101
|
In Silico Comparison Shows that the Pan-Genome of a Dairy-Related Bacterial Culture Collection Covers Most Reactions Annotated to Human Microbiomes. Microorganisms 2020; 8:microorganisms8070966. [PMID: 32605102 PMCID: PMC7409220 DOI: 10.3390/microorganisms8070966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023] Open
Abstract
The diversity of the human microbiome is positively associated with human health. However, this diversity is endangered by Westernized dietary patterns that are characterized by a decreased nutrient variety. Diversity might potentially be improved by promoting dietary patterns rich in microbial strains. Various collections of bacterial cultures resulting from a century of dairy research are readily available worldwide, and could be exploited to contribute towards this end. We have conducted a functional in silico analysis of the metagenome of 24 strains, each representing one of the species in a bacterial culture collection composed of 626 sequenced strains, and compared the pathways potentially covered by this metagenome to the intestinal metagenome of four healthy, although overweight, humans. Remarkably, the pan-genome of the 24 strains covers 89% of the human gut microbiome’s annotated enzymatic reactions. Furthermore, the dairy microbial collection covers biological pathways, such as methylglyoxal degradation, sulfate reduction, γ-aminobutyric (GABA) acid degradation and salicylate degradation, which are differently covered among the four subjects and are involved in a range of cardiometabolic, intestinal, and neurological disorders. We conclude that microbial culture collections derived from dairy research have the genomic potential to complement and restore functional redundancy in human microbiomes.
Collapse
|
102
|
Wernimont SM, Radosevich J, Jackson MI, Ephraim E, Badri DV, MacLeay JM, Jewell DE, Suchodolski JS. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front Microbiol 2020; 11:1266. [PMID: 32670224 PMCID: PMC7329990 DOI: 10.3389/fmicb.2020.01266] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) microbiome of cats and dogs is increasingly recognized as a metabolically active organ inextricably linked to pet health. Food serves as a substrate for the GI microbiome of cats and dogs and plays a significant role in defining the composition and metabolism of the GI microbiome. The microbiome, in turn, facilitates the host's nutrient digestion and the production of postbiotics, which are bacterially derived compounds that can influence pet health. Consequently, pet owners have a role in shaping the microbiome of cats and dogs through the food they choose to provide. Yet, a clear understanding of the impact these food choices have on the microbiome, and thus on the overall health of the pet, is lacking. Pet foods are formulated to contain the typical nutritional building blocks of carbohydrates, proteins, and fats, but increasingly include microbiome-targeted ingredients, such as prebiotics and probiotics. Each of these categories, as well as their relative proportions in food, can affect the composition and/or function of the microbiome. Accumulating evidence suggests that dietary components may impact not only GI disease, but also allergies, oral health, weight management, diabetes, and kidney disease through changes in the GI microbiome. Until recently, the focus of microbiome research was to characterize alterations in microbiome composition in disease states, while less research effort has been devoted to understanding how changes in nutrition can influence pet health by modifying the microbiome function. This review summarizes the impact of pet food nutritional components on the composition and function of the microbiome and examines evidence for the role of nutrition in impacting host health through the microbiome in a variety of disease states. Understanding how nutrition can modulate GI microbiome composition and function may reveal new avenues for enhancing the health and resilience of cats and dogs.
Collapse
Affiliation(s)
| | | | | | - Eden Ephraim
- Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | | | | | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Jan S. Suchodolski
- Texas A&M College of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States
| |
Collapse
|
103
|
Yan R, Ho C, Zhang X. Interaction between Tea Polyphenols and Intestinal Microbiota in Host Metabolic Diseases from the Perspective of the Gut–Brain Axis. Mol Nutr Food Res 2020; 64:e2000187. [DOI: 10.1002/mnfr.202000187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ruonan Yan
- Department of Food Science and EngineeringNingbo University Ningbo 315211 P. R. China
| | - Chi‐Tang Ho
- Department of Food ScienceRutgers University New Brunswick NJ 08901 USA
| | - Xin Zhang
- Department of Food Science and EngineeringNingbo University Ningbo 315211 P. R. China
| |
Collapse
|
104
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Metabolism and Interaction with Food Components. Int J Mol Sci 2020; 21:ijms21103688. [PMID: 32456257 PMCID: PMC7279363 DOI: 10.3390/ijms21103688] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
The human gut contains trillions of microbes that play a central role in host biology, including the provision of key nutrients from the diet. Food is a major source of precursors for metabolite production; in fact, diet modulates the gut microbiota (GM) as the nutrients, derived from dietary intake, reach the GM, affecting both the ecosystem and microbial metabolic profile. GM metabolic ability has an impact on human nutritional status from childhood. However, there is a wide variability of dietary patterns that exist among individuals. The study of interactions with the host via GM metabolic pathways is an interesting field of research in medicine, as microbiota members produce myriads of molecules with many bioactive properties. Indeed, much evidence has demonstrated the importance of metabolites produced by the bacterial metabolism from foods at the gut level that dynamically participate in various biochemical mechanisms of a cell as a reaction to environmental stimuli. Hence, the GM modulate homeostasis at the gut level, and the alteration in their composition can concur in disease onset or progression, including immunological, inflammatory, and metabolic disorders, as well as cancer. Understanding the gut microbe–nutrient interactions will increase our knowledge of how diet affects host health and disease, thus enabling personalized therapeutics and nutrition.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
- Correspondence: ; Tel.: +39-0668-594061; Fax: +39-0668-592218
| | - Federica Del Chierico
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
| | - Lorenza Putignani
- Unit of Parasitology and Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’ Onofrio 4, 00165 Rome, Italy;
| |
Collapse
|
105
|
