101
|
Cai Q, Brissova M, Reinert RB, Pan FC, Brahmachary P, Jeansson M, Shostak A, Radhika A, Poffenberger G, Quaggin SE, Jerome WG, Dumont DJ, Powers AC. Enhanced expression of VEGF-A in β cells increases endothelial cell number but impairs islet morphogenesis and β cell proliferation. Dev Biol 2012; 367:40-54. [PMID: 22546694 PMCID: PMC3391601 DOI: 10.1016/j.ydbio.2012.04.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/13/2022]
Abstract
There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a "tet-on" inducible system (mice expressing rat insulin promoter-reverse tetracycline activator transgene and a tet-operon-angiogenic factor transgene) to increase the β cell production of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (Ang1), or angiopoietin-2 (Ang2) during islet cell differentiation and islet development. In VEGF-A overexpressing embryos, ECs began to accumulate around epithelial tubes residing in the central region of the developing pancreas (associated with endocrine cells) as early as embryonic day 12.5 (E12.5) and increased dramatically by E16.5. While α and β cells formed islet cell clusters in control embryos at E16.5, the increased EC population perturbed endocrine cell differentiation and islet cell clustering in VEGF-A overexpressing embryos. With continued overexpression of VEGF-A, α and β cells became scattered, remained adjacent to ductal structures, and never coalesced into islets, resulting in a reduction in β cell proliferation and β cell mass at postnatal day 1. A similar impact on islet morphology was observed when VEGF-A was overexpressed in β cells during the postnatal period. In contrast, increased expression of Ang1 or Ang2 in β cells in developing or adult islets did not alter islet differentiation, development, or morphology, but altered islet EC ultrastructure. These data indicate that (1) increased EC number does not promote, but actually impairs β cell proliferation and islet formation; (2) the level of VEGF-A production by islet endocrine cells is critical for islet vascularization during development and postnatally; (3) angiopoietin-Tie2 signaling in endothelial cells does not have a crucial role in the development or maintenance of islet vascularization.
Collapse
Affiliation(s)
- Qing Cai
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Rachel B. Reinert
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fong Cheng Pan
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Priyanka Brahmachary
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marie Jeansson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Alena Shostak
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Aramandla Radhika
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Susan E. Quaggin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - W. Gray Jerome
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel J. Dumont
- Division of Molecular and Cellular Biology Research, Sunnybrook Research Institute, Toronto, Ontario, Canada, M4N 3M5
| | - Alvin C. Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
102
|
Banerjee M, Virtanen I, Palgi J, Korsgren O, Otonkoski T. Proliferation and plasticity of human beta cells on physiologically occurring laminin isoforms. Mol Cell Endocrinol 2012; 355:78-86. [PMID: 22314207 DOI: 10.1016/j.mce.2012.01.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 11/17/2022]
Abstract
We have previously characterized the molecular composition of human islet basement membranes and shown that human beta cells bind to laminin 511 (LM511) through integrin α3β1 and Lutheran glycoprotein. We have now investigated the impact of physical contact between cultured human beta cells and the laminin isoforms occurring in their natural niche. Human islet preparations derived from 15 donors were used, beta cells and duct cells were purified by magnetic sorting. Overall beta-cell proliferation was low or undetectable. However, in many experiments the only proliferating beta cells were detected in contact with the laminin isoforms that are found in the human islets in vivo (511 and 411). Purified ductal and beta cells underwent epithelial-mesenchymal transition (EMT). LM511 partially blocked this dedifferentiation of purified beta cells, and did not affect purified duct cells. Interactions with the surrounding basement membrane are important for the growth and function of human beta cells. However, only a very limited level of beta-cell proliferation can be induced by exogenous factors. LM511 may be a useful substrate for human beta-cell maintenance in vitro.
