decision-making in this model.
Collapse
Affiliation(s)
- Claire A Hales
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University Walk, Bristol BS8 1TD, UK; Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sarah A Stuart
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University Walk, Bristol BS8 1TD, UK
| | - Jennifer Griffiths
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University Walk, Bristol BS8 1TD, UK
| | - Julia Bartlett
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University Walk, Bristol BS8 1TD, UK
| | - Roberto Arban
- CNS Diseases Research, Boehringer Ingelheim Pharma Gmbh & Co. KG, Biberach an der Riss, Germany
| | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma Gmbh & Co. KG, Biberach an der Riss, Germany
| | - Emma Sj Robinson
- University of Bristol, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
132
|
Khantakova JN, Bondar NP, Antontseva EV, Reshetnikov VV. Once induced, it lasts for a long time: the structural and molecular signatures associated with depressive-like behavior after neonatal immune activation. Front Cell Neurosci 2022; 16:1066794. [PMID: 36619667 PMCID: PMC9812963 DOI: 10.3389/fncel.2022.1066794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Adverse factors such as stress or inflammation in the neonatal period can affect the development of certain brain structures and have negative delayed effects throughout the lifespan of an individual, by reducing cognitive abilities and increasing the risk of psychopathologies. One possible reason for these delayed effects is the neuroinflammation caused by neonatal immune activation (NIA). Neuroinflammation can lead to disturbances of neurotransmission and to reprogramming of astroglial and microglial brain cells; when combined, the two problems can cause changes in the cytoarchitecture of individual regions of the brain. In addition, neuroinflammation may affect the hypothalamic-pituitary-adrenal (HPA) axis and processes of oxidative stress, thereby resulting in higher stress reactivity. In our review, we tried to answer the questions of whether depressive-like behavior develops after NIA in rodents and what the molecular mechanisms associated with these disorders are. Most studies indicate that NIA does not induce depressive-like behavior in a steady state. Nonetheless, adult males (but not females or adolescents of both sexes) with experience of NIA exhibit marked depressive-like behavior when exposed to aversive conditions. Analyses of molecular changes have shown that NIA leads to an increase in the amount of activated microglia and astroglia in the frontal cortex and hippocampus, an increase in oxidative-stress parameters, a change in stress reactivity of the HPA axis, and an imbalance of cytokines in various regions of the brain, but not in blood plasma, thus confirming the local nature of the inflammation. Therefore, NIA causes depressive-like behavior in adult males under aversive testing conditions, which are accompanied by local inflammation and have sex- and age-specific effects.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia,Federal Government-Funded Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI), Novosibirsk, Russia,*Correspondence: Julia N. Khantakova
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Elena V. Antontseva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Vasiliy V. Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
133
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
134
|
Alghamdi A, Almuqbil M, Alrofaidi MA, Burzangi AS, Alshamrani AA, Alzahrani AR, Kamal M, Imran M, Alshehri S, Mannasaheb BA, Alomar NF, Asdaq SMB. Potential Antioxidant Activity of Apigenin in the Obviating Stress-Mediated Depressive Symptoms of Experimental Mice. Molecules 2022; 27:molecules27249055. [PMID: 36558188 PMCID: PMC9787100 DOI: 10.3390/molecules27249055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to examine the antidepressant properties of apigenin in an experimental mouse model of chronic mild stress (CMS). Three weeks following CMS, albino mice of either sex were tested for their antidepressant effects using the tail suspension test (TST) and the sucrose preference test. The percentage preference for sucrose solution and the amount of time spent immobile in the TST were calculated. The brain malondialdehyde (MDA) levels, catalase activity, and reduced glutathione levels were checked to determine the antioxidant potential of treatments. When compared to the control, animals treated with apigenin during the CMS periods showed significantly shorter TST immobility times. Apigenin administration raised the percentage preference for sucrose solution in a dose-dependent manner, which put it on par with the widely used antidepressant imipramine. Animals treated with apigenin displayed a significantly (p ˂ 0.05) greater spontaneous locomotor count (281) when compared to the vehicle-treated group (245). Apigenin was also highly effective in significantly (p ˂ 0.01) lowering plasma corticosterone levels (17 vs. 28 µg/mL) and nitrite (19 vs. 33 µg/mL) produced by CMS in comparison to the control group. During CMS, a high dose (50 mg/kg) of apigenin was given, which greatly increased the reduced glutathione level while significantly decreasing the brain's MDA and catalase activity when compared to the control group. As a result, we infer that high doses of apigenin may have potential antidepressant effects in animal models via various mechanisms.