Wang L, Wang R, Wei GY, Wang SM, Du GH. Dihydrotanshinone attenuates chemotherapy-induced intestinal mucositis and alters fecal microbiota in mice. Biomed Pharmacother 2020; 128:110262. [PMID: 32447214 DOI: 10.1016/j.biopha.2020.110262] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a principal reason for reduced living quality of patients undergoing chemotherapy. Growing evidence showed gut microbiota played an important role in the development of intestinal mucositis. Dihydrotanshinone I (DHTS) is a liposoluble extract of Salvia miltiorrhiza Bunge with many bioactivities. Here we investigated the effect of DHTS on intestinal mucositis induced by 5-fluorouracil and irinotecan in mice. We detected the degree of intestinal mucosal damage and inflammatory response in CIM mice with or without DHTS administration. The body weight and disease activity index (DAI) of mice were monitored each day. H&E staining was used to evaluate pathological damage. The contents of interleukin 6 (IL-6), tumor necrosis factor (TNFα), diacylglycerol (DAO) and triglyceride (TG) in serum were determined by commercial kits. We also investigated the changes of fecal microbiota by 16S rRNA high-throughput sequencing. Spearman correlation analysis was used to evaluate the correlation between fecal microbiota and inflammatory factors. Tax4Funwas performed to infer the potential function of the microbial community. Results showed DHTS significantly reduced DAI, intestinal mucosal damage and inflammatory response in CIM mice by decreasing serum IL-6 and TNFα. In addition, there is an intense correlation between fecal microbiota and inflammatory factors. DHTS efficiently reversed disordered fecal microflora close to normal and increased the abundance of g__Akkermansia. DHTS also enriched bacterial species which promote butyric acid metabolism or negatively correlated with inflammatory factors. Besides, species enriched by DHTS in fecal microbiota were probably involved in glutamine production and ammonia oxidation. In conclusion, our study provides evidence that DHTS effectively attenuates CIM induced by 5-fluorouracil and irinotecan in mice. Regulation of the composition and function of fecal microbiota probably plays a critical role in the therapeutic effect of DHTS in CIM mice.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Key Laboratory of Drug Targets Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nongtan Street, Beijing, 100050, China
| | - Rui Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guang-Yi Wei
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shu-Me Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Research and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nongtan Street, Beijing, 100050, China.
| |
Collapse
|
106
|
Kumar T, Pandey R, Chauhan NS. Hypoxia Inducible Factor-1α: The Curator of Gut Homeostasis. Front Cell Infect Microbiol 2020; 10:227. [PMID: 32500042 PMCID: PMC7242652 DOI: 10.3389/fcimb.2020.00227] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
The human gut microbiome is a stratified and resilient ecosystem co-inhabited by a diverse and dynamic pool of microorganisms. Microbial selection, establishment, and colonization are modulated through a complex molecular network of host-microbial interactions. These molecular bioprocesses ensure the taxonomic composition of the mature human gut microbiome. The human gut microbiome plays a vital role in host health; otherwise, any microbial dysbiosis could predispose to the onset of physiological and metabolic disorder/s. Focussed research are being carried out to identify key molecular agents defining gut homeostasis. These molecules hold the potential to develop effective therapeutic solutions for microbial dysbiosis-associated human disorders. Of these, Hypoxia-inducible factor-1α (HIF-1α) is a central player in host-microbial crosstalk to maintain gut homeostasis. Human gut microbial metabolites regulate its cellular stability, which in turn regulates various cellular processes required for the stable gut microbiome. In the present review, an effort has been made to summarize the key role of HIF-1α to maintain gut homeostasis.
Collapse
Affiliation(s)
- Tarun Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
107
|
Rojas CA, Holekamp KE, Winters AD, Theis KR. Body site-specific microbiota reflect sex and age-class among wild spotted hyenas. FEMS Microbiol Ecol 2020; 96:5700710. [PMID: 31926016 DOI: 10.1093/femsec/fiaa007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Host-associated microbial communities, henceforth 'microbiota', can affect the physiology and behavior of their hosts. In mammals, host ecological, social and environmental variables are associated with variation in microbial communities. Within individuals in a given mammalian species, the microbiota also partitions by body site. Here, we build on this work and sequence the bacterial 16S rRNA gene to profile the microbiota at six distinct body sites (ear, nasal and oral cavities, prepuce, rectum and anal scent gland) in a population of wild spotted hyenas (Crocuta crocuta), which are highly social, large African carnivores. We inquired whether microbiota at these body sites vary with host sex or social rank among juvenile hyenas, and whether they differ between juvenile females and adult females. We found that the scent gland microbiota differed between juvenile males and juvenile females, whereas the prepuce and rectal microbiota differed between adult females and juvenile females. Social rank, however, was not a significant predictor of microbiota profiles. Additionally, the microbiota varied considerably among the six sampled body sites and exhibited strong specificity among individual hyenas. Thus, our findings suggest that site-specific niche selection is a primary driver of microbiota structure in mammals, but endogenous host factors may also be influential.
Collapse
Affiliation(s)
- Connie A Rojas
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, 48201, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, 48201, USA
| |
Collapse
|
108
|
Wang SZ, Yu YJ, Adeli K. Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis. Microorganisms 2020; 8:microorganisms8040527. [PMID: 32272588 PMCID: PMC7232453 DOI: 10.3390/microorganisms8040527] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota play an important role in maintaining intestinal health and are involved in the metabolism of carbohydrates, lipids, and amino acids. Recent studies have shown that the central nervous system (CNS) and enteric nervous system (ENS) can interact with gut microbiota to regulate nutrient metabolism. The vagal nerve system communicates between the CNS and ENS to control gastrointestinal tract functions and feeding behavior. Vagal afferent neurons also express receptors for gut peptides that are secreted from enteroendocrine cells (EECs), such as cholecystokinin (CCK), ghrelin, leptin, peptide tyrosine tyrosine (PYY), glucagon-like peptide-1 (GLP-1), and 5-hydroxytryptamine (5-HT; serotonin). Gut microbiota can regulate levels of these gut peptides to influence the vagal afferent pathway and thus regulate intestinal metabolism via the microbiota-gut-brain axis. In addition, bile acids, short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO), and Immunoglobulin A (IgA) can also exert metabolic control through the microbiota-gut-liver axis. This review is mainly focused on the role of gut microbiota in neuroendocrine regulation of nutrient metabolism via the microbiota-gut-brain-liver axis.