Collapse
Affiliation(s)
- Meenal Banerjee
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
103
|
Lau J, Svensson J, Grapensparr L, Johansson Å, Carlsson PO. Superior beta cell proliferation, function and gene expression in a subpopulation of rat islets identified by high blood perfusion. Diabetologia 2012; 55:1390-9. [PMID: 22311418 DOI: 10.1007/s00125-012-2476-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/10/2012] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS The blood perfusion of individual pancreatic islets is highly variable, with a subgroup of islets having high perfusion and blood vessels responsive to further blood flow increase induced by glucose. This study tested the hypothesis that there is heterogeneity between islets with regard to beta cell proliferation, function and gene expression based on differences in their blood perfusion. METHODS Fluorescent microspheres were injected into the ascending aorta, and then microsphere-containing and non-microsphere-containing pancreatic islets were isolated for investigation. By this procedure, the 5% of islets with the greatest blood perfusion were identified for study. Islet endothelial cells were isolated separately to investigate the role of improved vascular support in the observed differences. RESULTS The vascular network was found to be more dense and tortuous in microsphere-containing than other islets. The most highly blood-perfused islets also had a higher rate of beta cell proliferation, superior beta cell function and a markedly different gene expression from other islets. Cultured islets exposed to islet endothelial cell products had a similarly increased beta cell proliferation rate, yet significantly fewer changes in gene expression than observed in the most highly blood-perfused islets. CONCLUSIONS/INTERPRETATION A novel heterogeneity between islets was observed, with superior beta cell proliferation, function and gene expression in a subpopulation of islets identified by high blood perfusion. In contrast with a previously described population of low-oxygenated, sleeping islets, which are recruited into functionality when needed, the presently described heterogeneity is shown to remain in vitro after islet isolation.
Collapse
Affiliation(s)
- J Lau
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Box 571, SE-75123 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
104
|
Rutti S, Sauter NS, Bouzakri K, Prazak R, Halban PA, Donath MY. In vitro proliferation of adult human beta-cells. PLoS One 2012; 7:e35801. [PMID: 22563404 PMCID: PMC3338526 DOI: 10.1371/journal.pone.0035801] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/22/2012] [Indexed: 01/09/2023] Open
Abstract
A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1) analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide. Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched (“beta-cells”) population were plated on extracellular matrix from rat (804G) and human bladder carcinoma cells (HTB9) or bovine corneal endothelial ECM (BCEC). Cells were maintained in culture+/−liraglutide for 4 days in the presence of BrdU. Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted) or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted), independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05). These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.
Collapse
Affiliation(s)
- Sabine Rutti
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
105
|
Kang S, Park HS, Jo A, Hong SH, Lee HN, Lee YY, Park JS, Jung HS, Chung SS, Park KS. Endothelial progenitor cell cotransplantation enhances islet engraftment by rapid revascularization. Diabetes 2012; 61:866-76. [PMID: 22362173 PMCID: PMC3314353 DOI: 10.2337/db10-1492] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Impaired revascularization of transplanted islets is a critical problem that leads to progressive islet loss. Since endothelial progenitor cells (EPCs) are known to aid neovascularization, we aimed to enhance islet engraftment by cotransplanting EPCs with islets. Porcine islets, with (islet-EPC group) or without (islet-only group) human cord blood-derived EPCs, were transplanted into diabetic nude mice. The islet-EPC group reached euglycemia by ∼11 days posttransplantation, whereas the islet-only group did not. Also, the islet-EPC group had a higher serum porcine insulin level than the islet-only group. Islets from the islet-EPC group were more rapidly revascularized at the early period of transplantation without increment of final capillary density at the fully revascularized graft. Enhanced revascularization rate in the islet-EPC group was mainly attributed to stimulating vascular endothelial growth factor-A production from the graft. The rapid revascularization by EPC cotransplantation led to better graft perfusion and recovery from hypoxia. EPC cotransplantation was also associated with greater β-cell proliferation, probably by more basement membrane production and hepatocyte growth factor secretion. In conclusion, cotransplantation of EPCs and islets induces better islet engraftment by enhancing the rate of graft revascularization. These findings might provide a directly applicable tool to enhance the efficacy of islet transplantation in clinical practice.
Collapse
Affiliation(s)
- Shinae Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Walpita D, Hasaka T, Spoonamore J, Vetere A, Takane KK, Fomina-Yadlin D, Fiaschi-Taesch N, Shamji A, Clemons PA, Stewart AF, Schreiber SL, Wagner BK. A human islet cell culture system for high-throughput screening. ACTA ACUST UNITED AC 2011; 17:509-18. [PMID: 22156222 DOI: 10.1177/1087057111430253] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A small-molecule inducer of beta-cell proliferation in human islets represents a potential regeneration strategy for treating type 1 diabetes. However, the lack of suitable human beta cell lines makes such a discovery a challenge. Here, we adapted an islet cell culture system to high-throughput screening to identify such small molecules. We prepared microtiter plates containing extracellular matrix from a human bladder carcinoma cell line. Dissociated human islets were seeded onto these plates, cultured for up to 7 days, and assessed for proliferation by simultaneous Ki67 and C-peptide immunofluorescence. Importantly, this environment preserved beta-cell physiological function, as measured by glucose-stimulated insulin secretion. Adenoviral overexpression of cdk-6 and cyclin D(1), known inducers of human beta cell proliferation, was used as a positive control in our assay. This induction was inhibited by cotreatment with rapamycin, an immunosuppressant often used in islet transplantation. We then performed a pilot screen of 1280 compounds, observing some phenotypic effects on cells. This high-throughput human islet cell culture method can be used to assess various aspects of beta-cell biology on a relatively large number of compounds.
