101
|
Morrison HW, Filosa JA. Stroke and the neurovascular unit: glial cells, sex differences, and hypertension. Am J Physiol Cell Physiol 2019; 316:C325-C339. [PMID: 30601672 DOI: 10.1152/ajpcell.00333.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A functional neurovascular unit (NVU) is central to meeting the brain's dynamic metabolic needs. Poststroke damage to the NVU within the ipsilateral hemisphere ranges from cell dysfunction to complete cell loss. Thus, understanding poststroke cell-cell communication within the NVU is of critical importance. Loss of coordinated NVU function exacerbates ischemic injury. However, particular cells of the NVU (e.g., astrocytes) and those with ancillary roles (e.g., microglia) also contribute to repair mechanisms. Epidemiological studies support the notion that infarct size and recovery outcomes are heterogeneous and greatly influenced by modifiable and nonmodifiable factors such as sex and the co-morbid condition common to stroke: hypertension. The mechanisms whereby sex and hypertension modulate NVU function are explored, to some extent, in preclinical laboratory studies. We present a review of the NVU in the context of ischemic stroke with a focus on glial contributions to NVU function and dysfunction. We explore the impact of sex and hypertension as modifiable and nonmodifiable risk factors and the underlying cellular mechanisms that may underlie heterogeneous stroke outcomes. Most of the preclinical investigative studies of poststroke NVU dysfunction are carried out primarily in male stroke models lacking underlying co-morbid conditions, which is very different from the human condition. As such, the evolution of translational medicine to target the NVU for improved stroke outcomes remains elusive; however, it is attainable with further research.
Collapse
|
102
|
Presta I, Vismara M, Novellino F, Donato A, Zaffino P, Scali E, Pirrone KC, Spadea MF, Malara N, Donato G. Innate Immunity Cells and the Neurovascular Unit. Int J Mol Sci 2018; 19:E3856. [PMID: 30513991 PMCID: PMC6321635 DOI: 10.3390/ijms19123856] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have clarified many still unknown aspects related to innate immunity and the blood-brain barrier relationship. They have also confirmed the close links between effector immune system cells, such as granulocytes, macrophages, microglia, natural killer cells and mast cells, and barrier functionality. The latter, in turn, is able to influence not only the entry of the cells of the immune system into the nervous tissue, but also their own activation. Interestingly, these two components and their interactions play a role of great importance not only in infectious diseases, but in almost all the pathologies of the central nervous system. In this paper, we review the main aspects in the field of vascular diseases (cerebral ischemia), of primitive and secondary neoplasms of Central Nervous System CNS, of CNS infectious diseases, of most common neurodegenerative diseases, in epilepsy and in demyelinating diseases (multiple sclerosis). Neuroinflammation phenomena are constantly present in all diseases; in every different pathological state, a variety of innate immunity cells responds to specific stimuli, differentiating their action, which can influence the blood-brain barrier permeability. This, in turn, undergoes anatomical and functional modifications, allowing the stabilization or the progression of the pathological processes.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Marco Vismara
- Department of Cell Biotechnologies and Hematology, University "La Sapienza" of Rome, 00185 Rome, Italy.
| | - Fabiana Novellino
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100 Catanzaro, Italy.
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Paolo Zaffino
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Elisabetta Scali
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Krizia Caterina Pirrone
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Maria Francesca Spadea
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Giuseppe Donato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
103
|
Chen LH, Zhang HT, Xu RX, Li WD, Zhao H, Yang Y, Sun K. Interaction of aquaporin 4 and N-methyl-D-aspartate NMDA receptor 1 in traumatic brain injury of rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1148-1154. [PMID: 30483388 PMCID: PMC6251393 DOI: 10.22038/ijbms.2018.29135.7037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective(s): methyl-D-aspartate NMDA receptor (NMDAR) and aquaporin 4 (AQP4) are involved in the molecular cascade of edema after traumatic brain injury (TBI) and are potential targets of studies in pharmacology and medicine. However, their association and interactions are still unknown. Materials and Methods: We established a rat TBI model in this study. The cellular distribution patterns of AQP4 after inhibition of NMDAR were determined by Western blotting and immunoreactive staining. Furthermore, the regulation of NMDA receptor 1 by AQP4 was studied by injection of a viral vector targeting AQP4 by RNAi into the rat brain before TBI. Results: The results suggest that AQP4 protein expression increased significantly (P<0.05) after TBI and was down-regulated by the NMDAR inhibitor MK801. This decrease could be partly reversed using the NMDAR agonist NMDA. This indicated that AQP4 mRNA levels and protein expression are regulated by the NMDA signaling pathway. By injection of AQP4 RNAi viral vector into the brain of TBI rat models, we found that the mRNA and protein levels of NMDAR decreased significantly (P<0.05). This suggested that NMDAR is also regulated by AQP4. Conclusion: These data suggested that the inhibition of AQP4 down-regulates NMDAR expression, which might be one of the mechanisms involved in edema after TBI.
Collapse
Affiliation(s)
- Li-Hua Chen
- The Affiliated Bayi Brain Hospital, The PLA Army General Hospital, Beijing 100700, China
| | - Hong-Tian Zhang
- The Affiliated Bayi Brain Hospital, The PLA Army General Hospital, Beijing 100700, China
| | - Ru-Xiang Xu
- The Affiliated Bayi Brain Hospital, The PLA Army General Hospital, Beijing 100700, China
| | - Wen-De Li
- The Affiliated Bayi Brain Hospital, The PLA Army General Hospital, Beijing 100700, China
| | - Hao Zhao
- The Affiliated Bayi Brain Hospital, The PLA Army General Hospital, Beijing 100700, China
| | - Yi Yang
- The Affiliated Bayi Brain Hospital, The PLA Army General Hospital, Beijing 100700, China
| | - Kai Sun
- The Affiliated Bayi Brain Hospital, The PLA Army General Hospital, Beijing 100700, China
| |
Collapse
|
104
|
Nilsson M, Englund E, Szczepankiewicz F, van Westen D, Sundgren PC. Imaging brain tumour microstructure. Neuroimage 2018; 182:232-250. [DOI: 10.1016/j.neuroimage.2018.04.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023] Open
|
105
|
Gao W, Ju YN, Chen JF, Zhou Q, Song CY, Wang YZ, Cao HL, Yang WC. Adrenomedullin Reduces Secondary Injury and Improves Outcome in Rats with Fluid Percussion Brain Injury. World Neurosurg 2018; 119:e765-e773. [DOI: 10.1016/j.wneu.2018.07.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023]
|
106
|
Ramirez de Noriega F, Manley GT, Moscovici S, Itshayek E, Tamir I, Fellig Y, Shkara RA, Rosenthal G. A swine model of intracellular cerebral edema - Cerebral physiology and intracranial compliance. J Clin Neurosci 2018; 58:192-199. [PMID: 30454689 DOI: 10.1016/j.jocn.2018.10.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Cerebral edema leading to elevated intracranial pressure (ICP) is a fundamental concern after severe traumatic brain injury (TBI), stroke, and severe acute hyponatremia. We describe a swine model of water intoxication and its cerebral histological and physiological sequela. We studied female swine weighing 35-45 kg. Four serum sodium intervals were designated: baseline, mild, moderate, and severe hyponatremia attained by infusing hypotonic saline. Intracranial fluid injections were performed to assess intracranial compliance. At baseline and following water intoxication wedge biopsy was obtained for pathological examination and electron microscopy. We studied 8 swine and found an increase in ICP that was strongly related to the decrease in serum sodium level. Mean ICP rose from a baseline of 6 ± 2 to 28 ± 6 mm Hg during severe hyponatremia, while cerebral perfusion pressure (CPP) decreased from 72 ± 10 to 46 ± 11 mm Hg. Brain tissue oxygen tension (PbtO2) decreased from 18.4 ± 8.9 to 5.3 ± 3.0 mm Hg. Electron microscopy demonstrated intracellular edema and astrocytic foot process swelling following water intoxication. With severe hyponatremia, 2 cc intracranial fluid injection resulted in progressively greater ICP dose, indicating a worsening intracranial compliance. Our model leads to graded and sustained elevation of ICP, lower CPP, and decreased PbtO2, all of which cross clinically relevant thresholds. Intracranial compliance worsens with increased cerebral swelling. This model may serve as a platform to study which therapeutic interventions best improve the cerebral physiological profile in the face of severe brain edema.
