101
|
Vahdatiraad L, Heidari B, Zarei S, Sohrabi T, Ghafouri H. Biological responses of stellate sturgeon fingerlings (Acipenser stellatus) immersed in HSP inducer to salinity changes. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106145. [PMID: 37595360 DOI: 10.1016/j.marenvres.2023.106145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/15/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Changes in salinity is a stressful and energy-consuming process in fish which give rise to mortalities, especially in fish fingerlings that are more sensitive during the early stages of their life. In the present study, the effects of three salinities, 3‰ (downstream of river), 8‰ (estuarine), and 13‰ (the maximum salinity in the Caspian Sea), on HSP70 gene expression, cortisol level, immune response (lysozyme, complement C3, IgM), and antioxidant enzyme activities (SOD, CAT, T-AOC) of the stellate sturgeon fingerlings in the presence of HSP inducer compound (TEX-OE®) were evaluated. Our results showed that levels of plasma cortisol and heat shock protein (HSP70) in Acipenser stellatus fingerlings increased due to salinity changes. In the presence of the HSP inducer, HSP70 expression in both gill and liver was significantly increased, whereas cortisol level was notably decreased. Exposure to salinity changes resulted in an increase in antioxidant defense activities (SOD, CAT, and T-AOC) and immune response (lysozyme, IgM, and C3) in the presence of an HSP inducer. In conclusion, an HSP-inducing compounds can have a positive effect in strengthening the immunity and antioxidant system of sturgeon fingerlings by increasing the expression of the HSP70 gene against salinity fluctuations and generally increase the body's physiological tolerance.
Collapse
Affiliation(s)
- Leila Vahdatiraad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Tooraj Sohrabi
- International Caspian Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| |
Collapse
|
102
|
Mladenović M, Astolfi R, Tomašević N, Matić S, Božović M, Sapienza F, Ragno R. In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition-Activity Relationships Modeled through Machine Learning Algorithms. Antioxidants (Basel) 2023; 12:1815. [PMID: 37891894 PMCID: PMC10604248 DOI: 10.3390/antiox12101815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The antioxidant activity of essential oils (EOs) is an important and frequently studied property, yet it is not sufficiently understood in terms of the contribution of EOs mixtures' constituents and biological properties. In this study, a series of 61 commercial EOs were first evaluated as antioxidants in vitro, following as closely as possible the cellular pathways of reactive oxygen species (ROS) generation. Hence, EOs were assessed for the ability either to chelate metal ions, thus interfering with ROS generation within the respiratory chain, or to neutralize 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and lipid peroxide radicals (LOO•), thereby halting lipid peroxidation, as well as to neutralize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid cation radicals (ABTS•+) and hydroxyl radicals (OH•), thereby preventing the ROS species from damaging DNA nucleotides. Showing noteworthy potencies to neutralize all of the radicals at the ng/mL level, the active EOs were also characterized as protectors of DNA double strands from damage induced by peroxyl radicals (ROO•), emerging from 2,2'-azobis-2-methyl-propanimidamide (AAPH) as a source, and OH•, indicating some genome protectivity and antigenotoxicity effectiveness in vitro. The chemical compositions of the EOs associated with the obtained activities were then analyzed by means of machine learning (ML) classification algorithms to generate quantitative composition-activity relationships (QCARs) models (models published in the AI4EssOil database available online). The QCARs models enabled us to highlight the key features (EOSs' chemical compounds) for exerting the redox potencies and to define the partial dependencies of the features, viz. percentages in the mixture required to exert a given potency. The ML-based models explained either the positive or negative contribution of the most important chemical components: limonene, linalool, carvacrol, eucalyptol, α-pinene, thymol, caryophyllene, p-cymene, eugenol, and chrysanthone. Finally, the most potent EOs in vitro, Ylang-ylang (Cananga odorata (Lam.)) and Ceylon cinnamon peel (Cinnamomum verum J. Presl), were promptly administered in vivo to evaluate the rescue ability against redox damage caused by CCl4, thereby verifying their antioxidant and antigenotoxic properties either in the liver or in the kidney.
Collapse
Affiliation(s)
- Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Roberta Astolfi
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Sanja Matić
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Mijat Božović
- Faculty of Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| |
Collapse
|
103
|
Basavaraju SM, Mudhol S, Peddha MS, Ud Din Wani S, Krishna KL, Mehdi S, Kinattingal N. Nanoemulsion-based piperine to enhance bioavailability for the treatment of LPS-induced depression-like behaviour in mice. Neurosci Lett 2023; 814:137441. [PMID: 37591360 DOI: 10.1016/j.neulet.2023.137441] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
In the present study, the objective was to encapsulate piperine in nanoform by solvent evaporation method and to investigate the antidepressant-like activity of nanopiperine in lipopolysaccharide (LPS) induced depression in mice. LPS-induced depression in mice was reversed by repeated treatment of nanopiperine at dosages of 5 and 10 mg/kg body weight for 14 days. After 24 h of LPS injection, the animals were exposed to a (TST) tail suspension test and (FST) forced swim test. A sequence of behaviours was measured on days 0, 7, and 14. On day 14, the animals were euthanized, and the blood was collected; biochemical analysis was performed for the measurement of inflammatory and oxidative stress markers. Within the same period, nanopiperine improved hippocampal progenitor cell proliferation and increased brain-derived neurotrophic factor (BDNF) levels in the hippocampus of mice subjected to LPS-induced stress. In addition, the neurotransmitter estimation by the HPLC method showed that nanopiperine increased the levels of neurotransmitters. In summary, the nanopiperine showed potent neuroprotective and antidepressant activity, and stability relating to the elevated level of hippocampal BDNF level and as compared to pure piperine, the nanopiperine showed better oral bioavailability and stability.
Collapse
Affiliation(s)
- Shubha M Basavaraju
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy for Higher Education and Research, Mysore 570015, Karnataka, India
| | - Seema Mudhol
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore 570020, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore 570020, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India
| | - Kamsagara L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy for Higher Education and Research, Mysore 570015, Karnataka, India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy for Higher Education and Research, Mysore 570015, Karnataka, India.
| | - Nabeel Kinattingal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy for Higher Education and Research, Mysore 570015, Karnataka, India
| |
Collapse
|
104
|
Bölükbaşı Ş, Ürüşan H, Apaydın Yıldırım B. The effect of propolis addition to the laying-hen diet on performance, serum lipid profile and liver fat rate. Arch Anim Breed 2023; 66:225-232. [PMID: 37779600 PMCID: PMC10539770 DOI: 10.5194/aab-66-225-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
The aim of this study was to evaluate the effect of propolis (P) on performance, egg quality parameters, serum lipid profile, some liver enzymes and liver fat ratio. One-hundred-and-twenty Lohmann (LSL) laying hens were divided into five groups, and each group consisted of six subgroups. The control group was fed basal diet. The other groups were fed high-energy (HE) diets to induce fatty liver syndrome, and 0, 100, 200 and 300 mg kg- 1 of propolis were supplemented with high-energy feeds. During the 8-week trial, feed and water were given ad libitum. It was determined that egg production and feed conversion ratio were decreased in the high-energy feed group without the addition of propolis. The highest egg production was found in HE + 100 and HE + 200 mg kg- 1 of P groups. It was found that liver fat ratios were higher in the group fed with HE + 0 mg kg- 1 of P feed (P < 0.01 ) than other groups. But the addition of P decreased the liver fat rate significantly. The highest very low density lipoprotein (VLDL), triglyceride (TG) and low-density lipoprotein (LDL) values were found for the HE + 0 mg kg- 1 of P group. The addition of 200 mg kg- 1 of P to high-energy feed increased glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) values. In conclusion, high-energy feed adversely affected egg production and liver fat ratio, but the addition of 100 or 200 mg kg- 1 of propolis improved egg production and decreased liver fat ratio.
Collapse
Affiliation(s)
- Şaziye Canan Bölükbaşı
- Department of Animal Science, Faculty of Agriculture, Atatürk
University, Erzurum, Türkiye
| | - Hilal Ürüşan
- Plant and Animal Production
Department, Technical Sciences Vocational School, Erzurum, Türkiye
| | | |
Collapse
|
105
|
Sabi EM, AlAfaleq NO, Mujamammi AH, Al-Shouli ST, Althafar ZM, Bin Dahman LS, Sumaily KM. Gramine Exerts Cytoprotective Effects and Antioxidant Properties Against H2O2-Induced Oxidative Stress in HEK 293 Cells. Appl Biochem Biotechnol 2023. [DOI: https:/doi.org/10.1007/s12010-023-04693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 11/05/2023]
|
106
|
Drzymała J, Kalka J. Effects of diclofenac, sulfamethoxazole, and wastewater from constructed wetlands on Eisenia fetida: impacts on mortality, fertility, and oxidative stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:858-873. [PMID: 37633869 PMCID: PMC10533613 DOI: 10.1007/s10646-023-02690-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/28/2023]
Abstract
Soil contamination with micropollutants is an important global problem and the impact of these pollutants on living organisms cannot be underestimated. The effects of diclofenac (DCF) and sulfamethoxazole (SMX), their mixture (MIX), and wastewater containing these drugs on the mortality and reproduction of Eisenia fetida were investigated. The impact on the activities of antioxidant enzymes in earthworm cells was also assessed. Furthermore, the influence of the following parameters of the vertical flow constructed wetlands on wastewater toxicity was investigated: the dosing system, the presence of pharmaceuticals and the plants Miscanthus giganteus. The compounds and their mixture significantly affected the reproduction and mortality of earthworms. The calculated values of LC50,28 days values were 3.4 ± 0.3 mg kg-1 for DCF, 1.6 ± 0.3 mg kg-1 for SMX, and 0.9 ± 0.1 mg kg-1 for MIX. The EC50 (reproduction assay) for DCF was 1.2 ± 0.2 mg kg-1, whereas for SMX, it was 0.4 ± 0.1 mg kg-1, and for MIX, it was 0.3 ± 0.1 mg kg-1, respectively. The mixture toxicity index (MTI) was calculated to determine drug interactions. For both E. fetida mortality (MTI = 3.29) and reproduction (MTI = 3.41), the index was greater than 1, suggesting a synergistic effect of the mixture. We also observed a negative effect of wastewater (raw and treated) on mortality (32% for raw and 8% for treated wastewater) and fertility (66% and 39%, respectively) of E. fetida. It is extremely important to analyze the harmfulness of microcontaminants to organisms inhabiting natural environments, especially in the case of wastewater for irrigation of agricultural fields.
Collapse
Affiliation(s)
- Justyna Drzymała
- The Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| | - Joanna Kalka
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
107
|
Yasmeen S, Khan A, Anwar F, Akhtar MF, Yasmeen S, Shah SA. An insight into the hepatoprotective role of Velpatasvir and Sofosbuvir per se and in combination against carbon tetrachloride-induced hepatic fibrosis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95660-95672. [PMID: 37556059 DOI: 10.1007/s11356-023-29134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Hepatitis C is a global health issue. Hepatitis C Virus (HCV) induces fibrosis by redox reactions, which involve the deposition of collagen in extracellular matrix (ECM). This study aimed to examine the antifibrotic effect of direct-acting antivirals; Sofosbuvir and Velpatasvir, per se and in combination against carbon tetrachloride (CCl4)-induced fibrosis in rats. Carbon tetrachloride (intraperitoneal; 0.5 ml/kg) twice weekly for six weeks was used to induce hepatic fibrosis in rats. After two weeks of CCl4, oral administration of Sofosbuvir (20 mg/kg/d) and Velpatasvir (10 mg/kg/d) was administered to rats for the last four weeks. Liver function tests (LFTs), renal function tests (RFTs), oxidative stress markers, and the levels of TNF-a, NF-κB, and IL-6 were measured through ELISA and western blotting at the end of the study. CCl4 significantly ameliorated the values of RFTs, LFTs and lipid profiles in the diseased group, which were normalized by the SOF and VEL both alone and in combination. These drugs produced potent antioxidant effects by significantly increasing antioxidant enzymes. From the histopathology of hepatic tissues of rats treated with drugs, the antifibrotic effect was further manifested, which showed suppression of hepatic stellate cells (HSCs) in treated rats, as compared to the disease control group. The antifibrotic effect was further demonstrated by significantly decreasing the levels of TNF-a, NF-κB and IL-6 in serum and hepatic tissues of treated rats as compared to the disease control group. Sofosbuvir and Velpatasvir alone and in combination showed marked inhibition of fibrosis in the CCl4-induced non-HCV rat model, which was mediated by decreased levels of TNF-a/NF-κB and the IL-6 signaling pathway. Thus, it can be concluded that Sofosbuvir and Velpatasvir might have an antifibrotic effect that appears to be independent of their antiviral activity.