Collapse
Affiliation(s)
- Deepika Walpita
- Chemical Biology Program, Broad Institute, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Pancreatic islet transplantation is a therapeutic option to replace destroyed β cells in autoimmune diabetes. Islets are transplanted into the liver via the portal vein; however, inflammation, the required immunosuppression, and lack of vasculature decrease early islet viability and function. Therefore, the use of accessory therapy and biomaterials to protect islets and improve islet function has definite therapeutic potential. Here we review the application of niche accessory cells and factors, as well as the use of biomaterials as carriers or capsules, for pancreatic islet transplantation.
Collapse
Affiliation(s)
- Danielle J. Borg
- Preclinical Approaches to Stem Cell Therapy/Diabetes, Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Tatzberg 47/49, 01307 Dresden, Germany
| | - Ezio Bonifacio
- Preclinical Approaches to Stem Cell Therapy/Diabetes, Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Tatzberg 47/49, 01307 Dresden, Germany
| |
Collapse
|
108
|
Zhao Y, Jiang Z, Guo C. New hope for type 2 diabetics: targeting insulin resistance through the immune modulation of stem cells. Autoimmun Rev 2011; 11:137-42. [PMID: 21964164 DOI: 10.1016/j.autrev.2011.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 09/11/2011] [Indexed: 12/13/2022]
Abstract
The prevalence of type 2 diabetes (T2D) is increasing worldwide, highlighting the need for a better understanding of the pathogenesis of the disease and the development of innovative therapeutic approaches for the prevention and cure of the condition. Mounting evidence points to the involvement of immune dysfunction in insulin resistance in T2D, suggesting that immune modulation may be a useful tool in treating the disease. Recent advances in the use of adult stem cells from human umbilical cord blood and bone marrow for immune modulation hold promise for overcoming immune dysfunction in T2D without many of the complications associated with traditional immunosuppressive therapies. This review focuses on recent progress in the use of immune modulation in T2D and discusses the potential for future therapies. New insights are provided on the use of cord blood-derived multipotent stem cells (CB-SC) in T2D.
Collapse
Affiliation(s)
- Yong Zhao
- Section of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
109
|
Cheng JYC, Raghunath M, Whitelock J, Poole-Warren L. Matrix components and scaffolds for sustained islet function. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:235-47. [PMID: 21476869 DOI: 10.1089/ten.teb.2011.0004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The clinical treatment of diabetes by islet transplantation is limited by low islet survival rates. A fundamental reason for this inefficiency is likely due to the removal of islets from their native environment. The isolation process not only disrupts interactions between blood vessels and endocrine cells, but also dramatically changes islet cell interaction with the extracellular matrix (ECM). Biomolecular cues from the ECM are important for islet survival, proliferation, and function; however, very little is known about the composition of islet ECM and the role each component plays. Without a thorough understanding of islet ECM, current endeavors to prolong islet survival via scaffold engineering lack a systematic basis. The following article reviews current knowledge of islet ECM and attempts to explain the roles they play in islet function. In addition, the effects of in vitro simulations of the native islet scaffold will be evaluated. Greater understanding in these areas will provide a preliminary platform from which a sustainable bioartificial pancreas may be developed.