Collapse
Affiliation(s)
| | - Geoffrey T Manley
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Samuel Moscovici
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Itshayek
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Idit Tamir
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ramiz Abu Shkara
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Guy Rosenthal
- Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
107
|
Wang XH, Liu Q, Shao ZT. Deletion of JDP2 improves neurological outcomes of traumatic brain injury (TBI) in mice: Inactivation of Caspase-3. Biochem Biophys Res Commun 2018; 504:805-811. [DOI: 10.1016/j.bbrc.2018.08.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
|
108
|
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 2018; 316:C2-C15. [PMID: 30207783 DOI: 10.1152/ajpcell.00187.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| |
Collapse
|
109
|
Li Y, Xu QQ, Shan CS, Shi YH, Wang Y, Zheng GQ. Combined Use of Emodin and Ginsenoside Rb1 Exerts Synergistic Neuroprotection in Cerebral Ischemia/Reperfusion Rats. Front Pharmacol 2018; 9:943. [PMID: 30233364 PMCID: PMC6127650 DOI: 10.3389/fphar.2018.00943] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Acute ischemic stroke (AIS) generally causes neurological dysfunction and poses a serious threat to public health. Here, we aimed to assess the independent and combined effects of ginsenoside Rb1 (GRb1) and Emodin on neuroprotection through regulating Connexin 43 (Cx43) and Aquaporin 4 (AQP4) expression in cerebral ischemia/reperfusion (I/R) model rats. Adult male Sprague-Dawley (SD) rats were randomly divided into five groups: sham group, I/R group, Emodin group, GRb1 group and Emodin+GRb1 group. They were further allocated to four subgroups according to the 6h, 1d, 3d, and 7d time points except the sham group. Based on the modified Longa suture method, the focal cerebral I/R model was established by middle cerebral artery occlusion (MCAO). The neurological deficit scores (NDS), blood brain barrier (BBB) permeability and cerebral infarction area were assessed at each corresponding time point. Cx43 and AQP4 levels were assessed by Real-time PCR and Immunofluorescence. Compared with I/R group, both the independent and combined use of GRb1 and Emodin could alleviate NDS, reduce the BBB permeability, reduce the infarction area and down-regulate Cx43 and AQP4 expression at 6h, 1d, 3d, and 7d after I/R (P < 0.05). The Emodin+GRb1 group had more significant effects than Emodin group and GRb1 group (P < 0.05). In conclusion, the combination of Emodin and GRb1 exerts synergistically neuroprotective functions through regulating AQP4 and Cx43 after I/R.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing-Qing Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun-Shuo Shan
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Hua Shi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
110
|
Saadeh FS, Melamed EF, Rea ND, Krieger MD. Seizure outcomes of supratentorial brain tumor resection in pediatric patients. Neuro Oncol 2018; 20:1272-1281. [PMID: 29579305 PMCID: PMC6071648 DOI: 10.1093/neuonc/noy026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background This study aims to identify the prevalence of and risk factors for seizure development after supratentorial brain tumor resection in pediatric patients. This could be used to guide the postoperative management and usage of anti-epileptic drugs (AEDs). Methods Retrospective study was conducted for patients between 0 and 21 years with supratentorial tumor resection between 2005 and 2015 at a single institution. Results Two hundred patients (114 males/86 females) were identified. Median age at resection (±SD) was 9.025 ± 5.720 years and mean follow-up was 4 ± 2 years. Resection was gross total in 82 patients (41%) and partial in 118 patients (59%); 66 patients (33%) experienced preoperative seizures, and 67 patients (34%) experienced postoperative seizures; 18 patients (27%) had early seizures, and 49 patients (73%) had late seizures. Univariate analysis identified risk factors for postoperative seizures as: preoperative seizures (P < 0.001), age less than 2 years (P = 0.003), temporal location (P < 0.001), thalamic location (P = 0.017), preoperative hyponatremia (P = 0.017), World Health Organization grade (P = 0.008), and pathology (P = 0.005). Multivariate regression identified 5 robust risk factors: temporal location (odds ratio [OR] 4.7, 95% CI: 1.7-13.3, P = 0.003), age <2 years (OR 3.9, 95% CI: 1.0-15.4; P = 0.049), preoperative hydrocephalus (OR 3.8, 95% CI: 1.5-9.4; P = 0.005), preoperative seizure (OR 2.8, 95% CI: 1.2-6.5; P = 0.016) and parietal location (OR 0.25, 95% CI: 0.06-0.99; P = 0.049). Extent of resection did not correlate with seizure development (P > 0.05). Conclusions This study reveals 5 risk factors for postoperative seizures after resection of supratentorial tumors. These factors should be considered in postoperative management of these patients.
Collapse
Affiliation(s)
- Fadi S Saadeh
- Division of Neurosurgery, Children’s Hospital of Los Angeles, Los Angeles, California
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Edward F Melamed
- Division of Neurosurgery, Children’s Hospital of Los Angeles, Los Angeles, California
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nolan D Rea
- Division of Neurosurgery, Children’s Hospital of Los Angeles, Los Angeles, California
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mark D Krieger
- Division of Neurosurgery, Children’s Hospital of Los Angeles, Los Angeles, California
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
111
|
Gomes A, da Silva IV, Rodrigues CMP, Castro RE, Soveral G. The Emerging Role of microRNAs in Aquaporin Regulation. Front Chem 2018; 6:238. [PMID: 29977890 PMCID: PMC6021494 DOI: 10.3389/fchem.2018.00238] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Aquaporins (AQPs) are membrane channels widely distributed in human tissues. AQPs are essential for water and energy homeostasis being involved in a broad range of pathophysiological processes such as edema, brain injury, glaucoma, nephrogenic diabetes insipidus, salivary and lacrimal gland dysfunction, cancer, obesity and related metabolic complications. Compelling evidence indicates that AQPs are targets for therapeutic intervention with potential broad application. Nevertheless, efficient AQP modulators have been difficult to find due to either lack of selectivity and stability, or associated toxicity that hamper in vivo studies. MicroRNAs (miRNAs) are naturally occurring small non-coding RNAs that regulate post-transcriptional gene expression and are involved in several diseases. Recent identification of miRNAs as endogenous modulators of AQP expression provides an alternative approach to target these proteins and opens new perspectives for therapeutic applications. This mini-review compiles the current knowledge of miRNA interaction with AQPs highlighting miRNA potential for regulation of AQP-based disorders.
Collapse
Affiliation(s)
- André Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
112
|
Guo J, Mi X, Zhan R, Li M, Wei L, Sun J. Aquaporin 4 Silencing Aggravates Hydrocephalus Induced by Injection of Autologous Blood in Rats. Med Sci Monit 2018; 24:4204-4212. [PMID: 29921834 PMCID: PMC6042309 DOI: 10.12659/msm.906936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Aquaporin 4 (AQP4), the most abundant aquaporin in the brain, is a type of bidirectional water channel controlling the brain-water balance and plays a critical role in physiologic and pathologic water balance in the brain. AQP4 was reported to be elevated in hydrocephalus; therefore, we hypothesized that AQP4 contributes to hydrocephalus. In this study, the role of AQP4 in hydrocephalus was explored. MATERIAL AND METHODS The hydrocephalus rat model was established by injection of autologous blood. On Day 1 and Day 3 after injection of autologous blood, magnetic resonance imaging (MRI) and hematoxylin-eosin (HE) staining were performed to detect the changes in ventricles, and quantitative real-time PCR (qRT-PCR) and immunohistochemistry were carried out to detect the changes in AQP4 level. Thereafter, an AQP4-specific siRNA was used to downregulate AQP4. Then, on Day 3 after injection of autologous blood, the levels of AQP4 and connexin-43 were detected by qRT-PCR, immunohistochemistry, immunofluorescence, or Western blot analysis. MRI and HE staining were performed to detect the changes in ventricles, and Evans blue extravasation assay was used to assess blood-brain barrier integrity. RESULTS The hydrocephalus rat model was established successfully, and hydrocephalus rats showed a higher AQP4 level. Silencing AQP4 aggravated the hydrocephalus, with enlarged lateral ventricles and destruction of ependymal integrity and blood-brain barrier. CONCLUSIONS Our study demonstrates that silencing AQP4 aggravates hydrocephalus, indicating that AQP4 protects against hydrocephalus.