Collapse
Affiliation(s)
- Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China;
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
- Molecular Medicine, Research Institute, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Yi-Jing Yu
- Molecular Medicine, Research Institute, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
- Correspondence: ; Tel.: +1-416-813-8682; Fax: +1-416-813-6257
| |
Collapse
|
109
|
Wang LJ, Yang CY, Chou WJ, Lee MJ, Chou MC, Kuo HC, Yeh YM, Lee SY, Huang LH, Li SC. Gut microbiota and dietary patterns in children with attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry 2020; 29:287-297. [PMID: 31119393 DOI: 10.1007/s00787-019-01352-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/13/2019] [Indexed: 12/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, but the underlying pathophysiological mechanisms of ADHD remain unclear. Gut microbiota has been recognized to influence brain function and behaviors. Therefore, this study aimed to determine whether imbalanced gut microbiomes identified by a 16S rRNA sequencing approach are involved in the pathophysiology of ADHD. We recruited a total of 30 children with ADHD (mean age: 8.4 years) and a total of 30 healthy controls (mean age: 9.3 years) for this study. The dietary patterns of all participants were assessed with the food frequency questionnaire. The microbiota of fecal samples were investigated using 16S rRNA V3V4 amplicon sequencing, followed by bioinformatics and statistical analyses. We found that the gut microbiota communities in ADHD patients showed a significantly higher Shannon index and Chao index than the control subjects. Furthermore, the linear discriminant analysis effect size (LEfSe) analysis was used to identify differentially enriched bacteria between ADHD patients and healthy controls. The relative abundance of Bacteroides coprocola (B. coprocola) was decreased, while the relative abundance of Bacteroides uniformis (B. uniformis), Bacteroides ovatus (B. ovatus), and Sutterella stercoricanis (S. stercoricanis) were increased in the ADHD group. Of all participants, S. stercoricanis demonstrated a significant association with the intake of dairy, nuts/seeds/legumes, ferritin and magnesium. B. ovatus and S. stercoricanis were positively correlated to ADHD symptoms. In conclusion, we suggest that the gut microbiome community is associated with dietary patterns, and linked to the susceptibility to ADHD.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Department of Microbiology and Immunology/Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Min-Jing Lee
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Miao-Chun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yuan-Ming Yeh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Lien-Hung Huang
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No.123, Ta-Pei Road, Kaohsiung City, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No.123, Ta-Pei Road, Kaohsiung City, Taiwan.
| |
Collapse
|
110
|
Mueller EA, Wisnoski NI, Peralta AL, Lennon JT. Microbial rescue effects: How microbiomes can save hosts from extinction. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13493] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Jay T. Lennon
- Department of Biology Indiana University Bloomington IN USA
| |
Collapse
|
111
|
Ciobârcă D, Cătoi AF, Copăescu C, Miere D, Crișan G. Bariatric Surgery in Obesity: Effects on Gut Microbiota and Micronutrient Status. Nutrients 2020; 12:E235. [PMID: 31963247 PMCID: PMC7019602 DOI: 10.3390/nu12010235] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with reduced gut microbial diversity and a high rate of micronutrient deficiency. Bariatric surgery, the therapy of choice for severe obesity, produces sustained weight loss and improvements in obesity-related comorbidities. Also, it significantly alters the gut microbiota (GM) composition and function, which might have an important impact on the micronutrient status as GM is able to synthesize certain vitamins, such as riboflavin, folate, B12, or vitamin K2. However, recent data have reported that GM is not fully restored after bariatric surgery; therefore, manipulation of GM through probiotics represents a promising therapeutic approach in bariatric patients. In this review, we discuss the latest evidence concerning the relationship between obesity, GM and micronutrients, the impact of bariatric surgery on GM in relation with micronutrients equilibrium, and the importance of the probiotics' supplementation in obese patients submitted to surgical treatment.
Collapse
Affiliation(s)
- Daniela Ciobârcă
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Adriana Florinela Cătoi
- Department of Physiopathology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-4 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Cătălin Copăescu
- General Surgery Department, Ponderas Hospital, 85A Nicolae G. Caramfil Street, 014142 Bucharest, Romania;
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania;
| |
Collapse
|
112
|
Gong Y, Xia W, Wen X, Lyu W, Xiao Y, Yang H, Zou X. Early inoculation with caecal fermentation broth alters small intestine morphology, gene expression of tight junction proteins in the ileum, and the caecal metabolomic profiling of broilers. J Anim Sci Biotechnol 2020; 11:8. [PMID: 31956411 PMCID: PMC6961334 DOI: 10.1186/s40104-019-0410-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background The establishment of stable microbiota in early life is beneficial to the individual. Changes in the intestinal environment during early life play a crucial role in modulating the gut microbiota. Therefore, early intervention to change the intestinal environment can be regarded as a new regulation strategy for the growth and health of poultry. However, the effects of intestinal environmental changes on host physiology and metabolism are rarely reported. This study was conducted to investigate the effects of early inoculation with caecal fermentation broth on small intestine morphology, gene expression of tight junction proteins in the ileum, and cecum microbial metabolism of broilers. Results Our data showed that early inoculation with caecal fermentation broth could improve intestine morphology. The small intestine villus height was significantly increased (P < 0.05) in the intervened broilers compared to the control group, especially on day 28. A similar result was observed in the ratio of villus height to crypt depth (P < 0.05). Meanwhile, we found early inoculation significantly increased (P < 0.05) the expression levels of zonula occludens-1 (ZO1) on days 14 and 28, claudin-1 (CLDN1) on day 28, whereas the gene expression of claudin-2 (CLDN2) was significantly decreased (P < 0.05) on days 14 and 28. Gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS) technology was further implemented to systematically evaluate the microbial metabolite profiles. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) displayed a distinct trend towards separation between the fermentation broth group (F group) and the control group (C group). The differentially expressed metabolites were identified, and they were mainly functionally enriched in beta-alanine metabolism and biosynthesis of unsaturated fatty acids. In addition, 1,3-diaminopropane was selected as a key biomarker that responded to early inoculation with caecal fermentation broth. Conclusions These results provide insight into intestinal metabolomics and confirm that early inoculation with caecal fermentation broth can be used as a potential strategy to improve intestinal health of broilers.