Collapse
Affiliation(s)
- Jennifer Y C Cheng
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
110
|
Levitt HE, Cyphert TJ, Pascoe JL, Hollern DA, Abraham N, Lundell RJ, Rosa T, Romano LC, Zou B, O'Donnell CP, Stewart AF, Garcia-Ocaña A, Alonso LC. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice. Diabetologia 2011; 54:572-82. [PMID: 20936253 PMCID: PMC3034833 DOI: 10.1007/s00125-010-1919-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 08/31/2010] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS We determined whether hyperglycaemia stimulates human beta cell replication in vivo in an islet transplant model METHODS Human islets were transplanted into streptozotocin-induced diabetic NOD-severe combined immunodeficiency mice. Blood glucose was measured serially during a 2 week graft revascularisation period. Engrafted mice were then catheterised in the femoral artery and vein, and infused intravenously with BrdU for 4 days to label replicating beta cells. Mice with restored normoglycaemia were co-infused with either 0.9% (wt/vol.) saline or 50% (wt/vol.) glucose to generate glycaemic differences among grafts from the same donors. During infusions, blood glucose was measured daily. After infusion, human beta cell replication and apoptosis were measured in graft sections using immunofluorescence for insulin, and BrdU or TUNEL. RESULTS Human islet grafts corrected diabetes in the majority of cases. Among grafts from the same donor, human beta cell proliferation doubled in those exposed to higher glucose relative to lower glucose. Across the entire cohort of grafts, higher blood glucose was strongly correlated with increased beta cell replication. Beta cell replication rates were unrelated to circulating human insulin levels or donor age, but tended to correlate with donor BMI. Beta cell TUNEL reactivity was not measurably increased in grafts exposed to elevated blood glucose. CONCLUSIONS/INTERPRETATION Glucose is a mitogenic stimulus for transplanted human beta cells in vivo. Investigating the underlying pathways may point to mechanisms capable of expanding human beta cell mass in vivo.
Collapse
Affiliation(s)
- H E Levitt
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, 200 Lothrop St, BST E1140, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
McCarthy RC, Breite AG, Green ML, Dwulet FE. Tissue dissociation enzymes for isolating human islets for transplantation: factors to consider in setting enzyme acceptance criteria. Transplantation 2011; 91:137-45. [PMID: 21116222 PMCID: PMC3022104 DOI: 10.1097/tp.0b013e3181ffff7d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue dissociation enzymes are critical reagents that affect the yield and quality of human pancreatic islets required for islet transplantation. The United States Food and Drug Administration's oversight of this procedure recommends laboratories to set acceptance criteria for enzymes used in the manufacture of islet products for transplantation. Currently, many laboratories base this selection on personal experience because biochemical analysis is not predictive of success of the islet isolation procedure. This review identifies the challenges of correlating results from enzyme biochemical analysis to their effectiveness in human islet isolation and suggests a path forward to address these challenges to improve control of the islet manufacturing process.
Collapse
|
112
|
Zhao Y, Mazzone T. Human cord blood stem cells and the journey to a cure for type 1 diabetes. Autoimmun Rev 2010; 10:103-7. [PMID: 20728583 DOI: 10.1016/j.autrev.2010.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/15/2010] [Indexed: 12/22/2022]
Abstract
Umbilical cord blood contains several types of stem cells that are of interest to a wide range of disciplines in regenerative medicine. The translational potential to the clinical applications of cord blood stem cells has increased enormously in recent years, mainly because of its advantages including no risk to the donor, no ethical issues, low risk of graft-versus-host disease (GVHD) and rapid availability. Type 1 diabetes (T1D) is an autoimmune disease caused by an autoimmune destruction of pancreatic islet β cells. Understanding the nature and function of cord blood stem cells is an exciting challenge that might set the stage for new approaches to the treatment of T1D. Here, we review progress in this field and draw conclusions for the development of future therapeutics in T1D. New insights are provided on a unique type of cord blood-derived multipotent stem cells (CB-SC), including the molecular mechanisms underlying immune modulation by CB-SC, protection of β-cell mass, and promotion of islet β-cell neogenesis.