Collapse
Affiliation(s)
- Sadaf Yasmeen
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, 13 KM Raiwind Road, Lahore, Pakistan
| | - Aslam Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, 13 KM Raiwind Road, Lahore, Pakistan.
| | - Fareeha Anwar
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, 13 KM Raiwind Road, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, 13 KM Raiwind Road, Lahore, Pakistan
| | - Sidra Yasmeen
- Department of Pharmaceutics, Faculty of Pharmacy, Jinnah University for Women, Karachi, Pakistan
| | - Shafeeq Ali Shah
- Faculty of Pharmacy, Superior University, Raiwind Road, Lahore, Pakistan
| |
Collapse
|
108
|
Senat A, Kabadayi-Sahin E, Sogut I, Duymaz T, Erel O. Evaluation of Atherosclerotic Risk by Oxidative Contributors in Alcohol Use Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:526-533. [PMID: 37424420 PMCID: PMC10335906 DOI: 10.9758/cpn.22.1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 07/11/2023]
Abstract
Objective Alcohol Use Disorder (AUD) is a condition described as the inability to control or stop alcohol consumption. The patients with AUD have an increased risk of developing atherosclerosis-related diseases. The present study aimed to evaluate oxidative contributors of atherosclerotic risk factors in patients with AUD. Methods The male subjects diagnosed with AUD (n = 45) and the male subjects as control (n = 35) were enrolled in this study. All participants were undergone psychiatric evaluation and sociodemographic tests. Also, serum oxidative contributors of atherosclerosis including myeloperoxidase (MPO), ferroxidase, catalase (CAT), and lipid hydroperoxides (LOOH) were measured. Additionally, serum lipid profile tests and atherogenic indicators including atherogenic index of plasma (AIP) and non-high-density lipoprotein (HDL) cholesterol were also analyzed. Results The AUD subject had significantly elevated MPO activity and LOOH levels with decreased antioxidant capacity. AIP and non-HDL cholesterol levels, the atherogenic indicators, were also higher in AUD group compared to the control group. We found the MPO activity and LOOH levels were positively correlated with AIP, non-HDL cholesterol levels, and amount of alcohol consumption. Additionally, CAT activity was negatively correlated with duration of alcohol consumption. Conclusion Our results revealed that MPO and LOOH levels were elevated by severe alcohol intake and the atherogenic indicators, AIP and non-HDL cholesterol, were significantly correlated alcohol induced elevated oxidative risk factors. Therefore, it can be suggested that MPO activity and LOOH levels may be useful to determine jeopardy of atherosclerotic and the therapeutic interventions that reduce oxidative load could be taken into account to prevent atherosclerotic diseases before clinical manifestation.
Collapse
Affiliation(s)
- Almila Senat
- Department of Biochemistry, Istanbul Taksim Training and Research Hospital, Istanbul, Turkey
| | - Esra Kabadayi-Sahin
- Department of Psychiatry, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Ibrahim Sogut
- Department of Biochemistry, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Tomris Duymaz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Bilgi University, Istanbul, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
109
|
Zhang J, Gu B, Wu S, Liu L, Gao Y, Yao Y, Yang D, Du J, Yang C. M1 Macrophage-Biomimetic Targeted Nanoparticles Containing Oxygen Self-Supplied Enzyme for Enhancing the Chemotherapy. Pharmaceutics 2023; 15:2243. [PMID: 37765212 PMCID: PMC10534656 DOI: 10.3390/pharmaceutics15092243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Tumor hypoxia is considered one of the key causes of the ineffectiveness of various strategies for cancer treatment, and the non-specific effects of chemotherapy drugs on tumor treatment often lead to systemic toxicity. Thus, we designed M1 macrophage-biomimetic-targeted nanoparticles (DOX/CAT@PLGA-M1) which contain oxygen self-supplied enzyme (catalase, CAT) and chemo-therapeutic drug (doxorubicin, DOX). The particle size of DOX/CAT@PLGA-M1 was 202.32 ± 2.27 nm (PDI < 0.3). DOX/CAT@PLGA-M1 exhibited a characteristic core-shell bilayer membrane structure. The CAT activity of DOX/CAT@PLGA-M1 was 1000 (U/mL), which indicated that the formation of NPs did not significantly affect its enzymatic activity. And in vitro drug release showed that the cumulative release rate of DOX/CAT@PLGA-M1 was enhanced from 26.93% to 50.10% in the release medium of hydrogen peroxide, which was attributed to the reaction of CAT in the NPs. DOX/CAT@PLGA-M1 displayed a significantly higher uptake in 4T1 cells, because VCAM-1 in tumor cells interacted with specific integrin (α4 and β1), and thereby achieved tumor sites. And the tumor volume of the DOX/CAT@PLGA-M1 group was significantly reduced (0.22 cm3), which further proved the active targeting effect of the M1 macrophage membrane. Above all, a novel multifunctional nano-therapy was developed which improved tumor hypoxia and obtained tumor targeting activity.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Bing Gu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Shimiao Wu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Lin Liu
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Ying Gao
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Yucen Yao
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Degong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Juan Du
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Chunrong Yang
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| |
Collapse
|
110
|
Wu T, Liu Y, Zheng T, Dai Y, Li Z, Lin D. Fe-Based Nanomaterials and Plant Growth Promoting Rhizobacteria Synergistically Degrade Polychlorinated Biphenyls by Producing Extracellular Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12771-12781. [PMID: 37583057 DOI: 10.1021/acs.est.3c02495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) produce extracellular reactive oxygen species (ROS) to protect plants from external stresses. Fe-based nanomaterials can potentially interact with PGPR and synergistically degrade organic pollutants, yet they have received no study. Here, we studied how the interaction between a typical PGPR (Pseudomonas chlororaphis, JD37) and Fe-based nanomaterials facilitated the degradation of 2,4,4'-trichlorobiphenyl (PCB28), by comparing the zerovalent iron of 20 nm (nZVI20), 100 nm (nZVI100), and 5 μm; iron oxide nanomaterials (α-Fe2O3, γ-Fe2O3, and Fe3O4) of ca. 20 nm; and ferrous and ferric salts. Although all Fe materials (0.1 g L-1) alone could not degrade aqueous PCB28 (0.1 mg L-1) under dark or aerobic conditions, nZVI20, nZVI100, α-Fe2O3, and Fe2+ promoted PCB28 degradation by JD37, with the half-life of PCB28 shortened from 16.5 h by JD37 alone to 8.1 h with nZVI100 cotreatment. Mechanistically, the nanomaterials stimulated JD37 to secrete phenazine-1-carboxylic acid and accelerated the NADH/NAD+ conversion, promoting O2*- generation; JD37 increased Fe(II) dissolution from the nanomaterials, facilitating *OH generation; and the ROS gradually degraded PCB28 into benzoic acid through dihydroxy substitution, oxidation to quinone, and Michael addition. These findings provide a new strategy of nanoenabled biodegradation of organic pollutants by applying Fe-based nanomaterials and PGPR.
Collapse
Affiliation(s)
- Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
- Xi'an Center, China Geological Survey, Ministry of Natural Resources, Xi'an 710119, P. R. China
| | - Yangzhi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tianying Zheng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yunbu Dai
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhongyu Li
- Xi'an Center, China Geological Survey, Ministry of Natural Resources, Xi'an 710119, P. R. China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang Ecological Civilization Academy, Anji 313300, P. R. China
| |
Collapse
|
111
|
Temirbekova SK, Polivanova OB, Sardarova II, Bastaubaeva SO, Kalashnikova EA, Begeulov MS, Ashirbekov MZ, Afanasyeva YV, Zhemchuzhina NS, Ionova NE, Statsyuk NV, Kirakosyan RN, Saleh A. Naked Oat and Fusarium culmorum (W.G.Sm.) Sacc. Responses to Growth Regulator Effects. Pathogens 2023; 12:1051. [PMID: 37624011 PMCID: PMC10459904 DOI: 10.3390/pathogens12081051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The antioxidant defense system can be stimulated by growth regulators in plants when they are under stress, such as exposure to pathogens. There are a lot of natural growth regulators on the market, but no research has been carried out yet to determine how effective they are. This field and laboratory study examines the impact of two commonly used Russian growth regulators, Crezacin and Zircon, along with artificial infection with Fusarium culmorum on the antioxidant system of naked oat. The results show that, compared to the control, Crezacin-treated plants had higher contents of low molecular weight fructose and nonenzymatic antioxidants like proline, phenolic compounds, and flavonoids. Zircon-treated plants had a lower content of proline, carbohydrates, and lower total antioxidant activity than the control plants. The obtained data show that Crezacin treatment mainly affected nonenzymatic systems of the antioxidant defense. This treatment was more successful than the Zircon application, which did not show any appreciable effectiveness and was typically associated with an improvement in oat productivity. The treatment with growth regulators and a fungal suspension performed at the flowering phase provided the best effect on the biochemical parameters and productivity of naked oats. Moreover, oat treatment with the pathogen promoted the reproductive capabilities of the plants, while growth regulators helped in avoiding infectious stress.
Collapse
Affiliation(s)
- Sulukhan K. Temirbekova
- All-Russian Research Institute of Phytopathology, Bolshye Vyazemy 143050, Russia; (I.I.S.); (N.S.Z.); (N.V.S.)
| | - Oksana B. Polivanova
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (O.B.P.); (E.A.K.); (M.S.B.); (R.N.K.); (A.S.)
| | - Irina I. Sardarova
- All-Russian Research Institute of Phytopathology, Bolshye Vyazemy 143050, Russia; (I.I.S.); (N.S.Z.); (N.V.S.)
| | - Sholpan O. Bastaubaeva
- Kazakh Scientific Research Institute of Agriculture and Plant Growing, Almalybakvillage 021601, Kazakhstan;
| | - Elena A. Kalashnikova
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (O.B.P.); (E.A.K.); (M.S.B.); (R.N.K.); (A.S.)
| | - Marat Sh. Begeulov
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (O.B.P.); (E.A.K.); (M.S.B.); (R.N.K.); (A.S.)
| | - Mukhtar Zh. Ashirbekov
- Department of Agronomy and Forestry, Faculty of Agronomy, Manash Kozybayev North Kazakhstan University, 86 Pushkin St., Petropavlovsk 150000, Kazakhstan;
| | - Yuliya V. Afanasyeva
- Federal Horticultural Center for Breeding, Agrotechnology and Nursery, Zagoryevskaya Street 4, Moscow 115598, Russia;
| | - Natalya S. Zhemchuzhina
- All-Russian Research Institute of Phytopathology, Bolshye Vyazemy 143050, Russia; (I.I.S.); (N.S.Z.); (N.V.S.)
| | - Natalya E. Ionova
- Biotechnology and Pharmacology, Department of Biochemistry, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Russia;
| | - Natalia V. Statsyuk
- All-Russian Research Institute of Phytopathology, Bolshye Vyazemy 143050, Russia; (I.I.S.); (N.S.Z.); (N.V.S.)
| | - Rima N. Kirakosyan
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (O.B.P.); (E.A.K.); (M.S.B.); (R.N.K.); (A.S.)
| | - Abdulrahman Saleh
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (O.B.P.); (E.A.K.); (M.S.B.); (R.N.K.); (A.S.)
| |
Collapse
|
112
|
Thomaz MS, Sertorio MN, Gazarini ML, Ribeiro DA, Pisani LP, Nagaoka MR. Effect of Kinins on the Hepatic Oxidative Stress in Mice Treated with a Methionine-Choline Deficient Diet. Biomedicines 2023; 11:2199. [PMID: 37626696 PMCID: PMC10452290 DOI: 10.3390/biomedicines11082199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic fatty liver is the leading cause of hepatic disease worldwide and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) due to cell injury, oxidative stress, and apoptosis. The kinins' role in the liver has been studied in experimental fibrosis, partial hepatectomy, and ischemia-reperfusion and is related to cell death and regeneration. We investigated its role in experimental NASH induced by a methionine-choline deficient diet for 4 weeks. After that, liver perfusion was performed, and bradykinin (BK) or des-Arg9-BK was infused. Cell death was evaluated by cathepsin-B and caspase-3 activity and oxidative stress by catalase (CAT), glutathione S-transferase, and superoxide dismutase (SOD) activities, as well as malondialdehyde and carbonylated proteins. In control livers, DABK increased CAT activity, which was reversed by antagonist DALBK. In the NASH group, kinins tend to decrease antioxidant activity, with SOD activity being significantly reduced by BK and DABK. Malondialdehyde levels increased in all NASH groups, but carbonylated protein did not. DABK significantly decreased cathepsin-B in the NASH group, while caspase-3 was increased by BK in control animals. Our results suggest that B1R and/or B2R activation did not induce oxidative stress but affected the antioxidant system, reducing SOD in the NASH group.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcia Regina Nagaoka
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil; (M.S.T.)
| |
Collapse
|
113
|
Patra I, Dewi AP, Fawzi M, Hussam F, Obayes IK, Jamal MA, Hammoodi HA, Abbass ZR, Dadras M, Narimanizad F. Effects of Dietary Medlar ( Mespilus germanica L.) Extract on Growth Performance, Innate Immune Characteristics, Antioxidant Status, and Responses to Crowding Stress in Rainbow Trout ( Oncorhynchus mykiss). AQUACULTURE NUTRITION 2023; 2023:7613330. [PMID: 37564114 PMCID: PMC10412272 DOI: 10.1155/2023/7613330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023]
Abstract
High stocking density is a stress factor that potentially affects physiological and immune responses. In this study, the effects of medlar (Mespilus germanica) extract (ME) supplementation on growth performance, antioxidant, immune status, and stress responses in rainbow trout (Oncorhynchus mykiss) were studied. Six hundred fish (40.19 ± 1.09 g; average fish weight ± standard error) were distributed randomly into five experimental groups (assayed in triplicates). The experimental diets were formulated as follows: 0 (T1, control), 0.5% (T2), 1% (T3), 1.5% (T4), and 2% (T4). After 60 days feeding trial, the fish were confined, and the density increased (60 kg/m3) for further 14 days. Results showed significant increases in final weight (FW), weight gain (WG), specific growth rate, and feed intake in the T4 compared to the control (P < 0.05). The feed conversion ratio (FCR) in T4 significantly decreased compared to the control (P < 0.05). Also, the treated groups showed significant improvements in catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), lysozyme (LYZ), total immunoglobulin (total Ig), respiratory burst activity (RBA), total protein, and phagocytosis (PHA) (P < 0.05). Moreover, compared with the control group, supplementation could significantly decrease glucose (GLU) and cortisol (CORT), alanine transaminase (ALT), lactate dehydrogenase (LDH), aspartate transaminase (AST), and alkaline phosphatase (ALP) (P < 0.05). After the challenge, FW and WG in all treated challenge groups were significantly improved compared to the control group (P < 0.05). FCR showed a significant decrease in all treated challenged groups compared to the control group (P < 0.05). However, malondialdehyde, CAT, GPx, SOD, LYZ, complement activity (C3 and C4), total Ig, RBA, peroxidase, and PHA in challenged treated groups were significantly increased compared to the control group (P < 0.05). All treated challenged groups showed lower ALT, LDH, AST, ALP, GLU, and CORT levels than the control group (P < 0.05). The experiment herein successfully demonstrated that dietary ME stimulated fish growth, antioxidant status, and immune responses in crowding conditions and can be recommended as beneficial feed additives for rainbow trout.