Collapse
Affiliation(s)
- Adel Alghamdi
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, P.O. Box 1988, Al Baha 65528, Saudi Arabia
| | - Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Alrofaidi
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, P.O. Box 1988, Al Baha 65528, Saudi Arabia
| | - Abdulhadi S. Burzangi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali A. Alshamrani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | | | | | | |
Collapse
|
135
|
Hu W, Liuyang Z, Tian Y, Liang J, Zhang X, Zhang H, Wang G, Huo Y, Shentu Y, Wang J, Wang X, Lu Y, Westermarck J, Man H, Liu R. CIP2A deficiency promotes depression-like behaviors in mice through inhibition of dendritic arborization. EMBO Rep 2022; 23:e54911. [PMID: 36305233 PMCID: PMC9724669 DOI: 10.15252/embr.202254911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.
Collapse
Affiliation(s)
- Wen‐Ting Hu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of PathologyPeking University Shenzhen HospitalShenzhenChina
| | - Zhen‐Yu Liuyang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of General Surgery, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yuan Tian
- Department of BiologyBoston UniversityBostonUSA
| | - Jia‐Wei Liang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐Lin Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui‐Liang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guan Wang
- Department of BiologyBoston UniversityBostonUSA
| | - Yuda Huo
- Department of BiologyBoston UniversityBostonUSA
| | - Yang‐Ping Shentu
- Department of NephrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jian‐Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - You‐ming Lu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Jukka Westermarck
- Turku Bioscience CentreUniversity of TurkuTurkuFinland
- Åbo Akademi UniversityTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Heng‐Ye Man
- Department of BiologyBoston UniversityBostonUSA
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
136
|
Novak J, Jaric I, Rosso M, Rufener R, Touma C, Würbel H. Handling method affects measures of anxiety, but not chronic stress in mice. Sci Rep 2022; 12:20938. [PMID: 36463282 PMCID: PMC9719500 DOI: 10.1038/s41598-022-25090-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Studies in mice have shown that less aversive handling methods (e.g. tunnel or cup handling) can reduce behavioural measures of anxiety in comparison to picking mice up by their tail. Despite such evidence, tail handling continues to be used routinely. Besides resistance to change accustomed procedures, this may also be due to the fact that current evidence in support of less aversive handling is mostly restricted to effects of extensive daily handling, which may not apply to routine husbandry practices. The aim of our study was to assess whether, and to what extent, different handling methods during routine husbandry induce differences in behavioural and physiological measures of stress in laboratory mice. To put the effects of handling method in perspective with chronic stress, we compared handling methods to a validated paradigm of unpredictable chronic mild stress (UCMS). We housed mice of two strains (Balb/c and C57BL/6) and both sexes either under standard laboratory conditions (CTRL) or under UCMS. Half of the animals from each housing condition were tail handled and half were tunnel handled twice per week, once during a cage change and once for a routine health check. We found strain dependent effects of handling method on behavioural measures of anxiety: tunnel handled Balb/c mice interacted with the handler more than tail handled conspecifics, and tunnel handled CTRL mice showed increased open arm exploration in the elevated plus-maze. Mice undergoing UCMS showed increased plasma corticosterone levels and reduced sucrose preference. However, we found no effect of handling method on these stress-associated measures. Our results therefore indicate that routine tail handling can affect behavioural measures of anxiety, but may not be a significant source of chronic husbandry stress. Our results also highlight strain dependent responses to handling methods.
Collapse
Affiliation(s)
- Janja Novak
- grid.5734.50000 0001 0726 5157Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ivana Jaric
- grid.5734.50000 0001 0726 5157Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marianna Rosso
- grid.5734.50000 0001 0726 5157Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Rufener
- grid.5734.50000 0001 0726 5157Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Chadi Touma
- grid.10854.380000 0001 0672 4366Department of Behavioural Biology, Osnabrück University, Osnabrück, Germany
| | - Hanno Würbel
- grid.5734.50000 0001 0726 5157Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
137
|
Jin X, Zhu L, Lu S, Li C, Bai M, Xu E, Shen J, Li Y. Baicalin ameliorates CUMS-induced depression-like behaviors through activating AMPK/PGC-1α pathway and enhancing NIX-mediated mitophagy in mice. Eur J Pharmacol 2022; 938:175435. [PMID: 36463946 DOI: 10.1016/j.ejphar.2022.175435] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Mitochondrial dysfunction has been reported to be involved in the pathogenesis of depression, and mitophagy is a key pathway for mitochondrial quality control. This study aimed to investigate the effect of baicalin on mitophagy in the hippocampus of mice exposed to chronic unpredictable mild stress (CUMS) and explore its potential mechanism. After exposure to CUMS for 6 weeks, mice were given baicalin (20 mg/kg) or fluoxetine (20 mg/kg) by oral gavage for 4 weeks, and HT22 cells were injured by corticosterone (CORT) in vitro. Depression-like behaviors were assessed by sucrose preference test and tail suspension test. The mitochondrial structure was observed by transmission electron microscopy. Detection of mitophagy and mitophagy-related protein by mitophagy kit and Western blot. The results showed that baicalin improved depressive-like behaviors in CUMS mice, and ameliorated mitochondrial structural impairment in the hippocampus neuron. Baicalin significantly down-regulated light chain 3(LC3)II/I, protein sequestosome 1 (P62), and translocase of the outer membrane 20 (TOM20), and up-regulated Nip-like protein (NIX), Adenylate activated protein kinase (AMPK), and Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α. Furthermore, molecular docking showed that baicalin interacts with AMPK through hydrogen bonding. Baicalin increased NIX and AMPK, and improved mitophagy level and mitochondrial function in HT22 cells. Treatment with Phorbol 12-Myristate 13-acetate demonstrated that up-regulation of NIX ameliorated CORT-induced mitochondrial dysfunction in HT22 cells. In conclusion, the present study suggested that the antidepressant effect of baicalin may be related to the enhancement of NIX-mediated mitophagy through activating the AMPK/PGC-1α pathway by directly binding to AMPK.
