101
|
Pow DV, Crook DK. Direct immunocytochemical evidence for the transfer of glutamine from glial cells to neurons: use of specific antibodies directed against the d-stereoisomers of glutamate and glutamine. Neuroscience 1996; 70:295-302. [PMID: 8848133 DOI: 10.1016/0306-4522(95)00363-n] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have raised antibodies against D-stereoisomers of the amino acids glutamate and glutamine. These stereoisomers are not naturally occurring in mammals but can be taken up into cells by transporters that normally handle the endogenous L-amino acids. Exposure of isolated rabbit retinae to 50 microM D-glutamate resulted in a strong accumulation of D-glutamate, and hence immunoreactivity for D-glutamate in radial glial cells (Müller cells). By contrast the glutamatergic ganglion cells exhibited no immunoreactivity for D-glutamate. D-Glutamate can be converted into D-glutamine by the glial enzyme glutamine synthetase. Immunolabelling for D-glutamine revealed the presence of D-glutamine in somata of subsets of neurons including the glutamatergic ganglion cells. Labelling was also present in the inner plexiform layer, possibly indicating labelling of neuronal processes. These data indicate that after D-glutamate has been taken up into glial cells it is converted into D-glutamine. This D-glutamine is then exported from the glial cells and taken up by a subset of neurons, including the glutamatergic ganglion cells.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
102
|
Abstract
The nature and value of various animal models of epilepsy for the study and understanding of the human epilepsies are reviewed, with special reference to the ILAE classification of seizures. Kindling as a model of complex-partial seizures with secondary generalisation is treated in detail, dwelling principally on the evidence that the neurotransmitters glutamate and GABA are centrally involved in the kindling process. Kindling in the entorhinal cortex-hippocampus system and its relationship to LTP are analysed in detail. Changes in amino acid content in animal and human brain tissue following onset of the epileptic state are reviewed with special reference to glutamate and GABA. Studies of changes in the extent of basal and stimulus-evoked release of glutamate and GABA both in vivo (microdialysis) and in vitro (brain slices) are evaluated. This includes both kindling and other models of epilepsy, and microdialysis of human patients with epilepsy. Experiments which study the influence of pre-synaptic metabotropic glutamate receptors on glutamate release, and consequently on the extent of electrical kindling, are described. This pre-synaptic control of glutamate release can be studied using synaptosomes. The significance of the ability of focal intracerebrally injected glutamate and NMDA to cause (chemical) kindling and the strong sensitivity of this process to pre-treatment with NMDA receptor antagonists is analysed. Electrical and chemical kindling effects are additive, indicating the existence of mechanisms in common. They are both sensitive to NMDA antagonists and the common mechanism is probably NMDA receptor activation due to the presence of exogenous (chemical) or endogenous (electrically-released) extracellular glutamate. The participation of the NMDA receptor in the generation of the spontaneous hyperactivity which characterises the chronic epileptic state is reviewed. This includes the entry of Ca2+ to stimulate various post-synaptic phosphorylation processes, and possible modulation of NMDA receptor population size and sensitivity. The question of whether neurotransmitter glutamate is involved in initiation and/or spread of seizures is discussed.
Collapse
Affiliation(s)
- H F Bradford
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, U.K
| |
Collapse
|
103
|
Liaw SH, Kuo I, Eisenberg D. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site. Protein Sci 1995; 4:2358-65. [PMID: 8563633 PMCID: PMC2143006 DOI: 10.1002/pro.5560041114] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS because ADP binding induces movement of Asp 50' toward this monovalent cation site, essentially forming the site. This observation supports a two-step mechanism with ordered substrate binding: ATP first binds to GS, then Glu binds and attacks ATP to form gamma-glutamyl phosphate and ADP, which complete the ammonium binding site. The third substrate, an ammonium ion, then binds to GS, and then loses a proton to form the more active species ammonia, which attacks the gamma-glutamyl phosphate to yield Gln. (5) Because the products (Glu or Gln) of the reactions catalyzed by GS are determined by the molecule (water or ammonium) attacking the intermediate gamma-glutamyl phosphate, this negatively charged ammonium binding pocket has been designed naturally for high affinity of ammonium to GS, permitting glutamine synthesis to proceed in aqueous solution.
Collapse
Affiliation(s)
- S H Liaw
- Institute of Molecular Medicine, School of Medicine, National Taiwan University, Taipei
| | | | | |
Collapse
|
104
|
Kanamori K, Ross BD. Steady-state in vivo glutamate dehydrogenase activity in rat brain measured by 15N NMR. J Biol Chem 1995; 270:24805-9. [PMID: 7559600 DOI: 10.1074/jbc.270.42.24805] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The in vivo activity of glutamate dehydrogenase (GDH) in the direction of reductive amination was measured in rat brain at steady-state concentrations of brain ammonia and glutamate after intravenous infusion of the substrate 15NH4+. The in vivo rate was determined from the steady-state fractional 15N enrichment of brain ammonia, measured by selective observation of 15NH4+ protons in brain extract by 1H-15N heteronuclear multiple-quantum coherence transfer NMR, and the rate of increase of brain [15N]glutamate and [2-15N]glutamine measured by 15N NMR. The in vivo GDH activity was 0.76-1.17 mumol/h/g, and 1.1-1.2 mumol/h/g at 1.0 +/- 0.17 mumol/g. Comparison of the observed in vivo GDH activity with the in vivo rates of glutamine synthesis and of phosphate-activated glutaminase suggests that, under mild hyperammonemia, GDH-catalyzed de novo synthesis can provide a minimum of 19% of the glutamate pool that is recycled from neurons to astrocytes through the glutamate-glutamine cycle.
Collapse
Affiliation(s)
- K Kanamori
- Magnetic Resonance Spectroscopy Laboratory, Huntington Medical Research Institutes, Pasadena, California 91105, USA
| | | |
Collapse
|
105
|
Kanamori K, Ross BD, Kuo EL. Dependence of in vivo glutamine synthetase activity on ammonia concentration in rat brain studied by 1H - 15N heteronuclear multiple-quantum coherence-transfer NMR. Biochem J 1995; 311 ( Pt 2):681-8. [PMID: 7487913 PMCID: PMC1136053 DOI: 10.1042/bj3110681] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dependence of the in vivo rate of glutamine synthesis on the substrate ammonia concentration was studied in rat brain by 1H-15N heteronuclear multiple-quantum coherence-transfer NMR in combination with biochemical techniques. In vivo rates were measured at various steady-state blood and brain ammonia concentrations within the ranges 0.4-0.55 mumol/g and 0.86-0.98 mumol/g respectively, after low-rate intravenous 15NH4+ infusion (isotope chase). The rate of glutamine synthesis at steady state was determined from the change in brain [5-15N]glutamine levels during isotope chase, observed selectively through the amide proton by NMR, and 15N enrichments of brain glutamine and of blood and brain ammonia measured byN gas chromatography-MS. The in vivo rate (v) was 3.3-4.5 mumol/h per g of brain at blood ammonia concentrations (s) of 0.40-0.55 mumol/g. A linear increase of 1/v with 1/s permitted estimation of the in vivo glutamine synthetase (GS) activity at a physiological blood ammonia concentration to be 0.4-2.1 mumol/h per g. The observed ammonia-dependence strongly suggests that, under physiological conditions, in vivo GS activity is kinetically limited by sub-optimal in situ concentrations of ammonia as well as glutamate and ATP. Comparison of the observed in vivo GS activity with the reported in vivo rates of glutaminase and of gamma-aminobutyrate (GABA) synthesis suggests that, under mildly hyperammonaemic conditions, glutamine is synthesized at a sufficiently high rate to serve as a precursor of GABA, but glutaminase-catalysed hydrolysis of glutamine is too slow to be the sole provider of glutamate used for GABA synthesis.
Collapse
Affiliation(s)
- K Kanamori
- Magnetic Resonance Spectroscopy Laboratory, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| | | | | |
Collapse
|
106
|
Arcuri C, Tardy M, Rolland B, Armellini R, Menghini AR, Bocchini V. Glutamine synthetase gene expression in a glioblastoma cell-line of clonal origin: regulation by dexamethasone and dibutyryl cyclic AMP. Neurochem Res 1995; 20:1133-9. [PMID: 8746797 DOI: 10.1007/bf00995375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We investigated the expression of glutamine synthetase (GS), an enzyme involved in astroglial metabolism and marker of astroglial functional maturity, in a glioblastoma cell-line (GL-15) of clonal origin. In spite of their phenotypic immaturity, evidenced in a mosaic fashion by a poor glial fibrillary acidic protein (GFAP) expression, the level of GS-mRNA is high in GL15 cells and the considerable amount of GS biological activity can be further induced and stabilized by glucocorticoids. A correlation between the induction by dexamethasone of the GS-mRNA level and the GS biological activity suggests a transcriptional regulation of GS expression by the aforesaid hormone. Under this hormonal action, changes in cell morphology occur and they are correlated with an overexpression of the GFAP, a marker of astroglial differentiation. On the contrary, dibutyryl cyclic AMP (dbc AMP) down-regulates the GS-mRNA expression and decreases GS activity. These results suggest that GL-15 cells have a common glucocorticoid dependent mechanism able to induce GS and GFAP as well as morphological changes. However in these cells AMPc responsive elements are involved in the negative modulation of the GS expression, contrary to what occurs in normal astroglial cells.