Collapse
Affiliation(s)
- Yong Zhao
- Section of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
113
|
Eberhard D, Kragl M, Lammert E. 'Giving and taking': endothelial and beta-cells in the islets of Langerhans. Trends Endocrinol Metab 2010; 21:457-63. [PMID: 20359908 DOI: 10.1016/j.tem.2010.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/26/2010] [Accepted: 03/03/2010] [Indexed: 02/04/2023]
Abstract
The beta-cells of the islets of Langerhans are embedded in a dense capillary network. The blood vessels supply the islet cells with nutrients and oxygen, and in turn take up the secreted islet hormones to deliver them to target tissues. In addition, vessels provide a basement membrane, which optimizes islet function. In this review we focus on the dynamic interactions between blood vessels and beta-cells, which are pivotal for enhancing insulin expression and beta-cell proliferation in response to increased insulin demand during body growth, pregnancy, and virtually all conditions associated with insulin resistance. Importantly, a failure in this adaptive response might contribute to the onset of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Daniel Eberhard
- Institute for Metabolic Physiology, Heinrich-Heine-University of Düsseldorf, Building 26.12. 00, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
114
|
Richards OC, Raines SM, Attie AD. The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action. Endocr Rev 2010; 31:343-63. [PMID: 20164242 PMCID: PMC3365844 DOI: 10.1210/er.2009-0035] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/17/2009] [Indexed: 02/08/2023]
Abstract
The pathogenesis of type 2 diabetes is intimately intertwined with the vasculature. Insulin must efficiently enter the bloodstream from pancreatic beta-cells, circulate throughout the body, and efficiently exit the bloodstream to reach target tissues and mediate its effects. Defects in the vasculature of pancreatic islets can lead to diabetic phenotypes. Similarly, insulin resistance is accompanied by defects in the vasculature of skeletal muscle, which ultimately reduce the ability of insulin and nutrients to reach myocytes. An underappreciated participant in these processes is the vascular pericyte. Pericytes, the smooth muscle-like cells lining the outsides of blood vessels throughout the body, have not been directly implicated in insulin secretion or peripheral insulin delivery. Here, we review the role of the vasculature in insulin secretion, islet function, and peripheral insulin delivery, and highlight a potential role for the vascular pericyte in these processes.
Collapse
Affiliation(s)
- Oliver C Richards
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
115
|
Kaido TJ, Yebra M, Kaneto H, Cirulli V, Hayek A, Montgomery AMP. Impact of integrin-matrix interaction and signaling on insulin gene expression and the mesenchymal transition of human beta-cells. J Cell Physiol 2010; 224:101-11. [PMID: 20232313 DOI: 10.1002/jcp.22101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A critical shortage of donor pancreata currently prevents the development of a universal cell-based therapy for type I diabetes. The ex vivo expansion of insulin-producing beta-cells offers a potential solution but is problematic due to the inherent tendency of these cells to transition into mesenchymal-like cells that are devoid of function. Here, we demonstrate for the first time that exposure to elements of the extracellular matrix (ECM) directly potentiates the mesenchymal transition of cultured fetal beta-cells and causes associated declines in insulin gene expression. Individual ECM constituents varied in their ability to induce such responses, with collagen-IV (C-IV) and fibronectin inducing strong responses, whereas laminin-1 had no significant effect. Mesenchymal transition and concomitant losses in insulin gene expression observed on C-IV were found to be dependent on beta(1)-integrin ligation and were augmented in the presence of hepatocyte growth factor. Importantly, selective inhibition of c-Src, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) prior to exposure to C-IV prevented mesenchymal transition and effectively preserved insulin expression. Fetal beta-cells undergoing mesenchymal transition were found to acquire alpha(1)beta(1) expression, and ligation of this integrin then promotes declines in insulin gene expression and a marked increase in beta-cell motility. Inhibition of Src-, ERK-, or JNK-dependent signaling combined with the selective regulation of matrix exposure may ultimately facilitate the development of more effective beta-cell expansion protocols.
Collapse
Affiliation(s)
- Thomas J Kaido
- Department of Pediatrics, The Pediatric Diabetes Research Center, The University of California at San Diego, San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
116
|
Microscopic anatomy of the human islet of Langerhans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:1-19. [PMID: 20217491 DOI: 10.1007/978-90-481-3271-3_1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human islets of Langerhans are complex micro-organs responsible for maintaining glucose homeostasis. Islets contain five different endocrine cell types, which react to changes in plasma nutrient levels with the release of a carefully balanced mixture of islet hormones into the portal vein. Each endocrine cell type is characterized by its own typical secretory granule morphology, different peptide hormone content, and specific endocrine, paracrine, and neuronal interactions. During development, a cascade of transcription factors determines the formation of the endocrine pancreas and its constituting islet cell types. Differences in ontogeny between the ventrally derived head section and the dorsally derived head, body, and tail section are responsible for differences in innervation, blood supply, and endocrine composition. Islet cells show a close topographical relationship to the islet vasculature, and are supplied with a five to tenfold higher blood flow than the exocrine compartment. Islet microanatomy is disturbed in patients with type 1 diabetes, with a marked reduction in beta-cell content and the presence of inflammatory infiltrates. Histopathological lesions in type 2 diabetes are less pathognomonic with a more limited reduction in beta-cell content and occasional deposition of amyloid in the islet interstitial space.