Collapse
Affiliation(s)
- Xiaohui Jin
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Leilei Zhu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shuaifei Lu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Caiyin Li
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ming Bai
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Erping Xu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiduo Shen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yucheng Li
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
138
|
Serotonin 5-HT 1B receptors mediate the antidepressant- and anxiolytic-like effects of ventromedial prefrontal cortex deep brain stimulation in a mouse model of social defeat. Psychopharmacology (Berl) 2022; 239:3875-3892. [PMID: 36282287 DOI: 10.1007/s00213-022-06259-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) delivered to the ventromedial prefrontal cortex (vmPFC) induces antidepressant- and anxiolytic-like responses in various animal models. Electrophysiology and neurochemical studies suggest that these effects may be dependent, at least in part, on the serotonergic system. In rodents, vmPFC DBS reduces raphe cell firing and increases serotonin (5-HT) release and the expression of serotonergic receptors in different brain regions. METHODS We examined whether the behavioural responses of chronic vmPFC DBS are mediated by 5-HT1A or 5-HT1B receptors through a series of experiments. First, we delivered stimulation to mice undergoing chronic social defeat stress (CSDS), followed by a battery of behavioural tests. Second, we measured the expression of 5-HT1A and 5-HT1B receptors in different brain regions with western blot. Finally, we conducted pharmacological experiments to mitigate the behavioural effects of DBS using the 5-HT1A antagonist, WAY-100635, or the 5-HT1B antagonist, GR-127935. RESULTS We found that chronic DBS delivered to stressed animals reduced the latency to feed in the novelty suppressed feeding test (NSF) and immobility in the forced swim test (FST). Though no significant changes were observed in receptor expression, 5-HT1B levels in DBS-treated animals were found to be non-significantly increased in the vmPFC, hippocampus, and nucleus accumbens and reduced in the raphe compared to non-stimulated controls. Finally, while animals given vmPFC stimulation along with WAY-100635 still presented significant responses in the NSF and FST, these were mitigated following GR-127935 administration. CONCLUSIONS The antidepressant- and anxiolytic-like effects of DBS in rodents may be partially mediated by 5-HT1B receptors.
Collapse
|
139
|
Jiang C, Wang H, Qi J, Li J, He Q, Wang C, Gao Y. Antidepressant effects of cherry leaf decoction on a chronic unpredictable mild stress rat model based on the Glu/GABA-Gln metabolic loop. Metab Brain Dis 2022; 37:2883-2901. [PMID: 36181653 DOI: 10.1007/s11011-022-01081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/04/2022] [Indexed: 01/10/2023]
Abstract
Cherry leaves (Prunus pseudocerasus Lindl. [Rosaceae]), a traditional Chinese herbal medicine, can regulate the factors closely related to depression including inflammatory cytokines, oxidative stress and blood glucose level. However, the antidepressant effects of cherry leaves and underlying neuromodulatory mechanisms remain relatively have not been elucidated explicitly. The present study investigated the antidepressant effects of cherry leaf decoction (CLD). The underlying neuromodulatory mechanism was explored by examining the glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop. The chronic unpredictable mild stress (CUMS) rodent model was used in this study. The main flavonoids components of CLD were identified using high-performance liquid chromatography (HPLC). The antidepressant effects of CLD were assessed throughout behavioural tests including the bodyweight, sucrose preference test (SPT), forced swimming test (FPT) and tail suspension test (TST). Moreover, The baseline levels of serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were quantified. The expression of proteins integrally involved in the Glu/GABA-Gln metabolic loop were observed and quantified by Western blotting, reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. This study found that CLD ameliorated depressive-like behaviours induced by CUMS. The increase of serum ACTH and CORT baseline levels induced by CUMS was also reversed after CLD intervention. Furthermore, CUMS reduced the expression of GAD65, GAD67, GLT-1, GS and GABAA and increased NMDAR1 levels in the rat hippocampus, which was normalized by CLD treatment. The findings demonstrated that CLD could ameliorate the depression-like behaviours induced by CUMS, potentially through the inhibition of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity and the regulation of Glu/GABA-Gln metabolic loop.