Collapse
Affiliation(s)
- C Arcuri
- INSERM U 421, Hôpital Henri Mondor, Creteil, France
| | | | | | | | | | | |
Collapse
|
107
|
Bowyer JF, Lipe GW, Matthews JC, Scallet AC, Davies DL. Comparison of glutamine-enhanced glutamate release from slices and primary cultures of rat brain. Ann N Y Acad Sci 1995; 765:72-85; discussion 98-9. [PMID: 7486646 DOI: 10.1111/j.1749-6632.1995.tb16562.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Increased extracellular glutamate has been associated with a wide range of effects including production of neurotoxicity. Glutamine has previously been shown to cause increased release of glutamate from a variety of preparations. Extracellular central nervous system (CNS) glutamine levels are known to increase with neurotoxin exposures, hepatic failure, renal failure, head trauma or stroke. However, the action of glutamine to enhance the release of glutamate under nondepolarizing conditions has not been well studied. Since glutamine-mediated increases in extracellular glutamate are potentially of significance in cellular damage as a result of CNS insult, further examination of this phenomenon is important. Striatal and hippocampal slices or virtually neuron-free primary striatal glial cultures were employed in studies to further elucidate the mechanism(s) of glutamine-enhanced glutamate release. Elevated extracellular glutamine caused increased glutamate release in all three preparations. In hippocampal and striatal slices elevated glutamine caused an enhancement of N-methyl-D-aspartate (NMDA) receptor-mediated [3H]catecholamine release equivalent to that produced by high concentrations (up to 100 microM) of exogenous glutamate. In both striatal slices and primary cultures kynurenate increased glutamate release in the presence of 500 microM glutamine, while kainate either had no effect or decreased glutamate levels in the presence of glutamine. Since several presynaptic modulators of release did not affect the glutamate release produced by glutamine in slices, vesicular release of glutamate from nerve terminals was probably not involved in the effects of the exogenous glutamine. The similarities between striatal slices and primary striatal cultures indicate that enzymatic conversion of glutamine to glutamate within glia may be an important factor in the glutamine-mediated elevation of extracellular glutamate levels.
Collapse
Affiliation(s)
- J F Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079-9502, USA
| | | | | | | | | |
Collapse
|
108
|
Jackson MJ, Zielke HR, Max SR. Effect of dibutyryl cyclic AMP and dexamethasone on glutamine synthetase gene expression in rat astrocytes in culture. Neurochem Res 1995; 20:201-7. [PMID: 7783844 DOI: 10.1007/bf00970545] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Astrocytes are the primary site of glutamate conversion to glutamine in the brain. We examined the effects of treatment with either dibutyryl cyclic AMP and/or the synthetic glucocorticoid dexamethasone on glutamine synthetase enzyme activity and steady-state mRNA levels in cultured neonatal rat astrocytes. Treatment of cultures with dibutyryl cyclic AMP alone (0.25 mM-1.0 mM) increased glutamine synthetase activity and steady state mRNA levels in a dose-dependent manner. Similarly, treatment with dexamethasone alone (10(-7)-10(-5) M) increased glutamine synthetase mRNA levels and enzyme activity. When astrocytes were treated with both effectors, additive increases in glutamine synthetase activity and mRNA were obtained. However, the additive effects were observed only when the effect of dibutyryl cyclic AMP alone was not maximal. These findings suggest that the actions of these effectors are mediated at the level of mRNA accumulation. The induction of glutamine synthetase mRNA by dibutyryl cyclic AMP was dependent on protein synthesis while the dexamethasone effect was not. Glucocorticoids and cyclic AMP are known to exert their effects on gene expression by different molecular mechanisms. Possible crosstalk between these effector pathways may occur in regulation of astrocyte glutamine synthetase expression.
Collapse
Affiliation(s)
- M J Jackson
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, USA
| | | | | |
Collapse
|
109
|
Pow DV, Wright LL, Vaney DI. The immunocytochemical detection of amino-acid neurotransmitters in paraformaldehyde-fixed tissues. J Neurosci Methods 1995; 56:115-23. [PMID: 7752677 DOI: 10.1016/0165-0270(94)00113-u] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, we show that specific antibodies can be raised against paraformaldehyde conjugates of amino acids, including the neurotransmitters glycine, gamma-amino-butyric acid and glutamate, and a non-neuroactive amino acid, glutamine. These antibodies against paraformaldehyde conjugates specifically detect the above amino acids in paraformaldehyde-fixed tissues. The penetration of antibodies into paraformaldehyde-fixed tissues is much superior to the penetration of antibodies into glutaraldehyde-fixed tissues; hence good labeling can be observed through the depth of the tissues. Unlike glutaraldehyde, fixation with paraformaldehyde does not give rise to high levels of tissue autofluorescence and, thus, these antibodies are very effective for immunofluorescence studies. Furthermore we suggest that the ability of these antibodies to detect amino acids in paraformaldehyde-fixed tissues will permit their use in situations where it is necessary to detect other other fixation-sensitive antigens, such as neurotransmitter receptors and transporters.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
110
|
Tzavara E, Svarna R, Palaiologos G. Haloperidol reduces K(+)-evoked Ca(2+)-dependent D-[3H]aspartate release from rat hippocampal slices. Neurochem Res 1995; 20:17-22. [PMID: 7739754 DOI: 10.1007/bf00995147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rat hippocampal slices preloaded with D-[3H]aspartate, a non metabolizable analogue of L-glutamate, were superfused with artificial CSF. Depolarization was induced by 53.5 mM K+, in the presence of Ca2+ (1.3 mM) or Mg2+ (5 mM) to determine the Ca2+ dependent release. Haloperidol added in the superfusion medium at 100 microM reduced by about 60% the Ca2+ dependent release of D-[3H]aspartate. This drug at 20 microM or 100 microM inhibited the non-activated glutamate dehydrogenase (GDH) but had no effect on GDH activated by ADP (2 mM) or leucine (5 mM). In addition no effect was observed on phosphate activated glutaminase (PAG) in the presence either of 20 mM or 5 mM phosphate. These results indicate that the effect of haloperidol is exerted on presynaptic mechanisms regulating neurotransmitter release.
Collapse
Affiliation(s)
- E Tzavara
- Laboratory of Biological Chemistry, Medical School University of Athens, Greece
| | | | | |
Collapse
|
111
|
Georgopoulos A, Svarna R, Palaiologos G. Regulatory sites and effectors of D-[3H]aspartate release from rat cerebral cortex. Neurochem Res 1995; 20:45-9. [PMID: 7739758 DOI: 10.1007/bf00995151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To study the effect of agents interfering with the biosynthesis and/or the K(+)-evoked Ca(2+)-dependent release of neurotransmitter glutamate, rat cerebral slices were preincubated with Krebs-Ringer-HEPES-glucose-glutamine buffer (KRH buffer), loaded with D-[3H]aspartate and superfused with the preincubation medium in the presence or in the absence of Ca2+. The difference in radioactivity release divided by the basal release per min under the two conditions represented the K(+)-evoked Ca(2+)-dependent release. The agents used were: 1) Aminooxyacetic acid (AOAA), the inhibitor of transaminases, 2) Leucine (Leu), the inhibitor of phosphate activated glutaminase (PAG), 3) NH4+, the inhibitor of PAG, 4) Phenylsuccinic acid (Phs), the inhibitor of the mitochondrial ketodicarboxylate carrier, 5) ketone bodies, the inhibitors of glycolysis, 6) the absence of glutamine, the substrate of PAG. The results show that Leu, NH4+, Phs and the absence of Gln significantly increase the K(+)-evoked Ca(2+)-dependent release of radioactivity by 64%, 200%, 95% and 147% respectively, indicating that these agents are inhibitors of the K(+)-evoked Ca(2+)-dependent release of glutamate. Ketone bodies and AOAA had no effect. These results indicate that the major if not the exclusive biosynthetic pathway of neurotransmitter glutamate in rat cerebral cortex is through the PAG reaction and support a model for the pathway followed by neurotransmitter glutamate i.e. glutamate formed outside the inner mitochondrial membrane has to enter the mitochondrial matrix or is formed within it from where it can be extruded to supply the transmitter pool in exchange of GABA.