Collapse
Affiliation(s)
- Jian Guo
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Xinjiang Mi
- Second Department of Surgery, Shandong Police Hospital, Jinan, Shandong, P.R. China
| | - Rucai Zhan
- Second Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Meng Li
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Lin Wei
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Jinlong Sun
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
113
|
Wang YF, Parpura V. Astroglial Modulation of Hydromineral Balance and Cerebral Edema. Front Mol Neurosci 2018; 11:204. [PMID: 29946238 PMCID: PMC6007284 DOI: 10.3389/fnmol.2018.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of hydromineral balance (HB) is an essential condition for life activity at cellular, tissue, organ and system levels. This activity has been considered as a function of the osmotic regulatory system that focuses on hypothalamic vasopressin (VP) neurons, which can reflexively release VP into the brain and blood to meet the demand of HB. Recently, astrocytes have emerged as an essential component of the osmotic regulatory system in addition to functioning as a regulator of the HB at cellular and tissue levels. Astrocytes express all the components of osmoreceptors, including aquaporins, molecules of the extracellular matrix, integrins and transient receptor potential channels, with an operational dynamic range allowing them to detect and respond to osmotic changes, perhaps more efficiently than neurons. The resultant responses, i.e., astroglial morphological and functional plasticity in the supraoptic and paraventricular nuclei, can be conveyed, physically and chemically, to adjacent VP neurons, thereby influencing HB at the system level. In addition, astrocytes, particularly those in the circumventricular organs, are involved not only in VP-mediated osmotic regulation, but also in regulation of other osmolality-modulating hormones, including natriuretic peptides and angiotensin. Thus, astrocytes play a role in local/brain and systemic HB. The adaptive astrocytic reactions to osmotic challenges are associated with signaling events related to the expression of glial fibrillary acidic protein and aquaporin 4 to promote cell survival and repair. However, prolonged osmotic stress can initiate inflammatory and apoptotic signaling processes, leading to glial dysfunction and a variety of brain diseases. Among many diseases of brain injury and hydromineral disorders, cytotoxic and osmotic cerebral edemas are the most common pathological manifestation. Hyponatremia is the most common cause of osmotic cerebral edema. Overly fast correction of hyponatremia could lead to central pontine myelinolysis. Ischemic stroke exemplifies cytotoxic cerebral edema. In this review, we summarize and analyze the osmosensory functions of astrocytes and their implications in cerebral edema.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
114
|
Lan YL, Wang X, Lou JC, Ma XC, Zhang B. The potential roles of aquaporin 4 in malignant gliomas. Oncotarget 2018; 8:32345-32355. [PMID: 28423683 PMCID: PMC5458289 DOI: 10.18632/oncotarget.16017] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/22/2017] [Indexed: 11/25/2022] Open
Abstract
Aquaporin 4 (AQP4) is the major water channel expressed in the central nervous system and is primarily expressed in astrocytes. Recently, accumulated evidence has pointed to AQP4 as a key molecule that could play a critical role in glioma development. Discoveries of the role of AQP4 in cell migration suggest that AQP4 could be a significant factor regarding glioma malignancies. However, the AQP4 expression levels in glioma have not been fully elucidated; furthermore, the correlation of AQP4 expression with glioma malignancy remains controversial. Here, we review the expression pattern and predictive significance of AQP4 in malignant glioma. The molecular mechanism of AQP4 as it pertains to the migration and invasion of human glioma cells has been summarized. In addition, the important roles of AQP4 in combating drug resistance as well as potential pharmacological blockers of AQP4 have been systematically discussed. More research should be conducted to elucidate the potential roles of AQP4 in malignant glioma for identifying the tumor type, progression stages and optimal treatment strategies. The observed experimental results strongly emphasize the importance of this topic for future investigations.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Pharmacy, Dalian Medical University, Dalian, China.,Department of Physiology, Dalian Medical University, Dalian, China.,Department of Neurosurgery, The Third People's Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Neurosurgery, The Third People's Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao-Chi Ma
- Department of Pharmacy, Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
115
|
Berland S, Toft-Bertelsen TL, Aukrust I, Byska J, Vaudel M, Bindoff LA, MacAulay N, Houge G. A de novo Ser111Thr variant in aquaporin-4 in a patient with intellectual disability, transient signs of brain ischemia, transient cardiac hypertrophy, and progressive gait disturbance. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a002303. [PMID: 29437797 PMCID: PMC5793774 DOI: 10.1101/mcs.a002303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/06/2017] [Indexed: 11/25/2022] Open
Abstract
Aquaporin-4, encoded by AQP4, is the major water channel in the central nervous system and plays an important role in the brain's water balance, including edema formation and clearance. Using genomic copy-number analysis and trio-exome sequencing, we investigated a male patient with intellectual disability, hearing loss, and progressive gait dysfunction and found a de novo missense change Ser111Thr in AQP4 as the only suspicious finding. Perinatally, signs of brain ischemia were detected in relation to acute collapse 2 h after birth that resolved a few days later. At the age of 3 mo, cardiac hypertrophy was detected that persisted through childhood but was completely resolved by age 16. In theory, this neurodevelopmental disorder with transient cardiomyopathy could be caused by a disturbance of cellular water balance. Ser111 is an extremely conserved residue in the short cytoplasmic loop between AQP4 transmembrane helix 2 and 3, present across all AQP isoforms from plants to mammals, and it does not appear to be a phosphorylation site. We found that the Ser111Thr change does not affect water permeability or protein stability, suggesting another and possibly regulatory role. Although causality remains unproven, this case study draws attention to AQP4 as a candidate gene for a unique developmental disorder and to a specific serine as a residue of possibly great functional importance in many AQPs.
Collapse
Affiliation(s)
- Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen N-5021, Norway
| | | | - Ingvild Aukrust
- Department of Medical Genetics, Haukeland University Hospital, Bergen N-5021, Norway
| | - Jan Byska
- Department of Informatics, University of Bergen, Bergen N-5020, Norway
| | - Marc Vaudel
- Department of Medical Genetics, Haukeland University Hospital, Bergen N-5021, Norway.,KG Jebsen Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen N-5020, Norway
| | - Laurence A Bindoff
- Department of Neurology, Haukeland University Hospital, Bergen N-5021, Norway.,Department of Clinical Medicine (K1), University of Bergen, Bergen N-5020, Norway
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen N-5021, Norway
| |
Collapse
|
116
|
Tanaka M, Ishihara Y, Mizuno S, Ishida A, Vogel CF, Tsuji M, Yamazaki T, Itoh K. Progression of vasogenic edema induced by activated microglia under permanent middle cerebral artery occlusion. Biochem Biophys Res Commun 2018; 496:582-587. [PMID: 29353043 DOI: 10.1016/j.bbrc.2018.01.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/14/2018] [Indexed: 12/11/2022]
Abstract
Brain edema is a severe complication that accompanies ischemic stroke. Increasing evidence shows that inflammatory cytokines impair tight junctions of the blood-brain barrier, suggesting the involvement of microglia in brain edema. In this study, we examined the role of microglia in the progression of ischemic brain edema using mice with permanent middle cerebral artery occlusion. The intensity of T2-weighted imaging (T2WI) in the cerebral cortex and the striatum was elevated 3 h after occlusion and spread to peripheral regions of the ischemic hemisphere. Merged images of 2,3,5-triphenyl tetrazolium chloride staining and T2WI revealed the exact vasogenic edema region, which spread from the ischemic core to outside the ischemic region. Microglia were strongly activated in the ischemic region 3 h after occlusion and, notably, activated microglia were observed in the non-ischemic region 24 h after occlusion. Pretreatment with minocycline, an inhibitor of microglial activation clearly suppressed not only vasogenic edema but also infarct formation. We demonstrated in this study that vasogenic edema spreads from the ischemic core to the peripheral region, which can be elicited, at least in part, by microglial activation induced by ischemia.
Collapse
Affiliation(s)
- Miki Tanaka
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, 739-8521, Japan; Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, 739-8521, Japan; Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA.
| | - Shodo Mizuno
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan; Department of Pharmaceutical Service, Shikoku Medical Center of Children and Adults, National Hospital Organization, Kagawa, 765-8501, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Christoph F Vogel
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, Davis, Davis, CA, 95616, USA
| | - Mayumi Tsuji
- Department of Environmental Health, University of Occupational and Environmental Health, Fukuoka, 807-8555, Japan
| | - Takeshi Yamazaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan
| |
Collapse
|
117
|
Ogawa C, Kidokoro H, Fukasawa T, Yamamoto H, Ishihara N, Ito Y, Sakaguchi Y, Okai Y, Ohno A, Nakata T, Azuma Y, Hattori A, Kubota T, Tsuji T, Hirakawa A, Kawai H, Natsume J. Cytotoxic edema at onset in West syndrome of unknown etiology: A longitudinal diffusion tensor imaging study. Epilepsia 2018; 59:440-448. [PMID: 29315514 DOI: 10.1111/epi.13988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To clarify longitudinal changes in white matter microstructures from the onset of disease in patients with West syndrome (WS) of unknown etiology. METHODS Diffusion tensor imaging (DTI) was prospectively performed at onset and at 12 and 24 months old in 17 children with WS of unknown etiology. DTI was analyzed using tract-based spatial statistics (TBSS) and tract-specific analysis (TSA) of 13 fiber tracts, and fractional anisotropy (FA) and mean diffusivity (MD) were compared with those of 42 age-matched controls. Correlations of FA and MD with developmental quotient (DQ) at age 24 months were analyzed. Multiple comparisons were adjusted for using the false discovery rate (q-value). RESULTS TBSS analysis at onset showed higher FA and lower MD in the corpus callosum and brainstem in patients. TSA showed lower MD in bilateral uncinate fasciculi (UF) (right: q < 0.001; left: q = 0.03) at onset in patients. TBSS showed a negative correlation between FA at onset and DQ in the right frontal lobe, whereas FA at 24 months old exhibited a positive correlation with DQ in the diffuse white matter. MD for bilateral UF at 24 months old on TSA correlated positively with DQ (q = 0.04, both). SIGNIFICANCE These findings may indicate the existence of cytotoxic edema in the immature white matter and dorsal brainstem at onset, and subsequent alterations in the diffuse white matter in WS of unknown etiology. Microstructural development in the UF might play important roles in cognitive development in WS.
Collapse
Affiliation(s)
- Chikako Ogawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | | | - Hiroyuki Yamamoto
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoko Ishihara
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoko Sakaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Okai
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuko Ohno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiteru Azuma
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Hattori
- Department of Pediatrics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuo Kubota
- Department of Pediatrics, Anjo Kosei Hospital, Anjo, Japan
| | - Takeshi Tsuji
- Department of Pediatrics, Okazaki City Hospital, Okazaki, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisashi Kawai
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
118
|
THE ROLE OF ASTROCYTES IN THE HOMEOSTASIS MAINTAINING IN THE NERVE TISSUE. WORLD OF MEDICINE AND BIOLOGY 2018. [DOI: 10.26724/2079-8334-2018-2-64-220-225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
119
|
Abstract
Oncotic cell death or oncosis represents a major mechanism of cell death in ischaemic stroke, occurring in many central nervous system (CNS) cell types including neurons, glia and vascular endothelial cells. In stroke, energy depletion causes ionic pump failure and disrupts ionic homeostasis. Imbalance between the influx of Na+ and Cl- ions and the efflux of K+ ions through various channel proteins and transporters creates a transmembrane osmotic gradient, with ensuing movement of water into the cells, resulting in cell swelling and oncosis. Oncosis is a key mediator of cerebral oedema in ischaemic stroke, contributing directly through cytotoxic oedema, and indirectly through vasogenic oedema by causing vascular endothelial cell death and disruption of the blood-brain barrier (BBB). Hence, inhibition of uncontrolled ionic flux represents a novel and powerful strategy in achieving neuroprotection in stroke. In this review, we provide an overview of oncotic cell death in the pathology of stroke. Importantly, we summarised the therapeutically significant pathways of water, Na+, Cl- and K+ movement across cell membranes in the CNS and their respective roles in the pathobiology of stroke.