Collapse
Affiliation(s)
| | - Afiska Prima Dewi
- Department of Nutrition, Faculty of Health, Universitas Aisyah Pringsewu, Lampung, Indonesia
| | | | - Fadhil Hussam
- College of Medical Technology, Medical Lab Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Israa K. Obayes
- Medical Laboratory Techniques Department, AL-Mustaqbal University College, Hilla, Iraq
| | | | | | - Zainab R. Abbass
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mahnaz Dadras
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fariborz Narimanizad
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
114
|
Yuan N, Ding J, Wu J, Bao E, Chu Y, Hu F. A multibiomarker approach to assess the ecotoxicological effects of diclofenac on Asian clam Corbicula fluminea (O. F. Müller, 1774). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88598-88611. [PMID: 37438503 DOI: 10.1007/s11356-023-28702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Diclofenac (DCF), one of the most current and widely used nonsteroidal anti-inflammatory drugs (NSAIDs), has been frequently detected in aquatic environments worldwide. However, the ecotoxicological effects of DCF on freshwater invertebrates remain largely unknown. In the present study, Corbicula fluminea were exposed to environmentally relevant concentrations of DCF (0, 2, 20, and 200 μg/L) for 28 days, and the potential adverse effects of DCF on siphoning behavior, antioxidant responses, and apoptosis were investigated. Our results showed that the siphon efficiencies of clams were significantly suppressed under DCF stress. DCF exerted neurotoxicity via reducing the activity of acetylcholinesterase (AChE) in gills and digestive gland of C. fluminea. Exposure to DCF induced antioxidant stress and increased malondialdehyde (MDA) levels in both gills and digestive gland of C. fluminea. Transcriptional alterations of apoptosis-related genes indicated that DCF might induce apoptosis by triggering mitochondrial apoptotic pathway. These findings can improve our understanding of the ecological risk of DCF in freshwater ecosystems.
Collapse
Affiliation(s)
- Nan Yuan
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiasang Wu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Erqin Bao
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaoyao Chu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
115
|
Kryl'skii ED, Popova TN, Zhaglin DA, Razuvaev GA, Oleynik SA. SkQ1 Improves Immune Status and Normalizes Activity of NADPH-Generating and Antioxidant Enzymes in Rats with Adjuvant-Induced Rheumatoid Arthritis. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1092-1104. [PMID: 37758309 DOI: 10.1134/s0006297923080047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 10/03/2023]
Abstract
Rheumatoid arthritis (RA) is a severe systemic autoimmune inflammatory disease. Oxidative stress and excessive formation of reactive oxygen species (ROS) by the mitochondria are considered as the central pathogenetic mechanisms of connective tissue destruction and factors responsible for a highly active inflammatory process and autoimmune response. The aim of this work was to evaluate the effect of mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) on the immune status, intensity of free radical-induced oxidation, and functioning of the antioxidant system (AOS) and NADPH-generating enzymes in rats with the adjuvant-induced RA. Laboratory animals were divided into 4 groups: control group; animals with RA; animals injected intraperitoneally with SkQ1 at the doses of 1250 and 625 nmol/kg, respectively, every 24 h for 8 days starting from day 7 of RA development. Tissue samples for analysis were collected on day 15 of the experiment. Erythrocyte sedimentation rate, the content of circulating immune complexes, and the concentration of class A, M, and G immunoglobulins were determined by enzyme immunoassay. The intensity of free radical-induced oxidation was evaluated based on the assessment of the iron-induced biochemiluminescence, diene conjugate content, and activity of aconitate hydratase. Enzymatic activity and metabolite content in the tissue samples were analyzed spectrophotometrically. It was shown that the development of RA was associated with an increase in the manifestation of immune response markers and intensity of free radical-induced oxidation, as well as with disruption of the AOS functioning and activation of NADPH-generating enzymes. SkQ1 administration resulted in a dose-dependent changes in the oxidative status indicators towards the control values and normalization of the immune status parameters. SkQ1 decreased the level of mitochondrial ROS, resulting in the suppression of the inflammatory response, which might cause inhibition of free radical generation by immunocompetent cells and subsequent mitigation of the oxidative stress severity in the tissues.
Collapse
|
116
|
Folahan JT, Olorundare OE, Ajayi AM, Oyewopo AO, Soyemi SS, Adeneye AA, Okoye II, Afolabi SO, Njan AA. Oxidized dietary lipids induce vascular inflammation and atherogenesis in post-menopausal rats: estradiol and selected antihyperlipidemic drugs restore vascular health in vivo. Lipids Health Dis 2023; 22:107. [PMID: 37495992 PMCID: PMC10369757 DOI: 10.1186/s12944-023-01818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Thermoxidation of edible oil through deep fat frying results in the generation of several oxidized products that promote lipid peroxidation and ROS production when eaten. Consumption of thermoxidized oil in post-menopausal conditions where the estrogen level is low contributes to cardiovascular disease. This study evaluates the role of estradiol and antihyperlipidemic agents (AHD) in restoring the vascular health of ovariectomized (OVX) rats fed with thermoxidized palm oil (TPO) and thermoxidized soya oil (TSO) diets. METHOD A total of 10 groups of rats (n = 6) were set up for the experiment. Group I (normal control) rats were sham handled while other groups were OVX to bring about estrogen deficient post-menopausal state. Group II (OVX only) was not treated and received normal rat chow. Groups III-X were fed with either TPO or TSO diet for 12 weeks and treated with estradiol (ETD) 0.2 mg/kg/day, atorvastatin (ATV) 10 mg/kg/day, and a fixed-dose combination of ezetimibe and ATV (EZE 3 mg/kg/day + ATV 10 mg/kg/day). RESULTS Pro-atherogenic lipids levels were significantly elevated in untreated TSO and TPO groups compared to OVX and sham, resulting in increased atherogenic and Coronary-risk indices. Treatment with Estradiol and AHDs significantly reduced the total cholesterol, triglycerides, low-density lipoprotein cholesterol as well as AI and CRI compared to untreated TSO and TPO groups, whereas TSO and TPO groups showed significant elevation in these parameters compared to Group I values. Moreover, aortic TNF-α levels were extremely elevated in the untreated TSO and TPO compared to Group I. TNF-α levels were significantly reduced in rats treated with AHDs and ETD. Localized oxidative stress was indicated in the aortic tissues of TSO and TPO-fed OVX rats by increased malondialdehyde and decreased glutathione, catalase, and superoxide dismutase levels. This contributed to a depletion in aortic nitric oxide. AHDs and ETD replenished the nitric oxide levels significantly. Histological evaluation of the aorta of TSO and TPO rats revealed increased peri-adventitia fat, aortic medial hypertrophy, and aortic recanalization. These pathologic changes were less seen in AHDs and ETD rats. CONCLUSION This study suggests that ETD and AHDs profoundly attenuate oxidized lipid-induced vascular inflammation and atherogenesis through oxidative-stress reduction and inhibition of TNF-α signaling.
Collapse
Affiliation(s)
- Joy Temiloluwa Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71209, USA
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| | - Olufunke Esan Olorundare
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria.
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Adeoye Oyetunji Oyewopo
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara- State, Nigeria
| | - Sunday Sokunle Soyemi
- Department of Pathology and Forensic Medicine, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Adejuwon Adewale Adeneye
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Ikechukwu Innocent Okoye
- Department of Oral Pathology and Medicine, Faculty of Dentistry, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Saheed Olanrewaju Afolabi
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| | - Anoka Ayembe Njan
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| |
Collapse
|
117
|
Banaee M, Faraji J, Amini M, Multisanti CR, Faggio C. Rainbow trout (Oncorhynchus mykiss) physiological response to microplastics and enrofloxacin: Novel pathways to investigate microplastic synergistic effects on pharmaceuticals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106627. [PMID: 37393734 DOI: 10.1016/j.aquatox.2023.106627] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Enrofloxacin (ENR) is a broad-spectrum antibiotic widely used due to its efficacy against pathogens. Microplastics (MPs) may bind to ENR and reduce its efficiency, whereas there would be an increase in its toxicity, bioavailability, and bio-accumulation rates. Therefore, the hypothesis is that the interaction between MPs and ENR can alter their toxicity and bioavailability. The subjective of this study is to examine the toxicity of various concentrations of ENR (0, 1.35, and 2.7 ml Kg-1 diet) and MPs (0, 1000, and 2000 mg Kg-1 diet) alone and in combination for 21 days. The rainbow trout (Oncorhynchus mykiss) is an economic aquaculture species used as an experimental model in ecotoxicology studies. Blood biochemical analytes indicated that ENR and MPs combination led to increasing enzymatic activity of each biomarker, except for gamma-glutamyl-transferase (GGT). Alterations related to triglycerides, cholesterol, glucose, urea, creatinine, total protein, and albumin blood contents were observed. An elevation in the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glucose 6-phosphate dehydrogenase (G6PDH) was found in the liver. In contrast, catalase (CAT) and glutathione peroxidase (GPx) levels decreased. Furthermore, a decline was observed in the cellular total antioxidant (ANT) levels. These findings suggested that ENR and MPs could affect fish health both independently and together. Consequently, the study determined that when both ENR and MPs were present in high concentrations, the toxicity of ENR was amplified, providing further evidence of the synergistic impact of MPs on ENR toxicity.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Javad Faraji
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mohammad Amini
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
118
|
Liu K, Yu D, Xin M, Lü F, Zhang Z, Zhou J, Liu T, Liu X, Song J, Wu H. Exposure to manganese (II) chloride induces developmental toxicity, oxidative stress and inflammatory response in Marine medaka (Oryzias melastigma) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106622. [PMID: 37392728 DOI: 10.1016/j.aquatox.2023.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Manganese (Mn) is an essential metal for organisms, but high levels can induce serious toxicity. To date, the toxic mechanism of Mn to marine fish is still poorly understood. In the present study, Oryzias melastigma embryos were exposed to different concentrations of MnCl2 (0-152.00 mg/L) to investigate its effect on early development. The results showed that exposure to MnCl2 caused developmental toxicity to embryos, including increased heart rate, delayed hatching time, decreased hatching rate and increased malformation rate. MnCl2 exposure could induce oxidative stress in O. melastigma embryos, as indicated by increased the contents of malondialdehyde (MDA) and the activities of the antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT)). The heart might be an important target organ for MnCl2 because of cardiac malformations and disruption in the expression of cardiac development-related genes (ATPase, epo, fg8g, cox1, cox2, bmp4 and gata4). In addition, the expression levels of stress- (omTERT and p53) and inflammation-related genes (TNFα and il1β) were significantly up-regulated, suggesting that MnCl2 can trigger stress and inflammatory response in O. melastigma embryos. In conclusion, this study demonstrated that MnCl2 exposure can induce developmental toxicity, oxidative stress and inflammatory response in O. melastigma embryos, providing insights into the toxic mechanism of Mn to the early development of marine fish.
Collapse
Affiliation(s)
- Kaikai Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Daode Yu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Meili Xin
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Fang Lü
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Zhipeng Zhang
- Ministry of Transport, Tianjin Research Institute for Water Transport Engineering, Tianjin 300456, China
| | - Jian Zhou
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266104, China
| | - Tong Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Xiaohui Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Jingjing Song
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China.
| | - Haiyi Wu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China.
| |
Collapse
|
119
|
Zhou S, Yang Q, Song Y, Cheng B, Ai X. Effect of Copper Sulphate Exposure on the Oxidative Stress, Gill Transcriptome and External Microbiota of Yellow Catfish, Pelteobagrus fulvidraco. Antioxidants (Basel) 2023; 12:1288. [PMID: 37372018 DOI: 10.3390/antiox12061288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the potential adverse effects of the practical application of copper sulfate on yellow catfish (Pelteobagrus fulvidraco) and to provide insights into the gill toxicity induced by copper sulphate. Yellow catfish were exposed to a conventional anthelmintic concentration of copper sulphate (0.7 mg/L) for seven days. Oxidative stress biomarkers, transcriptome, and external microbiota of gills were examined using enzymatic assays, RNA-sequencing, and 16S rDNA analysis, respectively. Copper sulphate exposure led to oxidative stress and immunosuppression in the gills, with increased levels of oxidative stress biomarkers and altered expression of immune-related differentially expressed genes (DEGs), such as IL-1β, IL4Rα, and CCL24. Key pathways involved in the response included cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and Toll-like receptor signaling pathway. The 16S rDNA analysis revealed copper sulphate altered the diversity and composition of gill microbiota, as evidenced by a significant decrease in the abundance of Bacteroidotas and Bdellovibrionota and a significant increase in the abundance of Proteobacteria. Notably, a substantial 8.5-fold increase in the abundance of Plesiomonas was also observed at the genus level. Our findings demonstrated that copper sulphate induced oxidative stress, immunosuppression, and gill microflora dysbiosis in yellow catfish. These findings highlight the need for sustainable management practices and alternative therapeutic strategies in the aquaculture industry to mitigate the adverse effects of copper sulphate on fish and other aquatic organisms.