Collapse
Affiliation(s)
- A Georgopoulos
- Laboratory of Biological Chemistry, Medical School, University of Athens, Greece
| | | | | |
Collapse
|
112
|
Kanamori K, Ross BD. In vivo activity of glutaminase in the brain of hyperammonaemic rats measured by 15N nuclear magnetic resonance. Biochem J 1995; 305 ( Pt 1):329-36. [PMID: 7826349 PMCID: PMC1136467 DOI: 10.1042/bj3050329] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The in vivo activity of phosphate-activated glutaminase (PAG) was measured in the brain of hyperammonaemic rat by 15N n.m.r. Brain glutamine was 15N-enriched by intravenous infusion of 15NH4+ until the concentration of [5-15N]glutamine reached 6.1 mumol/g. Further glutamine synthesis was inhibited by intraperitoneal injection of methionine-DL-sulphoximine, an inhibitor of glutamine synthetase, and the infusate was changed to 14NH4+ during observation of decrease in brain [5-15N]glutamine due to PAG and other glutamine utilization pathways. Progressive decrease in brain [5-15N]glutamine, PAG-catalysed production of 15NH4+ and its subsequent assimilation into glutamate by glutamate dehydrogenase were monitored in vivo by 15N n.m.r. Brain [5-15N]glutamine (15N enrichment of 0.35-0.50) decreased at a rate of 1.2 mumol/h per g of brain. The in vivo PAG activity, determined from the observed rate and the quantity of 15NH4+ produced and subsequently assimilated into glutamate and aspartate, was 0.9-1.3 mumol/h per g. This activity is less than 1.1% of the reported activity in vitro measured in rat brain homogenate at a 10 mM concentration of the activator Pi. Inhibition by ammonia (brain level 1.4 mumol/g) alone does not account for the observed low activity in vivo. The result strongly suggests that, in intact brain, PAG activity is maintained at a low level by a suboptimal in situ concentration of Pi and the strong inhibitory effect of glutamate. The observed PAG activity in vivo is lower than the reported in vivo activity of glutamate decarboxylase which converts glutamate into gamma-aminobutyrate (GABA). The result suggests that PAG-catalysed hydrolysis of glutamine is not the sole provider of glutamate used for GABA synthesis.
Collapse
Affiliation(s)
- K Kanamori
- Magnetic Resonance Spectroscopy Laboratory, Huntington Medical Research Institutes, Pasadena, CA 91105
| | | |
Collapse
|
113
|
Lieberman EM, Hargittai PT, Grossfeld RM. Electrophysiological and metabolic interactions between axons and glia in crayfish and squid. Prog Neurobiol 1994; 44:333-76. [PMID: 7886230 DOI: 10.1016/0301-0082(94)90032-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- E M Lieberman
- Department of Physiology, School of Medicine, East Carolina University, Greenville, NC 27858
| | | | | |
Collapse
|
114
|
Takatsuna Y, Chiba T, Adachi-Usami E, Kaneko T. Distribution of phosphate-activated glutaminase-like immunoreactivity in the retina of rodents. Curr Eye Res 1994; 13:629-37. [PMID: 7805393 DOI: 10.3109/02713689408999898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution of phosphate-activated glutaminase-like immunoreactivity was examined in the retinas of rodents. Intense glutaminase immunoreactivity was observed in many neuronal perikarya in the ganglion cell layer and inner nuclear layer including those of ganglion, bipolar and amacrine cells and possibly horizontal cells. Almost all bipolar cells containing protein kinase C were immunoreactive for glutaminase, suggesting that the majority of glutaminase immunoreactive bipolar cells were of the ON type. Intense glutaminase immunoreactivity was also found in the neuropil of the inner and outer plexiform layers and around the outer limiting membrane. Weak to moderate immunoreactivity was seen in the outer nuclear layer and photoreceptor inner and outer segments. Under electron microscopy, glutaminase immunoreactivity was seen in bipolar cell axons and amacrine cell processes in the inner plexiform layer. In the outer plexiform layer, immunoreactivity was found in the Müller cell processes, but not in the photoreceptor cell terminals. These results indicate that ganglion cells and ON type bipolar cells use glutaminase to produce transmitter glutamate and suggest glutaminase has additional roles in Müller cells. A population of amacrine cells and horizontal cells showed immunoreactivity to glutaminase.
Collapse
Affiliation(s)
- Y Takatsuna
- Department of Ophthalmology, Chiba University School of Medicine, Japan
| | | | | | | |
Collapse
|
115
|
Kaneko T, Mizuno N. Glutamate-synthesizing enzymes in GABAergic neurons of the neocortex: a double immunofluorescence study in the rat. Neuroscience 1994; 61:839-49. [PMID: 7838383 DOI: 10.1016/0306-4522(94)90407-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
L-Glutamate is the immediate precursor of the inhibitory transmitter GABA, and considered to be supplied from alpha-ketoglutarate through a transamination reaction or from glutamine through a glutaminase reaction. In the present study, the localization of aspartate aminotransferase and glutaminase in GABAergic neurons was investigated in the rat neocortex by a double immunofluorescence method. Immunoreactivities for both soluble and mitochondrial aspartate aminotransferases were detected in more than 90% of GABA-positive neurons, whereas glutaminase immunoreactivity was not found in GABA-positive neurons. All neocortical neurons with soluble aspartate aminotransferase immunoreactivity were immunopositive for GABA, but none for glutaminase. Neurons with mitochondrial aspartate aminotransferase immunoreactivity showed either glutaminase or GABA immunoreactivity. Under confocal laser scan microscopy, immunoreactivity for soluble aspartate aminotransferase was observed in many axons and axon terminals showing immunoreactivity for glutamic acid decarboxylase, whereas immunoreactivity for mitochondrial aspartate aminotransferase was seen in only a few axons displaying immunoreactivity for glutamic acid decarboxylase. The present results indicate that soluble aspartate aminotransferase is selectively localized to cell bodies and axon terminals of GABAergic non-pyramidal neurons in the cerebral neocortex. This suggests that glutamate is supplied from alpha-ketoglutarate via transamination and works as the immediate precursor for GABA in axon terminals of GABAergic neurons. The absence of glutaminase immunoreactivity in GABAergic neurons indicates that glutamine is a "metabolically remote" precursor for GABA. Mitochondrial aspartate aminotransferase was located in perikarya, rather than in axon terminals of GABAergic neurons, suggesting a transmitter-irrelevant role of this enzyme in neurons.
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | |
Collapse
|
116
|
Bridges RJ, Lovering FE, Koch H, Cotman CW, Chamberlin AR. A conformationally constrained competitive inhibitor of the sodium-dependent glutamate transporter in forebrain synaptosomes: L-anti-endo-3,4-methanopyrrolidine dicarboxylate. Neurosci Lett 1994; 174:193-7. [PMID: 7970177 DOI: 10.1016/0304-3940(94)90019-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A series of L-3,4-methanopyrrolidine dicarboxylate isomers were investigated as potential inhibitors of the high affinity, sodium-dependent glutamate transporter in rat forebrain synaptosomes. Of the isomers tested, only L-anti-endo-3,4-methanopyrrolidine dicarboxylate (L-anti-endo-MPDC) blocked the uptake of [3H]D-aspartate, a non-metabolized substrate. Kinetic analysis demonstrated that L-anti-endo-MPDC is a potent competitive inhibitor (Ki = 5 microM) comparable to that of L-glutamate and L-trans-2,4-pyrrolidine dicarboxylate (L-trans-2,4-PDC). Conformational analysis of L-glutamate, L-trans-2,4-PDC and L-anti-endo-MPDC are used to refine the pharmacophore model of the transporter binding site.