Collapse
|
120
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
121
|
Effects of Female Sex Steroids Administration on Pathophysiologic Mechanisms in Traumatic Brain Injury. Transl Stroke Res 2017; 9:393-416. [PMID: 29151229 DOI: 10.1007/s12975-017-0588-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Secondary brain damage following initial brain damage in traumatic brain injury (TBI) is a major cause of adverse outcomes. There are many gaps in TBI research and a lack of therapy to limit debilitating outcomes in TBI or enhance the neurogenesis, despite pre-clinical and clinical research performed in TBI. Females show harmful outcomes against brain damage including TBI less than males, independent of different TBI occurrence. A significant reduction in secondary brain damage and improvement in neurologic outcome post-TBI has been reported following the use of progesterone and estrogen in many experimental studies. Although useful features of sex steroids including progesterone have been identified in TBI clinical trials I and II, clinical trials III have been unsuccessful. This review article focuses on evidence of secondary injury mechanisms and neuroprotective effects of estrogen and progesterone in TBI. Understanding these mechanisms may enable researchers to achieve greater success in TBI clinical studies. It seems that the design of clinical studies should be revised due to translation loss of animal studies to clinical studies. The heterogeneous and complex nature of TBI, the endogenous levels of sex hormones at the time of taking these hormones, the therapeutic window of the drug, the dosage of the drug, the selection of appropriate targets in evaluation, the determination of responsive population, gender and age based on animal studies should be considered in the design of TBI human studies in future.
Collapse
|
122
|
Onoda A, Takeda K, Umezawa M. Pretreatment with N-acetyl cysteine suppresses chronic reactive astrogliosis following maternal nanoparticle exposure during gestational period. Nanotoxicology 2017; 11:1012-1025. [PMID: 29046125 DOI: 10.1080/17435390.2017.1388864] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Early pregnant employees are potentially and unintendedly exposed to industrial chemicals including nanoparticles. Developmental toxicity of nanoparticle exposure has been concerned because exposure to fine particle including carbon black nanoparticle (CB-NP) during the brain developmental stage enhances the risk of brain disorders. Maternal CB-NP exposure dose-dependently induces astrogliosis, which is an abnormal increase in the reactive astrocytes with glial fibrillary acidic protein (GFAP) and aquaporin-4 overexpression due to the destruction of nearby neurons and blood vessels. The present study aimed to investigate protective effects of antioxidants on the histopathological denaturation with astrogliosis following maternal CB-NP exposure in offspring mice, thereby to evaluate the role of oxidative stress on the developmental toxicity. Pregnant ICR mice were treated with CB-NP by intranasal instillation on gestational days 5 and 9. N-acetyl cysteine (NAC) or ascorbic acid was intraperitoneally administered to the pregnant mice 1 h prior to CB-NP instillation. The brains were collected from 6- to 12-week-old offspring mice and analyzed using western blotting and immunohistochemistry. NAC suppressed GFAP overexpression in 6- and 12-week-old offspring mice following maternal CB-NP exposure. However, NAC did not suppress aquaporin-4 overexpression following maternal CB-NP exposure. Ascorbic acid did not suppress, but rather slightly and significantly enhanced the expression of GFAP and aquaporin-4. These results indicate that astrogliosis by maternal CB-NP exposure is partially prevented by NAC pretreatment. Oxidative stress is a possible key factor of developmental neurotoxicity of maternal NP exposure. This study will contribute to elucidating the mechanisms underlying the effects of developmental neurotoxicity of NPs.
Collapse
Affiliation(s)
- Atsuto Onoda
- a Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences , Tokyo University of Science , Noda , Chiba , Japan.,b The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology , Organization for Research Advancement, Tokyo University of Science , Noda , Chiba , Japan.,c Research Fellow of Japan Society for the Promotion of Science , Chiyoda-ku , Tokyo , Japan
| | - Ken Takeda
- b The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology , Organization for Research Advancement, Tokyo University of Science , Noda , Chiba , Japan
| | - Masakazu Umezawa
- b The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology , Organization for Research Advancement, Tokyo University of Science , Noda , Chiba , Japan.,d Department of Materials Science and Technology, Faculty of Industrial Science and Technology , Tokyo University of Science , Katsushika , Tokyo , Japan
| |
Collapse
|
123
|
The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol 2017; 157:230-246. [DOI: 10.1016/j.pneurobio.2015.12.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023]
|
124
|
Sun BL, Wang LH, Yang T, Sun JY, Mao LL, Yang MF, Yuan H, Colvin RA, Yang XY. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog Neurobiol 2017; 163-164:118-143. [PMID: 28903061 DOI: 10.1016/j.pneurobio.2017.08.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022]
Abstract
The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange.
Collapse
Affiliation(s)
- Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| | - Li-Hua Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, China
| | - Tuo Yang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jing-Yi Sun
- Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, Republic of Korea
| | - Lei-Lei Mao
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Ming-Feng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Hui Yuan
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Robert A Colvin
- Department of Biological Sciences, Interdisciplinary Graduate Program in Molecular and Cellular Biology, Neuroscience Program, Ohio University, Athens, OH 45701, USA
| | - Xiao-Yi Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| |
Collapse
|
125
|
Darabi S, Mohammadi MT. Fullerenol nanoparticles decrease ischaemia-induced brain injury and oedema through inhibition of oxidative damage and aquaporin-1 expression in ischaemic stroke. Brain Inj 2017; 31:1142-1150. [PMID: 28506130 DOI: 10.1080/02699052.2017.1300835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We examined the possible protective effects of fullerenol nanoparticles on brain injuries and oedema in experimental model of ischaemic stroke through inhibition of oxidative damage and aquaporin-1 (AQP-1) expression. METHODS Experiment was done in three groups of rats (N = 66): sham, control ischaemia and ischaemic treatment. Ischaemia was induced by 90-minutes middle cerebral artery occlusion (MCAO) followed by 24 hours of reperfusion. Rats received a dose of 10 mg/kg of fullerenol 30 minutes before MCAO. Infarction, brain oedema, malondialdehyde (MDA) and nitrate contents as well as mRNA level of AQP-1 were determined 24 hours after termination of MCAO. RESULTS Administration of fullerenol before MCAO significantly reduced the infarction of cortex and striatum by 72 and 77%, respectively. MCAO induced brain oedema in control ischaemic rats (3.83 ± 0.53%), whereas, fullerenol significantly reduced it (0.91 ± 0.55%). The contents of MDA and nitrate increased in ischaemic hemispheres by 86 and 41%, respectively. Fullerenol considerably reduced the MDA and nitrate contents by 83 and 48%, respectively. Moreover, MCAO noticeably increased the mRNA level of AQP-1 in ischaemic hemispheres by 22%, whereas fullerenol significantly decreased it by 29%. DISCUSSION Fullerenol is able to reduce ischaemia-induced brain injuries and oedema possibly through inhibition of oxidative damage and AQP-1 expression in ischaemic stroke.
Collapse
Affiliation(s)
- Shamsi Darabi
- a Department of Physiology and Biophysics, School of Medicine , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Mohammad Taghi Mohammadi
- a Department of Physiology and Biophysics, School of Medicine , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
126
|
Comparative molecular dynamics study of neuromyelitis optica-immunoglobulin G binding to aquaporin-4 extracellular domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1326-1334. [PMID: 28477975 DOI: 10.1016/j.bbamem.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/26/2023]
Abstract
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which most patients have serum autoantibodies (called NMO-IgG) that bind to astrocyte water channel aquaporin-4 (AQP4). A potential therapeutic strategy in NMO is to block the interaction of NMO-IgG with AQP4. Building on recent observation that some single-point and compound mutations of the AQP4 extracellular loop C prevent NMO-IgG binding, we carried out comparative Molecular Dynamics (MD) investigations on three AQP4 mutants, TP137-138AA, N153Q and V150G, whose 295-ns long trajectories were compared to that of wild type human AQP4. A robust conclusion of our modeling is that loop C mutations affect the conformation of neighboring extracellular loop A, thereby interfering with NMO-IgG binding. Analysis of individual mutations suggested specific hydrogen bonding and other molecular interactions involved in AQP4-IgG binding to AQP4.
Collapse
|
127
|
Turning down the volume: Astrocyte volume change in the generation and termination of epileptic seizures. Neurobiol Dis 2017; 104:24-32. [PMID: 28438505 DOI: 10.1016/j.nbd.2017.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022] Open
Abstract
Approximately 1% of the global population suffers from epilepsy, a class of disorders characterized by recurrent and unpredictable seizures. Of these cases roughly one-third are refractory to current antiepileptic drugs, which typically target neuronal excitability directly. The events leading to seizure generation and epileptogenesis remain largely unknown, hindering development of new treatments. Some recent experimental models of epilepsy have provided compelling evidence that glial cells, especially astrocytes, could be central to seizure development. One of the proposed mechanisms for astrocyte involvement in seizures is astrocyte swelling, which may promote pathological neuronal firing and synchrony through reduction of the extracellular space and elevated glutamate concentrations. In this review, we discuss the common conditions under which astrocytes swell, the resultant effects on neural excitability, and how seizure development may ultimately be influenced by these effects.