Collapse
Affiliation(s)
- Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Yi Song
- Chinese Academy of Fishery Sciences, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
- Key Laboratory of Aquatic Product Quality and Safety Control, Ministry of Agriculture, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
| | - Bo Cheng
- Chinese Academy of Fishery Sciences, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
- Key Laboratory of Aquatic Product Quality and Safety Control, Ministry of Agriculture, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| |
Collapse
|
120
|
Nanas I, Dokou S, Athanasiou LV, Dovolou E, Chouzouris TM, Vasilopoulos S, Grigoriadou K, Giannenas I, Amiridis GS. Feeding Flaxseed and Lupins during the Transition Period in Dairy Cows: Effects on Production Performance, Fertility and Biochemical Blood Indices. Animals (Basel) 2023; 13:1972. [PMID: 37370482 DOI: 10.3390/ani13121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Flaxseed and lupin seed were offered as an alternative dietary approach in dairy cows, through the partial substitution of soybean meal. Milk production and fertility traits were investigated. A total of 330 animals were allocated into two groups, treated (n = 176) and control (n = 154). From each group, 30 animals were selected for hematological and cytological studies. The experimental feeding period lasted for 81 days (25 days prepartum and 56 days postpartum). The control ration (group C) contained corn, barley, soybean meal, rapeseed cake, corn silage and lucerne hay; whereas, in the treatment group (group T), 50% of the soybean meal was replaced by an equal mixture of flaxseed and lupins. The two rations were formulated to be isonitrogenous and isoenergetic. Milk samples were analyzed for chemical composition, somatic cell count (SCC) content and total colony forming units (CFU). Blood samples were collected, and serum was analyzed for non-esterified fatty acids (NEFA), acute phase proteins (haptoglobin and serum amyloid) and lipid oxidation indices, namely thiobarbituric-acid-reactive substances (TBARS) and catalase activity. To assess polymorphonuclear neutrophils (PMN) numbers, endometrial samples from each cow were collected on days 21 and 42. No difference was recorded between groups in milk yield (p > 0.05). In multiparous cows, NEFA (mMol/L) concentrations were significantly lower in group T than in group C on day 14 (p > 0.009) and on day 42 (p = 0.05), while no difference was detected in the group of primiparous cows. At all time points, serum TBARS and catalase values were similar in both groups (p > 0.05). Multiparous cows in group T expressed the first postpartum estrus and conceived earlier than cows in group C (p ≤ 0.05). Between days 21 to 42 postpartum, the PMN reduction rate was higher in group T animals (p ≤ 0.05). Acute phase protein levels were in general lower in group T animals, and at specific time points differed significantly from group C (p ≤ 0.05). It was concluded that the partial replacement of soybean meal by flaxseed and lupins had no negative effect on milk yield or milk composition, and improved cow fertility; which, along with the lower cost of flaxseed and lupins mixture, may increase milk production profitability.
Collapse
Affiliation(s)
- Ioannis Nanas
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - Stella Dokou
- Laboratory of Nutrition, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Labrini V Athanasiou
- Department of Medicine, Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - Eleni Dovolou
- Laboratory of Reproduction, Department of Animal Science, University of Thessaly, 41223 Larissa, Greece
| | - Thomas M Chouzouris
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - Stelios Vasilopoulos
- Laboratory of Nutrition, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katerina Grigoriadou
- ELVIZ Hellenic Feedstuff Industry S.A., 59300 Plati, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-DEMETER, 57001 Thermi, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios S Amiridis
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
121
|
Wei W, Yang Q, Xiang D, Chen X, Wen Z, Wang X, Xu X, Peng C, Yang L, Luo M, Xu J. Combined impacts of microplastics and cadmium on the liver function, immune response, and intestinal microbiota of crucian carp (Carassius carassius). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115104. [PMID: 37295303 DOI: 10.1016/j.ecoenv.2023.115104] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and the heavy metal cadmium (Cd) have attracted global attention for their toxicological interactions in aquatic organisms. The purpose of this investigation was evaluating the effect of MPs (1 mg L-1) and Cd (5 mg L-1) on the liver function, immune response of crucian carp (Carassius carassius) after 96 h exposure, and intestinal microbiota after 21 days, respectively. Co-exposure to MPs and Cd significantly enhanced MP accumulation in the liver of the crucian carp compared to the accumulation with exposure to MPs alone. Co-exposure to MPs and Cd triggered notable histopathological alterations accompanied by increased hepatic cell necrosis and inflammation, and was associated with higher aspartate aminotransferase and alanine aminotransferase levels, lower superoxide dismutase and catalase activity levels, but higher malondialdehyde content and total antioxidant capacity in the liver. Moreover, the combined treatment of MPs and Cd led to the up-regulated transcription of genes related to immune response, such as interleukin 8 (il-8), il-10, il-1β, tumor necrosis factor-α, and heat shock protein 70, both in the liver and spleen. Co-exposure to MPs and Cd reduced the variety and abundance of the intestinal microbiota in the crucian carp. Our research indicates that the combined exposure to MPs and Cd may exert synergistic toxic effects on crucian carp, which could impede the sustainable growth of the aquaculture industry and pose potential risks to food safety.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiufeng Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Dan Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengrong Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingzhong Luo
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China.
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
122
|
Iampanichakul M, Potue P, Rattanakanokchai S, Maneesai P, Khamseekaew J, Settheetham-Ishida W, Pakdeechote P. Limonin ameliorates cardiovascular dysfunction and remodeling in hypertensive rats. Life Sci 2023; 327:121834. [PMID: 37290669 DOI: 10.1016/j.lfs.2023.121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
AIMS Limonin is a tetracyclic triterpenoid isolated from citrus fruits. Here, the effects of limonin on cardiovascular abnormalities in nitric oxide-deficient rats induced by Nω-Nitrol-arginine methyl ester (L-NAME) were explored. MAIN METHODS Male Sprague Dawley rats were given L-NAME (40 mg/kg, drinking water) for 3 weeks and then treated daily with polyethylene glycol (vehicle), limonin (50 or 100 mg/kg) or telmisartan (10 mg/kg) for two weeks. KEY FINDINGS Limonin (100 mg/kg) markedly reduced L-NAME-induced hypertension, cardiovascular dysfunction and remodeling in rats (P < 0.05). Increases in systemic angiotensin-converting enzyme (ACE) activity and angiotensin II (Ang II) and a reduction in circulating ACE2 were restored in hypertensive rats treated with limonin (P < 0.05). Reductions in antioxidant enzymes and nitric oxide metabolites (NOx) and increases in oxidative stress components induced by L-NAME were relieved by limonin treatment (P < 0.05). Limonin suppressed the increased expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in cardiac tissue and circulating TNF-α in rats that received L-NAME (P < 0.05). Changes in Ang II receptor type I (AT1R), Mas receptor (MasR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) and NADPH oxidase subunit 2 (gp91phox) protein expression in cardiac and aortic tissue were normalized by limonin (P < 0.05). SIGNIFICANCE In conclusion, limonin ameliorated L-NAME-induced hypertension, cardiovascular dysfunction and remodeling in rats. These effects were relevant to restorations of the renin-angiotensin system, oxidative stress and inflammation in NO-deficient rats. The molecular mechanisms are associated with the modulation of AT1R, MasR, NF-ĸB and gp91phox protein expression in cardiac and aortic tissue.
Collapse
Affiliation(s)
- Metee Iampanichakul
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
123
|
Sheen A, Agarwal Y, Cheah KM, Cowles SC, Stinson JA, Palmeri JR, Sikes HD, Wittrup KD. Tumor-localized catalases can fail to alter tumor growth and transcriptional profiles in subcutaneous syngeneic mouse tumor models. Redox Biol 2023; 64:102766. [PMID: 37311396 DOI: 10.1016/j.redox.2023.102766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023] Open
Abstract
Catalase is an antioxidant enzyme that catalyzes the rapid conversion of hydrogen peroxide to water and oxygen. Use of catalase as a cancer therapeutic has been proposed to reduce oxidative stress and hypoxia in the tumor microenvironment, both activities which are hypothesized to reduce tumor growth. Furthermore, exposing murine tumors to exogenous catalase was previously reported to have therapeutic benefit. We studied the therapeutic effect of tumor-localized catalases with the aim to further elucidate the mechanism of action. To do this, we engineered two approaches to maximize intratumoral catalase exposure: 1) an injected extracellular catalase with enhanced tumor retention, and 2) tumor cell lines that over-express intracellular catalase. Both approaches were characterized for functionality and tested for therapeutic efficacy and mechanism in 4T1 and CT26 murine syngeneic tumor models. The injected catalase was confirmed to have enzyme activity >30,000 U/mg and was retained at the injection site for more than one week in vivo. The engineered cell lines exhibited increased catalase activity and antioxidant capacity, with catalase over-expression that was maintained for at least one week after gene expression was induced in vivo. We did not observe a significant difference in tumor growth or survival between catalase-treated and untreated mice when either approach was used. Finally, bulk RNA sequencing of tumors was performed, comparing the gene expression of catalase-treated and untreated tumors. Gene expression analysis revealed very few differentially expressed genes as a result of exposure to catalase and notably, we did not observe changes consistent with an altered state of hypoxia or oxidative stress. In conclusion, we observe that sustained intratumoral catalase neither has therapeutic benefit nor triggers significant differential expression of genes associated with the anticipated therapeutic mechanism in the subcutaneous syngeneic tumor models used. Given the lack of effect observed, we propose that further development of catalase as a cancer therapeutic should take these findings into consideration.
Collapse
Affiliation(s)
- Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keith M Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah C Cowles
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph R Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
124
|
Banaee M, Beitsayah A, Prokić MD, Petrović TG, Zeidi A, Faggio C. Effects of cadmium chloride and biofertilizer (Bacilar) on biochemical parameters of freshwater fish, Alburnus mossulensis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109614. [PMID: 36940894 DOI: 10.1016/j.cbpc.2023.109614] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Fish in wild are often faced with various types of xenobiotics, that may display synergistic or antagonistic effects. In this study, we aim to examine how exposure to agrochemical compound (Bacilar) and cadmium (CdCl2) alone and in combination affect biochemical parameters (lactate dehydrogenase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, alanine aminotransferase; creatine phosphokinase (CKP), cholinesterase) and oxidative stress (total antioxidant capacity, catalase, malondialdehyde and protein carbonyl concentrations) of freshwater fish Alburnus mossulensis. Fish were exposed to two concentrations of Bacilar (0.3, and 0.6 mL L-1) and to 1 mg L-1 cadmium chloride alone and in combination for 21 days. Results showed that fish accumulate Cd in their body, with the highest rate in individuals exposed to Cd in combination with Bacilar. Both xenobiotics in fish liver induced the activation of liver enzymes suggesting hepatotoxic effects, with the greatest impact in co-exposed groups. A significant decrease in the hepatocyte's total antioxidant capacity indicates the collapse of the antioxidant defense in fish exposed to Cd and Bacilar. A decrease in the antioxidant biomarkers was followed by increased oxidative damage of lipids and proteins. We also reported altered function in the muscle of individuals exposed to Bacilar and Cd seen as decreased activities in CKP and butyrylcholinesterase. Overall, our results point to the toxicity of both Bacilar and Cd on fish but also to their synergistic effects on Cd bioaccumulation, oxidative stress, and liver and muscle damage. This study highlights the need for evaluating the use of agrochemicals and their possible additive effects on non-target organisms.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Amal Beitsayah
- Aquaculture Department, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno, d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
125
|
Banaee M, Sagvand S, Sureda A, Amini M, Haghi BN, Sopjani M, Faggio C. Evaluation of single and combined effects of mancozeb and metalaxyl on the transcriptional and biochemical response of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109597. [PMID: 36889533 DOI: 10.1016/j.cbpc.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Mancozeb and metalaxyl are fungicidal agents frequently used in combination to control fungi in crops that may affect non-target organisms when entering ecosystems. This study aims to evaluate the environmental effects of Mancozeb (MAN) and Metalaxyl (MET), alone and in combination, on zebrafish (Danio rerio) as an experimental model. The oxidative stress biomarkers and the transcription of genes involved in detoxification in zebrafish (Danio rerio) were assessed after co-exposure to MAN (0, 5.5, and 11 μg L-1) and MET (0, 6.5, and 13 mg L-1) for 21 days. Exposure to MAN and MET induced a significant increase in the expression of genes related to detoxification mechanisms (Ces2, Cyp1a, and Mt2). Although Mt1 gene expression increased in fish exposed to 11 μg L-1 of MAN combined with 13 mg L-1 of MET, Mt1 expression was down-regulated significantly in other experimental groups (p < 0.05). The combined exposure to both fungicides showed synergistic effects in the expression levels that are manifested mainly at the highest concentration. Although a significant (p < 0.05) increase in alkaline phosphatase (ALP) and transaminases (AST and ALT), catalase activities, the total antioxidant capacity, and malondialdehyde (MDA) contents in the hepatocytes of fish exposed to MAN and MET alone and in combination was detected, lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT) activities, and hepatic glycogen content decreased significantly (p < 0.05). Overall, these results emphasize that combined exposure to MET and MAN can synergistically affect the transcription of genes involved in detoxification (except Mt1 and Mt2) and biochemical indicators in zebrafish.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Shiva Sagvand
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Mohammad Amini
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Behzad Nematdoost Haghi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mentor Sopjani
- Faculty of Medicine of the University of Prishtina, Prishtina, Kosovo.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
126
|
Andreyeva AY, Lobko VV, Gostyukhina OL, Tkachuk AA, Murashova AI, Malakhova LV, Kladchenko ES. Accumulation, functional and antioxidant responses to acute exposure to Di(2-ethylhexyl)phthalate (DEHP) in Mytilus galloprovincialis. MARINE POLLUTION BULLETIN 2023; 191:114923. [PMID: 37058832 DOI: 10.1016/j.marpolbul.2023.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
Mussels were exposed to di-(2-ethylhexyl) phthalate (DEHP) (0.4 mg L-1 and 4.0 mg L-1) for 24 h and 48 h and its effect on hemocyte cellular composition and spontaneous reactive oxygen production (ROS) levels in hemocytes were evaluated. Exposure to DEHP induced a loss in spontaneous ROS production levels in hemocytes and decreased agranulocyte number in hemolymph. DEHP was found to accumulate in hepatopancreas of mussels and this process was associated with an increase of catalase (CAT) activity after 24 h incubation. At the end of the experimental period (48 h) CAT activity recovered up to control levels. Superoxide dismutase (SOD) activity in hepatopancreas increased following 48 h exposure to DEHP. The results indicated that DEHP could affect hemocyte immune properties, and also cause non-specific general stress-response of the antioxidant complex, which, in turn, was not associated with pronounced oxidative stress.