Collapse
Affiliation(s)
- Yujie Gong
- 1State Key Laboratory for Quality and Safety of Agro-products, Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Wenrui Xia
- 1State Key Laboratory for Quality and Safety of Agro-products, Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xueting Wen
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Wentao Lyu
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Yingping Xiao
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Hua Yang
- 2Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Sciences Institute, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou, 310058 China
| | - Xiaoting Zou
- 1State Key Laboratory for Quality and Safety of Agro-products, Institute of Quality and Standards for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| |
Collapse
|
113
|
Kumar M, Singh P, Murugesan S, Vetizou M, McCulloch J, Badger JH, Trinchieri G, Al Khodor S. Microbiome as an Immunological Modifier. Methods Mol Biol 2020; 2055:595-638. [PMID: 31502171 PMCID: PMC8276114 DOI: 10.1007/978-1-4939-9773-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans are living ecosystems composed of human cells and microbes. The microbiome is the collection of microbes (microbiota) and their genes. Recent breakthroughs in the high-throughput sequencing technologies have made it possible for us to understand the composition of the human microbiome. Launched by the National Institutes of Health in USA, the human microbiome project indicated that our bodies harbor a wide array of microbes, specific to each body site with interpersonal and intrapersonal variabilities. Numerous studies have indicated that several factors influence the development of the microbiome including genetics, diet, use of antibiotics, and lifestyle, among others. The microbiome and its mediators are in a continuous cross talk with the host immune system; hence, any imbalance on one side is reflected on the other. Dysbiosis (microbiota imbalance) was shown in many diseases and pathological conditions such as inflammatory bowel disease, celiac disease, multiple sclerosis, rheumatoid arthritis, asthma, diabetes, and cancer. The microbial composition mirrors inflammation variations in certain disease conditions, within various stages of the same disease; hence, it has the potential to be used as a biomarker.
Collapse
Affiliation(s)
- Manoj Kumar
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Selvasankar Murugesan
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Marie Vetizou
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John McCulloch
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souhaila Al Khodor
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
114
|
Quaranta G, Fancello G, Ianiro G, Graffeo R, Gasbarrini A, Cammarota G, Sanguinetti M, Masucci L. Laboratory handling practice for faecal microbiota transplantation. J Appl Microbiol 2019; 128:893-898. [PMID: 31749279 DOI: 10.1111/jam.14522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 01/29/2023]
Abstract
AIMS Faecal microbiota transplantation (FMT) consists of the infusion of faeces from a healthy donor to the gastrointestinal tract of a recipient patient to treat disease associated with alterations in gut microbiota. The objective of this article was to describe laboratory workflow of an FMT laboratory to provide tips for preparing the faecal suspensions to be infused. METHODS AND RESULTS Twenty-stool solutions obtained from ten donors were prepared using two different protocols: magnet plate emulsion (MPE) and Seward StomacherTM Emulsion (SSE). We evaluated parameters such as preparation time, handiness, and aerobic and anaerobic microbial count. For three donors, we monitored bacterial counts after defrosting at different time-points. MPE requires more time than SSE. In terms of microbial load, both methods showed similar values, with small and statistically differences (P ≤ 0·05) regarding anaerobes in favour of SSE. Frozen aliquots showed the same bacterial load values after defrosting. CONCLUSION Although both methods allow an easy and available preparation of a stool suspension, SSE seems more suitable, particularly for stool banking. Aerobic and anaerobic species are preserved with both protocols; and safety for laboratory operators is guaranteed. SIGNIFICANCE AND IMPACT OF THE STUDY In recent years, FMT has become a fascinating and interesting subject. Nevertheless, there are no real guidelines describing laboratory facilities and procedures. This paper aims to be a useful and simple guide to increase the number FMT centres as much possible.
Collapse
Affiliation(s)
- G Quaranta
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Fancello
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - G Ianiro
- Dipartimento Scienze di gastroenterologiche, endocrino-metaboliche e nefro-urologiche, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | - R Graffeo
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - A Gasbarrini
- Dipartimento Scienze di gastroenterologiche, endocrino-metaboliche e nefro-urologiche, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy.,Istituto di Medicina interna, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Cammarota
- Dipartimento Scienze di gastroenterologiche, endocrino-metaboliche e nefro-urologiche, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy.,Istituto di Medicina interna, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M Sanguinetti
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - L Masucci
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
115
|
Charoensiddhi S, Abraham RE, Su P, Zhang W. Seaweed and seaweed-derived metabolites as prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:97-156. [PMID: 32035602 DOI: 10.1016/bs.afnr.2019.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seaweeds and their bioactive compounds, particularly polysaccharides and phenolics can be regarded as great dietary supplements with gut health benefits and prebiotics. These components are resistant to digestion by enzymes present in the human gastrointestinal tract, also selectively stimulate the growth of beneficial gut bacteria and the production of fermentation products such as short chain fatty acids. Commonly, the health benefits of seaweed components are assessed by including them in an in vitro anaerobic fermentation system containing human fecal inocula that mimics the environment of the human large bowel. Regarding to the complex interactions between dietary components, gastrointestinal physiological processes, and gut microbiota are difficult to model in vitro. Consequently it is important to follow up the promising in vitro results with in vivo animal or human testing. The aim of this chapter is to have a comprehensive review on the application of seaweeds and seaweed-derived metabolites as prebiotics, and understand the trends, gaps and future directions of both scientific and industrial developments. This work contributes to develop and expand new platform of seaweed utilization for higher-value products, particularly to functional food and nutraceutical industries in order to serve the social demand for health awareness and support economic development.