Collapse
Affiliation(s)
- Chuan Jiang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Hua Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Jiaying Qi
- Department of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Jinghan Li
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Qianqian He
- Department of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Chaonan Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China.
| | - Yonggang Gao
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China.
- Hebei Key Laboratory of Chinese Medicine Research On Cardio-Cerebrovascular Disease, Shijiazhuang, 050200, Hebei, People's Republic of China.
| |
Collapse
|
140
|
Zhang M, Zheng Y, Li X, Wu H, Liu P, Zhang K, Shi Z, Lv M, Wang F, Tang X. Tong-Xie-Yao-Fang alleviates diarrhea-predominant irritable bowel syndrome in rats via the GCN2/PERK-eIF2α-ATF4 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154350. [PMID: 36194974 DOI: 10.1016/j.phymed.2022.154350] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common functional gastrointestinal disease. Tong-Xie-Yao-Fang (TXYF), the traditional Chinese herbal medicine prescription, is a classic and effective prescription for the treatment of IBS-D, but its mechanism of action is not fully clarified. OBJECTIVE To evaluate the efficacy of TXYF in the treatment of IBS-D and to explore its potential mechanism of action. METHODS Changes in the serum levels of 50 free amino acids were targeted for detection by high-performance liquid chromatography (HPLC), and the expression of glucose-regulated protein 78 (GRP78), general control nonderepressible 2 (GCN2), and endoplasmic reticulum-resident kinase (PERK) was detected by immunohistochemistry examinations in healthy volunteers and IBS-D patients. The IBS-D rat was constructed by the three-factor superposition method of neonatal maternal separation, 2,4,6-trinitrobenzene sulfonic acid enema, and chronic unpredictable stress stimulation. The treatment effect of TXYF on IBS-D rats was observed by recording the body weight, grasp force, fecal water content (FWC), and abdominal withdrawal reflex (AWR) of rats before and after treatment. The effects of GCN2/PERK-eukaryotic initiation factor-2 (eIF2α) -activating transcription Factor 4 (ATF4) pathway proteins and gene expression were analyzed by western blotting, reverse transcription-polymerase chain reaction (RT-qPCR), and immunohistochemistry evaluations. RESULTS Compared with healthy volunteers, IBS-D patients exhibited lower levels of cysteine, γ-aminoacetic acid (GABA), homoproline, and lysine, and immunohistochemistry showed strong activation of GRP78, a marker of endoplasmic reticulum stress. Differential expression of GCN2 and PERK proteins was detected in IBS-D patients and rat colons. In the IBS-D rats, TXYF improved the body weight and grasp force, reduced the FWC, and improved the AWR score. TXYF increased the levels of p-GCN2 and GCN2 and reduced the levels of GRP78, p-PERK, PERK, p-eIF2α, and eIF2α, thereby affecting the expression of the apoptosis-related transcription factors ATF4, CHOP, Caspase-3, and Bcl-2. CONCLUSION Our study showed that TXYF improved IBS-D by inhibiting apoptosis. The anti-apoptosis effects were potentially mediated by regulating the GCN2/PERK-eIF2a-ATF4 signaling pathway.
Collapse
Affiliation(s)
- Min Zhang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yijun Zheng
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Haomeng Wu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Liu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kunli Zhang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongfei Shi
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Lv
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xudong Tang
- China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
141
|
Lu S, Li C, Jin X, Zhu L, Shen J, Bai M, Li Y, Xu E. Baicalin improves the energy levels in the prefrontal cortex of mice exposed to chronic unpredictable mild stress. Heliyon 2022; 8:e12083. [DOI: 10.1016/j.heliyon.2022.e12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/11/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
|
142
|
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. BIOLOGY 2022; 11:1621. [PMID: 36358321 PMCID: PMC9687170 DOI: 10.3390/biology11111621] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder. All animal models of depression have certain advantages and disadvantages. We often hear that the main drawback of the chronic unpredictable mild stress (CUMS) model of depression is its poor reproducibility, but rarely does anyone try to find the real causes and sources of such poor reproducibility. Analyzing the articles available in the PubMed database, we tried to identify the factors that may be the sources of the poor reproducibility of CUMS. Among such factors, there may be chronic sleep deprivation, painful stressors, social stress, the difference in sex and age of animals, different stress susceptibility of different animal strains, handling quality, habituation to stressful factors, various combinations of physical and psychological stressors in the CUMS protocol, the influence of olfactory and auditory stimuli on animals, as well as the possible influence of various other factors that are rarely taken into account by researchers. We assume that careful inspection of these factors will increase the reproducibility of the CUMS model between laboratories and allow to make the interpretation of the obtained results and their comparison between laboratories to be more adequate.