Collapse
Affiliation(s)
- A Yu Andreyeva
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - V V Lobko
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia; Department of Radiation and Chemical Biology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - O L Gostyukhina
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - A A Tkachuk
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - A I Murashova
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia; Department of Radiation and Chemical Biology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - L V Malakhova
- Department of Radiation and Chemical Biology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia
| | - E S Kladchenko
- Laboratory of ecological immunology of aquatic organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 38, Moscow 119991, Russia.
| |
Collapse
|
127
|
Shedeed ZA, Farahat EA. Alleviating the toxic effects of Cd and Co on the seed germination and seedling biochemistry of wheat (Triticum aestivum L.) using Azolla pinnata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27566-1. [PMID: 37233943 DOI: 10.1007/s11356-023-27566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
One of the most significant environmental challenges in the twenty-first century is heavy metal pollution. The potential use of fresh Azolla pinnata to alleviate the toxic effects of Cd and Co on the germination measurements of wheat seeds (Triticum aestivum L.) and the biochemistry of seedlings was studied. Two concentrations (80 and 100 mg L-1 solutions) of CdNO3 and CoCl2 were used before and after treatment with A. pinnata. The highest removal efficiency (RE) by A. pinnata was obtained on the fifth day, with a Cd RE = 55.9 and 49.9% at 80 and 100 mg L-1, respectively. Cadmium and cobalt solutions reduced the germination percentage, and the measured variables of wheat seeds meanwhile increased the radicle phytotoxicity. In contrast, the presence of A. pinnata in the germination medium increased all the measured variables and decreased radicle phytotoxicity. At 80 and 100 mg L-1, Cd significantly reduced the fresh and dry biomass, and height of wheat seedlings after 21 days of cultivation compared to Co. Cadmium and high concentrations of cobalt increased the contents of H2O2, proline, MDA, phenolic, and flavonoid compounds. The application of treated Cd and Co solutions by A. pinnata showed a decrease in H2O2, proline, phenolic, and flavonoid compounds levels accompanied by a reduction in catalase and peroxidase activities compared to the control. This study showed the positive role of A. pinnata in alleviating the metal impacts, particularly Cd, on the seedling growth of wheat and its germination.
Collapse
Affiliation(s)
- Zeinab A Shedeed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Emad A Farahat
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
128
|
Zhou J, Zhang K, Gao J, Xu J, Wu C, He M, Zhang S, Zhang D, Dai J, Sun L. Effect of Poria cocos Mushroom Polysaccharides (PCPs) on the Quality and DNA Methylation of Cryopreserved Shanghai White Pig Spermatozoa. Cells 2023; 12:1456. [PMID: 37296577 PMCID: PMC10253127 DOI: 10.3390/cells12111456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, we explore the effects of Poria cocos mushroom polysaccharides (PCPs) on the quality and DNA methylation of the cryopreserved spermatozoa of Shanghai white pigs. A total of 24 ejaculates (three ejaculate samples per boar) from eight Shanghai white pigs were manually collected. The pooled semen was diluted with a based extender supplemented with different concentrations of PCPs (0, 300, 600, 900, 1200, and 1500 μg/mL). Once thawed, the quality of the spermatozoa and their antioxidant function were assessed. In the meantime, the effect of spermatozoa DNA methylation was also analyzed. The results show that compared with the control group, 600 μg/mL of PCPs significantly improves the spermatozoa viability (p < 0.05). The motility and plasma membrane integrity of the frozen-thawed spermatozoa are significantly higher after treatment with 600, 900, and 1200 μg/mL of PCPs compared with the control group (p < 0.05). In comparison with the control group, the percentages of acrosome integrity and mitochondrial activity are significantly enhanced after the application of 600 and 900 μg/mL PCPs (p < 0.05). The reactive oxygen species (ROS), the malondialdehyde (MDA) levels, and the glutathione peroxidase (GSH-Px) activity, in comparison with the control group, are significantly decreased in all groups with PCPs (all p < 0.05). The enzymatic activity of superoxide dismutase (SOD) in spermatozoa is significantly higher in the treatment with 600 μg/mL of PCPs than in the other groups (p < 0.05). As compared with the control group, a significant increase in the catalase (CAT) level is found in the groups with PCPs at 300, 600, 900, and 1200 μg/mL (all p < 0.05). In comparison with the control group, the 5-methylcytosine (5-mC) levels are significantly decreased in all groups with PCPs (all p < 0.05). As a result of these findings, a certain amount of PCPs (600-900 μg/mL) added to the cryodiluent can significantly improve the quality of Shanghai white pig spermatozoa and can also reduce the methylation of spermatozoa DNA caused by cryopreservation. This treatment strategy may establish a foundation for the cryopreservation of semen from pigs.
Collapse
Affiliation(s)
- Jinyong Zhou
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- College of Animal Sciences, Guizhou University, Guiyang 550025, China
| | - Keqin Zhang
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jun Gao
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- College of Animal Sciences, Guizhou University, Guiyang 550025, China
| | - Jiehuan Xu
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Caifeng Wu
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Mengqian He
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Shushan Zhang
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
| | - Defu Zhang
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Jianjun Dai
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lingwei Sun
- Institute of Animal Husbandry & Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (J.Z.); (K.Z.); (J.G.); (J.X.); (C.W.); (M.H.); (S.Z.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| |
Collapse
|
129
|
Mohamed AM, Ali DA, Kolieb E, Abdelaziz EZ. Ceftriaxone and selenium mitigate seizures and neuronal injury in pentylenetetrazole-kindled rats: Oxidative stress and inflammatory pathway. Int Immunopharmacol 2023; 120:110304. [PMID: 37224649 DOI: 10.1016/j.intimp.2023.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Epilepsy is one of the most serious worldwide neurological disorders that lead to the cognitive-psychosocial insults in recurrent seizures. About one third of the patients are drug-resistant, so innovative drugs are needed to manage seizures to improve the quality of life. Ceftriaxone is a cephalosporin antibiotic that increases the expression of glutamate transporters-1 and improves the neurobehavioral effects caused by increased glutamate level in the CNS. Selenium is well known antioxidant. The present study aimed to investigate ceftriaxone and selenium therapeutic effects against epilepsy in rats. Epilepsy was induced by PTZ given at a dose (50 mg/kg I.P) on alternative days for 13 days. Eighty rats were randomly divided into 8 groups: Group1-2; normal and vehicle control, Group 3; PTZ group, Group 4-8; kindled rats received selenium, ceftriaxone100, ceftriaxone200, selenium + ceftriaxone100 and selenium + ceftriaxone200 mg/kg/day respectively for a week. At the end of the study, behavioral tests were performed. Oxidative stress, inflammatory markers, neurotransmitters and GLT-1 were measured in brain tissue homogenate. Brain histopathological investigation was also done. PTZ-kindled rats exhibited increased Racine score, besides behavioral tests and histopathological changes, significant elevation in oxidative stress and inflammatory markers, with decrease in serotonin, dopamine, GABA levels and GLT-1 expressions. Selenium and Ceftriaxone alone or combined treatment decreased Racine score with remarkable improvement in behavioral and histopathological changes. The antioxidant enzymes, neurotransmitters and GLT-1 expressions were increased, along with reduced TNF-α, IL-1 levels. Current study showed that selenium + ceftriaxone100 group represents a possible approach to improve epilepsy particularly through inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Asmaa M Mohamed
- Department of Pharmacology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Dina A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Eman Kolieb
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman Z Abdelaziz
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
130
|
Stanojevic JB, Zeljkovic M, Dragic M, Stojanovic IR, Ilic TV, Stevanovic ID, Ninkovic MB. Intermittent theta burst stimulation attenuates oxidative stress and reactive astrogliosis in the streptozotocin-induced model of Alzheimer's disease-like pathology. Front Aging Neurosci 2023; 15:1161678. [PMID: 37273654 PMCID: PMC10233102 DOI: 10.3389/fnagi.2023.1161678] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/10/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Intracerebroventricularly (icv) injected streptozotocin (STZ) is a widely used model for sporadic Alzheimer's disease (sAD)-like pathology, marked by oxidative stress-mediated pathological progression. Intermittent theta burst stimulation (iTBS) is a noninvasive technique for brain activity stimulation with the ability to induce long-term potentiation-like plasticity and represents a promising treatment for several neurological diseases, including AD. The present study aims to investigate the effect of the iTBS protocol on the animal model of STZ-induced sAD-like pathology in the context of antioxidant, anti-inflammatory, and anti-amyloidogenic effects in the cortex, striatum, hippocampus, and cerebellum. Methods Male Wistar rats were divided into four experimental groups: control (icv normal saline solution), STZ (icv STZ-3 mg/kg), STZ + iTBS (STZ rats subjected to iTBS protocol), and STZ + Placebo (STZ animals subjected to placebo iTBS noise artifact). Biochemical assays and immunofluorescence microscopy were used to evaluate functional and structural changes. Results The icv STZ administration induces oxidative stress and attenuates antioxidative capacity in all examined brain regions. iTBS treatment significantly reduced oxidative and nitrosative stress parameters. Also, iTBS decreased Aβ-1-42 and APP levels. The iTBS enhances antioxidative capacity reported as elevated activity of its enzymatic and non-enzymatic components. In addition, iTBS elevated BDNF expression and attenuated STZ-induced astrogliosis confirmed by decreased GFAP+/VIM+/C3+ cell reactivity in the hippocampus. Discussion Our results provide experimental evidence for the beneficial effects of the applied iTBS protocol in attenuating oxidative stress, increasing antioxidant capacity and decreasing reactive astrogliosis in STZ-administrated rats.
Collapse
Affiliation(s)
- Jelena B. Stanojevic
- Institute for Biochemistry, Faculty of Medicine, University of Niš, Niš, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Milica Zeljkovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana R. Stojanovic
- Institute for Biochemistry, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Ivana D. Stevanovic
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
- Institute of Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Milica B. Ninkovic
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
- Institute of Medical Research, Military Medical Academy, Belgrade, Serbia
| |
Collapse
|
131
|
Mendonça-Soares S, Fortuna M, Freddo N, Varela ACC, Pompermaier A, Mozzato MT, Costa VC, Tamagno WA, Rossato-Grando LG, Barcellos LJG. Behavioral, biochemical, and endocrine responses of zebrafish to 30-min exposure with environmentally relevant concentrations of imidacloprid-based insecticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27667-x. [PMID: 37195604 DOI: 10.1007/s11356-023-27667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
The imidacloprid-based insecticides (IBIs) are among the most used insecticides worldwide, and chronic and acute toxic effects (days exposure protocols) have been reported in several species in studies of IBIs at lethal concentrations. However, there is little information on shorter time exposures and environmentally relevant concentrations. In this study, we investigated the effect of a 30-min exposure to environmentally relevant concentrations of IBI on the behavior, redox status, and cortisol levels of zebrafish. We showed that the IBI decreased fish locomotion and social and aggressive behaviors and induced an anxiolytic-like behavior. Furthermore, IBI increased cortisol levels and protein carbonylation and decreased nitric oxide levels. These changes were mostly observed at 0.013 and 0.0013 µg·L-1 of IBI. In an environmental context, these behavioral and physiological disbalances, which were immediately triggered by IBI, can impair the ability of fish to evade predators and, consequently, affect their survival.
Collapse
Affiliation(s)
- Suelen Mendonça-Soares
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Natália Freddo
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Amanda Carolina Cole Varela
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Aline Pompermaier
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Vitória Cadore Costa
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Wagner Antonio Tamagno
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Luciana Grazziotin Rossato-Grando
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil.
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil.
