101
|
Bakić M, Klisić A, Kocić G, Kocić H, Karanikolić V. Oxidative stress and metabolic biomarkers in patients with Psoriasis. J Med Biochem 2024; 43:97-105. [PMID: 38496030 PMCID: PMC10944565 DOI: 10.5937/jomb0-45076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 03/19/2024] Open
Abstract
Background Psoriasis is an autoinflammatory disease that affects not only skin but multiple organs thus being associated with many comorbidities. Oxidative stress and inflammation play the major role in the pathogenesis of this disease. Studies that examined by-products of oxidative stress in psoriasis show discrepant results. Hence, we aimed to examine the oxidative stress, inflammation and metabolic markers and to explore their potential relationship with disease severity in patients with psoriasis. Methods This case-control study comprised of 35 patients with psoriasis and 35 age, sex and body mass index-matched healthy controls. Metabolic and oxidative stress biomarkers [i.e., malondialdehyde (MDA), advanced oxidation protein products (AOPP), and catalase (CAT)] were measured. The principal component analysis (PCA) was employed to reduce the number of measured variables into smaller number of factors. PCA factors were subsequently used in logistic regression analysis for severe psoriasis prediction.
Collapse
Affiliation(s)
- Mirjana Bakić
- Clinical Center of Montenegro, Clinic for Dermatovenerology, Podgorica, Montenegro
| | - Aleksandra Klisić
- University of Montenegro, Faculty of Medicine, Podgorica, Montenegro
| | - Gordana Kocić
- University of Nis, School of Medicine, Department of medical Biochemistry, Nis
| | - Hristina Kocić
- University of Nis, School of Medicine, Clinic for Skin Diseases of the Clinical Center Nis, Nis
| | - Vesna Karanikolić
- University of Nis, School of Medicine, Clinic for Skin Diseases of the Clinical Center Nis, Nis
| |
Collapse
|
102
|
Abd-Allah H, Youshia J, Abdel Jaleel GA, Hassan A, El Madani M, Nasr M. Gastroprotective Chitosan Nanoparticles Loaded with Oleuropein: An In Vivo Proof of Concept. Pharmaceutics 2024; 16:153. [PMID: 38276520 PMCID: PMC10819437 DOI: 10.3390/pharmaceutics16010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Oleuropein is the main constituent of olive leaf extract, and it has shown antioxidant and gastroprotective properties against gastric ulcers. Chitosan nanoparticles are known for their mucoadhesive abilities, and consequently, they can increase the retention time of drugs in the gastrointestinal tract. Therefore, loading oleuropein onto chitosan nanoparticles is expected to enhance its biological efficiency. Oleuropein-loaded chitosan nanoparticles were prepared and characterized for particle size, surface charge, in vitro release, and anti-inflammatory activity. Their in vivo efficacy was assessed by measuring specific inflammatory and protective biomarkers, along with histopathological examination. The optimum oleuropein chitosan nanoparticles were cationic, had a size of 174.3 ± 2.4 nm and an entrapment efficiency of 92.81%, and released 70% of oleuropein within 8 h. They recorded a lower IC50 in comparison to oleuropein solutions for membrane stabilization of RBCs (22.6 vs. 25.6 µg/mL) and lipoxygenase inhibition (7.17 vs. 15.6 µg/mL). In an ethanol-induced gastric ulcer in vivo model, they decreased IL-1β, TNF-α, and TBARS levels by 2.1, 1.7, and 1.3 fold, respectively, in comparison to increments caused by exposure to ethanol. Moreover, they increased prostaglandin E2 and catalase enzyme levels by 2.4 and 3.8 fold, respectively. Immunohistochemical examination showed that oleuropein chitosan nanoparticles markedly lowered the expression of IL-6 and caspase-3 in gastric tissues in comparison to oleuropein solution. Overall, oleuropein chitosan nanoparticles showed superior gastroprotective effects to oleuropein solution since comparable effects were demonstrated at a 12-fold lower drug dose, delineating that chitosan nanoparticles indeed enhanced the potency of oleuropein as a gastroprotective agent.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| | | | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo 12613, Egypt
| | | | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| |
Collapse
|
103
|
Stojanović NM, Mitić KV, Nešić M, Stanković M, Petrović V, Baralić M, Randjelović PJ, Sokolović D, Radulović N. Oregano ( Origanum vulgare) Essential Oil and Its Constituents Prevent Rat Kidney Tissue Injury and Inflammation Induced by a High Dose of L-Arginine. Int J Mol Sci 2024; 25:941. [PMID: 38256015 PMCID: PMC10815453 DOI: 10.3390/ijms25020941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to evaluate the protective action of oregano (Origanum vulgare) essential oil and its monoterpene constituents (thymol and carvacrol) in L-arginine-induced kidney damage by studying inflammatory and tissue damage parameters. The determination of biochemical markers that reflect kidney function, i.e., serum levels of urea and creatinine, tissue levels of neutrophil-gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1), as well as a panel of oxidative-stress-related and inflammatory biomarkers, was performed. Furthermore, histopathological and immunohistochemical analyses of kidneys obtained from different experimental groups were conducted. Pre-treatment with the investigated compounds prevented an L-arginine-induced increase in serum and tissue kidney damage markers and, additionally, decreased the levels of inflammation-related parameters (TNF-α and nitric oxide concentrations and myeloperoxidase activity). Micromorphological kidney tissue changes correlate with the alterations observed in the biochemical parameters, as well as the expression of CD95 in tubule cells and CD68 in inflammatory infiltrate cells. The present results revealed that oregano essential oil, thymol, and carvacrol exert nephroprotective activity, which could be, to a great extent, associated with their anti-inflammatory, antiradical scavenging, and antiapoptotic action and, above all, due to their ability to lessen the disturbances arising from acute pancreatic damage. Further in-depth studies are needed in order to provide more detailed explanations of the observed activities.