Collapse
Affiliation(s)
- Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Reinu E Abraham
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Peng Su
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
116
|
Quaranta G, Sanguinetti M, Masucci L. Fecal Microbiota Transplantation: A Potential Tool for Treatment of Human Female Reproductive Tract Diseases. Front Immunol 2019; 10:2653. [PMID: 31827467 PMCID: PMC6890827 DOI: 10.3389/fimmu.2019.02653] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
The gastro-intestinal tract is an extensive organ involved in several activities, with a crucial role in immunity. Billions of commensal and transient microorganisms, known as the gut microbiota, and potential pathogens, which are constantly stimulating intestinal immunity, colonize the intestinal epithelial surface. The gut microbiota may be regarded as analogous to a solid organ with multiple different functions. In the last decade, many studies have demonstrated that intestinal bacteria can be a decisive factor in the health-disease balance of the intestine, and they can also be responsible for illnesses in other locations. For this reason, fecal microbiota transplantation (FMT) represents an important therapeutic option for Clostridium difficile infections and hold promise for different clinical conditions, such as multiple sclerosis, autism, obesity, and other systemic diseases. FMT consists of the infusion of a fecal suspension from a healthy donor to a recipient in order to restore gut flora alterations. Similar to the gut, the female reproductive tract is an example of a very complex biological ecosystem. Recent studies indicate a possible relationship between the gut and female tract microbiota, associating specific intestinal bacteria patterns with genital female diseases, such as polycystic ovary syndrome (PCOS), endometriosis and bacterial vaginosis (BV). FMT could represent a potential innovative treatment option in this field.
Collapse
Affiliation(s)
- Gianluca Quaranta
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Masucci
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
117
|
Marhuenda-Muñoz M, Laveriano-Santos EP, Tresserra-Rimbau A, Lamuela-Raventós RM, Martínez-Huélamo M, Vallverdú-Queralt A. Microbial Phenolic Metabolites: Which Molecules Actually Have an Effect on Human Health? Nutrients 2019; 11:nu11112725. [PMID: 31717653 PMCID: PMC6893422 DOI: 10.3390/nu11112725] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The role of gut microbiota in human health has been investigated extensively in recent years. The association of dysbiosis, detrimental changes in the colonic population, with several health conditions has led to the development of pro-, pre- and symbiotic foods. If not absorbed in the small intestine or secreted in bile, polyphenols and other food components can reach the large intestine where they are susceptible to modification by the microbial population, resulting in molecules with potentially beneficial health effects. This review provides an overview of studies that have detected and/or quantified microbial phenolic metabolites using high-performance liquid chromatography as the separation technique, followed by detection through mass spectrometry. Both in vitro experimental studies and human clinical trials are covered. Although many of the microbial phenolic metabolites (MPM) reported in in vitro studies were identified in human samples, further research is needed to associate them with clinical health outcomes.
Collapse
Affiliation(s)
- María Marhuenda-Muñoz
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Emily P. Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
| | - Anna Tresserra-Rimbau
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Hospital Universitari San Joan de Reus, Institut d’Investigació Pere Virgili (IISPV), 43002 Reus, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Miriam Martínez-Huélamo
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Correspondence: ; Tel.: +34-934-024-510
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (M.M.-M.); (E.P.L.-S.); (R.M.L.-R.); (A.V.-Q.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| |
Collapse
|
118
|
Tannock GW, Liu Y. Guided dietary fibre intake as a means of directing short-chain fatty acid production by the gut microbiota. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1657471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yafei Liu
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
119
|
Firrman J, Liu L, Tanes C, Bittinger K, Mahalak K, Rinaldi W. Metagenomic assessment of the Cebus apella gut microbiota. Am J Primatol 2019; 81:e23023. [PMID: 31240754 DOI: 10.1002/ajp.23023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/13/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Abstract
Cebus Apella (C. apella) is a species of Nonhuman Primate (NHP) used for biomedical research because it is phylogenetically similar and shares anatomical commonalities with humans. Here, the gut microbiota of three C. apella were examined in the different regions of the intestinal tract. Using metagenomics, the gut microbiota associated with the luminal content and mucus layer for each intestinal region was identified, and functionality was investigated by quantifying the levels of short chain fatty acids (SCFAs) produced. The results of this study show a high degree of similarity in the intestinal communities among C. apella subjects, with multiple shared characteristics. First, the communities in the lumen were more phylogenetically diverse and rich compared to the mucus layer communities throughout the entire intestinal tract. The small intestine communities in the lumen displayed a higher Shannon diversity index compared to the colon communities. Second, all the communities were dominated by aero-tolerant taxa such as Streptococcus, Enterococcus, Abiotrophia, and Lactobacillus, although there was preferential colonization of specific taxa observed. Finally, the primary SCFA produced throughout the intestinal tract was acetic acid, with some propionic acid and butyric acid detected in the colon regions. The small intestine microbiota produced significantly less SCFAs compared to the communities in the colon. Collectively, these data provide an in-depth report on the composition, distribution, and SCFA production of the gut microbiota along the intestinal tract of the C. apella NHP animal model.