Collapse
|
128
|
Chu H, Yang X, Huang C, Gao Z, Tang Y, Dong Q. Apelin-13 Protects against Ischemic Blood-Brain Barrier Damage through the Effects of Aquaporin-4. Cerebrovasc Dis 2017; 44:10-25. [PMID: 28402976 DOI: 10.1159/000460261] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 01/30/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Apelin-13 has been found to have protective effects on many neurological diseases, including cerebral ischemia. However, whether Apelin-13 acts on blood-brain barrier (BBB) disruption following cerebral ischemia is largely unknown. Aquaporin-4 (AQP4) has a close link with BBB due to the high concentration in astrocyte foot processes and regulation of astrocytes function. Here, we aimed to test Apelin-13's effects on ischemic BBB injury and examine whether the effects were dependent on AQP4. METHODS We detected the expression of AQP4 induced by Apelin-13 injection at 1, 3, and 7 days after middle cerebral artery occlusion. Meanwhile, we examined the effects of Apelin-13 on neurological function, infarct volume, and BBB disruption owing to cerebral ischemia in wild type mice, and tested whether such effects were AQP4 dependent by using AQP4 knock-out mice. Furthermore, we assessed the possible signal transduction pathways activated by Apelin-13 to regulate AQP4 expression via astrocyte cultures. RESULTS It was found that Apelin-13 highly increased AQP4 expression as well as reduced neurological scores and infarct volume. Importantly, Apelin-13 played a role of BBB protection in both types of mice by reducing BBB permeability, increased vascular endothelial growth factor, upregulated endothelial nitric oxide synthase, and downregulated inducible NOS. In morphology, we demonstrated Apelin-13 suppressed tight junction opening and endothelial cell swelling via electron microscopy detection. Meanwhile, Apelin-13 also alleviated apoptosis of astrocytes and promoted angiogenesis. Interestingly, effects of AQP4 on neurological function and infarct volume varied with time course, while AQP4 elicited protective effects on BBB at all time points. Statistical analysis of 2-way analysis of variance with replication indicated that AQP4 was required for these effects. In addition, Apelin-13 upregulated phosphorylation of extracellular signal-regulated kinase (ERK) and Akt as well as AQP4 protein in cultured astrocytes. The latter was inhibited by ERK and phosphatidylinositol 3'-kinase (PI3K) inhibitors. CONCLUSION Our data suggest that Apelin-13 protects BBB from disruption after cerebral ischemia both morphologically and functionally, which is highly associated with the increased levels of AQP4, possibly through the activation of ERK and PI3K/Akt pathways. This study provides double targets to protection of ischemic BBB damage, which can present new insights to drugs development.
Collapse
Affiliation(s)
- Heling Chu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Shanghai, China
| | | | | | | | | | | |
Collapse
|
129
|
Abstract
: Retinal vascular disease has the potential to affect hundreds of millions of people, with the inherent risk of vision loss related to cystoid macular edema. Although there have been histologic evaluation of eyes having cystoid macular edema, the most recent paper was published more than 30 years ago. In retinal vascular cystoid macular edema fluorescein angiography, a modality that images the superficial vascular plexus, shows increased leakage. Optical coherence tomography angiography has provided unprecedented resolution of retinal vascular flow in a depth resolved manner and demonstrates areas of decreased or absent flow in the deep vascular plexus colocalizing with the cystoid spaces. There has been a large amount of research on fluid management and edema in the brain, much of which may have analogues in the eye. Interstitial flow of fluid as managed by Müller cells may occur in the retina, comparable in some ways to the bulk flow in brain parenchyma, which is managed by astrocytes. Absent blood flow in the deep retinal plexus may restrict fluid management strategies in the retina, to include transport of excess fluid out of the retina into the blood by Müller cells. Application of this theory may help in increasing understanding of the pathophysiology of retinal vascular cystoid macular edema and may lead to new therapeutic approaches.
Collapse
|
130
|
Onoda A, Kawasaki T, Tsukiyama K, Takeda K, Umezawa M. Perivascular Accumulation of β-Sheet-Rich Proteins in Offspring Brain following Maternal Exposure to Carbon Black Nanoparticles. Front Cell Neurosci 2017; 11:92. [PMID: 28408868 PMCID: PMC5374146 DOI: 10.3389/fncel.2017.00092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Environmental stimulation during brain development is an important risk factor for the development of neurodegenerative disease. Clinical evidence indicates that prenatal exposure to particulate air pollutants leads to diffuse damage to the neurovascular unit in the developing brain and accelerates neurodegeneration. Maternal exposure to carbon black nanoparticles (CB-NPs), used as a model for particulate air pollution, induces long-lasting diffuse perivascular abnormalities. We aimed to comprehensively characterize the perivascular abnormalities related to maternal NPs exposure using Fourier transform infrared microspectroscopy (in situ FT-IR) and classical staining analysis. Pregnant ICR mice were intranasally treated with a CB-NPs suspension (95 μg/kg at a time) on gestational days 5 and 9. Brains were collected 6 weeks after birth and sliced to prepare 10-μm-thick serial sections. Reflective spectra of in situ FT-IR were acquired using lattice measurements (x-axis: 7, y-axis: 7, 30-μm apertures) around a centered blood vessel. We also performed mapping analysis of protein secondary structures. Serial sections were stained with using periodic acid-Schiff or immunofluorescence to examine the phenotypes of the perivascular areas. Peaks of amide I bands in spectra from perivascular areas were shifted by maternal NPs exposure. However, there were two types of peak-shift in one mouse in the exposure group. Some vessels had a large peak-shift and others had a small peak-shift. In situ FT-IR combined with traditional staining revealed that the large peak-shift was induced around blood vessel adjacent to astrocytes with glial fibrillary acidic protein and aquaporin-4 over-expression and perivascular macrophages (PVMs) with enlarged lysosome granules. Furthermore, protein secondary structural analysis indicated that maternal NPs exposure led to increases in β-sheet content and decreases in α-helix content in areas that are mostly close to the centered blood vessel displaying histopathological changes. These results suggest that β-sheet-rich waste proteins, which are denatured by maternal NPs exposure, likely accumulate in the perivascular space as they are processed by the clearance systems in the brain. This may in turn lead the denaturation of PVMs and astrocyte activation. The risk of neurodegeneration may be enhanced by exposure to particulate air pollutants during brain development following the perivascular accumulation of β-sheet-rich waste proteins.
Collapse
Affiliation(s)
- Atsuto Onoda
- Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of ScienceNoda, Japan.,The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of ScienceNoda, Japan.,Research Fellow of Japan Society for the Promotion of ScienceTokyo, Japan
| | - Takayasu Kawasaki
- Infrared Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of ScienceNoda, Japan
| | - Koichi Tsukiyama
- Infrared Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of ScienceNoda, Japan.,Department of Chemistry, Faculty of Science, Tokyo University of ScienceTokyo, Japan
| | - Ken Takeda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of ScienceNoda, Japan
| | - Masakazu Umezawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of ScienceNoda, Japan.,Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of ScienceTokyo, Japan
| |
Collapse
|
131
|
Kida T, Oku H, Horie T, Fukumoto M, Okuda Y, Morishita S, Ikeda T. Implication of VEGF and aquaporin 4 mediating Müller cell swelling to diabetic retinal edema. Graefes Arch Clin Exp Ophthalmol 2017; 255:1149-1157. [PMID: 28303331 DOI: 10.1007/s00417-017-3631-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Aquaporin 4 (AQP4), a water channel protein, is known to be expressed in retinal Müller cells. The purpose of this study was to determine the effects of VEGF and AQP4 channels on the volumetric changes in Müller cells. METHODS Retinas from diabetic rats and a cultured Müller cell line, TR-MUL5, were used in this study. Intravitreal injections of VEGF or PBS were performed on either streptozotocin (STZ)-induced diabetic or normoglycemic rats. Retinal sections were immunostained for anti-glial fibrillary acidic protein (GFAP), anti-AQP4, and anti-VEGF. VEGF protein levels from collected retinas were determined by western blot analysis. Volumetric changes and nitric oxide (NO) levels in cultured Müller cells were determined using flow cytometry (FACS), in the presence or absence of VEGF and TGN-020, a selective AQP4 inhibitor. RESULTS In the diabetic rat retina, VEGF immunoreactivity was concentrated in the internal retinal layers, and AQP4 immunoreactivity was higher than controls. The expressions of AQP4 were colocalized with GFAP. Protein levels of VEGF in the hyperglycemic rat retina were significantly higher than controls. FACS analyses showed that exposure to VEGF enlarged Müller cells, while exposure to TGN-020 suppressed the enlargement. Intracellular levels of NO were increased after exposure to VEGF, which was suppressed following the addition of TGN-020. CONCLUSION The observed Müller cell swelling is mediated by VEGF and AQP4.