Collapse
Affiliation(s)
- Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Katarina V. Mitić
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Nešić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.N.); (N.R.)
| | - Milica Stanković
- Department of Pathology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Vladimir Petrović
- Department of Histology and Embryology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Marko Baralić
- School of Medicine, University of Belgrade, 11080 Belgrade, Serbia;
- Department of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Pavle J. Randjelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Dušan Sokolović
- Institute for Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Niko Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.N.); (N.R.)
| |
Collapse
|
104
|
Tao Y, Hua J, Lu S, Wang Q, Li Y, Jiang B, Dong Y, Qiang J, Xu P. Ultrastructural, Antioxidant, and Metabolic Responses of Male Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus) to Acute Hypoxia Stress. Antioxidants (Basel) 2024; 13:89. [PMID: 38247513 PMCID: PMC10812458 DOI: 10.3390/antiox13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Tilapia tolerate hypoxia; thus, they are an excellent model for the study of hypoxic adaptation. In this study, we determined the effect of acute hypoxia stress on the antioxidant capacity, metabolism, and gill/liver ultrastructure of male genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Fish were kept under control (dissolved oxygen (DO): 6.5 mg/L) or hypoxic (DO: 1.0 mg/L) conditions for 72 h. After 2 h of hypoxia stress, antioxidant enzyme activities in the heart and gills decreased, while the malondialdehyde (MDA) content increased. In contrast, in the liver, antioxidant enzyme activities increased, and the MDA content decreased. From 4 to 24 h of hypoxia stress, the antioxidant enzyme activity increased in the heart but not in the liver and gills. Cytochrome oxidase activity was increased in the heart after 4 to 8 h of hypoxia stress, while that in the gills decreased during the later stages of hypoxia stress. Hypoxia stress resulted in increased Na+-K+-ATP activity in the heart, as well as hepatic vacuolization and gill lamella elongation. Under hypoxic conditions, male GIFT exhibit dynamic and complementary regulation of antioxidant systems and metabolism in the liver, gills, and heart, with coordinated responses to mitigate hypoxia-induced damage.
Collapse
Affiliation(s)
- Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jixiang Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
| | - Qingchun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
| | - Bingjie Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
| | - Yalun Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China (B.J.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
105
|
Moazzam F, Hatamian-Zarmi A, Ebrahimi Hosseinzadeh B, Khodagholi F, Rooki M, Rashidi F. Preparation and characterization of brain-targeted polymeric nanocarriers (Frankincense-PMBN-lactoferrin) and in-vivo evaluation on an Alzheimer's disease-like rat model induced by scopolamine. Brain Res 2024; 1822:148622. [PMID: 37832760 DOI: 10.1016/j.brainres.2023.148622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Experiments have demonstrated that frankincense may offer protection against scopolamine-induced Alzheimer's disease by mitigating cholinergic dysfunction and inhibiting inflammatory mediators. Nevertheless, its instability and limited water solubility lead to diminished medicinal efficacy. In this study, we utilized PMBN (poly [MPC-co-(BMA)-co-(MEONP)]) as a nanocarrier for targeted brain drug delivery of frankincense, employing lactoferrin as a ligand for precise targeting. Characterization of nanoparticle properties was conducted through FTIR and FESEM analysis, and the in-vitro drug release percentage from the nanoparticles was quantified. To induce Alzheimer's-like dementia in rats, scopolamine was intraperitoneally administered at a dose of 1 mg/kg/day for 14 days. Subsequently, behavioral assessments (Y-maze, passive avoidance test, tail suspension test) were performed, followed by evaluations of acetylcholinesterase (AChE), reduced glutathione (GSH), catalase (CAT), and brain histopathology at the conclusion of the treatment period. The results revealed that the nanoparticles had a size of 106.6 nm and a zeta potential of -3.8 mV. The maximum release of frankincense in the PBS environment from PMBN nanoparticles was 18.2 %, in accordance with the Peppas model. Behavioral tests indicated that targeted drug nanoparticles (F-PMBN-Lf) exhibited the capability to alleviate stress and depression while enhancing short-term memory in scopolamine-induced animals. Additionally, F-PMBN-Lf counteracted the scopolamine-induced elevation of AChE activity and GSH levels. However, it resulted in decreased activity of the antioxidant enzyme CAT compared to the scopolamine group. Histological analysis of brain tissue suggested that F-PMBN-Lf exerted a notable neuroprotective effect, preserving neuronal cells in contrast to the scopolamine-induced group. It appears that the polymer nanoparticles containing this plant extract have introduced a novel neuroprotective approach for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Farimah Moazzam
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bahman Ebrahimi Hosseinzadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Rooki
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fatemehsadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
106
|
Asejeje FO, Alade TF, Oyibo A, Abolaji AO. Toxicological assessment of sodium benzoate in Drosophila melanogaster. J Biochem Mol Toxicol 2024; 38:e23586. [PMID: 37986221 DOI: 10.1002/jbt.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Sodium benzoate (SB), the sodium salt of benzoic acid, is a food preservative with wide applications in the food, cosmetic and pharmaceutical industries due to its ability to kill many microorganisms effectively. Experimental evidence however suggests that excessive intake of SB poses detrimental health risks among consumers in the population. The present study investigated the toxic effects of various concentrations of SB using Drosophila melanogaster as a model. Adult wild-type flies of Canton S strain (1- to 3-days old) was orally exposed to SB (0, 0.5, 1.0, 2.0 and 5.0 mg/5 g diet) to evaluate survival rates for 21 days. Thereafter, we evaluated markers of oxidative stress, antioxidant status and behavioral activity in D. melanogaster exposed to SB for seven (7) days. We observed that SB (2.0 and 5.0 mg/5 g diet) decreased the survival of D. melanogaster. Also, SB inhibited glutathione-S-transferase activity and depleted total thiols and nonprotein thiols contents. Moreover, SB (5 mg/5 g diet) increased nitric oxide (nitrite/nitrate) level and reduced flies' emergence rate. Conclusively, findings from this study revealed that exposure to high concentrations of SB reduced survival rate and induced toxicity via the induction of oxidative stress and inhibition of antioxidant enzymes in D. melanogaster.