Collapse
Affiliation(s)
- R J Bridges
- Department of Pharmaceutical Sciences, University of Montana, Missoula 59812
| | | | | | | | | |
Collapse
|
117
|
Hassel B, Sonnewald U, Unsgård G, Fonnum F. NMR spectroscopy of cultured astrocytes: effects of glutamine and the gliotoxin fluorocitrate. J Neurochem 1994; 62:2187-94. [PMID: 8189227 DOI: 10.1046/j.1471-4159.1994.62062187.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glial synthesis of glutamine, citrate, and other carbon skeletons, as well as metabolic effects of the gliotoxin fluorocitrate, were studied in cultured astrocytes with 13C and 31P NMR spectroscopy. [2-13C]Acetate and [1-13C]glucose were used as labeled precursors. In some experiments glutamine (2.5 mM) was added to the culture medium. Fluorocitrate (20 microM) inhibited the tricarboxylic acid (TCA) cycle without affecting the level of ATP. The net export of glutamine was reduced significantly, and that of citrate increased similarly, consistent with an inhibition of aconitase. Fluorocitrate (100 microM) inhibited TCA cycle activity even more and (without addition of glutamine) caused a 40% reduction in the level of ATP. In the presence of 2.5 mM glutamine, 100 microM fluorocitrate did not affect ATP levels, although glutamine synthesis was nearly fully blocked. The consumption of the added glutamine increased with increasing concentrations of fluorocitrate, whereas the consumption of glucose decreased. This shows that glutamine fed into the TCA cycle, substituting for glucose as an energy substrate. These findings may explain how fluorocitrate selectively lowers the level of glutamine and inhibits glutamine formation in the brain in vivo, viz., not by depleting glial cells of ATP, but by causing a rerouting of 2-oxoglutarate from glutamine synthesis into the TCA cycle during inhibition of aconitase. Analysis of the 13C labeling of the C-2 versus the C-4 positions in glutamine obtained with [2-13C]acetate revealed that 57% of the TCA cycle intermediates were lost per turn of the cycle.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Hassel
- Division for Environmental Toxicology, Norwegian Defence Research Establishment, Kjeller
| | | | | | | |
Collapse
|
118
|
Erecińska M, Nelson D, Nissim I, Daikhin Y, Yudkoff M. Cerebral alanine transport and alanine aminotransferase reaction: alanine as a source of neuronal glutamate. J Neurochem 1994; 62:1953-64. [PMID: 7908947 DOI: 10.1046/j.1471-4159.1994.62051953.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alanine transport and the role of alanine amino-transferase in the synthesis and consumption of glutamate were investigated in the preparation of rat brain synaptosomes. Alanine was accumulated rapidly via both the high- and low-affinity uptake systems. The high-affinity transport was dependent on the sodium concentration gradient and membrane electrical potential, which suggests a cotransport with Na+. Rapid accumulation of the Na(+)-alanine complex by synaptosomes stimulated activity of the Na+/K+ pump and increased energy utilization; this, in turn, activated the ATP-producing pathways, glycolysis and oxidative phosphorylation. Accumulation of Na+ also caused a small depolarization of the plasma membrane, a rise in [Ca2+]i, and a release of glutamate. Intra-synaptosomal metabolism of alanine via alanine amino-transferase, as estimated from measurements of N fluxes from labeled precursors, was much slower than the rate of alanine uptake, even in the presence of added oxoacids. The velocity of [15N]alanine formation from [15N]glutamine was seven to eight times higher than the rate of [15N]-glutamate generation from [15N]alanine. It is concluded that (a) overloading of nerve endings with alanine could be deleterious to neuronal function because it increases release of glutamate; (b) the activity of synaptosomal alanine aminotransferase is much slower than that of glutaminase and hence unlikely to play a major role in maintaining [glutamate] during neuronal activity; and (c) alanine amino-transferase might serve as a source of glutamate during recovery from ischemia/hypoxia when the alanine concentration rises and that of glutamate falls.
Collapse
Affiliation(s)
- M Erecińska
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104-6084
| | | | | | | | | |
Collapse
|
119
|
Abstract
Glutamate is the most abundant excitatory neurotransmitter in the vertebrate central nervous system. It is widely assumed that neurons using this transmitter derive it from several sources: (i) synthesizing it themselves from alpha-ketoglutarate or aspartate, (ii) synthesize it from glial-derived glutamine, or (iii) take up glutamate from the extracellular space. By use of immunocytochemistry we show that glutamate is abundant in the retinal ganglion and bipolar cells of the rabbit, but that immunoreactivity for glutamate in these neurons is reduced below immunocytochemical detection limits after the specific inhibition of glutamine synthesis in glial cells by D,L-methionine D,L-sulphoximine. GABA immunoreactivity in retinal amacrine cells was also reduced after inhibition of glutamine synthetase but the patterns and densities of immunoreactivity for taurine and glycine were unaffected. Therefore, this experimental paradigm does not induce generalized metabolic changes in neurons or glia. This study demonstrates that some glutamatergic neurons are dependent on the synthetic processes in glia for their neurotransmitter content.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
120
|
Assessment of regional phosphate-activated glutaminase (PAG) activity and kinetics in adult and aged Fischer-344 rats. J Am Aging Assoc 1994. [DOI: 10.1007/bf02434895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
121
|
Collins RM, Zielke HR, Woody RC. Valproate increases glutaminase and decreases glutamine synthetase activities in primary cultures of rat brain astrocytes. J Neurochem 1994; 62:1137-43. [PMID: 7906715 DOI: 10.1046/j.1471-4159.1994.62031137.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It has been proposed that hyperammonemia may be associated with valproate therapy. As astrocytes are the primary site of ammonia detoxification in brain, the effects of valproate on glutamate and glutamine metabolism in astrocytes were studied. It is well established that, because of compartmentation of glutamine synthetase, astrocytes are the site of synthesis of glutamine from glutamate and ammonia. The reverse reaction is catalyzed by the ubiquitous enzyme glutaminase, which is present in both neurons and astrocytes. In astrocytes exposed to 1.2 mM valproate, glutaminase activity increased 80% by day 2 and remained elevated at day 4; glutamine synthetase activity was decreased 30%. Direct addition of valproate to assay tubes with enzyme extracts from untreated astrocytes had significant effects only at concentrations of 10 and 20 mM. When astrocytes were exposed for 4 days to 0.3, 0.6, or 1.2 mM valproate and subsequently incubated with L-[U-14C]glutamate, label incorporation into [14C]glutamine was decreased by 11, 25, and 48%, respectively, and is consistent with a reduction in glutamine synthetase activity. Label incorporation from L-[U-14C]glutamate into [14C]aspartate also decreased with increasing concentrations of valproate. Following a 4-day exposure to 0.6 mM valproate, the glutamine levels increased 40% and the glutamate levels 100%. These effects were not directly proportional to valproate concentration, because exposure to 1.2 mM valproate resulted in a 15% decrease in glutamine levels and a 25% increase in glutamate levels compared with control cultures. Intracellular aspartate was inversely proportional to all concentrations of extracellular valproate, decreasing 60% with exposure to 1.2 mM valproate.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R M Collins
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore
| | | | | |
Collapse
|
122
|
Turman JE, Chandler SH. Immunohistochemical localization of glutamate and glutaminase in guinea pig trigeminal premotoneurons. Brain Res 1994; 634:49-61. [PMID: 7512428 DOI: 10.1016/0006-8993(94)90257-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous electrophysiological experiments in guinea pigs from our laboratory [11,36,37] have suggested that synaptic transmission between last-order interneurons (premotoneurons) and trigeminal motoneurons during reflex activation or cortically induced rhythmical jaw movements is mediated by excitatory amino acids (EAAs). In the present study, we performed a series of double-labeling experiments in guinea pigs to determine the location of neurons which contain glutamate or glutaminase and project to the trigeminal motor nucleus (Mo5). This was accomplished by combining immunohistochemical staining and standard retrograde tract-tracing techniques. Injections of a retrograde tracer, colloidal-gold bound to inactivated WGA-HRP (gWGA-HRP), into the trigeminal motor nucleus labeled a column of neurons originating adjacent to Mo5, including the supratrigeminal nucleus, intertrigeminal nucleus and the mesencephalic nucleus of V. The column extended caudally into the parvocellular reticular formation and adjacent trigeminal sensory nucleus oralis and oralis gamma subdivision. In all of these regions, immunoreactivity to glutamate or glutaminase was observed co-localized with gWGA-HRP.
Collapse
Affiliation(s)
- J E Turman
- Department of Physiological Science, University of California at Los Angeles 90024-1568
| | | |
Collapse
|
123
|
Albrecht J, Faff L. Astrocyte-neuron interactions in hyperammonemia and hepatic encephalopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 368:45-54. [PMID: 7741015 DOI: 10.1007/978-1-4615-1989-8_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J Albrecht
- Department of Neuropathology, Polish Academy of Sciences, Warsaw
| | | |
Collapse
|
124
|
Miguel-Hidalgo JJ, Senba E, Takatsuji K, Tohyama M. Projections of tachykinin- and glutaminase-containing rat retinal ganglion cells. Brain Res Bull 1994; 35:73-84. [PMID: 7953761 DOI: 10.1016/0361-9230(94)90219-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glutamate (Glu) and the tachykinin substance P (SP) have been proposed as neurotransmitters or neuromodulators of the retinal projection to the brain. In the present study, we demonstrate that tachykinin-like (TK) immunoreactivity (IR) accumulates in rat retinal axons following electrical lesions to the optic tract, indicating that SP is conveyed in the optic nerve to its central targets. In addition, we show that eye enucleation causes a dramatic decrease in TK-IR fibers in the pretectal olivary nucleus (PON), but not in other retinorecipient nuclei of the thalamus and the midbrain, and that Fluorogold injected into the pretectum is retrogradely transported to the somata of TK-IR retinal ganglion cells (RGCs), indicating an important projection of TK-IR RGCs to the PON. We also show that most rat RGCs are labeled with antibodies against phosphate-activated glutaminase, an enzyme considered to generate the transmitter pool of glutamate. Unlike TK-IR fibers, phosphate-activated glutaminase-IR structures disappear in most retinorecipient nuclei following eye enucleation. The present results give neuroanatomical support to the idea that glutamate is a neurotransmitter in the retinal projection and suggest an important role for TK-IR RGCs in the relay of visual information to the PON.