Collapse
|
143
|
Huang CX, Xiao Q, Zhang L, Gao Y, Ma J, Liang X, Tang J, Wang SR, Luo YM, Chao FL, Xiu Y, Tang Y. Stress-induced myelin damage in the hippocampal formation in a rat model of depression. J Psychiatr Res 2022; 155:401-409. [PMID: 36182770 DOI: 10.1016/j.jpsychires.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND According to previous studies, myelin damage may be involved in the occurrence of depression. However, to date, no study has quantitatively investigated the changes in myelinated fibers and myelin sheaths in the hippocampal formation (HF) and hippocampal subfields in the context of depression. METHODS Male Sprague-Dawley (SD) rats (aged 4-5 weeks) were evenly divided into the control group and chronic unpredictable stress (CUS) group. Behavioral tests were performed, and then changes in myelinated fibers and myelin ultrastructure in hippocampal subfields in depression model rats were investigated using modern stereological methods and transmission electron microscopy techniques. RESULTS After a four-week CUS protocol, CUS rats showed depressive-like and anxiety-like behaviors. The total length and total volume of myelinated fibers were reduced in the CA1 region and DG in the CUS group compared with the control group. The total volumes of myelin sheaths and axons in the CA1 region but not in the DG were significantly lower in the CUS group than in the control group. The decrease in the total length of myelinated nerve fibers in the CA1 region in CUS rats was mainly due to a decrease in the length of myelinated fibers with a myelin sheath thickness of 0.15 μm-0.20 μm. LIMITATIONS The exact relationship between the degeneration of myelin sheaths and depression-like, anxiety-like behaviors needs to be further investigated. CONCLUSIONS CUS induces depression- and anxiety-like behaviors, and the demyelination in the CA1 region induced by 4 weeks of CUS might be an important structural basis for these behaviors.
Collapse
Affiliation(s)
- Chun-Xia Huang
- Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China.
| | - Qian Xiao
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Radioactive Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Lei Zhang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Yuan Gao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Jing Ma
- Department of Anatomy, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Xin Liang
- Department of Pathophysiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Jing Tang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - San-Rong Wang
- Department of Rehabilitation, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Yan-Min Luo
- Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Feng-Lei Chao
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Yun Xiu
- Institute of Life Science, Chongqing Medical University, Chongqing, PR China
| | - Yong Tang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
144
|
Diet supplemented with African nutmeg (Monodora myristica) has antidepressant action in a rodent model of chronic unpredictable mild stress by regulating the vitamins, lymphocytes, platelets and immune organs. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
145
|
Aquino GA, Sousa CNS, Medeiros IS, Almeida JC, Cysne Filho FMS, Santos Júnior MA, Vasconcelos SMM. Behavioral alterations, brain oxidative stress, and elevated levels of corticosterone associated with a pressure injury model in male mice. J Basic Clin Physiol Pharmacol 2022; 33:789-801. [PMID: 34390639 DOI: 10.1515/jbcpp-2021-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/17/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Sustained stress can cause physiological disruption in crucial systems like the endocrine, autonomic, and central nervous system. In general, skin damages are physical stress present in hospitalized patients. Also, these pressure injuries lead to pathophysiological mechanisms involved in the neurobiology of mood disorders. Here, we aimed to investigate the behavioral alterations, oxidative stress, and corticosterone levels in the brain areas of mice submitted to the model of pressure injury (PI). METHODS The male mice behaviors were assessed in the open field test (OFT), elevated plus maze test (EPM), tail suspension test (TST), and sucrose preference test (SPT). Then, we isolated the prefrontal cortex (PFC), hippocampus (HP), and striatum (ST) by brain dissection. The nonprotein sulfhydryl groups (NP-SH) and malondialdehyde (MDA) were measured in the brain, and also the plasma corticosterone levels were verified. RESULTS PI model decreased the locomotor activity of animals (p<0.05). Considering the EPM test, the PI group showed a decrease in the open arm activity (p<0.01), and an increase in the closed arm activity (p<0.05). PI group showed an increment in the immobility time (p<0.001), and reduced sucrose consumption (p<0.0001) compared to the control groups. Regarding the oxidative/nitrosative profile, all brain areas from the PI group exhibited a reduction in the NP-SH levels (p<0.0001-p<0.01), and an increase in the MDA level (p<0.001-p<0.01). Moreover, the PI male mice presented increased levels of plasma corticosterone (p<0.05). CONCLUSIONS Our findings suggest that the PI model induces depressive and anxiety-like behaviors. Furthermore, it induces pathophysiological mechanisms like the neurobiology of depression.