Collapse
Affiliation(s)
- Folake O Asejeje
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University Oyo, Oyo State, Nigeria
| | - Timilehin F Alade
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University Oyo, Oyo State, Nigeria
| | - Aghogho Oyibo
- Department of Biochemistry, College of Natural and Applied Sciences, Chrisland University, Abeokuta, Ogun State, Nigeria
| | - Amos O Abolaji
- Drosophila Laboratory. Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
107
|
Ulug P, Nayki U, Mammadov R, Bulut S, Tastan TB, Coban TA, Suleyman H. Protective Effect of Ramipril Against Oxidant and Proinflammatory Cytokine Damage Induced by Ischemia-Reperfusion in Ovarian Tissue in Rats. Transplant Proc 2024; 56:215-222. [PMID: 38218697 DOI: 10.1016/j.transproceed.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/26/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND It is known that the increase in oxidants and proinflammatory cytokines, as well as the decrease in antioxidants, play a role in ovarian ischemia-reperfusion (I/R) injury. The antioxidant and anti-inflammatory properties of ramipril have been studied in various diseases. This study aims to investigate the effect of ramipril on I/R-induced ovarian damage in rats. METHODS Rats were divided into healthy (HG), sham (SG), ovary I/R (OIR), and ramipril + ovary I/R (ROIR) groups (n = 6/each group). One hour before the surgical procedures, ROIR was given 2 mg/kg ramipril. The lower abdomen of the SG, OIR, and ROIR was surgically opened. Right ovarian tissues of OIR and ROIR were subjected to 2 hours of ischemia and 6 hours of reperfusion. Then, all animals were euthanized, and their right ovaries were removed. Ovarian tissues were examined for oxidants (malondialdehyde), antioxidants (total glutathione, superoxide dismutase, and catalase), and proinflammatory cytokines (nuclear factor kappa-B, tumor necrosis factor-alpha, interleukin 1 beta, and interleukin-6) analysis was performed. Tissues were examined histopathologically. RESULTS The ovarian tissue of the OIR, which underwent the I/R procedure, exhibited a significant increase in oxidant and proinflammatory cytokine levels, along with a decrease in antioxidant levels (P < .001). Ramipril suppressed the I/R-induced increase in oxidants and pro-inflammatory cytokines and the decrease in antioxidants (P < .001). Ramipril also attenuated I/R-induced histopathological damage in ovarian tissue (P < .05). CONCLUSION Ramipril treatment may be a treatment strategy to protect ovarian tissue against oxidative and inflammatory damage of I/R.
Collapse
Affiliation(s)
- Pasa Ulug
- Department of Gynecology and Obstetrics, School of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey.
| | - Umit Nayki
- Department of Gynecology and Obstetrics, School of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Renad Mammadov
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Seval Bulut
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Tugba Bal Tastan
- Department of Histology and Embryology, School of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Taha Abdulkadir Coban
- Department of Medical Biochemistry, School of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
108
|
Bao X, Song H, He L, Li Y, Niu S, Guo J. Histopathological observations and comparative transcriptome analysis of Ophiocordyceps sinensis infection of Hepialus xiaojinensis in the early stage. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105067. [PMID: 37797777 DOI: 10.1016/j.dci.2023.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Hepialus xiaojinensis is a Lepidopteran insect and one of the hosts for the artificial cultivation of Cordyceps. Ophiocordyceps sinensis can infect and coexist with H. xiaojinensis larvae for a long time. Little studies focused on the interaction process through its early infection stage. In this research, we particularly study the interaction of infected and uninfected larvae in the 3rd (OS-3, CK-3) and 4th (OS-4, CK-4) instars. O. sinensis was distributed within the larvae and accompanied by pathological changes in some tissue structures. In response to O. sinensis infection, OS-3 enhanced the antioxidant defense ability, while OS-4 decreased. The transcriptome analysis showed that OS-3 resisted the invasion of O. sinensis by the immune and nervous systems. Correspondingly, OS-4 reduced immune response and utilized more energy for growth and development. This study provides a comprehensive resource for analyzing the mechanism of H. xiaojinensis and O. sinensis interaction.
Collapse
Affiliation(s)
- Xiuwen Bao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Haoran Song
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shuqi Niu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China.