Collapse
Affiliation(s)
- Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Masanori Fukumoto
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Yoshitaka Okuda
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Seita Morishita
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
132
|
Jha RM, Puccio AM, Chou SHY, Chang CCH, Wallisch JS, Molyneaux BJ, Zusman BE, Shutter LA, Poloyac SM, Janesko-Feldman KL, Okonkwo DO, Kochanek PM. Sulfonylurea Receptor-1: A Novel Biomarker for Cerebral Edema in Severe Traumatic Brain Injury. Crit Care Med 2017; 45:e255-e264. [PMID: 27845954 PMCID: PMC5550829 DOI: 10.1097/ccm.0000000000002079] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cerebral edema is a key poor prognosticator in traumatic brain injury. There are no biomarkers identifying patients at-risk, or guiding mechanistically-precise therapies. Sulfonylurea receptor-1-transient receptor potential cation channel M4 is upregulated only after brain injury, causing edema in animal studies. We hypothesized that sulfonylurea receptor-1 is measurable in human cerebrospinal fluid after severe traumatic brain injury and is an informative biomarker of edema and outcome. DESIGN A total of 119 cerebrospinal fluid samples were collected from 28 severe traumatic brain injury patients. Samples were retrieved at 12, 24, 48, 72 hours and before external ventricular drain removal. Fifteen control samples were obtained from patients with normal pressure hydrocephalus. Sulfonylurea receptor- 1 was quantified by enzyme-linked immunosorbent assay. Outcomes included CT edema, intracranial pressure measurements, therapies targeting edema, and 3-month Glasgow Outcome Scale score. MAIN RESULTS Sulfonylurea receptor-1 was present in all severe traumatic brain injury patients (mean = 3.54 ± 3.39 ng/mL, peak = 7.13 ± 6.09 ng/mL) but undetectable in all controls (p < 0.001). Mean and peak sulfonylurea receptor-1 was higher in patients with CT edema (4.96 ± 1.13 ng/mL vs 2.10 ± 0.34 ng/mL; p = 0.023). There was a temporal delay between peak sulfonylurea receptor-1 and peak intracranial pressure in 91.7% of patients with intracranial hypertension. There was no association between mean/peak sulfonylurea receptor-1 and mean/peak intracranial pressure, proportion of intracranial pressure greater than 20 mm Hg, use of edema-directed therapies, decompressive craniotomy, or 3-month Glasgow Outcome Scale. However, decreasing sulfonylurea receptor-1 trajectories between 48 and 72 hours were significantly associated with improved cerebral edema and clinical outcome. Area under the multivariate model receiver operating characteristic curve was 0.881. CONCLUSIONS This is the first report quantifying human cerebrospinal fluid sulfonylurea receptor-1. Sulfonylurea receptor-1 was detected in severe traumatic brain injury, absent in controls, correlated with CT-edema and preceded peak intracranial pressure. Sulfonylurea receptor-1 trajectories between 48 and 72 hours were associated with outcome. Because a therapy inhibiting sulfonylurea receptor-1 is available, assessing cerebrospinal fluid sulfonylurea receptor-1 in larger studies is warranted to evaluate our exploratory findings regarding its diagnostic, and monitoring utility, as well as its potential to guide targeted therapies in traumatic brain injury and other diseases involving cerebral edema.
Collapse
Affiliation(s)
- Ruchira M Jha
- 1Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 2Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 3Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 4Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 5Clinical and Translational Science, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 6Department of Biostatistics, School of Medicine, University of Pittsburgh, Pittsburgh, PA. 7Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA. 8Department of Anesthesiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Onoda A, Takeda K, Umezawa M. Dose-dependent induction of astrocyte activation and reactive astrogliosis in mouse brain following maternal exposure to carbon black nanoparticle. Part Fibre Toxicol 2017; 14:4. [PMID: 28148272 PMCID: PMC5289048 DOI: 10.1186/s12989-017-0184-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/20/2017] [Indexed: 11/24/2022] Open
Abstract
Background Recent studies indicate that maternal exposure to ambient ultrafine particles and nanoparticles has adverse effects of on the central nervous system. Quantitative dose–response data is required to better understand the developmental neurotoxicity of nanoparticles. The present study investigated dose-dependent effects of maternal exposure to carbon black nanoparticle (CB-NP) on astrocyte in the brains of mouse offspring. Methods A CB-NP suspension (2.9, 15, or 73 μg/kg) was intranasally administered to pregnant ICR mice on gestational days 5 and 9. Cerebral cortex samples were collected from 6-week-old offspring and examined by Western blotting, immunostaining, microarray analysis, and quantitative reverse transcriptase-polymerase chain reaction. Placentae were collected from pregnant dams on gestational day 13 and examined by microarray analysis. Results Maternal exposure to CB-NP induced a dose-dependent increase in glial fibrillary acidic protein (GFAP) expression in the cerebral cortex; this increase was particularly observed in astrocytic end-feet attached to denatured perivascular macrophages. Moreover, maternal CB-NP exposure dose-dependently increased aquaporin-4 expression in the brain parenchyma region around blood vessels. The changes in the expression profiles of GFAP and Aqp4 in offspring after maternal CB-NP exposure were similar to those observed in mice of a more advanced age. The expression levels of mRNAs associated with angiogenesis, cell migration, proliferation, chemotaxis, and growth factor production were also altered in the cerebral cortex of offspring after maternal CB-NP exposure. Differentially expressed genes in placental tissues after CB-NP exposure did not populate any specific gene ontology category. Conclusions Maternal CB-NP exposure induced long-term activation of astrocytes resulting in reactive astrogliosis in the brains of young mice. Our observations suggest a potentially increased risk of the onset of age-related neurodegenerative diseases by maternal NP exposure. In this study, we report for the first time a quantitative dose–response relationship between maternal NP exposure and phenotypic changes in the central nervous system of the offspring. Moreover, our findings indicate that cortical GFAP and Aqp4 are useful biomarkers that can be employed in further studies aiming to elucidate the underlying mechanism of nanoparticle-mediated developmental neurotoxicity.
Collapse
Affiliation(s)
- Atsuto Onoda
- Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kouji-machi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Ken Takeda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masakazu Umezawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| |
Collapse
|
134
|
Mokhtarudin MJM, Payne SJ. The study of the function of AQP4 in cerebral ischaemia-reperfusion injury using poroelastic theory. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e02784. [PMID: 26991256 DOI: 10.1002/cnm.2784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/27/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
Brain oedema is thought to form and to clear through the use of water-protein channels, aquaporin-4 (AQP4), which are found in the astrocyte endfeet. The model developed here is used to study the function of AQP4 in the formation and elimination of oedema fluid in ischaemia-reperfusion injury. The cerebral space is assumed to be made of four fluid compartments: astrocyte, neuron, ECS and blood microvessels, and a solid matrix for the tissue, and this is modelled using multiple-network poroelastic theory. AQP4 allows the movement of water between astrocyte and the ECS and the microvessels. It is found that the presence of AQP4 may help in reducing vasogenic oedema shown by a decrease in brain tissue extracellular pressure. However, the astrocyte pressure will increase to compensate for this decrease, which may lead to cytotoxic oedema. In addition, the swelling will also depend on the ionic concentrations in the astrocyte and extracellular space, which may change after ischaemic stroke. Understanding the role of AQP4 in oedema may thus help the development of a treatment plan in reducing brain swelling after ischaemia-reperfusion.
Collapse
Affiliation(s)
- Mohd Jamil Mohamed Mokhtarudin
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, OX3 7DQ, Headington, Oxford, UK
- Faculty of Mechanical Engineering, University Malaysia Pahang, 26600, Pekan, Pahang, Malaysia
| | - Stephen J Payne
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, OX3 7DQ, Headington, Oxford, UK
| |
Collapse
|
135
|
Oklinski MK, Skowronski MT, Skowronska A, Rützler M, Nørgaard K, Nieland JD, Kwon TH, Nielsen S. Aquaporins in the Spinal Cord. Int J Mol Sci 2016; 17:E2050. [PMID: 27941618 PMCID: PMC5187850 DOI: 10.3390/ijms17122050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are water channel proteins robustly expressed in the central nervous system (CNS). A number of previous studies described the cellular expression sites and investigated their major roles and function in the brain and spinal cord. Among thirteen different mammalian AQPs, AQP1 and AQP4 have been mainly studied in the CNS and evidence has been presented that they play important roles in the pathogenesis of CNS injury, edema and multiple diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, amyotrophic lateral sclerosis, glioblastoma multiforme, Alzheimer's disease and Parkinson's disease. The objective of this review is to highlight the current knowledge about AQPs in the spinal cord and their proposed roles in pathophysiology and pathogenesis related to spinal cord lesions and injury.
Collapse
Affiliation(s)
- Michal K Oklinski
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Mariusz T Skowronski
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland.
| | - Agnieszka Skowronska
- Department of Human Physiology, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland.
| | - Michael Rützler
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Kirsten Nørgaard
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - John D Nieland
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu 41944, Korea.
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
136
|
Lack of Aquaporin 9 Reduces Brain Angiogenesis and Exaggerates Neuronal Loss in the Hippocampus Following Intracranial Hemorrhage in Mice. J Mol Neurosci 2016; 61:351-358. [DOI: 10.1007/s12031-016-0862-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022]
|
137
|
Fan Z, Yuan Y, Wang F, Qi Y, Han H, Wu J, Zhang G, Yang L. Diabetes mitigates the recovery following intracranial hemorrhage in rats. Behav Brain Res 2016; 320:412-419. [PMID: 27818237 DOI: 10.1016/j.bbr.2016.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
Abstract
Intracranial hemorrhage (ICH) is a common subtype of stroke with high morbidity and mortality. However, few studies have examined the effects of diabetes on the recovery from ICH-induced brain injury. Therefore, we examined the effects of diabetes on protein levels of aquaporins, neuronal loss, angiogenesis, blood brain barrier (BBB) integrity, and neurological deficits following intra-DH collagenase-induced ICH in the hippocampus. We found that diabetic rats exhibited enhanced AQP9 expression in the hippocampus relative to non-diabetic rats, which was associated with increased behavioral deficits. Additionally, ICH induced neovascularization, proliferation of brain microvascular endothelial cells, and hippocampal neuronal loss. However, ICH-induced neovascularization and proliferation of brain microvascular endothelial cells was severely impaired in diabetic rats. Furthermore, ICH-induced hippocampal neuronal loss was exaggerated in diabetic rats. Finally, ICH impaired BBB integrity in the ipsilateral hemisphere, which was increased in diabetic rats. Taken together, the attenuated brain angiogenesis, increased hippocampal neuronal loss, and impaired BBB integrity in diabetic rats after ICH were associated with enhanced AQP9 expression. This may suggest that AQP9 is one of the underlying mechanisms that can mitigate the recovery from ICH in diabetic populations.