Collapse
Affiliation(s)
- Jenni Firrman
- United States Department of Agriculture, Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, Pennsylvania
| | - LinShu Liu
- United States Department of Agriculture, Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, Pennsylvania
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Karley Mahalak
- United States Department of Agriculture, Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, Pennsylvania
| | | |
Collapse
|
120
|
Gong Y, Yang H, Wang X, Xia W, Lv W, Xiao Y, Zou X. Early Intervention With Cecal Fermentation Broth Regulates the Colonization and Development of Gut Microbiota in Broiler Chickens. Front Microbiol 2019; 10:1422. [PMID: 31293552 PMCID: PMC6603130 DOI: 10.3389/fmicb.2019.01422] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the effect of fermentation broth from broiler cecal content on the colonization and development of the gut microbiota in newly hatched broiler chicks. The fermentation broth was made by a chemostat system using the cecal content from a donor chicken as the source of inoculum. A total of 120 newly hatched broiler chicks were randomly divided into two groups. One group (F group) was orally inoculated with the fermentation broth, and the other (C group) was treated with an equal amount of sterile PBS solution. 16S rRNA gene sequencing was used to investigate the differences in the cecal microbiota of the broiler chickens between the two groups on days 1, 3, 7, 14, and 28. Moreover, the concentrations of short-chain fatty acids (SCFAs) in the cecal contents were analyzed by gas chromatography. The results showed that the abundances of genera Escherichia-Shigella and Enterococcus decreased sharply in the F group on days 1 and 3 by the early intervention with cecal fermentation broth. In contrast, the relative abundance of the genus Bacteroides on days 1, 3, and 7, and the family Ruminococcaceae on days 1, 3, and 28 increased in the F group, respectively. In terms of SCFAs, the concentrations of acetate on day 28, propionic acid on days 1, 3, 7, 14, and 28, butyrate on day 1, and isovalerate on day 14 were significantly higher in the F group compared with the C group. Overall, these results suggest that early intervention with cecal fermentation broth could have beneficial effects on broilers gut health, which might be attributed to the alterations in the gut microbial composition and the increased concentrations of SCFAs.
Collapse
Affiliation(s)
- Yujie Gong
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Hua Yang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenrui Xia
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Wentao Lv
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoting Zou
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
121
|
Reese AT, Carmody RN. Thinking Outside the Cereal Box: Noncarbohydrate Routes for Dietary Manipulation of the Gut Microbiota. Appl Environ Microbiol 2019; 85:e02246-18. [PMID: 30504210 PMCID: PMC6498178 DOI: 10.1128/aem.02246-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a diverse and dynamic ecological community that is increasingly recognized to play important roles in host metabolic, immunological, and behavioral functioning. As such, identifying new routes for manipulating the microbiota may provide valuable additional methods for improving host health. Dietary manipulations and prebiotic supplementation are active targets of research for altering the microbiota, but to date, this work has disproportionately focused on carbohydrates. However, many other resources can limit or shape microbial growth. Here, we provide a brief overview of the resource landscape in the mammalian gut and review relevant literature documenting associations between noncarbohydrate nutrients and the composition of the gut microbiota. To spur future work and accelerate translational applications, we propose that researchers take new approaches for studying the effects of diet on gut microbial communities, including more-careful consideration of media for in vitro experiments, measurement of absolute as well as relative abundances, concerted efforts to articulate how physiology may differ between humans and the animal models used in translational studies, and leveraging natural variation for additional insights. Finally, we close with a discussion of how to determine when or where to employ these potential dietary levers for manipulating the microbiota.
Collapse
Affiliation(s)
- Aspen T Reese
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Society of Fellows, Harvard University, Cambridge, Massachusetts, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
122
|
Liberti A, Cannon JP, Litman GW, Dishaw LJ. A Soluble Immune Effector Binds Both Fungi and Bacteria via Separate Functional Domains. Front Immunol 2019; 10:369. [PMID: 30894858 PMCID: PMC6414549 DOI: 10.3389/fimmu.2019.00369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
The gut microbiome of animals consists of diverse microorganisms that include both prokaryotes and eukaryotes. Complex interactions occur among these inhabitants, as well as with the immune system of the host, and profoundly influence the overall health of both the host and its microbial symbionts. Despite the enormous importance for the host to regulate its gut microbiome, the extent to which animals generate immune-related molecules with the capacity to directly influence polymicrobial interactions remains unclear. The urochordate, Ciona robusta, is a model organism that has been adapted to experimental studies of host/microbiome interactions. Ciona variable-region containing chitin-binding proteins (VCBPs) are innate immune effectors, composed of immunoglobulin (Ig) variable regions and a chitin-binding domain (CBD) and are expressed in high abundance in the gut. It was previously shown that VCBP-C binds bacteria and influences both phagocytosis by granular amoebocytes and biofilm formation via its Ig domains. We show here that the CBD of VCBP-C independently recognizes chitin molecules present in the cell walls, sporangia (spore-forming bodies), and spores of a diverse set of filamentous fungi isolated from the gut of Ciona. To our knowledge, this is the first description of a secreted Ig-containing immune molecule with the capacity to directly promote transkingdom interactions through simultaneous binding by independent structural domains and could have broad implications in modulating the establishment, succession, and homeostasis of gut microbiomes.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - John P. Cannon
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Gary W. Litman
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Molecular Genetics, Children's Research Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Larry J. Dishaw
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
123
|
Cheung SG, Goldenthal AR, Uhlemann AC, Mann JJ, Miller JM, Sublette ME. Systematic Review of Gut Microbiota and Major Depression. Front Psychiatry 2019; 10:34. [PMID: 30804820 PMCID: PMC6378305 DOI: 10.3389/fpsyt.2019.00034] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/21/2019] [Indexed: 11/17/2022] Open
Abstract