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China.
| |
Collapse
|
109
|
Cheng J, Li T, Wei S, Jiang W, Li J, Wang Y, Li Y. Physiological and Proteomic Changes in Camellia semiserrata in Response to Aluminum Stress. Genes (Basel) 2023; 15:55. [PMID: 38254944 PMCID: PMC10815133 DOI: 10.3390/genes15010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Camellia semiserrata is an important woody edible oil tree species in southern China that is characterized by large fruits and seed kernels with high oil contents. Increasing soil acidification due to increased use of fossil fuels, misuse of acidic fertilizers, and irrational farming practices has led to leaching of aluminum (Al) in the form of free Al3+, Al(OH)2+, and Al(OH)2+, which inhibits the growth and development of C. semiserrata in South China. To investigate the mechanism underlying C. semiserrata responses to Al stress, we determined the changes in photosynthetic parameters, antioxidant enzyme activities, and osmoregulatory substance contents of C. semiserrata leaves under different concentrations of Al stress treatments (0, 1, 2, 3, and 4 mmol/L Alcl3) using a combination of physiological and proteomics approaches. In addition, we identified the differentially expressed proteins (DEPs) under 0 (CK or GNR0), 2 mmol/L (GNR2), and 4 mmol/L (GNR4) Al stress using a 4D-label-free technique. With increasing stress concentration, the photosynthetic indexes of C. semiserrata leaves, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), soluble protein (SP), and soluble sugar (SS) showed an overall trend of increasing and then decreasing, and proline (Pro) and malondialdehyde (MDA) contents tended to continuously increase overall. Compared with the control group, we identified 124 and 192 DEPs in GNR2 and GNR4, respectively, which were mainly involved in metabolic processes such as photosynthesis, flavonoid metabolism, oxidative stress response, energy and carbohydrate metabolism, and signal transduction. At 2 mmol/L Al stress, carbon metabolism, amino sugar and nucleotide sugar metabolism, and flavonoid metabolism-related proteins were significantly changed, and when the stress was increased to 4 mmol/L Al, the cells accumulated reactive oxygen species (ROS) at a rate exceeding the antioxidant system scavenging capacity. To deal with this change, C. semiserrata leaves enhanced their glutathione metabolism, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and other metabolic processes to counteract peroxidative damage to the cytoplasmic membrane caused by stress. In addition, we found that C. semiserrata resisted aluminum toxicity mainly by synthesizing anthocyanidins under 2 mmol/L stress, whereas proanthocyanidins were alleviated by the generation of proanthocyanidins under 4 mmol/L stress, which may be a special mechanism by which C. semiserrata responds to different concentrations of aluminum stress.
Collapse
Affiliation(s)
- Junsen Cheng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Tong Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Shanglin Wei
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Wei Jiang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Jingxuan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Yi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Yongquan Li
- Scarce and Quality Economic Forest Engineering Technology Research Center, Guangzhou 510225, China
| |
Collapse
|
110
|
Stojanović J, Savić-Zdravković D, Jovanović B, Vitorović J, Bašić J, Stojanović I, Popović AŽ, Duran H, Kolarević MK, Milošević Đ. Histopathology of chironomids exposed to fly ash and microplastics as a new biomarker of ecotoxicological assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166042. [PMID: 37543338 DOI: 10.1016/j.scitotenv.2023.166042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
In the last few decades, industrial pollution has gained extensive attention in terms of its effect on the aquatic environment. This imposes the need to develop sensitive biomarkers for early detection of pollutant toxicity in ecotoxicological assessment. The advantages of histopathological biomarkers are many, including quick reaction to the presence of contaminants, and the small number of individuals needed for efficient analysis. The present study analyzed the negative effect of lignite coal fly ash (LCFA) and microplastic particles (MPs) on Chironomus riparius, a suggested model organism by the Organization for Economic Cooperation and Development (OECD). This study aimed to perform histological analyses of larval tissues and target potential changes in treated groups that could serve as promising histopathological biomarkers of the contaminant's negative effects. Following that, other known sensitive sub-organismal biomarkers were analyzed and paired with the histopathological ones. Histological analysis of larvae showed a significantly decreased length of microvilli in midgut regions II and III in both treatments. Treatments with MPs affected oxidative stress parameters: thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP), superoxide dismutase (SOD), and hemoglobin levels, while LCFA significantly affected all tested sub-organismal biomarkers (DNA damage, levels of AOPP, SOD, and hemoglobin), except catalase (CAT) and TBARS. When observing histological slides, a significant shortage of brush border length in the posterior parts of the midgut was detected in all treatments. In the case of LCFA, the appearance of intensive vacuolization of digestive cells with inclusions resembling apoptotic bodies, in mentioned regions was also detected. This study demonstrated high sensitivity of brush border length to the MPs and LCFA exposure, complementary to other tested sub-organismal biomarkers. Revealing the great potential of this histopathological biomarker in ecotoxicological studies contributes to the international standard ecotoxicology assessment of emerging pollutants.
Collapse
Affiliation(s)
- Jelena Stojanović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia.