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil.
| |
Collapse
|
132
|
Gholamhosseini A, Banaee M, Sureda A, Timar N, Zeidi A, Faggio C. Physiological response of freshwater crayfish, Astacus leptodactylus exposed to polyethylene microplastics at different temperature. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109581. [PMID: 36813019 DOI: 10.1016/j.cbpc.2023.109581] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Not long after plastic-made material became an inseparable part of our lives, microplastics (MPs) found their way into ecosystems. Aquatic organisms are one of the groups impacted by man-made materials and plastics; however, the varied effects of MPs on these organisms have yet to be fully understood. Therefore, to clarify this issue, 288 freshwater crayfish (Astacus leptodactylus) were assigned to eight experimental groups (2 × 4 factorial design) and exposed to 0, 25, 50, and 100 mg polyethylene microplastics (PE-MPs) per kg of food at 17 and 22 °C for 30 days. Then samples were taken from hemolymph and hepatopancreas to measure biochemical parameters, hematology, and oxidative stress. The aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and catalase activities increased significantly in crayfish exposed to PE-MPs, while the phenoxy-peroxidase, gamma-glutamyl peptidase, and lysozyme activities decreased. Glucose and malondialdehyde levels in crayfish exposed to PE-MPs were significantly higher than in the control groups. However, triglyceride, cholesterol, and total protein levels decreased significantly. The results showed that the increase in temperature significantly affected the activity of hemolymph enzymes, glucose, triglyceride, and cholesterol contents. The semi-granular cells, hyaline cells, granular cell percentages, and total hemocytes increased significantly with the PE-MPs exposure. Temperature also had a significant effect on the hematological indicators. Overall, the results showed that temperature variations could synergistically affect the changes induced by PE-MPs in biochemical parameters, immunity, oxidative stress, and the number of hemocytes.
Collapse
Affiliation(s)
- Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Nooh Timar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
133
|
Ghafarifarsani H, Nedaei S, Hoseinifar SH, Van Doan H. Effect of Different Levels of Chlorogenic Acid on Growth Performance, Immunological Responses, Antioxidant Defense, and Disease Resistance of Rainbow Trout ( Oncorhynchus mykiss) Juveniles. AQUACULTURE NUTRITION 2023; 2023:3679002. [PMID: 37124879 PMCID: PMC10132906 DOI: 10.1155/2023/3679002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/15/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The current study is designed to assay the efficacy of chlorogenic acid (ChA) in the diet on growth performance, digestive enzyme activity, serum immunological, biochemical, and antioxidant variables, and mucosal immune response as well as disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles. Rainbow trout juveniles received diets supplemented with different inclusion levels of ChA (0 (ctrl), 200 (CA1), 400 (CA2), 600 (CA3), and 800 (CA4) mg kg-1 diet) for 60 days. According to the findings, fish from CA3 and CA4 groups demonstrated the best results considering the final weight (FW) and weight gain (WG) (P < 0.05). Also, the group that received 600 mg kg-1 ChA-supplemented diet showed the lowest feed conversion ratio (FCR) and the highest specific growth rate (SGR) compared to other groups (P < 0.05). Moreover, the minimum survival rate (SR) was only detected in the CA4 treatment (P < 0.05). Regression analysis exhibited that rainbow trout growth indices were polynomially linked to dietary chlorogenic acid concentrations. In this regard, the optimal levels of chlorogenic acid according to growth parameters (FCR and SGR) were 0.71 and 0.62 gr kg-1 diet, respectively. The results exhibited superior performance of protease and amylase activities in CA2, CA3, and CA4 groups with the maximum amount in the group receiving 600 mg kg-1 ChA-enriched diet (P < 0.05). Serum lysozyme (LYZ), immunoglobulin (Ig), and components 3 and 4 (C3 and C4) values of CA2, CA3, and CA4 groups were significantly higher than others with the highest amount in the CA3 group (P <0.05). Additionally, serum nitroblue tetrazolium (NBT) value in the CA3 and CA4 groups and myeloperoxidase (MPO) in the CA3 group were notably more than others (P < 0.05). Moreover, the lowest aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) and the highest total protein (TP) and globulin (GLO) values were observed in CA3 treatment (P < 0.05). CA2 and CA3 groups demonstrated increased serum catalase (CAT) and decreased malondialdehyde (MDA) values compared to the control while the highest CAT and lowest MDA values were observed in CA3 treatment (P < 0.05). Considering mucus immunity, the significantly maximum LYZ and protease values were demonstrated in CA2 and CA3 groups, and the highest ALP, Ig, and esterase values were demonstrated in the CA3 group. In comparison with the control, the mortality rates of the groups that received the ChA diets were remarkably (P < 0.05) lower postchallenge with Y. ruckeri, and the highest survival and relative percentage of survival (RPS) (P < 0.05) belonged to the CA3 group. Results obtained from the current study suggested ChA as a functional dietary additive to raise growth parameters, immune indices, antioxidant capacity, and resistance to disease in rainbow trout.
Collapse
Affiliation(s)
- Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Shiva Nedaei
- Department of Fisheries Science, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
134
|
Polivanova OB, Tiurin KN, Sivolapova AB, Goryunova SV, Zhevora SV. Influence of Increased Radiation Background on Antioxidative Responses of Helianthus tuberosus L. Antioxidants (Basel) 2023; 12:antiox12040956. [PMID: 37107330 PMCID: PMC10135547 DOI: 10.3390/antiox12040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
As a result of the accident at the Chornobyl Nuclear Power Plant, significant territories were exposed to ionizing radiation. Some isotopes, such as 137Cs, are capable of making a significant impact on living organisms in the long-term perspective. The generation of reactive oxygen species is one mechanism by which ionizing radiation affects living organisms, initiating mechanisms of antioxidant protection. In this article, the effect of increased ionizing radiation on the content of non-enzymatic antioxidants and the activity of antioxidant defense enzymes of Helianthus tuberosum L. was studied. This plant is widely distributed in Europe and characterized by high adaptability to abiotic factors. We found that the activity of antioxidant defense enzymes, such as catalase and peroxidase, weakly correlated with radiation exposure. The activity of ascorbate peroxidase, on the contrary, is strongly positively correlated with radiation exposure. The samples growing on the territory with constant low exposure to ionizing radiation were also characterized by an increased concentration of ascorbic acid and water-soluble phenolic compounds compared to the controls. This study may be useful for understanding the mechanisms underlying the adaptive reactions of plants under prolonged exposure to ionizing radiation.
Collapse
Affiliation(s)
- Oksana B Polivanova
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
- Department of Biotechnology, Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str., 49, 127550 Moscow, Russia
| | - Kirill N Tiurin
- Laboratory of Systemic Genomics and Plant Mobilomics, Moscow Institute of Physics and Technology, Institutsky Lane, 9, 141701 Dolgoprudny, Russia
- Laboratory of Marker and Genomic Plant Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str., 42, 127550 Moscow, Russia
| | - Anastasia B Sivolapova
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
| | - Svetlana V Goryunova
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
| | - Sergey V Zhevora
- Laboratory of Cell and Genomic Technologies, Russian Potato Research Center, 140051 Kraskovo, Russia
| |
Collapse
|
135
|
Zhou Y, Jin Q, Xu H, Wang Y, Li M. Chronic nanoplastic exposure induced oxidative and immune stress in medaka gonad. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161838. [PMID: 36716889 DOI: 10.1016/j.scitotenv.2023.161838] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastic (NP) pollution is a global issue because of its widespread occurrence and potential toxicity. Many studies have investigated the impacts of the short-term toxicity of NPs on organisms. Until now, only a few studies have assessed the toxicological effects of prolonged exposure to NPs at low concentrations in fish. In this study, the effects of NPs (nano-polystyrene microspheres, diameter: 100 nm) on immune and oxidative stress response, histopathology, and survival in medaka were evaluated. The effects of different concentrations (0, 10, 104, and 106 particles/L) of nanoplastics were studied in medaka Oryzias latipes after 3 months of exposure. Lysozyme enzyme activity, oxidative stress-related biomarkers (i.e., superoxide dismutase, catalase, and glutathione peroxidase), and malondialdehyde levels were decreased under NP exposure. The gonadal histology showed that high NP exposure (106 particles/L) inhibited the process of spermatogenesis and oogenesis processes, implying delayed maturation of the gonad. Furthermore, the IBR and PCA analysis revealed the potential biotoxicity of NPs and the total survival rate of medaka was significantly reduced due to the long-term exposure to NPs. Overall, prolonged exposure to low concentrations of NPs is harmful to the health of medaka gonads. In the long run, this may threaten the fish reproduction and population, suggesting the need for long-term toxicological studies to predict the aquatic animal health in nature.
Collapse
Affiliation(s)
- Yinfeng Zhou
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Qian Jin
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Haijing Xu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
136
|
Mairuae N, Palachai N, Noisa P. The neuroprotective effects of the combined extract of mulberry fruit and mulberry leaf against hydrogen peroxide-induced cytotoxicity in SH-SY5Y Cells. BMC Complement Med Ther 2023; 23:117. [PMID: 37055744 PMCID: PMC10100183 DOI: 10.1186/s12906-023-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/20/2023] [Indexed: 04/15/2023] Open
Abstract
The prevalence of dementia is increasing, and most of the causes are related to neuronal cell death. Unfortunately, no effective strategy is available for protecting against this condition. Based on the use of the synergistic concept together with the positive modulation effect of both mulberry fruit and mulberry leaf on dementia, we hypothesized that the combined extract of mulberry fruit and mulberry leaf (MFML) should mitigate neuronal cell death. Neuronal cell damage was induced in SH-SY5Y cells by exposure to hydrogen peroxide at a dose of 200 μM. SH-SY5Y cells were given MFML at doses of 62.5 and 125 μg/mL before induced cytotoxicity. Then, the cell viability was determined via MTT assay, and the possible underlying mechanisms were investigated via the alterations of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), nuclear factor-κB (NF-κB), and tumor necrosis factor-alpha (TNF-α), together with apoptotic factors including (B-cell lymphoma 2) BCL2, Casapase-3 and Caspase-9. The results showed that MFML significantly enhanced cell viability. It also significantly decreased MDA level, NF-κB, TNF-α, Casapase-3, Caspase-9, but increased SOD, GSH-Px and BCL2. These data demonstrated the neuroprotective effect of MFML. The possible underlying mechanisms might occur partly via the improvement of the inappropriate apoptotic mechanisms via BCL2, Casapase-3 and Caspase-9 together with the decrease in neurodegeneration induced by the reduction of inflammation and oxidative stress. In conclusion, MFML is a potential neuroprotectant candidate against neuronal cell injury. However, toxicity, animal studies, and clinical trials are essential to confirm these benefits.
Collapse
Affiliation(s)
- Nootchanat Mairuae
- Faculty of Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Nut Palachai
- Faculty of Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand.
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
137
|
Santos DD, Sasso GRS, Belote NM, da Silva RA, Lice I, Correia-Silva RD, Borges FT, Carbonel AAF, Gil CD. Galectin-3 is a key hepatoprotective molecule against the deleterious effect of cisplatin. Life Sci 2023; 318:121505. [PMID: 36804309 DOI: 10.1016/j.lfs.2023.121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
AIMS Evaluate the role of galectin-3 in the liver using an acute model of cisplatin-induced toxicity. MATERIAL AND METHODS Modified citrus pectin (MCP) treatment was used to inhibit galectin-3. Rats were distributed into four groups: SHAM, CIS, MCP and MCP + CIS. On days 1-7, animals were treated by oral gavage with 100 mg/kg/day of MCP (MCP and MCP + CIS groups). On days 8, 9 and 10, animals received intraperitoneal injection of 10 mg/kg/day of cisplatin (CIS and MCP + CIS groups) or saline (SHAM and MCP groups). KEY FINDINGS Cisplatin administration caused a marked increase in hepatic leukocyte influx and liver degeneration, and promoted reactive oxygen species production and STAT3 activation in hepatocytes. Plasma levels of cytokines (IL-6, IL-10), and hepatic toxicity biomarkers (hepatic arginase 1, α-glutathione S-transferase, sorbitol dehydrogenase) were also elevated. Decreased galectin-3 levels in the livers of animals in the MCP + CIS group were also associated with increased hepatic levels of malondialdehyde and mitochondrial respiratory complex I. Animals in the MCP + CIS group also exhibited increased plasma levels of IL-1β, TNF-α, and aspartate transaminase 1. Furthermore, MCP therapy efficiently antagonized hepatic galectin-9 in liver, but not galectin-1, the latter of which was increased. SIGNIFICANCE Reduction of the endogenous levels of galectin-3 in hepatocytes favors the process of cell death and increases oxidative stress in the acute model of cisplatin-induced toxicity.
Collapse
Affiliation(s)
- Diego D Santos
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Gisela R S Sasso
- Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil
| | - Nycole M Belote
- Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil
| | - Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Izabella Lice
- Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil
| | - Rebeca D Correia-Silva
- Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil
| | - Fernanda T Borges
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, SP 04038-901, Brazil
| | - Adriana A F Carbonel
- Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil
| | - Cristiane D Gil
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil.
| |
Collapse
|
138
|
Promsrisuk T, Kongsui R, Sriraksa N, Boonla O, Srithawong A. Elastic band resistance combined with modified Thai yoga exercise to alleviate oxidative stress and airway inflammation in type 2 diabetes mellitus. J Exerc Rehabil 2023; 19:114-125. [PMID: 37163180 PMCID: PMC10164522 DOI: 10.12965/jer.2346040.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/26/2023] [Indexed: 05/11/2023] Open
Abstract
The objective of this study was to investigate the effects of the combination of elastic band resistance exercise (EBRE) with modified Thai yoga on the alleviation of blood glucose and oxidative stress in type 2 diabetes mellitus (T2DM). Forty-two patients with T2DM were enrolled and allocated to an exercise or control group (n=21/group). The exercise group participated in EBRE combination with modified Thai yoga for 40 min, 5 days/wk, for 12 consecutive weeks. Blood glucose, oxidative stress markers, antioxidants, pulmonary function, respiratory muscle strength, and airway inflammation were measured before and after the 12 weeks. The results showed that the exercise group had a significant reduction in fasting blood glucose and glycated hemoglobin. Moreover, T2DM patients in the exercise group showed a significant reduction in plasma malondialdehyde, while superoxide dismutase and catalase were significantly increased. The exercise group also observed a significant improvement in pulmonary function; forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), FEV1/FVC, peak expiratory flow, and forced midexpiratory flow as well as respiratory muscle strength. Interestingly, the combination of EBRE with modified Thai yoga markedly improved airway inflammation through the reduction in fractional exhaled nitric oxide. In conclusion, these findings suggest that the combination of EBRE with modified Thai yoga improves blood glucose, oxidative stress, antioxidants, pulmonary function, respiratory muscle strength, and airway inflammation in T2DM patients. Hence, it could be considered as a possible exercise program for T2DM patients.