Collapse
Affiliation(s)
- J J Miguel-Hidalgo
- Department of Anatomy and Neuroscience, Osaka University Medical School, Japan
| | | | | | | |
Collapse
|
125
|
Martinez-Rodriguez R, Martinez-Murillo R. Molecular and Cellular Ace:infects of Neurotransmission and IMeuromodulation. INTERNATIONAL REVIEW OF CYTOLOGY 1994. [DOI: 10.1016/s0074-7696(08)62089-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
126
|
Chiba T, Kaneko T. Phosphate-activated glutaminase immunoreactive synapses in the intermediolateral nucleus of rat thoracic spinal cord. Neuroscience 1993; 57:823-31. [PMID: 8309538 DOI: 10.1016/0306-4522(93)90027-d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A monoclonal antibody against phosphate-activated glutaminase was used to identify glutamatergic neuronal components in the intermediolateral nucleus of the thoracic spinal cord of the rat. Under electron microscopy of the intermediolateral nucleus, most glutaminase immunoreactivity was detected in the axoplasm surrounding spherical synaptic vesicles in the presynaptic axon varicosities which formed asymmetric synapses with small dendrites and occasionally with neuronal cell bodies. About 40% of axon varicosities within the intermediolateral nucleus and 49% of the axon varicosities forming asymmetric synaptic contacts showed glutaminase immunoreactivity. Glutaminase immunoreactivity was further seen in mitochondria of neuronal perikarya and dendrites in the intermediolateral nucleus, and occasionally in the cytoplasm of the dendrites and glial processes in the vicinity of glutaminase-immunoreactive axon varicosities. By the combined method of immunocytochemistry and retrograde axonal transport, glutaminase-immunoreactive axons were shown to make direct synaptic contacts with the preganglionic sympathetic neurons, which were retrogradely labeled by injection of horseradish peroxidase conjugated with choleratoxin B subunit into the superior cervical ganglion. The present results indicate that glutaminase-containing axons are the major synaptic inputs to intermediolateral nucleus neurons including preganglionic sympathetic ones, suggesting that glutamate is used as the neurotransmitter to control those neurons in the intermediolateral nucleus.
Collapse
Affiliation(s)
- T Chiba
- Third Department of Anatomy, Chiba University School of Medicine, Japan
| | | |
Collapse
|
127
|
Wallace DR, Dawson R. Regional differences in glutaminase activation by phosphate and calcium in rat brain: impairment in aged rats and implications for regional glutaminase isozymes. Neurochem Res 1993; 18:1271-9. [PMID: 8272193 DOI: 10.1007/bf00975047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regional regulation of glutaminase by phosphate and calcium was examined in the temporal cortex (TCX), striatum (STR) and hippocampus (HIPP) from adult and aged male F344 rats. Phosphate-dependent glutaminase activity in adult rats was significantly lower (35-43%) in the HIPP (100 and 150 mM) and STR (150 mM) compared to PAG activity in the TCX. Phosphate activation in aged rats was 50-60% lower in the HIPP at concentrations greater than 25 mM compared to the aged TCX or STR. PAG activity in the TCX and STR was unaffected by age, but was significantly reduced (30-50%) in the HIPP from aged rats at phosphate concentrations of 25 mM and greater when compared to adult rats. In adult rats at concentrations of CaCl2 above 1 mM, PAG activity was significantly lower (60-75%) in the STR and HIPP when compared to the TCX. In aged rats, PAG activity (1 mM CaCl2) in the HIPP was significantly less (50%) than STR PAG activity in aged rats. Diminished PAG activity was seen only in the TCX (2.5 mM; 32%), and the HIPP (0.5 mM; 25% and 1 mM; 38%) at higher calcium concentrations compared to adult. Phosphate-independent calcium activation of PAG occurred in the HIPP but not in either the TCX or the STR. Addition of phosphate resulted in a synergistic activation of PAG in the STR and TCX, but not in the HIPP. These findings suggest that PAG is regionally regulated by phosphate and calcium, and this regulation is impaired in aged rats. These data also support the hypothesis that isozymes of PAG exist with different regulatory properties.
Collapse
Affiliation(s)
- D R Wallace
- University of Kentucky, Department of Pharmacology MS305, Lexington 40536-0084
| | | |
Collapse
|
128
|
Yezierski RP, Kaneko T, Miller KE. Glutaminase-like immunoreactivity in rat spinomesencephalic tract cells. Brain Res 1993; 624:304-8. [PMID: 8252406 DOI: 10.1016/0006-8993(93)90093-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Retrograde transport of the fluorescent tracer Fluorogold was used in combination with immunohistochemical staining for the enzyme glutaminase to identify putative glutamatergic neurons belonging to the rat spinomesencephalic tract. Glutaminase-like staining in spinal projection neurons suggests that the relay of nociceptive information from the spinal cord to midbrain may involve the excitatory amino acid glutamate.
Collapse
Affiliation(s)
- R P Yezierski
- Department of Neurological Surgery, University of Miami, FL 33136
| | | | | |
Collapse
|
129
|
Berg-Johnsen J, Paulsen RE, Fonnum F, Langmoen IA. Changes in evoked potentials and amino acid content during fluorocitrate action studied in rat hippocampal cortex. Exp Brain Res 1993; 96:241-6. [PMID: 7903642 DOI: 10.1007/bf00227104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluorocitrate inhibits the glial tricarboxylic acid cycle and thereby the synthesis of glutamine, which is the main precursor for transmitter glutamate. We investigated the possibility that there is a functional correlate to fluorocitrate action by recording evoked field potentials in rat hippocampal slices. The excitatory postsynaptic potential (field-EPSP) was markedly depressed after 7-8 h of fluorocitrate action. The population spike was also reduced, but a major part of the reduction may be the result of weaker synaptic activation rather than reduced excitability of the postsynaptic cells. The activity of thin unmyelinated fibres was only slightly affected. Preceding the changes in the field-EPSP there was a decrease in the glutamine content in the fluorocitrate treated slices relative to controls. Only a small decrease in tissue glutamate was seen concomitantly with the synaptic failure, probably because the transmitter pool of glutamate in those fibres stimulated makes little contribution to the total tissue glutamate.
Collapse
Affiliation(s)
- J Berg-Johnsen
- Institute for Surgical Research, National Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
130
|
Kapetanovic IM, Yonekawa WD, Kupferberg HJ. Time-related loss of glutamine from hippocampal slices and concomitant changes in neurotransmitter amino acids. J Neurochem 1993; 61:865-72. [PMID: 8103084 DOI: 10.1111/j.1471-4159.1993.tb03597.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A dramatic, time-dependent loss of L-glutamine was observed in mouse and rat hippocampal slices equilibrated in normal artificial CSF under static (no-flow) and superfused (constant-flow) conditions. Concomitant with the decline in L-glutamine, there was a significant, but less pronounced, decrease in levels of the neurotransmitter amino acids, gamma-aminobutyric acid, L-aspartate, and L-glutamate. The disappearance of L-glutamine was a result of diffusion from the tissue to the artificial CSF rather than chemical or biochemical transformation. The loss of amino acids from the hippocampal slices was prevented to different degrees by the addition of 0.5 mM exogenous L-glutamine to the artificial CSF. The levels of newly synthesized amino acids were also determined, because they may be more indicative of the neuronal activity than the total tissue levels of amino acids. The effects of perturbations in glutamine (length of the equilibration time and addition of exogenous glutamine) on newly synthesized glutamate were more pronounced under 4-aminopyridine-stimulated than control (unstimulated) conditions. Therefore, a loss of L-glutamine from the hippocampal slices may have neurophysiological effects and warrants further investigation.