| | - Dimitrija Savić-Zdravković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Boris Jovanović
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Jelena Bašić
- Department of Biochemistry, Faculty of Medicine, University of Nis, Bulevar dr Zorana Đinđića 81, 18000 Nis, Serbia
| | - Ivana Stojanović
- Department of Biochemistry, Faculty of Medicine, University of Nis, Bulevar dr Zorana Đinđića 81, 18000 Nis, Serbia
| | - Andrea Žabar Popović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Hatice Duran
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, 06560 Ankara, Türkiye; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Türkiye
| | - Margareta Kračun Kolarević
- Department of Hydroecology and water protection, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Đurađ Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| |
Collapse
|
111
|
Aalikhani M, Taheri E, Khalili M. Vanillin serves as a potential substitute for chemical chelator desferal in iron-overloaded mice. Eur J Pharmacol 2023; 960:176153. [PMID: 38059446 DOI: 10.1016/j.ejphar.2023.176153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Iron toxicity occurs under iron-overloaded settings, such as a high iron diet and blood transfusion, and damages important organs. Vanillin has been proven to have potential iron chelation capability. Given the negative effects of commonly used iron chelators like deferoxamine (DFO), we sought to examine the iron chelation potency of vanillin and evaluate its potential effect in the treatment of iron overload-related disorders. METHODS 42 male NMRI mice were prepared for this purpose, and except for the negative control group, iron overload conditions were generated in them by injecting iron. Then normal saline (as a control), vanillin, and DFO (n = 7) were subsequently given to iron-overloaded mice. In the following, the activity of antioxidant enzymes catalase and superoxide dismutase were measured in the blood serum, brain, kidney, spleen, lung, and liver tissues of mice. Furthermore, the level of lipid peroxidation was determined by measuring the amount of malondialdehyde. Also, Perl's and H&E staining were used to examine the physiopathology changes of tissues. FINDINGS Vanillin, a natural antioxidant compound, outperformed deferoxamine, a chemical iron chelator. Along with a decrease in iron content, the activity of catalase and superoxide dismutase enhanced in the iron-overloaded groups that were treated with vanillin. The level of lipid peroxidation was also declined in the iron-overloaded mice receiving vanillin. CONCLUSION Vanillin can be used as a suitable substitute for chemical chelators with fewer side effects and equivalent efficiency. We encourage the use of this compound as a natural iron chelator following performing additional safety and efficacy studies.
Collapse
Affiliation(s)
- Mahdi Aalikhani
- Department of Medical Biotechnology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ensie Taheri
- Department of Medical Biotechnology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Khalili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
112
|
Aykac K, Ozsurekci Y, Tanir Basaranoglu S, Demir OO, Avcioglu G, Erel O, Ceyhan M. Oxidant and antioxidant balance in children with bacteremia. Minerva Pediatr (Torino) 2023; 75:876-883. [PMID: 32881474 DOI: 10.23736/s2724-5276.20.05748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
BACKGROUND There is a crucial balance between oxidant and antioxidant defense mechanisms. We aimed to evaluate the role of the balance of these systems in children with bloodstream infection. METHODS We analyzed prospectively oxidant and antioxidant stress parameters from serum samples of children with BSI besides demographic and clinical data of children. Serum levels of the total antioxidant status (TAS), total oxidant status (TOS), albumin, plasma thiol, disulphide, catalase (CAT), myeloperoxidase (MPO), ischemia-modified albumin (IMA) levels, ferroxidase and arylesterase (ARES) activity were evaluated in both patients and healthy controls. RESULTS A total of 113 children were evaluated, 50 of them had bacteremia and the remaining 63 were healthy subjects. The median TOS values were 18.5 µmol H2O2/L and 13.1 µmol H2O2/L in patient and control groups, respectively with a statistically significant difference between groups. The mean serum IMA levels were 0.8±0.1 absorbance unit (ABSU) in patients and 0.5±0.09 ABSU in control, the difference between groups was statistically significant. The native thiol, total thiol levels and the disulphide levels were significantly lower in the patient group as compared with the control group. The myeloperoxidase level was 136 U/L in patients and 107 in controls with a statistically significant difference between groups. CONCLUSIONS TOS, IMA, MPO, and particularly plasma thiols seem good candidates for accurate diagnosis of bacteremia in children.
Collapse
Affiliation(s)
- Kubra Aykac
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Yasemin Ozsurekci
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Türkiye -
| | - Sevgen Tanir Basaranoglu
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Osman O Demir
- Department of Pediatric Diseases, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Gamze Avcioglu
- Department of Clinical Biochemistry, Atatürk Training and Research Hospital, Ankara, Türkiye
| | - Ozcan Erel
- Department of Clinical Biochemistry, Atatürk Training and Research Hospital, Ankara, Türkiye
| | - Mehmet Ceyhan
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
113
|
Banaee M, Badr AA, Multisanti CR, Haghi BN, Faggio C. The toxicity effects of the individual and combined exposure of methyl tert-butyl ether (MTBE) and tire rubber powder (RP) on Nile tilapia fish (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109759. [PMID: 37778452 DOI: 10.1016/j.cbpc.2023.109759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Methyl tert-butyl ether (MTBE) is soluble in water and can contaminate water sources when it spills during transportation or leaks from underground storage tanks. Incomplete combustion releases MTBE as exhaust fumes that can be deposited on urban surfaces. Meanwhile, car tires erosion emits of large amounts of rubber dust (RP), easily transported to water bodies. Therefore, this study has the objective of assessing the toxicity of varying concentrations of MTBE (0, 2.5, 5.0 μL L-1) and RP (0, 5.0, 10.0 mg L-1 RP), both individually and in combination, over a period of 28 days on Nile tilapia (Oreochromis niloticus). MTBE and PR decreased fish growth performance. Blood biochemical analytes indicated that MTBE and RP led to increasing Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and creatinine phosphokinase (CPK), alkaline phosphatase and gamma-glutamyl transferase (GGT) activities. Alterations related to glucose, triglycerides, cholesterol, and creatinine, plasma contents, were also observed. Increased antioxidant biomarkers, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), glutathione reductase (GR), and malondialdehyde (MDA), was observed. Exposure fish to MTBE and PR changed metabolic profile of muscle tissue. Moreover, results showed that MTBE, its metabolites, and PR could accumulate in the muscle tissue of fish. Results suggest that MTBE and RP can impact fish health, both individually and when combined. The presence of MTBE enhances the toxicity of RP, indicating a synergistic effect. Nevertheless, further studies are needed to understand the impact of toxic compounds on aquatic environments and organisms' health.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Ahmad Ali Badr