Collapse
Affiliation(s)
- Zhenzeng Fan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yunchao Yuan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Feng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yuepeng Qi
- Department of Neurosurgery, The Hospital of Pingshan County, Shijiazhuang 050000, China
| | - Haie Han
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Lijun Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| |
Collapse
|
138
|
Tham DKL, Joshi B, Moukhles H. Aquaporin-4 Cell-Surface Expression and Turnover Are Regulated by Dystroglycan, Dynamin, and the Extracellular Matrix in Astrocytes. PLoS One 2016; 11:e0165439. [PMID: 27788222 PMCID: PMC5082936 DOI: 10.1371/journal.pone.0165439] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/11/2016] [Indexed: 11/19/2022] Open
Abstract
The water-permeable channel aquaporin-4 (AQP4) is highly expressed in perivascular astrocytes of the mammalian brain and represents the major conduit for water across the blood-brain barrier. Within these cells, AQP4 is found in great quantities at perivascular endfoot sites but is detected in lesser amounts at the membrane domains within the brain parenchyma. We had previously established that this polarization was regulated by the interaction between dystroglycan (DG), an extracellular matrix receptor that is co-expressed with AQP4, and the laminin that is contained within the perivascular basal lamina. In the present study, we have attempted to describe the mechanisms that underlie this regulation, using primary astrocyte cultures. Via biotinylation, we found that the cell-surface expression of AQP4 is DG-dependent and is potentiated by laminin. We also determined that this laminin-dependent increase occurs not through an upregulation of total AQP4 levels, but rather from a redirection of AQP4 from an intracellular, EEA-1-associated pool to the cell surface. We then demonstrated an association between DG and dynamin and showed that dynamin functioned in conjunction with clathrin to regulate surface AQP4 amounts. Furthermore, we observed that DG preferentially binds to the inactive forms of dynamin, suggesting that this interaction was inhibitory for AQP4 endocytosis. Finally, we showed that laminin selectively upregulates the cell-surface expression of the M23 isoform of AQP4. Our data therefore indicate that the dual interation of DG with laminin and dynamin is involved in the regulation of AQP4 internalization, leading to its asymmetric enrichment at perivascular astrocyte endfeet.
Collapse
Affiliation(s)
- Daniel Kai Long Tham
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bharat Joshi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hakima Moukhles
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
139
|
Liu S, Mao J, Wang T, Fu X. Downregulation of Aquaporin-4 Protects Brain Against Hypoxia Ischemia via Anti-inflammatory Mechanism. Mol Neurobiol 2016; 54:6426-6435. [DOI: 10.1007/s12035-016-0185-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
140
|
Aquaporin-4: A Potential Therapeutic Target for Cerebral Edema. Int J Mol Sci 2016; 17:ijms17101413. [PMID: 27690011 PMCID: PMC5085613 DOI: 10.3390/ijms17101413] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 11/17/2022] Open
Abstract
Aquaporin-4 (AQP4) is a family member of water-channel proteins and is dominantly expressed in the foot process of glial cells surrounding capillaries. The predominant expression at the boundaries between cerebral parenchyma and major fluid compartments suggests the function of aquaporin-4 in water transfer into and out of the brain parenchyma. Accumulating evidences have suggested that the dysregulation of aquaporin-4 relates to the brain edema resulting from a variety of neuro-disorders, such as ischemic or hemorrhagic stroke, trauma, etc. During edema formation in the brain, aquaporin-4 has been shown to contribute to the astrocytic swelling, while in the resolution phase, it has been seen to facilitate the reabsorption of extracellular fluid. In addition, aquaporin-4-deficient mice are protected from cytotoxic edema produced by water intoxication and brain ischemia. However, aquaporin-4 deletion exacerbates vasogenic edema in the brain of different pathological disorders. Recently, our published data showed that the upregulation of aquaporin-4 in astrocytes probably contributes to the transition from cytotoxic edema to vasogenic edema. In this review, apart from the traditional knowledge, we also introduce our latest findings about the effects of mesenchymal stem cells (MSCs) and microRNA-29b on aquaporin-4, which could provide powerful intervention tools targeting aquaporin-4.
Collapse
|
141
|
Abstract
INTRODUCTION Since the discovery of aquaporin-1 (AQP1) as a water channel, more than 2,000 articles, reviews and chapters have been published. The wide tissue expression, functional and biological roles have documented the major and essential physiological importance of these channels both in health and disease. Thus, over the years, studies have revealed essential importance of aquaporins in mammalian pathophysiology revealing aquaporins as potential drug targets. Areas covered: Starting from a brief description of the main structural and functional features of aquaporins, their roles in physiology and pathophysiology of different human diseases, this review describes the main classes of small molecules and biologicals patented, published from 2010 to 2015, able to regulate AQPs for diagnostic and therapeutic applications. Expert opinion: Several patents report on AQP modulators, mostly inhibitors, and related pharmaceutical formulations, to be used for treatments of water imbalance disorders, such as edema. Noteworthy, a unique class of gold-based compounds as selective inhibitors of aquaglyceroporin isoforms may provide new chemical tools for therapeutic applications, especially in cancer. AQP4-targeted therapies for neuromyelitis optica, enhancement of AQP2 function for nephrogenic diabetes insipidus and AQP1-5 gene transfer for the Sjogren's syndrome represent promising therapies that deserve further investigation by clinical trials.
Collapse
Affiliation(s)
- Graça Soveral
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| | - Angela Casini
- b School of Chemistry , Cardiff University , Cardiff , UK
| |
Collapse
|
142
|
Li L, Hou X, Xu R, Liu C, Tu M. Research review on the pharmacological effects of astragaloside IV. Fundam Clin Pharmacol 2016; 31:17-36. [PMID: 27567103 DOI: 10.1111/fcp.12232] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/09/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
Abstract
Astragalus membranaceus Bunge has been used to treat numerous diseases for thousands of years. As the main active substance of Astragalus membranaceus Bunge, astragaloside IV (AS-IV) also demonstrates the potent protective effect on focal cerebral ischemia/reperfusion, cardiovascular disease, pulmonary disease, liver fibrosis, and diabetic nephropathy. Based on studies published during the past several decades, the current state of AS-IV research and the pharmacological effects are detailed, elucidated, and summarized. This review systematically summarizes the pharmacological effects, metabolism mechanism, and the toxicity of AS-IV. AS-IV has multiple pharmacologic effects, including anti-inflammatory, antifibrotic, antioxidative stress, anti-asthma, antidiabetes, immunoregulation, and cardioprotective effect via numerous signaling pathways. According to the existing studies and clinical practices, AS-IV possesses potential for broad application in many diseases.
Collapse
Affiliation(s)
- Lei Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaojiao Hou
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| | - Rongfang Xu
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| | - Chang Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Menbayaer Tu
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| |
Collapse
|
143
|
Yousefnezhad M, Fotouhi M, Vejdani K, Kamali-Zare P. Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry. Phys Rev E 2016; 94:032411. [PMID: 27739821 DOI: 10.1103/physreve.94.032411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 06/06/2023]
Abstract
We present a universal model of brain tissue microstructure that dynamically links osmosis and diffusion with geometrical parameters of brain extracellular space (ECS). Our model robustly describes and predicts the nonlinear time dependency of tortuosity (λ=sqrt[D/D^{*}]) changes with very high precision in various media with uniform and nonuniform osmolarity distribution, as demonstrated by previously published experimental data (D = free diffusion coefficient, D^{*} = effective diffusion coefficient). To construct this model, we first developed a multiscale technique for computationally effective modeling of osmolarity in the brain tissue. Osmolarity differences across cell membranes lead to changes in the ECS dynamics. The evolution of the underlying dynamics is then captured by a level set method. Subsequently, using a homogenization technique, we derived a coarse-grained model with parameters that are explicitly related to the geometry of cells and their associated ECS. Our modeling results in very accurate analytical approximation of tortuosity based on time, space, osmolarity differences across cell membranes, and water permeability of cell membranes. Our model provides a unique platform for studying ECS dynamics not only in physiologic conditions such as sleep-wake cycles and aging but also in pathologic conditions such as stroke, seizure, and neoplasia, as well as in predictive pharmacokinetic modeling such as predicting medication biodistribution and efficacy and novel biomolecule development and testing.
Collapse
Affiliation(s)
- Mohsen Yousefnezhad
- Department of Mathematical Sciences, Sharif University of Technology, Tehran 11365-9415, Iran
| | - Morteza Fotouhi
- Department of Mathematical Sciences, Sharif University of Technology, Tehran 11365-9415, Iran
| | - Kaveh Vejdani
- Department of Nuclear Medicine, Stanford Healthcare, Palo Alto, California 94304, USA
| | - Padideh Kamali-Zare
- Department of Physiology & Neuroscience, New York University, School of Medicine, New York, New York 10016, USA
| |
Collapse
|
144
|
Arbo BD, Benetti F, Ribeiro MF. Astrocytes as a target for neuroprotection: Modulation by progesterone and dehydroepiandrosterone. Prog Neurobiol 2016; 144:27-47. [DOI: 10.1016/j.pneurobio.2016.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 01/19/2023]
|
145
|
Badeli H, Shahrokhi N, KhoshNazar M, Asadi-Shekaari M, Shabani M, Eftekhar Vaghefi H, Khaksari M, Basiri M. Aqueous Date Fruit Efficiency as Preventing Traumatic Brain Deterioration and Improving Pathological Parameters after Traumatic Brain Injury in Male Rats. CELL JOURNAL 2016; 18:416-24. [PMID: 27602324 PMCID: PMC5011330 DOI: 10.22074/cellj.2016.4570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/15/2015] [Indexed: 11/23/2022]
Abstract
Objective Following traumatic brain injury, disruption of blood-brain-barrier and consequent brain edema are critical events which might lead to increasing intracranial
pressure (ICP), and nerve damage. The current study assessed the effects of aqueous
date fruit extract (ADFE) on the aforementioned parameters.