Collapse
|
117
|
Basement membrane in pancreatic islet function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:217-34. [PMID: 20217500 DOI: 10.1007/978-90-481-3271-3_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Clinical treatment of diabetic patients by islet transplantation faces various complications. At present, in vitro expansion of islets occurs at the cost of their essential features, which are insulin production and release. However, the recent discovery of blood vessel/beta-cell interactions as an important aspect of insulin transcription, secretion, and proliferation might point us to ways of how this problem could be overcome. The correct function of beta-cells depends on the presence of a basement membrane, a specialized extracellular matrix located around the blood vessel wall in mouse and human pancreatic islets. In this chapter, we summarize how the vascular basement membrane influences insulin transcription, insulin secretion, and beta-cell proliferation. In addition, a brief overview about basement membrane components and their interactions with cell surface receptors is given.
Collapse
|
118
|
Armanet M, Wojtusciszyn A, Morel P, Parnaud G, Rousselle P, Sinigaglia C, Berney T, Bosco D. Regulated laminin-332 expression in human islets of Langerhans. FASEB J 2009; 23:4046-55. [PMID: 19667121 DOI: 10.1096/fj.08-127142] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Laminin-332 (LN-332) is a basement membrane component known to exert a beneficial effect on rat pancreatic beta cells in vitro. In this work, we analyzed the expression of LN-332 in human islets, its expression after inflammatory insults by cytokines, and the molecular mechanisms responsible for this effect. By Western blotting and RT-PCR, we showed that LN-332 was expressed in isolated human islets. By immunofluorescence on pancreas sections, we observed that labeling was confined to endocrine cells in islets. Confocal microscopy analysis on isolated islet cells revealed that labeling was granular but did not colocalize with hormone secretory granules. LN-332 was most abundant in cultured islets compared to freshly isolated islets and was found in culture medium, which suggests that it was secreted by islets. When islets were exposed to interleukin (IL)-1beta, expression and secretion of LN-332 increased as compared to control. No effect was observed with tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma. LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K) activity, inhibited culture- and IL-1beta-induced LN-332 expression in islets. These results show that LN-332, known to have some beneficial effect on beta cells in vitro, is produced and secreted by endocrine islet cells and is up-regulated by stressing conditions such as culture and IL-1beta-exposure.
Collapse
Affiliation(s)
- Mathieu Armanet
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, 1211 Geneva-4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Johansson A, Lau J, Sandberg M, Borg LAH, Magnusson PU, Carlsson PO. Endothelial cell signalling supports pancreatic beta cell function in the rat. Diabetologia 2009; 52:2385-94. [PMID: 19669728 DOI: 10.1007/s00125-009-1485-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 07/14/2009] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS The proximity of endothelial cells and beta cells in islets by necessity means that they are exposed to each other's products. Whereas islet endothelial cells require signals from beta cells to function properly, endothelin-1, thrombospondin-1 and laminins, among others, have been identified as endothelial-derived molecules, although their full effects on beta cells have not been explored. We tested the hypothesis that islet endothelial-derived products affect beta cell function. METHODS Endothelial cells from rat islets were proliferated and purified. Endothelium-conditioned culture medium (ECCM) was obtained by maintaining the endothelial cells in culture medium. Islet function was evaluated following exposure of cultured islets to standard culture medium or ECCM. Changes in mRNA levels for key beta cell metabolic enzymes were also measured in islets after ECCM exposure. RESULTS Glucose-stimulated insulin release and islet insulin content were markedly enhanced by exposure to ECCM. This was at least partly explained by improved mitochondrial function, as assessed by glucose oxidation and an upregulation of the mitochondrial gene for glycerol-3-phosphate dehydrogenase (mGpdh [also known as Gpd2]), combined with upregulation of the rate-limiting enzyme in the glycolysis, glucokinase, in the islets. The intracellular degradation of insulin was also decreased in the islets. Islet endothelial cells produced laminins, and the positive effects of islet endothelial cells were prevented by addition of a neutralising antibody to the beta1-chain of laminin. Addition of exogenous laminin stimulated islet function. CONCLUSIONS/INTERPRETATION This study provides proof of principle that endothelial cells can affect the function of beta cells in their vicinity and that this is at least partially mediated by laminins.