- Biology Department, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Behzad Nematdoost Haghi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
114
|
Santana FDFV, Da Silva J, Lozi AA, Araujo DC, Ladeira LCM, De Oliveira LL, Da Matta SLP. Toxicology of arsenate, arsenite, cadmium, lead, chromium, and nickel in testes of adult Swiss mice after chronic exposure by intraperitoneal route. J Trace Elem Med Biol 2023; 80:127271. [PMID: 37506466 DOI: 10.1016/j.jtemb.2023.127271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Some residues such as the heavy metals cadmium (Cd), lead (Pb), chromium (Cr VI), nickel (Ni), and arsenic (As), this last one in its oxidized forms + 5 (arsenate) and + 3 (arsenite), can cause injuries to human health, so they are currently considered environmental health emergencies. In the testis, heavy metals can cause morphological and functional damage due to constant exposure acting chronically in individuals. Thus, we aimed to determine the toxicological mechanism of As+5, As+3, Cd, Cr VI, and Ni that leads to testicular damage and establish for the first time an order of toxicity among these studied heavy metals. METHODS Forty-two Swiss mice at reproductive age (140 days) were used, randomly distributed into seven experimental groups (n = 6). Exposure to heavy metals was weekly performed, by intraperitoneal route. Group 1 received 0.7 mL 0.9% saline (control), and the other groups received 1.5 mg/ kg of As+5, As+3, Cd, Pb, Cr VI, or Ni, for six weeks. RESULTS These studied heavy metals did not accumulate in the testis tissue. However, exposure to Ni induced moderate pathologies in the seminiferous tubules, plus changes in the tunica propria, blood vessels, lymphatic space, and carbonyl protein levels. Cd exposure caused moderate tubular histopathologies and changes in the blood vessels and lymphatic space. Cr VI induced slight tubular histopathologies, changes in the lymphatic space, blood vessels, and SOD activity. Pb and As+3 exposure triggered moderate tubular pathologies and changes in the SOD activity and carbonyl protein levels, respectively. Finally, As+5 induced only slight tubular pathologies. CONCLUSION The testicular histopathologies caused by the studied heavy metals are mainly triggered by changes in testicular oxidative balance. Based on our findings of histomorphological alterations, the toxicity order among the heavy metals is Ni>Cd>Cr(VI)>PbAs+3 >As+5. However, considering oxidative stress results, we propose the following testicular toxicity order for these heavy metals: Ni>As+3 > Cd>Cr(VI)>Pb>As+5. Ni exposure shows the most harmful among the heavy metals to the testis.
Collapse
Affiliation(s)
- Francielle de Fátima Viana Santana
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil; Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Janaina Da Silva
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil; Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset), Université de Rennes 1, UMR 1085 Rennes, France
| | - Amanda Alves Lozi
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Diane Costa Araujo
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Sérgio Luis Pinto Da Matta
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil; Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
115
|
Zeidi A, Sayadi MH, Rezaei MR, Banaee M, Gholamhosseini A, Pastorino P, Multisanti CR, Faggio C. Single and combined effects of CuSO 4 and polyethylene microplastics on biochemical endpoints and physiological impacts on the narrow-clawed crayfish Pontastacusleptodactylus. CHEMOSPHERE 2023; 345:140478. [PMID: 37865200 DOI: 10.1016/j.chemosphere.2023.140478] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
This study investigated the toxicity of polyethylene microplastics (MPs; <0.02 mm) and CuSO4, alone and in combination, on the freshwater crayfish Pontastacus leptodactylus. In this study, the crayfish were exposed to PE-MPs (0.0, 0.5, and 1 mg L-1) and CuSO4·5H2O (0.0, 0.5, and 1 mg L-1) for a period of 28 days. Next, multi-biomarkers, including biochemical, immunological, and oxidative stress indicators were analyzed. Results showed that co-exposure to PE-MPs and CuSO4 resulted in increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and decreased alkaline phosphatase (ALP), butyrylcholinesterase (BChE), and gamma-glutamyl-transferase (GGT). Triglycerides, cholesterol, glucose, and albumin content also increased. Although no significant change was observed in lysozyme and phenoloxidase activities in crayfish co-exposed to 0.5 mg L-1 MPs and 0.5 mg L-1 CuSO4, their activities were significantly decreased in other experimental groups. Oxidative stress parameters in hepatopancreas indicated increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and in malondialdehyde (MDA) levels, but decreased catalase (CAT), glucose 6-phosphate dehydrogenase (G6PDH), and cellular total antioxidant (TAC). Results showed that the sub-chronic toxicity of CuSO4 was confirmed. The study confirmed the toxicity of CuSO4 and found that higher concentrations led to more severe effects. Co-exposure to PE-MPs and CuSO4 primarily compromised the endpoints, showing increased toxicity when both pollutants were present in higher concentrations. The activities of POX, LYZ, ALP, GGT, LDH, and CAT were suppressed by both CuSO4 and MPs. However, a synergistic increase was observed in other measured biomarkers in crayfish co-exposed to CuSO4 and MPs.
Collapse
Affiliation(s)
- Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Mohammad Hossein Sayadi
- Department of Agriculture, Faculty of Natural Resources and Environment, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Reza Rezaei
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amin Gholamhosseini
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino, Italy.