Collapse
Affiliation(s)
- Tichanon Promsrisuk
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao,
Thailand
- Unit of Excellence in the Pulmonary and Cardiovascular Health Care, University of Phayao, Phayao,
Thailand
| | - Ratchaniporn Kongsui
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao,
Thailand
| | - Napatr Sriraksa
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao,
Thailand
- Unit of Excellence in the Pulmonary and Cardiovascular Health Care, University of Phayao, Phayao,
Thailand
| | - Orachorn Boonla
- Faculty of Allied Health Sciences, Burapha University, Chonburi,
Thailand
- Exercise and Nutrition Innovation and Sciences Research Unit, Burapha University, Chonburi,
Thailand
| | - Arunrat Srithawong
- Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, Phayao,
Thailand
- Corresponding author: Arunrat Srithawong, Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand,
| |
Collapse
|
139
|
Yousefi M, Naderi Farsani M, Ghafarifarsani H, Raeeszadeh M. Dietary Lactobacillus helveticus and Gum Arabic improves growth indices, digestive enzyme activities, intestinal microbiota, innate immunological parameters, antioxidant capacity, and disease resistance in common carp. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108652. [PMID: 36863498 DOI: 10.1016/j.fsi.2023.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The present study aimed at determining the effects of Lactobacillus helveticus (LH), Gum Arabic (GA; natural prebiotic), and their combination as synbiotic on growth performance, digestive enzymes activity, gut microbiota, innate immunity status, antioxidant capacity, and disease resistance against Aeromonas hydrophyla in common carp, Cyprinus carpio for 8 weeks. For this, 735 common carp juveniles (Mean ± standard deviation; 22.51 ± 0.40 g) were fed with 7 different diets including basal diet (C), LH1 (1 × 107 CFU/g), LH2 (1 × 109 CFU/g), GA1 (0.5%), GA2 (1%), LH1+GA1 (1 × 107 CFU/g + 0.5%), and LH2+GA2 (1 × 109 CFU/g + 1%) for 8 weeks. Dietary supplementation with GA and/or LH significantly increased growth performance, WBC, serum total immunoglobulin, superoxide dismutase and catalase activities, skin mucus lysozyme and total immunoglobulin and intestinal lactic acid bacteria. Whereas there were significant improvements in various parameters tested in different treatments, the highest improvement in growth performance, WBC, monocyte/neutrophil percentages, serum lysozyme, alternative complement, glutathione peroxidase and malondialdehyde, skin mucosal alkaline phosphatase, protease, and immunoglobulin, intestinal total bacterial count, protease and amylase activities were observed in the synbiotic treatments, particularly LH1+GA1. After an experimental infection with Aeromonas hydrophila, all experimental treatments exhibited significantly higher survival, compared to the control treatment. The highest survival was related to the synbiotic (particularly LH1+GA1), followed by prebiotic, and probiotic treatments. Overall, synbiotic containing 1 × 107 CFU/g LH + 0.5% GA can improve growth rate and feed efficiency in common carp. Moreover, the synbiotic can improve the antioxidant/innate immune systems and dominate lactic acid bacteria in the fish intestine that may be the reasons of the highest resistance against A. hydrophila infection.
Collapse
Affiliation(s)
- Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198, Moscow, Russia.
| | - Mehdi Naderi Farsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
140
|
Pérez-Pereira A, Carvalho AR, Carrola JS, Tiritan ME, Ribeiro C. Integrated Approach for Synthetic Cathinone Drug Prioritization and Risk Assessment: In Silico Approach and Sub-Chronic Studies in Daphnia magna and Tetrahymena thermophila. Molecules 2023; 28:2899. [PMID: 37049662 PMCID: PMC10096003 DOI: 10.3390/molecules28072899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Synthetic cathinones (SC) are drugs of abuse that have been reported in wastewaters and rivers raising concern about potential hazards to non-target organisms. In this work, 44 SC were selected for in silico studies, and a group of five emerging SC was prioritized for further in vivo ecotoxicity studies: buphedrone (BPD), 3,4-dimethylmethcathinone (3,4-DMMC), butylone (BTL), 3-methylmethcathinone (3-MMC), and 3,4-methylenedioxypyrovalerone (MDPV). In vivo short-term exposures were performed with the protozoan Tetrahymena thermophila (28 h growth inhibition assay) and the microcrustacean Daphnia magna by checking different indicators of toxicity across life stage (8 days sublethal assay at 10.00 µg L-1). The in silico approaches predicted a higher toxic potential of MDPV and lower toxicity of BTL to the model organisms (green algae, protozoan, daphnia, and fish), regarding the selected SC for the in vivo experiments. The in vivo assays showed protozoan growth inhibition with MDPV > BPD > 3,4-DMMC, whereas no effects were observed for BTL and stimulation of growth was observed for 3-MMC. For daphnia, the responses were dependent on the substance and life stage. Briefly, all five SC interfered with the morphophysiological parameters of juveniles and/or adults. Changes in swimming behavior were observed for BPD and 3,4-DMMC, and reproductive parameters were affected by MDPV. Oxidative stress and changes in enzymatic activities were noted except for 3-MMC. Overall, the in silico data agreed with the in vivo protozoan experiments except for 3-MMC, whereas daphnia in vivo experiments showed that at sublethal concentrations, all selected SC interfered with different endpoints. This study shows the importance to assess SC ecotoxicity as it can distress aquatic species and interfere with food web ecology and ecosystem balance.
Collapse
Affiliation(s)
- Ariana Pérez-Pereira
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, IUCS-CESPU, CRL, 4585-116 Gandra, Portugal
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), CITAB, 5000-801 Vila Real, Portugal
| | - Ana Rita Carvalho
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, IUCS-CESPU, CRL, 4585-116 Gandra, Portugal
| | - João Soares Carrola
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), CITAB, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Maria Elizabeth Tiritan
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, IUCS-CESPU, CRL, 4585-116 Gandra, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Ribeiro
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, IUCS-CESPU, CRL, 4585-116 Gandra, Portugal
| |
Collapse
|
141
|
Rosmarinic acid alone or in combination with Lactobacillus rhamnosus ameliorated ammonia stress in the rainbow trout, Oncorhynchus mykiss: growth, immunity, antioxidant defense and liver functions. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Rosmarinic acid (RS) and Lactobacillus rhamnosus (LR) were added singularly or in combination to rainbow trout (Oncorhynchus mykiss) diets to test their efficacy in the protection against ammonia stress. Fish (31.4±0.6 g) were randomly allocated to six groups in three replicates, as follows: T1: basic food as control, T2: LR with a concentration of 1.5 × 108 CFU/g, T3: LR with a concentration of 3 × 108 CFU/g, T4: 1 g RS/kg, T5: 3 g RS/kg, and T6: 1.5 × 108 CFU/g LR + 1 g RS/kg and T7: 3 × 108 CFU/g LR + 3 g RS/kg. After 60 days feeding, fish exposed to 0ammonia stress. After the feeding period, the supplemented fish had the highest final body weight (FW), weight gain (WG), and specific growth rate (SGR), and the lowest feed conversion ratio (FCR) as compared with the control group (P<0.05). Amylase, protease and lipase activities were noticed markedly higher in fish supplemented with 1.5 × 108 CFU/g LR + 1 g RS/kg and 1.5 × 108 CFU/g LR diets compared to the control (P<0.05). Generally, fish in supplemented diets, particularly T2 and T6 groups, had the highest lysozyme, alternative complement activity (ACH50), total Ig, nitroblue tetrazolium test (NBT), myeloperoxidase (MPO), complement component 3 (C3), complement component 4 (C4), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx). On the other hand, T2 and T6 groups had the lowest malondialdehyde (MDA), glucose, and cortisol concentrations as well as alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) enzyme levels when were compared with the control (P<0.05). After ammonia stress, fish in the supplemented groups, particularly T2 and T6, generally showed significantly higher values of lysozyme, ACH50, total Ig, NBT, MPO, C3, C4, SOD, CAT, GPx and lower levels of MDA, glucose, cortisol, ALT, ALP, LDH when compared with the control (P<0.05). In conclusion, a combined administration of RS and L. rhamnosus effectively improved growth performance and health status as well as enhanced the resistance of rainbow trout against ammonia toxicity.
Collapse
|
142
|
Klisic A, Malenica M, Kostadinovic J, Kocic G, Ninic A. Malondialdehyde as an independent predictor of body mass index in adolescent girls. J Med Biochem 2023; 42:224-231. [PMID: 36987421 PMCID: PMC10040194 DOI: 10.5937/jomb0-39044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/16/2022] [Indexed: 03/17/2023] Open
Abstract
Background Given the fact that the studies that examined oxidative stress in relation to obesity that included late adolescents are scarce and show inconclusive results we aimed to investigate a wide spectrum of nitro-oxidative stress biomarkers i.e., malondialdehyde (MDA), xanthine oxidase (XO), xanthine oxidoreductase (XOD), xanthine dehydrogenase (XDH), advanced oxidation protein products (AOPP) and nitric oxide products (NOx), as well as an antioxidative enzyme, i.e., catalase (CAT) in relation with obesity in the cohort of adolescent girls ages between 16 and 19 years old. Methods A total of 59 teenage girls were included in this cross-sectional study. Binary logistic regression analysis was performed to examine possible associations between biochemical and nitro-oxidative stress markers and body mass index (BMI). Results There were not significant differences between oxidative stress markers between normal weight and overweight/obese girls (i.e., AOPP, XOD, XO, XDH) and CAT, except for MDA (p<0.001) and NOx (p=0.010) concentrations which were significantly higher in overweight/obese adolescent girls. Positive associations were evident between BMI and high sensitivity C-reactive protein (hsCRP) (OR=2.495), BMI and uric acid (OR=1.024) and BMI and MDA (OR=1.062). Multivariable binary regression analysis demonstrated significant independent associations of BMI and hsCRP (OR=2.150) and BMI and MDA (OR=1.105). Even 76.3% of the variation in BMI could be explained with this Model. Conclusions Inflammation (as measured with hsCRP) and oxidative stress (as determined with MDA) independently correlated with BMI in teenage girls.
Collapse
Affiliation(s)
- Aleksandra Klisic
- University of Montenegro, Faculty of Medicine, Primary Health Care Center, Podgorica, Montenegro
| | - Maja Malenica
- University of Sarajevo, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, Sarajevo, Bosnia and Herzegovina
| | | | - Gordana Kocic
- University of Nis, School of Medicine, Department of Medical Biochemistry, Nis
| | - Ana Ninic
- University of Belgrade, Faculty of Pharmacy, Department for Medical Biochemistry, Belgrade
| |
Collapse
|
143
|
Combined effects of Spirulina platensis and Pediococcus acidilactici on the growth performance, digestive enzyme activity, antioxidative status, and immune genes in zebrafish. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
The combined effects of Spirulina platensis (SP) and Pediococcus acidilactici (PA) on growth performance, digestive enzyme activity, antioxidative status, and immune genes in zebrafish were investigated in the present study. Four experimental diets were designed: control and three test diets mixed with SP at 2.5%, PA at 107 CFU/g, or a combination of 2.5% SP and 107 CFU/g PA. After 56 days, fish treated with PA and SP mixture had higher final weight, weight gain, SGR, and lower FCR than fish fed the control and SP diets (P<0.05). The results also illustrated that fish fed PA, SP, and their mixture had higher (P<0.05) protease and amylase activities than the control. The lipase activity was significantly higher in fish treated with PA or the mixture of PA and SP than in the control (P<0.05). The alternative complement pathway (ACH50) and lysozyme activity in the mucus samples of fish treated with PA or both PA and SP were significantly higher (P<0.05) than in fish treated with the control and SP diets. The total immunoglobulin level in the skin mucus was significantly higher (P<0.05) in fish fed PA than in control. In the body homogenates samples, the lysozyme activity and immunoglobulin levels were markedly higher (P<0.05) in fish treated with the mixture of PA and SP than in the control. The dietary PA and SP diet mixture improved the glutathione peroxidase, superoxide dismutase, and total antioxidative capacity. The expression of IL-1β and IL-8 genes in fish treated with PA or the mixture of PA and SP was significantly higher (P<0.05) than in fish treated with the control or SP diets. Fish treated with PA, SP, or both PA and SP had marked (P<0.05) upregulation of the lysozyme gene expression. In conclusion, the mixture of S. platensis and P. acidilactici is more effective than using each individually for improving the growth performance, digestive enzyme activity, and the immune and antioxidative capacity of zebrafish.