Collapse
Affiliation(s)
- I M Kapetanovic
- Preclinical Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
131
|
Abstract
The history of the nigrostriatal dopamine system may provide a prime example of the two faces of scientific development. First, a given concept is replaced by another simply as a result of methodologies being improved, and second, successive technical improvements make seemingly settled controversies even more complicated and disputable. The nigrostriatal pathway, which had been unrecognizable with Nauta's silver impregnation method, became apparent by use of the more sensitive silver impregnation method of Fink-Heimer. The sensitivity of the latter method, however, was still insufficient to reveal the whole extent of another ascending dopamine system, the mesocortical dopamine system, until its existence was established through the application of glyoxylic acid fluorescent histochemistry. Electron microscopic analysis of nigrostriatal dopamine synapses in properly fixed tissue was initiated by the demonstration of dark type terminal degeneration, which was induced by either electrolytic lesions or chemical destruction with a specific toxin (6-hydroxydopamine) of the substantia nigra and medial forebrain bundle. The degenerating terminal boutons, thus produced, invariably formed postsynaptic membrane specializations of asymmetric type. However, the asymmetric nature of the synaptic morphology, although later confirmed by the combined study of chemical lesions and autoradiographic anterograde tracing, was seriously challenged with the introduction of electron microscopic immunohistochemistry. The latter method has consistently revealed that symmetric en passant synapses or axonal varicosities with no synaptic membrane specializations are the only tissue compartments immunoreactive to antibodies against dopamine and its synthetic enzyme tyrosine hydroxylase. In view of the fact that more than 95% of the nigrostriatal projection neurons are dopaminergic, it is difficult to satisfactorily interpret all the available and seemingly paradoxical fine structural data. In this context, a novel concept has emerged in the process of eliminating all the possible alternative interpretations. The concept is that single nigrostriatal neurons form two chemically distinct types of synapses, one dopaminergic symmetric en passant bouton and another non-dopaminergic (still chemically unclassified) asymmetric terminal bouton. If the concept is a valid one, it contradicts Dale's long standing principle, as defined by Eccles: at all the axonal branches of a neuron there is liberation of the same transmitter substance or substances. Furthermore, a certain population of substantia nigra pars reticulata neurons has recently been recognized to be immunoreactive to both dopamine synthetic tyrosine hydroxylase and GABA synthetic glutamate decarboxylase. These single neurons send projections to both the striatum and superior colliculus by way of axon collaterals.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Hattori
- Department of Anatomy and Cell Biology, University of Toronto, Ontario, Canada
| |
Collapse
|
132
|
Bakkelund AH, Fonnum F, Paulsen RE. Evidence using in vivo microdialysis that aminotransferase activities are important in the regulation of the pools of transmitter amino acids. Neurochem Res 1993; 18:411-5. [PMID: 8097292 DOI: 10.1007/bf00967244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of aminooxyacetic acid (AOAA), an inhibitor of pyridoxal phosphate-dependent enzymes (including the aminotransferases), on the K(+)-evoked release of amino acids was studied during microdialysis of neostriatum in anesthetized rats. K(+)-evoked (100 mM) release of aspartate, glutamate, and GABA was inhibited by 74%, 70%, and 63%, respectively, by 20 mM Mg2+ and are therefore reflecting release from the transmitter pools of these amino acids. Treatment with AOAA decreased the K(+)-evoked release of aspartate, glutamate, and GABA instantly, with a delayed decrease in the efflux of glutamine and alanine, arguing that the synthesis of transmitter amino acids in particular is sensitive to the activity of pyridoxal phosphate-dependent enzymes. Interestingly, GABA release increased severalfold following the initial decrease, probably reflecting inhibition by AOAA on GABA aminotransferase, the enzyme most sensitive to inhibition by AOAA, and responsible for enzymatic inactivation of transmitter GABA.
Collapse
Affiliation(s)
- A H Bakkelund
- Division for Environmental Toxicology, NDRE, Kjeller, Norway
| | | | | |
Collapse
|
133
|
Dawson R, Wallace DR. Regulation of phosphate-activated glutaminase (PAG) by glutamate analogues. Neurochem Res 1993; 18:125-32. [PMID: 8474556 DOI: 10.1007/bf01474674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability of structural analogues of glutamate (GLU) to modulate phosphate activated glutaminase (PAG) was assessed in the present series of studies. A number of GLU receptor agonists and antagonists were tested for their ability to inhibit synaptosomal PAG activity. PAG activity was determined by measuring GLU formation from 0.5 mM glutamine (GLN) in the presence of 10 mM phosphate. GLU analogues at 5-10 mM were found to significantly inhibit PAG activity. It was determined that PAG inhibition occurred regardless of whether the GLU analogues were receptor agonists or antagonists, however, PAG inhibition was influenced by analogue chain length, isomeric form and substituent substitution. The glutamate uptake blockers, dihydrokainic acid and DL-threo-beta-hydroxyaspartic acid were relatively weak inhibitors of PAG (< 25% inhibition) as were the receptor agonists, ibotenic acid and (+-)cis-2,3-piperidine-dicarboxylic acid. Other GLU analogues produced inhibition of PAG in the range of 40-70%. PAG inhibition by GLU analogues did not appear to differ substantially among the brain regions evaluated (cortex, striatum and hippocampus). The endogenous amino acids, glycine, taurine and N-acetylaspartic acid, also significantly inhibited PAG activity in the 5-10 mM range. The noncompetitive NMDA antagonists, (+)MK801 and ketamine, at a concentration of 5 mM, significantly stimulated PAG activity 1.5-2 fold over control values. The activation of PAG by (+)MK801 was dose-related, stereoselective and appeared to result from a synergistic interaction with phosphate to enhance substrate (GLN) binding to PAG.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Dawson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, JHMHC, Gainesville 32610
| | | |
Collapse
|
134
|
Ruzicka BB, Jhamandas KH. Excitatory amino acid action on the release of brain neurotransmitters and neuromodulators: biochemical studies. Prog Neurobiol 1993; 40:223-47. [PMID: 8094254 DOI: 10.1016/0301-0082(93)90023-l] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- B B Ruzicka
- Department of Pharmacology and Toxicology, Faculty of Medicine, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
135
|
Wallace DR, Dawson R. Ammonia regulation of phosphate-activated glutaminase displays regional variation and impairment in the brain of aged rats. Neurochem Res 1993; 17:1113-22. [PMID: 1361026 DOI: 10.1007/bf00967289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The regulation of PAG by ammonia in whole brain (Sprague-Dawley) and regional (Fischer-344) synaptosomal preparations from adult and aged animals was assessed. Whole brain synaptosomal preparations from both age groups displayed a significant decrease in PAG activity with increasing ammonium chloride concentrations, however, the aged rats exhibited a significant attenuation in ammonia-induced PAG inhibition. PAG activity measured in synaptosomes prepared from the striatum (STR), temporal cortex (TCX) and hippocampus (HIPP) was also inhibited by ammonium chloride. The STR showed the greatest degree of ammonia-induced PAG inhibition (55%) followed by the HIPP (30-35%) and the TCX (25-30%). This reduction in PAG activity was significantly attenuated in STR from aged rats at ammonium chloride concentrations greater than 50 microM and in the TCX, PAG activity was significantly attenuated in the aged rats at ammonia concentrations of 0.5 and 1.0 mM. Ammonia regulation of PAG activity in the HIPP appeared to be unaffected by age. Ammonium chloride concentrations up to 5 mM had no effect on GLU release from cortical slices, although GLN efflux was significantly enhanced. These findings suggest that isozymes of PAG may exist in different brain regions based on their differential sensitivity to ammonia. The attenuation of ammonia-induced PAG inhibition seen in aged rats may have deleterious effects in the aged brain.
Collapse
Affiliation(s)
- D R Wallace
- University of Colorado Health Science Center, Department of Pharmacology, Denver 80262
| | | |
Collapse
|
136
|
Kugler P. Enzymes involved in glutamatergic and GABAergic neurotransmission. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 147:285-336. [PMID: 7901176 DOI: 10.1016/s0074-7696(08)60771-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Kugler
- Department of Anatomy, University of Würzburg, Germany
| |
Collapse
|
137
|
Fonnum F. Regulation of the synthesis of the transmitter glutamate pool. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1993; 60:47-57. [PMID: 8097589 DOI: 10.1016/0079-6107(93)90012-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- F Fonnum
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, Kjeller
| |
Collapse
|
138
|
Bruhn T, Cobo M, Berg M, Diemer NH. Limbic seizure-induced changes in extracellular amino acid levels in the hippocampal formation: a microdialysis study of freely moving rats. Acta Neurol Scand 1992; 86:455-61. [PMID: 1362314 DOI: 10.1111/j.1600-0404.1992.tb05123.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Limbic seizure-activity was induced by injecting kainic acid into the amygdala of rats. Extracellular levels of amino acids were monitored by microdialysis in the hippocampus. No changes were detected in the levels of glutamate and aspartate. The level of glycine also remained unchanged, whereas GABA showed an increase of approximately 35%. The level of glutamine decreased by approximately 30%, and that of serine by approximately 20%. The results indicate that increased turnover may exist in the glutamate transmitter pool. In addition, impairment of GABA-release seems not to be a pathogenetic factor in seizure-induced hippocampal neuron loss. It is concluded that even during sustained seizure-activity, the extracellular level of glutamate, is maintained within narrow limits. A proposed index for excitatory neurodegeneration, glutamate x glycine/GABA, was found to be decreased in this seizure model. We therefore suggest that seizure-induced neuron death is not reflected by alterations in the extracellular levels of glutamate and aspartate, thought to act as direct neurotoxins.