Collapse
Affiliation(s)
- A Johansson
- Department of Medical Cell Biology, Uppsala University, Box 571, SE-751 23 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
120
|
Stendahl JC, Kaufman DB, Stupp SI. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant 2009; 18:1-12. [PMID: 19476204 DOI: 10.3727/096368909788237195] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intrahepatic islet transplantation provides a potentially more benign alternative to pancreatic transplantation. However, islet transplants are associated with limited engraftment potential. This inefficiency is likely at least partially attributable to the isolation process, which removes islets from their native environment. Isolation not only disrupts the internal vascularization and innervation of islets, but also fundamentally changes interactions between islet cells and macromolecules of the extracellular matrix (ECM). Signaling interactions between islet cells and ECM are known to regulate multiple aspects of islet physiology, including survival, proliferation, and insulin secretion. Although it is highly likely that disruptions to these interactions during isolation significantly affect transplant outcomes, the true implications of these conditions are not well understood. The following article reviews current understandings and uncertainties in islet-ECM interactions and explains their potential impact on posttransplant engraftment. Topics covered include matrix and receptor compositions in native islets, effects of isolation and culture on islet-ECM interactions, and potential for postisolation restoration of islet-ECM interactions. Greater understanding in these areas may help to reduce isolation and transplantation stresses and improve islet engraftment.
Collapse
Affiliation(s)
- John C Stendahl
- Institute for BioNanotechnology in Advanced Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
121
|
Abstract
Pancreatic islets are highly vascularized micro-organs. Approximately 10% of an islet consists of blood vessels. The induction and maintenance of the islet vascular system depend on VEGF secreted from β-cells. VEGF is also critical for the phenotype of the islet vasculature by induction of a vast number of fenestrae. The islet vasculature serves the role of supplying the endocrine cells with oxygen and nutrients, but may also be important for proper glucose sensing of the cells, for paracrine support of endocrine function and growth, and for drainage of metabolites and secreted islet hormones into the systemic circulation. Emerging evidence suggests an important role of islet endothelial cells to maintain β-cell function and growth by secretion of molecules such as hepatocyte growth factor, thrombospondin-1 and laminins, thereby forming a vascular niche for the endocrine cells.
Collapse
Affiliation(s)
- Johan Olerud
- a Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Åsa Johansson
- a Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- b Department of Medical Sciences, Section for Endocrinology and Diabetology, Uppsala University Hospital, Uppsala, Sweden and Department of Medical Cell Biology, Husargatan 3, Box 571, SE-75123, Uppsala, Sweden.
| |
Collapse
|
122
|
Vuoristo S, Virtanen I, Takkunen M, Palgi J, Kikkawa Y, Rousselle P, Sekiguchi K, Tuuri T, Otonkoski T. Laminin isoforms in human embryonic stem cells: synthesis, receptor usage and growth support. J Cell Mol Med 2008; 13:2622-2633. [PMID: 19397785 DOI: 10.1111/j.1582-4934.2008.00643.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To reveal the functional intrinsic niche of human embryonic stem cells (hESC) we examined the production of basement membrane (BM) proteins and the presence of their receptors in feeder-free cell culture conditions. In addition, we investigated binding of hESCs to purified human BM proteins and identified the receptors mediating these contacts. Also, we tested whether purified human laminin (Lm) isoforms have a role in hESC self-renewal and growth in short-term cultures. The results show that hESCs synthesize Lm alpha(1) and Lm alpha(5) chains together with Lm beta(1) and gamma(1) chains suggesting the production of Lms-111 and -511 into the culture medium and deposits on cells. hESCs contain functionally important integrin (Int) subunits, Int beta(1), alpha(3), alpha(6), alpha(5), beta(5) and alpha(V), as well as the Lm alpha(5) receptor, Lutheran (Lu) glycoprotein and its truncated form, basal cell adhesion molecule (B-CAM). In cell adhesion experiments, Int beta(1) was crucial for adhesion to most of the purified human BM proteins. Lu/B-CAM mediated adhesion to Lm-511 together with Int alpha(3)beta(1), and was essential for the adhesion of hESCs to embryonic feeder cells. Adhesion to Lm-411 was mediated by Int alpha(6)beta(1). Lm-511 supported hESC growth in defined medium equally well as Matrigel. These results provide consequential information of the biological role of BM in hESCs, warranting further investigation of BM biology of human pluripotent stem cells.