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
116
|
Shiry N, Alavinia SJ, Impellitteri F, Alavinia SJ, Faggio C. Beyond the surface: Consequences of methyl tert-butyl ether (MTBE) exposure on oxidative stress, haematology, genotoxicity, and histopathology in rainbow trout. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165784. [PMID: 37499819 DOI: 10.1016/j.scitotenv.2023.165784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Concerns have been raised about the possible environmental effects of methyl tert-butyl ether (MTBE), which is widely used as a gasoline additive. This research aimed to look at the consequences of MTBE contamination on rainbow trout (Oncorhynchus mykiss), emphasizing oxidative stress, genotoxicity, and histopathological damage. After determining the LC50-96 h value, the effects of sub-lethal doses of MTBE (0 (control), 90, 180, and 450 ppm) on rainbow trout were investigated. In fish tissues, the levels of oxidative stress indicators such as malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. The comet assay, which measures DNA damage in erythrocytes, was used to determine genotoxicity. Histopathological examinations were done on liver and gill tissues to examine potential structural anomalies. The results of this study show that MTBE exposure caused considerable alterations in rainbow trout. Increased oxidative stress was demonstrated by elevated MDA levels and decreased SOD activity, while the comet assay revealed dose-dependent DNA damage, implying genotoxic effects. Histopathological study revealed liver and gill tissue abnormalities, including cell degeneration, necrosis, and inflammation. Overall, this research highlights the possible sub-lethal effects of MTBE contamination on rainbow trout, stressing the need of resolving this issue. Future research should look at the impacts of chronic MTBE exposure and the possibility of bioaccumulation in fish populations.
Collapse
Affiliation(s)
- Nima Shiry
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran; Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Jalil Alavinia
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran; Department of Aquatic Animal Health, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Seyed Jamal Alavinia
- Department of Epidemiology, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
117
|
Akbaş N, Süleyman B, Mammadov R, Gülaboğlu M, Akbaş EM, Süleyman H. Effect of felodipine on indomethacin-induced gastric ulcers in rats. Exp Anim 2023; 72:505-512. [PMID: 37316263 PMCID: PMC10658091 DOI: 10.1538/expanim.23-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Felodipine is a calcium channel blocker with antioxidant and anti-inflammatory properties. Researchers have stated that oxidative stress and inflammation also play a role in the pathophysiology of gastric ulcers caused by nonsteroidal anti-inflammatory drugs. The aim of this study was to investigate the antiulcer effect of felodipine on indomethacin-induced gastric ulcers in Wistar rats and compare it with that of famotidine. The antiulcer activities of felodipine (5 mg/kg) and famotidine were investigated biochemically and macroscopically in animals treated with felodipine (5 mg/kg) and famotidine in combination with indomethacin. The results were compared with those of the healthy control group and the group administered indomethacin alone. It was observed that felodipine suppressed the indomethacin-induced malondialdehyde increase (P<0.001); reduced the decrease in total glutathione amount (P<0.001), reduced the decrease superoxide dismutase (P<0.001), and catalase activities (P<0.001); and significantly inhibited ulcers (P<0.001) at the tested dose compared with indomethacin alone. Felodipine at a dose of 5 mg/kg reduced the indomethacin-induced decrease in cyclooxygenase-1 activity (P<0.001) but did not cause a significant reduction in the decrease in cyclooxygenase-2 activity. The antiulcer efficacy of felodipine was demonstrated in this experimental model. These data suggest that felodipine may be useful in the treatment of nonsteroidal anti-inflammatory drug-induced gastric injury.
Collapse
Affiliation(s)
- Nergis Akbaş
- Department of Medical Biochemistry, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Bahadır Süleyman
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Renad Mammadov
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Mine Gülaboğlu
- Department of Biochemistry, School of Pharmacy, Atatürk University, 25400, #Erzurum, Türkiye
| | - Emin Murat Akbaş
- Department of Internal Medicine, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Halis Süleyman
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| |
Collapse
|
118
|
Fang X, Mo J, Zhou H, Shen X, Xie Y, Xu J, Yang S. Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress. Sci Rep 2023; 13:19065. [PMID: 37925528 PMCID: PMC10625528 DOI: 10.1038/s41598-023-46389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
Salt stress is one unfavorable factor of global climate change that adversely affects rice plant growth and yield. To identify novel salt-tolerant genes and new varieties of salt-tolerant rice, a better understanding of the molecular regulation mechanism of salt tolerance in rice is needed. In this study we used transcriptome analyses to examine changes in gene expression of salt-tolerant and salt-sensitive rice plants. The salt-tolerant cultivar HH11 and salt-sensitive cultivar IR29 were treated with 200 mM NaCl solution for 0 h, 6 h, 24 h and 48 h at the three leaf stage. Physiological parameters and transcriptome were measured and analyzed after each treatment. Activity of SOD and POD, as well as the MDA and protein content of the two rice cultivars generally increased with increasing time of exposure to NaCl. Meanwhile, the APX activity first increased, then decreased in both cultivars, with maximum values seen at 6 h for IR29 and at 24 h for HH11. The GR and GPX activity of HH11 were stronger than that of IR29 in response to salt stress. The H2O2 content first increased at 0-6 h, then decreased at 6-24 h, and then increased again at 24-48 h under salt stress. Compared with IR29, SOD, POD and APX activity of HH11 was more sluggish in response to salt stress, reaching the maximum at 24 h or 48 h. The MDA, H2O2 and proline content of HH11 was lower than that of IR29 under salt stress. Relative to untreated HH11 plants (0 h) and those exposed to salt for 6 h, 24 h, and 48 h (H0-H6, H0-H24 and H0-H48), 7462, 6363 and 6636, differentially expressed genes (DEGs), respectively, were identified. For IR29, the respective total DEGs were 7566, 6075 and 6136. GO and KEGG enrichment analysis showed that metabolic pathways related to antioxidative responses and osmotic balance played vital roles in salt stress tolerance. Sucrose and starch metabolism, in addition to flavonoid biosynthesis and glutathione metabolism, showed positive responses to salt stress. Expression of two SPS genes (LOC_Os01g69030 and LOC_Os08g20660) and two GST genes (LOC_Os06g12290 and LOC_Os10g38740) was up-regulated in both HH11 and IR29, whereas expression of LOC_Os09g12660, a glucose-1-phosphate adenylyltransferase gene, and two SS genes (LOC_Os04g17650 and LOC_Os04g24430) was up-regulated differential expression in HH11. The results showed that HH11 had more favorable adjustment in antioxidant and osmotic activity than IR29 upon exposure to salt stress, and highlighted candidate genes that could play roles in the function and regulation mechanism of salt tolerance in rice.