Collapse
Affiliation(s)
- T Bruhn
- Institute of Neuropathology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
139
|
Bridges RJ, Hatalski CG, Shim SN, Cummings BJ, Vijayan V, Kundi A, Cotman CW. Gliotoxic actions of excitatory amino acids. Neuropharmacology 1992; 31:899-907. [PMID: 1436396 DOI: 10.1016/0028-3908(92)90128-c] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cultures of neonatal Type I astrocytes of the rat were exposed to a series of excitatory amino acid analogs to identify those compounds that were gliotoxic. In addition to L-alpha-aminoadipate, a previously identified gliotoxin, L-homocysteate, L-serine-O-sulfate, L-alpha-amino-4-phosphonobutyrate and L-alpha-amino-3-phosphono-propionate were also found to induce a sequence of degenerative events that led to the lysis of the astrocytes. Cellular injury was assessed by quantifying the activity of lactate dehydrogenase present in the surviving astrocytes. Prior to lysis, the cells went through a succession of distinctive morphological changes, the most prominent of which involved nuclear alterations. The nuclei appeared swollen, contained "pale" or "watery" nucleoplasm and exhibited a very prominent nuclear membrane and obvious nucleoli. These astrocytes appeared quite similar in appearance to the Alzheimer's Type II astrocytes, principally associated with the pathology of hepatic encephalopathy. The nuclear anomalies, which are thought to be indicative of cellular damage and compromised function, were also produced by the endogenous transmitters L-glutamate and L-aspartate, although with time, the affected astrocytes appeared to recover and return to normal morphology, without lyzing. These findings suggest that excessive levels of excitatory amino acids may induce cellular damage to astrocytes, as well as neurons. Once damaged, the resulting reductions in astrocyte function may further contribute to CNS losses and the overall pathology attributed to the excitatory amino acids.
Collapse
Affiliation(s)
- R J Bridges
- Department of Neurology, University of California, Irvine 92717
| | | | | | | | | | | | | |
Collapse
|
140
|
Kaneko T, Nakaya Y, Mizuno N. Paucity of glutaminase-immunoreactive nonpyramidal neurons in the rat cerebral cortex. J Comp Neurol 1992; 322:181-90. [PMID: 1381731 DOI: 10.1002/cne.903220204] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glutaminase has been considered to be a synthesizing enzyme of transmitter glutamate in pyramidal neurons of the cerebral cortex. In the present study, an attempt was made to examine with a double immunofluorescence method whether or not nonpyramidal neurons of the cerebral cortex are immunoreactive for glutaminase. Glutaminase was stained with mouse anti-glutaminase IgM and FITC-labeled anti-[mouse IgM] antibody. In the same section, parvalbumin (PA), calbindin (CB), choline acetyltransferase (CAT), vasoactive intestinal polypeptide (VIP), corticotropin releasing factor (CRF), cholecystokinin (CCK), somatostatin (SS), or neuropeptide Y (NPY) was visualized as a marker for nonpyramidal neurons with an antibody to each substance, biotinylated secondary antibody and Texas Red-labeled avidin. Virtually no glutaminase immunoreactivity was seen in PA-, CB-, CAT-, VIP-, CRF-, CCK-, SS-, or NPY-immunoreactive neuronal perikarya in the neocortex and mesocortex (cingulate and retrosplenial cortices), although it was detected in a few PA-, CB-, VIP-, CCK-, SS-, or NPY-immunoreactive nonpyramidal neurons in the piriform, entorhinal, and hippocampal cortices. PA- and CB-positive neurons have been reported to constitute the major population of GABAergic neurons in the cerebral cortex. Thus, the present results, together with the previous reports, suggest that most GABAergic, cholinergic and peptidergic nonpyramidal neurons in the neo- and mesocortex do not contain glutaminase.
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
141
|
Alder J, Lu B, Valtorta F, Greengard P, Poo MM. Calcium-Dependent Transmitter Secretion Reconstituted in
Xenopus
Oocytes: Requirement for Synaptophysin. Science 1992; 257:657-61. [PMID: 1353905 DOI: 10.1126/science.1353905] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Calcium-dependent glutamate secretion was reconstituted in Xenopus oocytes by injecting the oocyte with total rat cerebellar messenger RNA (mRNA). Co-injection of total mRNA with antisense oligonucleotides to synaptophysin message decreased the expression of synaptophysin in the oocyte and reduced the calcium-dependent secretion. A similar effect on secretion was observed for oocytes injected with total mRNA together with an antibody to rat synaptophysin. These results indicate that synaptophysin is necessary for transmitter secretion and that the oocyte expression system may be useful for dissecting the molecular events associated with the secretory process.
Collapse
Affiliation(s)
- J Alder
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | | | | | | |
Collapse
|
142
|
Kaneko T, Mizuno N. Mosaic distribution of phosphate-activated glutaminase-like immunoreactivity in the rat striatum. Neuroscience 1992; 49:329-45. [PMID: 1436471 DOI: 10.1016/0306-4522(92)90100-g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The dorsal and ventral striatum of mammals has been known to be organized in a mosaic manner, referred to as "patches" and "matrix" of the caudatoputamen. The present study was primarily attempted in order to reveal the relationship of glutamatergic neuronal components to the mosaic organization in the rat striatum by using a monoclonal antibody to phosphate-activated glutaminase, a major synthetic enzyme of transmitter glutamate. Antibodies against glutamate decarboxylase and choline acetyltransferase were also used as the markers for GABAergic and cholinergic neuronal components, respectively. Glutaminase immunoreactivity was seen in a number of large- and a few medium-sized neurons in the caudatoputamen, nucleus accumbens and olfactory tubercle. The large neurons with glutaminase immunoreactivity were observed in the neuropil of the caudatoputamen and nucleus accumbens; glutaminase immunoreactivity was particularly marked in the neuropil of island-like patchy areas although it was seen throughout the neuropil of the nuclei. In the caudatoputamen, island-like areas with marked glutaminase immunoreactivity exhibited less marked choline acetyltransferase immunoreactivity than the surrounding background region, and were thus considered to correspond to the patches. The mosaic distribution of glutamate decarboxylase immunoreactivity in the caudatoputamen seemed identical with that of glutaminase immunoreactivity. However, in the nucleus accumbens, the mosaic pattern of neuropil labeling for glutaminase was neither consistent with that for glutamate decarboxylase nor that for choline acetyltransferase, suggesting the presence of non-GABAergic glutaminase-containing nerve terminals in the nucleus. In an attempt to clarify the origin of neuropil labeling for glutaminase in the striatum, lesions were made in the regions sending projection fibers to the caudatoputamen and nucleus accumbens. After placing lesions in the cerebral cortex, glutaminase immunoreactivity was decreased in neuropil of the caudatoputamen, but the mosaic pattern remained. Lesions which were placed in the intralaminar thalamic nuclei, amygdaloid body, globus pallidus or substantia nigra produced no substantial change in glutaminase immunoreactivity in the caudatoputamen and nucleus accumbens. After injection of kainic acid into the caudatoputamen or nucleus accumbens, glutaminase immunoreactivity in the neuropil of the affected regions was decreased to lose the mosaic pattern, indicating that neuronal components with glutaminase immunoreactivity in the neuropil of the patches were mainly of intrinsic origin. In summary, possible axon terminals containing glutaminase were observed with mosaic patterns in the caudatoputamen and nucleus accumbens, in which large cholinergic and medium-sized non-cholinergic neurons were immunoreactive for glutaminase. In the caudatoputamen, glutaminase immunoreactivity in neuropil was more marked in the patches than in the matrix.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | |
Collapse
|
143
|
Kaneko T, Hanazawa A, Mizuno N. Enhancement of glutaminase-like immunoreactivity in rat brain by an irreversible inhibitor of the enzyme. Brain Res Bull 1992; 28:897-907. [PMID: 1638416 DOI: 10.1016/0361-9230(92)90210-o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Changes of glutaminase immunoreactivity in rat brain were examined after intracranial injection of 6-diazo-5-oxo-L-norleucine (DON), an irreversible inhibitor of glutaminase. When 1 M DON was injected into the lateral ventricle, a half-lethal dose was 7.5-10 mumol. After intraventricular injection of 2-7.5 mumol DON, glutaminase immunoreactivity was dose dependently enhanced with the maximum enhancement 3-5 days after the injection. The enhanced glutaminase immunoreactivity was recognized by enlarged granular immunodeposits in both perikarya and neuropil in many regions, such as the hippocampus, thalamus, hypothalamus, periaqueductal gray, and some brain stem, cerebellar, and spinal cord regions. Intrathalamic injection of 0.2 mumol DON enhanced glutaminase immunoreactivity in many neuronal perikarya in the thalamus and in some perikarya in layer VI of the cerebral cortex. Intrastriatal injection of the same dose of DON enhanced glutaminase immunoreactivity in neuropil of the caudoputamen and in many neuronal perikarya of the intralaminar thalamic nuclei. These results suggested that DON induced a new massive synthesis of glutaminase in the affected neurons.