Background: Recently discovered relationships between the gastrointestinal microbiome and the brain have implications for psychiatric disorders, including major depressive disorder (MDD). Bacterial transplantation from MDD patients to rodents produces depression-like behaviors. In humans, case-control studies have examined the gut microbiome in healthy and affected individuals. We systematically reviewed existing studies comparing gut microbial composition in MDD and healthy volunteers. Methods: A PubMed literature search combined the terms "depression," "depressive disorder," "stool," "fecal," "gut," and "microbiome" to identify human case-control studies that investigated relationships between MDD and microbiota quantified from stool. We evaluated the resulting studies, focusing on bacterial taxa that were different between MDD and healthy controls. Results: Six eligible studies were found in which 50 taxa exhibited differences (p < 0.05) between patients with MDD and controls. Patient characteristics and methodologies varied widely between studies. Five phyla-Bacteroidetes, Firmicutes, Actinobacteria, Fusobacteria, and Protobacteria-were represented; however, divergent results occurred across studies for all phyla. The largest number of differentiating taxa were within phylum Firmicutes, in which nine families and 12 genera differentiated the diagnostic groups. The majority of these families and genera were found to be statistically different between the two groups in two identified studies. Family Lachnospiraceae differentiated the diagnostic groups in four studies (with an even split in directionality). Across all five phyla, nine genera were higher in MDD (Anaerostipes, Blautia, Clostridium, Klebsiella, Lachnospiraceae incertae sedis, Parabacteroides, Parasutterella, Phascolarctobacterium, and Streptococcus), six were lower (Bifidobacterium, Dialister, Escherichia/Shigella, Faecalibacterium, and Ruminococcus), and six were divergent (Alistipes, Bacteroides, Megamonas, Oscillibacter, Prevotella, and Roseburia). We highlight mechanisms and products of bacterial metabolism as they may relate to the etiology of depression. Conclusions: No consensus has emerged from existing human studies of depression and gut microbiome concerning which bacterial taxa are most relevant to depression. This may in part be due to differences in study design. Given that bacterial functions are conserved across taxonomic groups, we propose that studying microbial functioning may be more productive than a purely taxonomic approach to understanding the gut microbiome in depression.
Collapse
Affiliation(s)
- Stephanie G. Cheung
- Division of Consultation-Liaison Psychiatry, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Ariel R. Goldenthal
- Department of Psychiatry, Columbia University, New York, NY, United States
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, United States
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY, United States
- Microbiome & Pathogen Genomics Core, Columbia University, New York, NY, United States
| | - J. John Mann
- Department of Psychiatry, Columbia University, New York, NY, United States
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, United States
- Department of Radiology, Columbia University, New York, NY, United States
| | - Jeffrey M. Miller
- Department of Psychiatry, Columbia University, New York, NY, United States
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, United States
| | - M. Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, United States
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
124
|
|
125
|
Zheng S, Chang W, Liu W, Liang G, Xu Y, Lin F. Computational Prediction of a New ADMET Endpoint for Small Molecules: Anticommensal Effect on Human Gut Microbiota. J Chem Inf Model 2018; 59:1215-1220. [PMID: 30352151 DOI: 10.1021/acs.jcim.8b00600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human gut microbiota (HGM), which are evolutionarily commensal in the human gastrointestinal system, are crucial to our health. However, HGM can be broadly shaped by multifaceted factors such as intake of drugs. About one-quarter of the existing drugs for humans, which are designed to target human cells rather than HGM, can notably alter the composition of HGM. Therefore, the anticommensal effect of human drugs should be avoided to the maximum extent possible in the drug discovery and development process. Nevertheless, the anticommensal effect of small molecules is a new ADMET (absorption, distribution, metabolism, excretion, and toxicity) end point, which was never predicted with the computational method before. In this work, we present the first machine-learning based consensus classification model with the accuracy (0.811 ± 0.012), precision (0.759 ± 0.032), specificity (0.901 ± 0.019), sensitivity (0.628 ± 0.036), F1-score (0.687 ± 0.023), and AUC (0.814 ± 0.030) respectively on the test set. Furthermore, we develop an easy-to-use "e-Commensal" program for the automatic prediction. Based on this program, virtual-screening of the food-constituent database (FooDB) indicates that 5888 of 23 202 food-relevant compounds are forecasted to possess an anticommensal effect on HGM. Several top-ranked anticommensal compounds in our prediction are further scrutinized and confirmed by experiments in the existing literature. To the best of our knowledge, this is the first classification model and stand-alone software for the prediction of commensal or anticommensal compounds impacting HGM.
Collapse
Affiliation(s)
- Suqing Zheng
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China.,Chemical Biology Research Center , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| | - Wenping Chang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| | - Wenxin Liu
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| | - Guang Liang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China.,Chemical Biology Research Center , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| | - Yong Xu
- Center of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , Guangdong 510530 , P. R. China
| | - Fu Lin
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , P. R. China
| |
Collapse
|
126
|
Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. MICROBIOME 2018; 6:92. [PMID: 29789015 PMCID: PMC5964925 DOI: 10.1186/s40168-018-0483-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/14/2018] [Indexed: 05/18/2023]
Abstract
Cancer is a major health burden worldwide, and despite continuous advances in medical therapies, resistance to standard drugs and adverse effects still represent an important cause of therapeutic failure. There is a growing evidence that gut bacteria can affect the response to chemo- and immunotherapeutic drugs by modulating either efficacy or toxicity. Moreover, intratumor bacteria have been shown to modulate chemotherapy response. At the same time, anticancer treatments themselves significantly affect the microbiota composition, thus disrupting homeostasis and exacerbating discomfort to the patient. Here, we review the existing knowledge concerning the role of the microbiota in mediating chemo- and immunotherapy efficacy and toxicity and the ability of these therapeutic options to trigger dysbiotic condition contributing to the severity of side effects. In addition, we discuss the use of probiotics, prebiotics, synbiotics, postbiotics, and antibiotics as emerging strategies for manipulating the microbiota in order to improve therapeutic outcome or at least ensure patients a better quality of life all along of anticancer treatments.