Materials and Methods In this experimental study, diffused traumatic brain injury (TBI)
was generated in adult male rats using Marmarou’s method. Experimental groups include
two pre-treatment (oral ADFE, 4 and 8 mL/kg for 14 days), vehicle (distilled water, for 14
days) and sham groups. Brain edema and neuronal injury were measured 72 hours after
TBI. Veterinary coma scale (VCS) and ICP were determined at -1, 4, 24, 48 and 72 hours
after TBI. Differences among multiple groups were assessed using ANOVA. Turkey’s test
was employed for the ANOVA post-hoc analysis. The criterion of statistical significance
was sign at P<0.05.
Results Brain water content in ADFE-treated groups was decreased in comparison
with the TBI+vehicle group. VCS at 24, 48 and 72 hours after TBI showed a significant
increase in ADFE groups in comparison with the TBI+vehicle group. ICP at 24, 48 and
72 hours after TBI, was decreased in ADFE groups, compared to the TBI+vehicle. Brain
edema, ICP and neuronal injury were also decreased in ADFE group, but VCS was
increased following on TBI.
Conclusion ADFE pre-treatment demonstrated an efficient method for preventing
traumatic brain deterioration and improving pathological parameters after TBI.
Collapse
Affiliation(s)
- Hamze Badeli
- Department of Anatomical Sciences, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieosadat KhoshNazar
- Department of Anatomical Sciences, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Eftekhar Vaghefi
- Physiology Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology, Afzali Pour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
146
|
Mangiatordi GF, Alberga D, Trisciuzzi D, Lattanzi G, Nicolotti O. Human Aquaporin-4 and Molecular Modeling: Historical Perspective and View to the Future. Int J Mol Sci 2016; 17:ijms17071119. [PMID: 27420052 PMCID: PMC4964494 DOI: 10.3390/ijms17071119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 12/26/2022] Open
Abstract
Among the different aquaporins (AQPs), human aquaporin-4 (hAQP4) has attracted the greatest interest in recent years as a new promising therapeutic target. Such a membrane protein is, in fact, involved in a multiple sclerosis-like immunopathology called Neuromyelitis Optica (NMO) and in several disorders resulting from imbalanced water homeostasis such as deafness and cerebral edema. The gap of knowledge in its functioning and dynamics at the atomistic level of detail has hindered the development of rational strategies for designing hAQP4 modulators. The application, lately, of molecular modeling has proved able to fill this gap providing a breeding ground to rationally address compounds targeting hAQP4. In this review, we give an overview of the important advances obtained in this field through the application of Molecular Dynamics (MD) and other complementary modeling techniques. The case studies presented herein are discussed with the aim of providing important clues for computational chemists and biophysicists interested in this field and looking for new challenges.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Domenico Alberga
- Institut de Recherche de Chimie Paris CNRS Chimie ParisTech, PSL Research University, 11 rue P. et M. Curie, F-75005 Paris, France.
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Gianluca Lattanzi
- INFN-Sez. di Bari and Dipartimento di Medicina Clinica e Sperimentale, University of Foggia, Viale Pinto, 71122 Foggia, Italy.
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| |
Collapse
|
147
|
Lassiale S, Valamanesh F, Klein C, Hicks D, Abitbol M, Versaux-Botteri C. Changes in aquaporin-4 and Kir4.1 expression in rats with inherited retinal dystrophy. Exp Eye Res 2016; 148:33-44. [DOI: 10.1016/j.exer.2016.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
148
|
Lan YL, Fang DY, Zhao J, Ma TH, Li S. A research update on the potential roles of aquaporin 4 in neuroinflammation. Acta Neurol Belg 2016; 116:127-34. [PMID: 26259614 DOI: 10.1007/s13760-015-0520-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022]
Abstract
The presence of aquaporins (AQPs) in the brain has led to intense research on the underlying roles of this family of proteins under both normal and pathological conditions. Aquaporin 4 (AQP4) is the major water-channel membrane protein expressed in the central nervous system (CNS), primarily in astrocytes. Emerging evidence suggests that AQP4 could play an important role in water and ion homeostasis in the brain, and it has been studied in various brain pathological conditions. However, far less is known about the potential for AQP4 to influence neuroinflammation and, furthermore, its potential role in neurodegenerative disorders such as Alzheimer's disease (AD). It has been suggested that the pathogenesis of many clinical diseases, such as neuromyelitis optica (NMO), multiple sclerosis (MS) and brain injuries, is related to the regulation of AQP4 expression. Investigating the effects of AQP4 on microglia and astrocytes could be important to understand its role in the pathogenesis of neuroinflammation. Although the exact roles of non-steroidal anti-inflammatory drugs (NSAIDs) in protection against the detrimental effects of neuroinflammation remain unclear, research into the possible neuroprotective effects of AQP4 against neuroinflammation regulation seems to be important for future investigations.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Deng-Yang Fang
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Jie Zhao
- Liaoning Engineering Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Dalian, 116044, China
| | - Tong-Hui Ma
- Department of Physiology, Dalian Medical University, Dalian, 116044, China.
- College of Basic Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
149
|
Cao S, Zhu P, Yu X, Chen J, Li J, Yan F, Wang L, Yu J, Chen G. Hydrogen sulfide attenuates brain edema in early brain injury after subarachnoid hemorrhage in rats: Possible involvement of MMP-9 induced blood-brain barrier disruption and AQP4 expression. Neurosci Lett 2016; 621:88-97. [PMID: 27080433 DOI: 10.1016/j.neulet.2016.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 10/22/2022]
Abstract
AIMS This study investigated the effect of H2S on brain edema formation and the possible underlying mechanisms in early brain injury (EBI) of SAH using the endovascular perforation model. METHODS 96 male rats were randomly divided into four groups: sham group, SAH+vehicle group, SAH+low-dosage NaHS group, and SAH+high-dosage NaHS group. Brain samples were used for brain water content and blood-brain barrier (BBB) leakage measurement, gelatin zymography, Western blot and immunohistochemistry. RESULTS H2S markedly attenuated brain edema formation and apoptotic cell death, improved neurological dysfunction in the acute stage of SAH. The possible mechanisms of H2S's effect on brain edema formation were through preventing BBB disruption and reducing APQ4 expression on astrocytes. In detail, H2S prevented BBB disruption by inhibiting MMP-9 induced tight junction proteins (TJPs) degradation. H2S down-regulated AQP4 expression on astrocytes by suppressing glial cell activation and pro-inflammatory cytokines secretion. CONCLUSION Taken together, this study showed that H2S attenuated brain edema formation partially by inhibiting the degradation of TJPs via reducing MMP-9 expression/activity and suppressing AQP4 expression via alleviating glia activation and pro-inflammatory cytokines secretion.
Collapse
Affiliation(s)
- Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ping Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jingyin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jun Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
150
|
Chen Q, Zhu L, Zheng B, Wang J, Song X, Zheng W, Wang L, Yang D, Wang J. Effect of AQP9 Expression in Androgen-Independent Prostate Cancer Cell PC3. Int J Mol Sci 2016; 17:ijms17050738. [PMID: 27187384 PMCID: PMC4881560 DOI: 10.3390/ijms17050738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/24/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022] Open
Abstract
It is known that aquaporin 9 (AQP9) in the prostate was strictly upregulated by androgen and may represent a novel therapeutic target for several cancers, but whether AQP9 plays a role in the regulation of androgen-independent prostate cancer still remains unclear. In the present study, AQP9 was determined in prostate cancer and adjacent cancer tissues; AQP9-siRNA was applied to silencing AQP9 in androgen-independent prostate cancer cell PC3 cell line. Western blot and flow cytometry analysis were employed to detect changes in related-function of control and AQP9-siRNA groups. The results showed that AQP9 is significantly induced in cancer tissues than that in adjacent cancer tissues. Moreover, knockdown of AQP9 in PC3 androgen-independent prostate cancer cell prostate cancer cells increased inhibition rates of proliferation. In addition, knockdown of AQP9 resulted in a significant decrease in the expression of the Bcl-2 and with a notable increase in the expression of Bax and cleaved caspase 3, indicated that AQP9 knockdown promoted apoptosis in prostate cancer cells. From wound healing assay and matrigel invasion, we suggested that AQP9 expression affects the motility and invasiveness of prostate cancer cells. Moreover, In order to explore the pathway may be involved in AQP9-mediated motility and invasion of prostate cancer cells, the phosphorylation of ERK1/2 was significant suppressed in AQP9 siRNA-transfected cells compared with that in control cells, suggesting that AQP9 is involved in the activation of the ERK pathway in androgen-independent prostate cancer cells.
Collapse
Affiliation(s)
- Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Liang Zhu
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China.
| | - Bo Zheng
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Jinliang Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Xishuang Song
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Wei Zheng
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Lina Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Jianbo Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| |
Collapse
|