Collapse
|
144
|
Mashkoor J, Al-Saeed FA, Guangbin Z, Alsayeqh AF, Gul ST, Hussain R, Ahmad L, Mustafa R, Farooq U, Khan A. Oxidative stress and toxicity produced by arsenic and chromium in broiler chicks and application of vitamin E and bentonite as ameliorating agents. Front Vet Sci 2023; 10:1128522. [PMID: 36968473 PMCID: PMC10032408 DOI: 10.3389/fvets.2023.1128522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
The present study investigated the adverse effects of arsenic and chromium in broilers and ascertained the role of vitamin E and bentonite in alleviating their harmful effects. For this purpose, we experimented on 180 one-day-old broiler chickens. The feed was administered to broiler chicks of groups 2, 6, 7, 8, and 9 chromium @ (270 mg.kg−1 BW). Groups 3, 6, 7, 8, and 9 were administered arsenic @ (50 mg.kg−1 BW). Groups 4, 7, and 9 received vitamin E (150 mg.kg−1 BW), and groups 5, 8, and 9 received bentonite (5%), respectively. Group 1 was kept in control. All the broiler chicks treated with chromium and arsenic showed a significant (p < 0.05) decline in erythrocytic parameters on experimental days 21 and 42. Total proteins decreased significantly, while ALT, AST, urea, and creatinine increased significantly (p < 0.05). TAC and CAT decreased significantly (p < 0.05), while TOC and MDA concentrations increased significantly (p < 0.05) in chromium and arsenic-treated groups on experimental days 21 and 42. Pearson correlation analysis revealed a strong positive correlation between TAC and CAT (Pearson correlation value = 0.961; p < 0.001), similarly TOC and MDA positive correlation (Pearson correlation value = 0.920; p < 0.001). However, TAC and CAT showed a negative correlation between TOC and MDA. The intensity of gross and microscopic lesions was more in chromium (270 mg.kg−1) and arsenic (50 mg.kg−1) singly or in combination-treated groups. Thus, broiler chicks treated with chromium plus arsenic exhibited higher gross and microscopic lesion intensity than other treated groups. Fatty degeneration, severe cytoplasmic vacuolar degeneration, and expansion of sinusoidal spaces were the main lesions observed in the liver. Kidneys showed renal epithelial cells necrosis, glomerular shrinkage, and severe cytoplasmic vacuolar degeneration. Co-administration of bentonite along with chromium and arsenic resulted in partial amelioration (group 8) compared to groups 7 and 9, administered arsenic + chromium + vitamin E and arsenic + chromium + vitamin E + bentonite, respectively. It was concluded that arsenic and chromium cause damage not only to haemato-biochemical parameters but also lead to oxidation stress in broilers. Vitamin E and bentonite administration can ameliorate toxicity and oxidative stress produced by arsenic and chromium.
Collapse
Affiliation(s)
- Javaria Mashkoor
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Fatimah A. Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Zhang Guangbin
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Shafia Tehseen Gul
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Latif Ahmad
- Department of Pre-clinical Studies, Faculty of Veterinary Medicine, Baqai Medical University, Karachi, Pakistan
| | - Riaz Mustafa
- University of Agriculture, Faisalabad Sub Campus, Toba Tek Singh, Pakistan
| | - Umar Farooq
- University of Agriculture, Faisalabad Sub Campus, Toba Tek Singh, Pakistan
| | - Ahrar Khan
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
- *Correspondence: Ahrar Khan
| |
Collapse
|
145
|
Yakoviichuk A, Krivova Z, Maltseva S, Kochubey A, Kulikovskiy M, Maltsev Y. Antioxidant Status and Biotechnological Potential of New Vischeria vischeri (Eustigmatophyceae) Soil Strains in Enrichment Cultures. Antioxidants (Basel) 2023; 12:654. [PMID: 36978902 PMCID: PMC10045218 DOI: 10.3390/antiox12030654] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
The functional state of enrichment cultures of the Eustigmatophycean strains Vischeria vischeri MZ-E3 and MZ-E4 after 25-day cultivation in the BBM medium was studied. The concentrations of chlorophyll a, total carotenoids, protein, vitamins A and E, fatty acid peroxidation product content, an antioxidant enzyme, and succinate dehydrogenase activity were measured. MZ-E3 succinate dehydrogenase activity was significantly higher by 2.21 times; the MZ-E4 strain had 2.94 times higher glutathione peroxidase activity. The MZ-E3 antioxidant activity index and the MZ-E3 unsaturation of fatty acids were 1.3 and 1.25 times higher than the MZ-E4. The retinol and α-tocopherol content of the MZ-E3 was 28.6% and 38.76% higher than MZ-E4. The main fatty acid profile differences were the 3.46-fold and 3.92-fold higher stearic and eicosapentaenoic acid content in the MZ-E4 biomass. MZ-E3 had higher antioxidant, energy, and metabolic and photosynthetic status than MZ-E4. The antioxidant status of the studied strains showed the dependence of the adaptive mechanisms of each, associated with differences in the ecological conditions of the biotopes from which they were isolated. These strains are promising for producing α-tocopherol and biomass enriched with omega-3 and omega-6 fatty acids.
Collapse
Affiliation(s)
- Aleksandr Yakoviichuk
- Faculty of Natural Sciences, A. Makarenko Melitopol State University, Melitopol 72312, Russia
| | - Zinaida Krivova
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow 127276, Russia
| | - Svetlana Maltseva
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow 127276, Russia
| | - Angelica Kochubey
- Faculty of Natural Sciences, A. Makarenko Melitopol State University, Melitopol 72312, Russia
| | - Maxim Kulikovskiy
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow 127276, Russia
| | - Yevhen Maltsev
- Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow 127276, Russia
| |
Collapse
|
146
|
Salih AHM, Patra I, Sivaraman R, Alhamzawi R, Khalikov KM, Al-qaim ZH, Golgouneh S, Jawad MA, Adhab AH, Vázquez-Cárdenas AL, Abarghouei S. The Probiotic Lactobacillus sakei Subsp. Sakei and Hawthorn Extract Supplements Improved Growth Performance, Digestive Enzymes, Immunity, and Resistance to the Pesticide Acetamiprid in Common Carp ( Cyprinus carpio). AQUACULTURE NUTRITION 2023; 2023:8506738. [PMID: 36922956 PMCID: PMC10010885 DOI: 10.1155/2023/8506738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/08/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated the impacts of the probiotic, Lactobacillus sakei (L. sakei), and the extract of hawthorn, Crataegus elbursensis, on growth and immunity of the common carp exposed to acetamiprid. Fish (mean ± SE: 11.48 ± 0.1 g) feeding was done with formulated diets (T 1 (control): no supplementation, T 2: 1 × 106 CFU/g LS (Lactobacillus sakei), T3: 1 × 108 CFU/g LS, T 4: 0.5% hawthorn extract (HWE), and T 5: 1% HWE) for 60 days and then exposed to acetamiprid for 14 days. The growth performance improved in the fish fed LS at dietary level of 1 × 108 CFU/g, even after exposure to acetamiprid (P < 0.05). Intestinal Lactobacillus sakei (CFU/g) load increased (P < 0.05), following supplementation with the probiotic-enriched diet. The LS-treated fish had increases in the activity of digestive enzymes (P < 0.05). Both LS and HWE stimulated antioxidant enzymes and immune system components in serum and mucus (alkaline phosphatase (ALP), protease, total Ig, and lysozyme) (P < 0.05). However, the changes were different depending on the kind of the supplement. The malondialdehyde (MDA) levels decreased in HWE-treated fish after acetamiprid exposure (P < 0.05). Both LS and HWE reduced the liver metabolic enzymes (LDH, ALP, AST, ALT, and LDH) in serum both before and after exposure to the pesticide (P < 0.05). However, each enzyme exhibited a different change trend depending on the type of the supplement. HWE showed a stress-ameliorating effect, as glucose and cortisol levels declined in the HWE-treated fish (P < 0.05). This study indicated the immunomodulatory impacts of LS (1 × 108 CFU/g) and HWE (at dietary levels of 0.5-1%). The probiotic showed more performance compared to HWE. However, the HWE mitigated oxidative stress more efficiently than the probiotic.
Collapse
Affiliation(s)
| | | | - Ramaswamy Sivaraman
- Institution of Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Rahim Alhamzawi
- College of Administration and Economics, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Kakhor M. Khalikov
- Department of Biological Chemistry, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Sahar Golgouneh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | | | - Ali Hussein Adhab
- Department of Medical Laboratory Technics, Al-Zahrawi University College, Karbala, Iraq
| | | | - Safoura Abarghouei
- Baharavaran Nastaran Agricultural Applied Scientific Training Center, Applied Scientific University, Qom, Iran
| |
Collapse
|
147
|
Aramli MS, Sarvi Moghanlou K, Imani A. Effect of dietary antioxidant supplements (selenium forms, alpha-tocopherol, and coenzyme Q10) on growth performance, immunity, and physiological responses in rainbow trout (Oncorhynchus mykiss) using orthogonal array design. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108615. [PMID: 36775181 DOI: 10.1016/j.fsi.2023.108615] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Dietary supplements containing antioxidants play an important role in reducing the risk of peroxidative attack in aquatic animals. In this work, an orthogonal array design (L9: 34) was used to evaluate the effect of four dietary antioxidant supplements on the physiological responses of rainbow trout at three levels. The supplements included different (A) selenium (Se) forms (inorganic, organic, and nanoparticle), (B) Se content (0, 0.3, & 0.5 mg/kg feed), (C) vitamin E (VE) content (0, 100, & 150 mg/kg feed), and (D) coenzyme Q10 (CoQ10) content (0, 10, & 20 mg/kg feed). Fish with an average body weight of 8.35 ± 0.33 g were randomly allocated to different experimental groups. According to the results, the antioxidant supplements included in the diet had no significant effects on the growth performance of fish (P > 0.05). Immunological and antioxidant parameters were mainly improved by the Se form (Nano-Se) and dietary CoQ10 supplementation. In addition, Se form and VE were more effective in digestive enzyme activities and hematology indices in comparison to other dietary antioxidants. Additionally, diets supplemented with nano-Se along with CoQ10 and VE improved fish resistance/stamina against stress. In conclusion, a more effective combination of the four antioxidant supplements was A2/3B2/3C3D3 (i.e., 0.5 mg/kg organic/nano-Se, 150 mg/kg VE, and 20 mg/kg CoQ10), which could mainly improve the physiological responses of rainbow trout.
Collapse
Affiliation(s)
| | | | - Ahmad Imani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| |
Collapse
|
148
|
Köksal T, Yalçin SS, Uçartürk SA. Oxidant-antioxidant balance in girls with precocious puberty: a case-control study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:299-306. [PMID: 35000523 DOI: 10.1080/09603123.2022.2025767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
This case-control study aims to evaluate the oxidant-antioxidant balance in girls having central precocious puberty (CPP) and premature thelarche (PT). Thirty-four girls having CPP, 24 girls having PT, and 49 healthy growing girls between 7 and 9 years of age admitted to child health supervision were enrolled. Total antioxidant and oxidant capacity, myeloperoxidase, catalase, superoxide dismutase, total thiol, native thiol, and disulfide levels were analyzed in serum samples. Low total oxidant status (<12.0) was found to be highest in the CPP group, lowest in the control group, and the PT group was in between them. After controlling bone age and z score for body mass index, generalized linear models revealed lower oxidative stress index values in the CPP and the PT groups than the control group. Other studied parameters did not differ among groups. Precocious puberty in girls is associated with some changes in the oxidant-antioxidant status.
Collapse
Affiliation(s)
- Tülin Köksal
- Department of Social Pediatrics, Hacettepe University Institute of Child Health, Ankara, Turkey
| | - Sıddıka Songül Yalçin
- Department of Social Pediatrics, Hacettepe University Institute of Child Health, Ankara, Turkey
| | - Seyit Ahmet Uçartürk
- Unit of Pediatric Endocrine Ankara City Hospital Pediatric Endocrine Unit, Ankara, Turkey
| |
Collapse
|
149
|
Panic A, Sudar-Milovanovic E, Stanimirovic J, Obradovic M, Zafirovic S, Soskic S, Isenovic ER. Does oestradiol treatment alleviate obesity-induced oxidative stress in the male liver? Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
150
|
Aydemir Celep N, Gedikli S. Protective Effect of Silymarin on Liver in Experimental in the Sepsis Model of Rats. Acta Histochem Cytochem 2023; 56:9-19. [PMID: 36890848 PMCID: PMC9986308 DOI: 10.1267/ahc.22-00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/16/2023] [Indexed: 03/03/2023] Open
Abstract
This study, it was investigated whether silymarin has a protective effect by performing histological, immunohistochemical, and biochemical evaluations on the liver damage induced by cecal ligation perforation (CLP). CLP model was established and silymarin was treated at a dose of 50 mg/kg, 100 mg/kg, and 200 mg/kg, by oral one hour before the CLP. As an effect of the histological evaluations of the liver tissues, venous congestion, inflammation, and necrosis in the hepatocytes were observed in the CLP group. A situation close to the control group was observed in the Silymarin (SM)100 and SM200 groups. As a result of the immunohistochemical evaluations, inducible nitric oxide synthase (iNOS), cytokeratine (CK)18, Tumor necrosis factor-alpha (TNF-α), and interleukine (IL)-6 immunoreactivities were intense in the CLP group. In the biochemical analysis, Alkaline Phosphatase (ALP), Aspartate Aminotransferase (AST), and Alanine Aminotransferase (ALT) levels were significantly increased in the CLP group, while a significant decrease was observed in the treatment groups. TNFα, IL-1β, and IL-6 concentrations were in parallel with histopathological evaluations. In the biochemical analysis, Malondialdehyte (MDA) level increased significantly in the CLP group, but there was a significant decrease in the SM100 and SM200 groups. Glutathione (GSH), Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GSH-Px) activities were relatively low in the CLP group. According to these data, it was concluded that using silymarin reduces the existing liver damage in sepsis.
Collapse
Affiliation(s)
- Nevra Aydemir Celep
- Department of Histology and Embriology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Semin Gedikli
- Department of Histology and Embriology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|