Collapse
Affiliation(s)
- Gabriel A Aquino
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Caren N S Sousa
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ingridy S Medeiros
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Jamily C Almeida
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Francisco M S Cysne Filho
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Manuel A Santos Júnior
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Silvânia M M Vasconcelos
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
146
|
Li J, Zhu P, Li Y, Xiao K, Tang J, Liang X, Luo Y, Wang J, Deng Y, Jiang L, Xiao Q, Guo Y, Tang Y, Huang C. The liver X receptors agonist GW3965 attenuates depressive-like behaviors and suppresses microglial activation and neuroinflammation in hippocampal subregions in a mouse depression model. J Comp Neurol 2022; 530:2852-2867. [PMID: 35758275 DOI: 10.1002/cne.25380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022]
Abstract
Liver X receptors (LXRs) have recently been reported to be novel and potential targets for the reversal of depressive-like behaviors, but the mechanism remains unclear. Hippocampal neuroinflammation and impairment of the normal structure and function of microglia are closely associated with depression. To investigate the effects of LXRs agonist (GW3965) on neuroinflammation and microglia in the hippocampal formation of mice with chronic unpredictable stress (CUS)-induced depression, depressive-like behaviors were evaluated by behavioral tests, hippocampal LXRs gene expression were evaluated by qRT-PCR, the protein expression levels of interleukin-1β, tumor necrosis factor-α, inducible nitric oxide synthase, nuclear factor kappa B, and cluster of differentiation 206 were estimated by western blotting, modern stereological methods were used to precisely quantify the total number of microglia in each hippocampal subregion, and immunofluorescence was used to detect the density of activated microglia and the morphology of microglia. We found that GW3965 alleviated the depressive-like behavior induced by CUS, reversed the decrease in hippocampal LXRα and LXRβ induced by CUS, increased the protein expression of pro-inflammatory factors, and decreased the protein expression of antiinflammatory factors induced by CUS. Moreover, CUS intervention significantly increased the number of microglia in the CA1 region, CA2/3 region, and dentate gyrus and the density of activated microglia in the CA2/3 region and dentate gyrus and significantly decreased the endpoints of microglial branches and process length of microglia in the dentate gyrus, while 4 weeks of injections with GW3965 reversed these changes. These findings suggest that regulating the number, activated state, and morphology of microglia in hippocampal subregions might be an important basis for the antidepressant effects of LXRs.
Collapse
Affiliation(s)
- Jing Li
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Peilin Zhu
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yue Li
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Kai Xiao
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Pathophysiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yanmin Luo
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jin Wang
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yuhui Deng
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Lin Jiang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Radioactive Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yijing Guo
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chunxia Huang
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
147
|
Tian JS, Qin PF, Xu T, Gao Y, Zhou YZ, Gao XX, Qin XM, Ren Y. Chaigui granule exerts anti-depressant effects by regulating the synthesis of Estradiol and the downstream of CYP19A1-E2-ERKs signaling pathway in CUMS-induced depressed rats. Front Pharmacol 2022; 13:1005438. [PMID: 36353500 PMCID: PMC9637986 DOI: 10.3389/fphar.2022.1005438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 09/05/2023] Open
Abstract
Background: There is a significant gender difference in the prevalence of depression. Recent studies have shown that estrogen plays a crucial role in depression. Therefore, studying the specific mechanism of estrogen's role in depression can provide new ideas to address the treatment of depression. Chaigui granule has been shown to have exact antidepressant efficacy, and the contents of saikosaponin (a, b1, b2, d) and paeoniflorin in Chaigui granule are about 0.737% and 0.641%, respectively. Some studies have found that they can improve depression-induced decrease in testosterone (T) levels (∼36.99% decrease compared to control). However, whether Chaigui granule can exert antidepressant efficacy by regulating estrogen is still unclear. This study aimed to elucidate the regulation of estrogen levels by Chaigui granule and the underlying mechanism of its anti-depressant effect. Methods: Eighty-four male Sprague-Dawley (SD) rats were modeled using a chronic unpredictable mild stress (CUMS) procedure. The administration method was traditional oral gavage administration, and behavioral indicators were used to evaluate the anti-depressant effect of Chaigui granule. Enzyme-linked immunosorbent assay (ELISA) was adopted to assess the modulating impact of Chaigui granule on sex hormones. Then, reverse transcription-quantitative PCR (RT-qPCR), and Western blot (WB) techniques were employed to detect extracellular regulated protein kinases (ERK) signaling-related molecules downstream of estradiol in the hippocampus tissue. Results: The administration of Chaigui granule significantly alleviated the desperate behavior of CUMS-induced depressed rats. According to the results, we found that Chaigui granule could upregulate the level of estradiol (E2) in the serum (∼46.56% increase compared to model) and hippocampus (∼26.03% increase compared to model) of CUMS rats and increase the levels of CYP19A1 gene and protein, which was the key enzyme regulating the synthesis of T into E2 in the hippocampus. Chaigui granule was also found to have a significant back-regulatory effect on the gene and protein levels of ERβ, ERK1, and ERK2. Conclusion: Chaigui granule can increase the synthesis of E2 in the hippocampus of CUMS-induced depressed rats and further exert antidepressant effects by activating the CYP19A1-E2-ERKs signaling pathway.