Collapse
Affiliation(s)
- Sanna Vuoristo
- Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland.,Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | - Ismo Virtanen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Minna Takkunen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Jaan Palgi
- Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Yamato Kikkawa
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Patricia Rousselle
- Institut de Biologie et Chimie des Protéines, Unité Mixte de Recherche, Institut Fédératif de Recherche BioSciences Lyon-Gerland, Lyon, France
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Timo Tuuri
- Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland.,Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| |
Collapse
|
123
|
Otonkoski T, Banerjee M, Korsgren O, Thornell LE, Virtanen I. Unique basement membrane structure of human pancreatic islets: implications for beta-cell growth and differentiation. Diabetes Obes Metab 2008; 10 Suppl 4:119-27. [PMID: 18834439 DOI: 10.1111/j.1463-1326.2008.00955.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Basement membranes (BMs) are an important part of the physiological microenvironment of pancreatic islet cells. In mouse islets, beta-cells interact directly with BMs of capillary endothelial cells. We have shown that in the human islets, the capillaries are surrounded by a double BM both in foetal and adult tissues. The endocrine islet cells are facing a BM that is separate from the endothelia. Laminins are the functionally most important component of BMs. The only laminin isoform present in the human endocrine islet BM is laminin-511 (previously known as laminin 10). The islet cells facing this BM have a strong and polarized expression of Lutheran glycoprotein, which is a well-known receptor for the laminin alpha 5 chain. Dispersed human islet cells adhere to purified human laminin-511 and the binding is equally effectively blocked by a soluble form of Lutheran as by antibody against integrin beta1. Our results reveal unique features of the BM structure of human islets, different from rodents. This information has potentially important implications for the generation of an optimal microenvironment for beta-cell function, proliferation and differentiation.
Collapse
Affiliation(s)
- T Otonkoski
- Biomedicum Stem Cell Center and Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
124
|
Irving-Rodgers HF, Ziolkowski AF, Parish CR, Sado Y, Ninomiya Y, Simeonovic CJ, Rodgers RJ. Molecular composition of the peri-islet basement membrane in NOD mice: a barrier against destructive insulitis. Diabetologia 2008; 51:1680-8. [PMID: 18633594 PMCID: PMC2516190 DOI: 10.1007/s00125-008-1085-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/19/2008] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS This study examined whether the capsule which encases islets of Langerhans in the NOD mouse pancreas represents a specialised extracellular matrix (ECM) or basement membrane that protects islets from autoimmune attack. METHODS Immunofluorescence microscopy using a panel of antibodies to collagens type IV, laminins, nidogens and perlecan was performed to localise matrix components in NOD mouse pancreas before diabetes onset, at onset of diabetes and after clinical diabetes was established (2-8.5 weeks post-onset). RESULTS Perlecan, a heparan sulphate proteoglycan that is characteristic of basement membranes and has not previously been investigated in islets, was localised in the peri-islet capsule and surrounding intra-islet capillaries. Other components present in the peri-islet capsule included laminin chains alpha2, beta1 and gamma1, collagen type IV alpha1 and alpha2, and nidogen 1 and 2. Collagen type IV alpha3-alpha6 were not detected. These findings confirm that the peri-islet capsule represents a specialised ECM or conventional basement membrane. The islet basement membrane was destroyed in islets where intra-islet infiltration of leucocytes marked the progression from non-destructive to destructive insulitis. No changes in basement membrane composition were observed before leucocyte infiltration. CONCLUSIONS/INTERPRETATION These findings suggest that the islet basement membrane functions as a physical barrier to leucocyte migration into islets and that degradation of the islet basement membrane marks the onset of destructive autoimmune insulitis and diabetes development in NOD mice. The components of the islet basement membrane that we identified predict that specialised degradative enzymes are likely to function in autoimmune islet damage.
Collapse
Affiliation(s)
- H. F. Irving-Rodgers
- Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, The University of Adelaide, Adelaide, SA 5005 Australia
| | - A. F. Ziolkowski
- The Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT Australia
| | - C. R. Parish
- The Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT Australia
| | - Y. Sado
- Division of Immunology, Shigei Medical Research Institute, Okayama, Japan
| | - Y. Ninomiya
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama, Japan
| | - C. J. Simeonovic
- The Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT Australia
| | - R. J. Rodgers
- Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, The University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|