Collapse
Affiliation(s)
- T Kaneko
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
144
|
Abstract
Glutamate metabolism in rat cortical astrocyte cultures was studied to evaluate the relative rates of flux of glutamate carbon through oxidative pathways and through glutamine synthetase (GS). Rates of 14CO2 production from [1-14C]glutamate were determined, as was the metabolic fate of [14C(U)]glutamate in the presence and absence of the transaminase inhibitor aminooxyacetic acid and of methionine sulfoximine, an irreversible inhibitor of GS. The effects of subculturing and dibutyryl cyclic AMP treatment of astrocytes on these parameters were also examined. The vast majority of exogenously added glutamate was converted to glutamine and exported into the extracellular medium. Inhibition of GS led to a sustained and greatly elevated intracellular glutamate level, thereby demonstrating the predominance of this pathway in the astrocytic metabolism of glutamate. Nevertheless, there was some glutamate oxidation in the astrocyte culture, as evidenced by aspartate production and labeling of intracellular aspartate pools. Inhibition of aspartate aminotransferase caused a greater than 70% decrease in 14CO2 production from [1-14C]glutamate. Inhibition of GS caused an increase in aspartate production. It is concluded that transamination of glutamate rather than oxidative deamination catalyzed by glutamate dehydrogenase is the first step in the entry of glutamate carbon into the citric acid cycle in cultured astrocytes. This scheme of glutamate metabolism was not qualitatively altered by subculturing or by treatment of the cultures with dibutyryl cyclic AMP.
Collapse
Affiliation(s)
- S E Farinelli
- Graduate Program of Pharmacology, Rutgers University, Piscataway, New Jersey
| | | |
Collapse
|
145
|
Hassel B, Paulsen RE, Johnsen A, Fonnum F. Selective inhibition of glial cell metabolism in vivo by fluorocitrate. Brain Res 1992; 576:120-4. [PMID: 1515906 DOI: 10.1016/0006-8993(92)90616-h] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of fluorocitrate on glial and neuronal amino acid metabolism was studied. One nmol of fluorocitrate administered intrastriatally in the rat caused a 95% reduction of glutamine formation from [14C]acetate, a substrate which enters the glial cells selectively. The metabolism of [14C]glucose which enters neurons, was unaffected by fluorocitrate treatment except for the glutamine formation. This is evidence that fluorocitrate is a selective inhibitor of the glial Krebs' cycle. [14C]Citrate and 2-oxoglutarate labelled amino acids in a manner similar to [14C]acetate, which shows that these substrates are taken up and metabolized by glial cells. Differences in the labelling of gamma-aminobutyric acid (GABA) from [14C]acetate and citrate suggest that astrocytes associated with GABAergic and glutamatergic nerve terminals may differ in their preference for amino acid precursors.
Collapse
Affiliation(s)
- B Hassel
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, Kjeller
| | | | | | | |
Collapse
|
146
|
Affiliation(s)
- V L Rao
- School of Life Sciences, University of Hyderabad, India
| | | | | |
Collapse
|
147
|
Badar-Goffer RS, Ben-Yoseph O, Bachelard HS, Morris PG. Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study. Biochem J 1992; 282 ( Pt 1):225-30. [PMID: 1540138 PMCID: PMC1130911 DOI: 10.1042/bj2820225] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Time courses of incorporation of 13C from 13C-labelled glucose and/or acetate into the individual carbon atoms of amino acids, citrate and lactate in depolarized cerebral tissues were monitored by using 13C-n.m.r. spectroscopy. There was no change in the maximum percentage of 13C enrichments of the amino acids on depolarization, but the maxima were reached more rapidly, indicating that rates of metabolism in both glycolysis and the tricarboxylic acid cycle were accelerated. Although labelling of lactate and of citrate approached the theoretical maximum of 50%, labelling of the amino acids was always below 20%, suggesting that there is a metabolic pool or compartment that is inaccessible to exogenous substrates. Under resting conditions labelling of citrate and of glutamine from [1-13C]glucose was not detected, whereas both were labelled from [2-13C]acetate, which is considered to reflect glial metabolism. In contrast, considerable labelling of these two metabolites from [1-13C]glucose was observed in depolarized tissues, suggesting that the increased metabolism may be due to increased consumption of glucose by glial cells. The labelling patterns on depolarization from [1-13C]glucose alone and from both precursors [( 1-13C]glucose plus [2-13C]acetate) were similar, which also indicates that the changes are due to increased consumption of glucose rather than acetate.
Collapse
|
148
|
Lellos V, Moraitou M, Tselentis V, Philippidis H, Palaiologos G. Effect of starvation or streptozotocin-diabetes on phosphate-activated glutaminase of different rat brain regions. Neurochem Res 1992; 17:141-5. [PMID: 1538831 DOI: 10.1007/bf00966791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phosphate-activated glutaminase (PAG) was assayed in homogenates of brain cerebellum, hippocampus or striatum from normal, starved for 48 h to 120 h or streptozotocin-diabetic rats. Only the hippocampal enzyme was increased (47%) by diabetes. Starvation had no effect in any of the regions studied. PAG of synaptosomes or of non-synaptosomal mitochondria from the hippocampus was also increased by 48% and 22% respectively in diabetes. PAG of synaptosomes from the cortex, the cerebellum, or the striatum or of the non-synaptosomal mitochondria from the cortex were not affected by diabetes or prolonged (120 h) starvation. A suggestion is presented that peripheral insulin, indirectly, may regulate PAG activity in a specific region of the rat brain.
Collapse
Affiliation(s)
- V Lellos
- Laboratory of Biological Chemistry, School of Medicine, University of Athens, Greece
| | | | | | | | | |
Collapse
|
149
|
Tower DB. A century of neuronal and neuroglial interactions, and their pathological implications: an overview. PROGRESS IN BRAIN RESEARCH 1992; 94:3-17. [PMID: 1287720 DOI: 10.1016/s0079-6123(08)61735-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
150
|
Abstract
Physostigmine (PHYSO), in doses as low as 0.003 mg/kg IP, antagonized scopolamine (SCOP, 3 mg/kg) induced amnesia of step-through passive avoidance in mice. The peripherally acting acetylcholinesterase (AChE) inhibitor neostigmine (NEO) was also found to reliably, though less strongly, antagonize the SCOP induced amnesia at a dose of 0.03 mg/kg. The NEO antagonism of the SCOP amnesia could be reversed with SCOP (0.3, 1, and 3 mg/kg) and mecamylamine (MECA, 1, 3, and 10 mg/kg), muscarinic and nicotinic antagonists, respectively, which are active both peripherally and centrally, as well as with M-SCOP (0.3 and 1 mg/kg) and hexamethonium (HEX, 1 and 3 mg/kg), muscarinic and nicotinic antagonists, respectively, which are active only in the periphery. In contrast to the ability of these four compounds to attenuate the SCOP amnesia, only the centrally acting compounds SCOP (3 mg/kg) and MECA (10 mg/kg) induced an amnesia when administered alone. These findings suggest that the induction of amnesia of passive avoidance involves central cholinergic systems, whereas the NEO, and possibly PHYSO, reversal of the SCOP induced amnesia is mediated peripherally by both muscarinic and nicotinic receptors. It is hypothesized that the release of adrenal catecholamines, the influence of which on memory processes is well known, and secondarily glucose, may be responsible for the NEO antagonism of the SCOP amnesia.
Collapse
Affiliation(s)
- D K Rush
- Cassella AG, Department of CNS Pharmacology, Frankfurt, Federal Republic of Germany
| | | |
Collapse
|