Collapse
Affiliation(s)
- Jun-sheng Tian
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Peng-fei Qin
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Teng Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yu-zhi Zhou
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiao-xia Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xue-mei Qin
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yan Ren
- Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
148
|
Ugalde-Muñiz P, Hernández-Luna MG, García-Velasco S, Lugo-Huitrón R, Murcia-Ramírez J, Martínez-Tapia RJ, Noriega-Navarro R, Navarro L. Activation of dopamine D2 receptors attenuates neuroinflammation and ameliorates the memory impairment induced by rapid eye movement sleep deprivation in a murine model. Front Neurosci 2022; 16:988167. [PMID: 36278007 PMCID: PMC9579422 DOI: 10.3389/fnins.2022.988167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
The proinflammatory state, which may be induced by sleep deprivation, seems to be a determining factor in the development of neurodegenerative processes. Investigations of mechanisms that help to mitigate the inflammatory effects of sleep disorders are important. A new proposal involves the neurotransmitter dopamine, which may modulate the progression of the immune response by activating receptors expressed on immune cells. This study aimed to determine whether dopamine D2 receptor (D2DR) activation attenuates the proinflammatory response derived from rapid eye movement (REM) sleep deprivation in mice. REM sleep deprivation (RSD) was induced in 2-month-old male CD1 mice using the multiple platform model for three consecutive days; during this period, the D2DR receptor agonist quinpirole (QUIN) was administered (2 mg/kg/day i.p.). Proinflammatory cytokine levels were assessed in serum and homogenates of the brain cortex, hippocampus, and striatum using ELISAs. Long-term memory deficits were identified using the Morris water maze (MWM) and novel object recognition (NOR) tests. Animals were trained until learning criteria were achieved; then, they were subjected to RSD and treated with QUIN for 3 days. Memory evocation was determined afterward. Moreover, we found RSD induced anhedonia, as measured by the sucrose consumption test, which is commonly related to the dopaminergic system. Our data revealed increased levels of proinflammatory cytokines (TNFα and IL-1β) in both the hippocampus and serum from RSD mice. However, QUIN attenuated the increased levels of these cytokines. Furthermore, RSD caused a long-term memory evocation deficit in both the MWM and NOR tests. In contrast, QUIN coadministration during the RSD period significantly improved the performance of the animals. On the other hand, QUIN prevented the anhedonic condition induced by RSD. Based on our results, D2DR receptor activation protects against memory impairment induced by disturbed REM sleep by inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Perla Ugalde-Muñiz
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - María Guadalupe Hernández-Luna
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Stephany García-Velasco
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Rafael Lugo-Huitrón
- Laboratory of Behavioral Neurobiology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Jimena Murcia-Ramírez
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Ricardo Jesus Martínez-Tapia
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Roxana Noriega-Navarro
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Luz Navarro
- Laboratory of Neuroendocrinology, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
- *Correspondence: Luz Navarro,
| |
Collapse
|
149
|
Ma Q, Zhou J, Yang Z, Xue Y, Xie X, Li T, Yang Y. Mingmu Xiaoyao granules regulate the PI3K/Akt/mTOR signaling pathway to reduce anxiety and depression and reverse retinal abnormalities in rats. Front Pharmacol 2022; 13:1003614. [PMID: 36278192 PMCID: PMC9579374 DOI: 10.3389/fphar.2022.1003614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: To investigate the effects of Mingmu Xiaoyao granules (MMXY) on the morphology and function of the retina and the mechanism of PI3K/Akt/mTOR pathway-related proteins in rats with anxiety and depression induced by chronic unpredictable mild stress (CUMS). Methods: Fifty-two male Sprague Dawley rats were randomly allocated to either a control (n = 14) or a simulated CUMS group (n = 38). The CUMS model was established successfully at 4 weeks. Six rats in each group were randomly selected to be sacrificed and their retinas isolated for histological examination. At 5 weeks, rats in the CUMS group were randomly allocated to the following groups: Model (CUMS + pure water), MMXY-H (CUMS + MMXY 7.2 g/kg/d), MMXY-L (CUMS + MMXY 3.6 g/kg/d), and CBZ (CUMS + Carbamazepine 20 mg/kg/d), with eight rats in each group. All rats were given the relevant