Collapse
Affiliation(s)
- Concetta Panebianco
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013, San Giovanni Rotondo, FG, Italy
| | - Angelo Andriulli
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013, San Giovanni Rotondo, FG, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
127
|
Kumar J, Verma MK, Kumar T, Gupta S, Pandey R, Yadav M, Chauhan NS. S9A Serine Protease Engender Antigenic Gluten Catabolic Competence to the Human Gut Microbe. Indian J Microbiol 2018; 58:294-300. [PMID: 30013273 DOI: 10.1007/s12088-018-0732-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 12/13/2022] Open
Abstract
The human gut microbiome has a significant role in host physiology; however its role in gluten catabolism is debatable. Present study explores the role of human gut microbes in gluten catabolism and a native human gut microbe Cellulomonas sp. HM71 was identified. SSU rDNA analysis has described human gut microbiome structure and also confirmed the permanent residentship of Cellulomonas sp. HM71. Catabolic potential of Cellulomonas sp. HM71 to cleave antigenic gluten peptides indicates presence of candidate gene encoding biocatalytic machinery. Genome analysis has identified the presence of gene encoding S9A serine protease family-prolyl endopeptidase, with Ser591, Asp664 and His685 signature residues. Cellulomonas sp. HM71 prolyl endopeptidase activity was found optimal at pH 7.0 and 37 °C with a KM of 35.53 μmol and specifically cleaves at proline residue. Current study describes the gluten catabolism potential of Cellulomonas sp. HM71 depicting possible role of human gut microbes in gluten catabolism to confer resistance mechanisms for the onset of celiac diseases in populations with gluten diet.
Collapse
Affiliation(s)
- Jitendra Kumar
- 1Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Manoj Kumar Verma
- 1Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Tarun Kumar
- 1Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Shashank Gupta
- 1Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Rajesh Pandey
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD UK
| | - Monika Yadav
- 1Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Nar Singh Chauhan
- 1Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
128
|
Ahmed V, Verma MK, Gupta S, Mandhan V, Chauhan NS. Metagenomic Profiling of Soil Microbes to Mine Salt Stress Tolerance Genes. Front Microbiol 2018; 9:159. [PMID: 29472909 PMCID: PMC5809485 DOI: 10.3389/fmicb.2018.00159] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Osmotolerance is one of the critical factors for successful survival and colonization of microbes in saline environments. Nonetheless, information about these osmotolerance mechanisms is still inadequate. Exploration of the saline soil microbiome for its community structure and novel genetic elements is likely to provide information on the mechanisms involved in osmoadaptation. The present study explores the saline soil microbiome for its native structure and novel genetic elements involved in osmoadaptation. 16S rRNA gene sequence analysis has indicated the dominance of halophilic/halotolerant phylotypes affiliated to Proteobacteria, Actinobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes, and Acidobacteria. A functional metagenomics approach led to the identification of osmotolerant clones SSR1, SSR4, SSR6, SSR2 harboring BCAA_ABCtp, GSDH, STK_Pknb, and duf3445 genes. Furthermore, transposon mutagenesis, genetic, physiological and functional studies in close association has confirmed the role of these genes in osmotolerance. Enhancement in host osmotolerance possibly though the cytosolic accumulation of amino acids, reducing equivalents and osmolytes involving BCAA-ABCtp, GSDH, and STKc_PknB. Decoding of the genetic elements prevalent within these microbes can be exploited either as such for ameliorating soils or their genetically modified forms can assist crops to resist and survive in saline environment.
Collapse
Affiliation(s)
- Vasim Ahmed
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Manoj K Verma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Shashank Gupta
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Vibha Mandhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Nar S Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
129
|
Functional metagenomics identifies novel genes ABCTPP, TMSRP1 and TLSRP1 among human gut enterotypes. Sci Rep 2018; 8:1397. [PMID: 29362424 PMCID: PMC5780487 DOI: 10.1038/s41598-018-19862-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/09/2018] [Indexed: 01/08/2023] Open
Abstract
Every niche in the biosphere is touched by the seemingly endless capacity of microbes to transform the world around them by adapting swiftly and flexibly to the environmental changes, likewise the gastrointestinal tract is no exception. The ability to cope with rapid changes in external osmolarity is an important aspect of gut microbes for their survival and colonization. Identification of these survival mechanisms is a pivotal step towards understanding genomic suitability of a symbiont for successful human gut colonization. Here we highlight our recent work applying functional metagenomics to study human gut microbiome to identify candidate genes responsible for the salt stress tolerance. A plasmid borne metagenomic library of Bacteroidetes enriched human fecal metagenomic DNA led to identification of unique salt osmotolerance clones SR6 and SR7. Subsequent gene analysis combined with functional studies revealed that TLSRP1 within pSR7 and TMSRP1 and ABCTPP of pSR6 are the active loci responsible for osmotolerance through an energy dependent mechanism. Our study elucidates the novel genetic machinery involved in bestowing osmotolerance in Prevotella and Bacteroidetes, the predominant microbial groups in a North Indian population. This study unravels an alternative method for imparting ionic stress tolerance, which may be prevalent in the human gut microbiome.
Collapse
|