intervention once a day. At 12 weeks, sucrose preference and open field tests were performed to evaluate the anxiety and depression status of rats. In live rats, optical coherence tomography angiography was used to measure retinal thickness and blood flow, while electroretinograms (ERGs) and visual evoked potentials (VEPs) were used to evaluate retinal function. The next day, the specimens were sacrificed for serological, histological, immunofluorescence, Western blot and transmission electron microscopy examinations to explore the mechanism of MMXY in CUMS rats. Results: MMXY improved the anxiety and depression-like behavior of rats. Results of optical coherence tomography angiography showed that MMXY improved retinal inner thickness and blood flow in CUMS rats. MMXY improved the amplitude of a- and b-waves in the scotopic and photopic ERG, as well as N2 and P2 peak time and amplitude in the flash-VEP in CUMS rats. Retinal histological staining and transmission electron microscopy showed that MMXY reversed retinal morphology and ultrastructure in CUMS rats. MMXY reduced the expression of Beclin1 and LC3I/II proteins, regulated the PI3K/Akt/mTOR pathway, inhibited autophagy, and had a protective effect on the retina in CUMS rats. Conclusion: MMXY may effectively improve retinal morphology and function as well as anxiety and depression-like behaviors in CUMS rats by regulating the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Qiuyan Ma
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jian Zhou
- Ophthalmology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinran Xie
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Tiejun Li
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yingxin Yang
- Ophthalmology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- *Correspondence: Yingxin Yang,
| |
Collapse
|
150
|
Jiang X, Wu J, Tan B, Yan S, Deng N, Wei H. Effect of chronic unpredicted mild stress-induced depression on clopidogrel pharmacokinetics in rats. PeerJ 2022; 10:e14111. [PMID: 36213502 PMCID: PMC9536304 DOI: 10.7717/peerj.14111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Background Clopidogrel is widely used to prevent and treat cardiovascular atherosclerosis and thrombosis. However, disturbance in the expression and activity of liver cytochrome metabolic enzymes significantly changes clopidogrel efficacy. Therefore, the effect of chronic unpredictable mild stress (CUMS)-induced depression on the expression of liver cytochrome metabolic enzymes and clopidogrel pharmacokinetics in rats were explored. Methods Nine different CUMSs were selected to establish a rat model of depression. Open field experiment and sucrose preference test were applied to explore the depressive behaviors. The concentration of serotonin in the cortex of depressed rats was determined using enzyme linked immunosorbent assay (ELISA). All rats were given 10 mg/kg clopidogrel orally after 12 weeks, and blood samples were collected at different time points. The clopidogrel concentration and CYP2C19/ CYP2C9 activity in rat liver microsomes were assayed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The rat liver drug enzymes expression was determined by Real-Time Quantitative Reverse Transcription PCR (RT-qPCR). Results Open field experiment and sucrose preference test indicated the successful construction of the CUMS-induced depression model. The concentration of serotonin in the cortex of depressed rats decreased by 42.56% (∗∗ p < 0.01). The area under the curve of clopidogrel pharmacokinetics decreased by 33.13% (∗ p < 0.05) in the depression rats, while distribution volume and clearance increased significantly (∗∗ p < 0.01). The half-time and distribution volume did not significantly differ. The CYP2C19 and CYP2C9 activity of liver microsomes in the CUMS-induced depression group were significantly higher than that in the control group (∗∗ p < 0.01). CYP2C11 and CYP1A2 mRNA expression up-regulated approximately 1.3 - fold in the depressed rat livers compared with that in the control, whereas that of CYP2C13 was down-regulated by 27.43% (∗∗ p < 0.01). CYP3A1 and CYP2C12 expression were slightly up-regulated, and that of CES1 did not change. Conclusions These results indicated that CUMS-induced depression altered clopidogrel pharmacokinetics, and the change in CYP450 activity and expression in depressed rat livers might contribute to the disturbance of clopidogrel pharmacokinetics.
Collapse
Affiliation(s)
| | - Jing Wu
- Hunan Normal University, Changsha, Hunan, China
| | - Boyu Tan
- Department of Pharmacy, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sulan Yan
- Department of Cardiovascular, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Nan Deng
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| | - Hongyan Wei
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha, Hunan, China
| |
Collapse
|