Collapse
Affiliation(s)
- Xin Fang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Junjie Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hongkai Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Xuefeng Shen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Yuling Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jianghuan Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shan Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
| |
Collapse
|
119
|
Zhao Y, Li X, Nan J. Systematic assessment of the ecotoxicological effects and mechanisms of biochar-derived dissolved organic matter (DOM) on the earthworm Eisenia fetida. ENVIRONMENTAL RESEARCH 2023; 236:116855. [PMID: 37567380 DOI: 10.1016/j.envres.2023.116855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Biochar-derived dissolved organic matter (DOM) contains toxic substances that are first released into the soil after biochar application. However, the ecological risks of biochar-derived DOM on soil invertebrate earthworms are unclear. Therefore, this study investigated the ecological risks and toxic mechanisms of sewage sludge biochar (SSB)-derived DOM on the earthworm Eisenia fetida (E. fetida) via microcosm experiments. DOM exposure induced earthworm death, growth inhibition, and cocoon decline. Moreover, DOM, especially the 10% DOM300 (derived from SSB prepared at 300 °C) treatments, disrupted the antioxidant defense response and lysosomal stability in earthworms. Integrated biomarker response v2 (IBRv2) analysis was performed to assess the comprehensive toxicity of DOM in E. fetida, and the results revealed that DOM300 might exert more hazardous effects on earthworms than DOM500 (prepared at 500 °C) and DOM700 (prepared at 700 °C), as revealed by increases in the IBRv2 value of 3.48-18.21. Transcriptome analysis revealed that 10% DOM300 exposure significantly disrupted carbohydrate and protein digestion and absorption and induced endocrine disorder. Interestingly, 10% DOM300 exposure also significantly downregulated the expression of genes involved in signaling pathways, e.g., the P13K-AKT, cGMP-PKG, and ErbB signaling pathways, which are related to cell growth, survival, and metabolism, suggesting that DOM300 might induce neurotoxicity in E. fetida. Altogether, these results may contribute to a better understanding of the toxicity and defense mechanisms of biochar-derived DOM on earthworms, especially during long-term applications, and thus provide guidelines for using biochar as a soil amendment.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
120
|
Du Y, Shang G, Zhai J, Wang X. Effects of soybean oil exposure on the survival, reproduction, biochemical responses, and gut microbiome of the earthworm Eisenia fetida. J Environ Sci (China) 2023; 133:23-36. [PMID: 37451786 DOI: 10.1016/j.jes.2022.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 07/18/2023]
Abstract
With increasing production of kitchen waste, cooking oil gradually enters the soil, where it can negatively affect soil fauna. In this study, we explored the effects of soybean oil on the survival, growth, reproduction, tissue structure, biochemical responses, mRNA expression, and gut microbiome of earthworms (Eisenia fetida). The median lethal concentration of soybean oil was found to be 15.59%. Earthworm growth and reproduction were significantly inhibited following exposure to a sublethal concentration of soybean oil (1/3 LC50, 5.2%). The activity of the antioxidant enzymes total superoxide dismutase (T-SOD), peroxidase (POD), and catalase (CAT) were affected under soybean oil exposure. The glutathione (GSH) content decreased significantly, whereas that of the lipid peroxide malondialdehyde (MDA) increased significantly after soybean oil exposure. mRNA expression levels of the SOD, metallothionein (MT), lysenin and lysozyme were significantly upregulated. The abundance of Bacteroides species, which are related to mineral oil repair, and Muribaculaceae species, which are related to immune regulation, increased within the earthworm intestine. These results indicate that soybean oil waste is toxic to earthworms. Thus, earthworms deployed defense mechanisms involving antioxidant system and gut microbiota for protection against soybean oil exposure-induced stress.
Collapse
Affiliation(s)
- Yating Du
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Organic Recycling Research Institute (Suzhou), China Agricultural University, Suzhou 215100, China
| | - Guangshen Shang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Junjie Zhai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China.
| |
Collapse
|
121
|
Adeleke PA, Ajayi AM, Ben-Azu B, Umukoro S. Involvement of oxidative stress and pro-inflammatory cytokines in copper sulfate-induced depression-like disorders and abnormal neuronal morphology in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3123-3133. [PMID: 37154924 DOI: 10.1007/s00210-023-02519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Epidemiological studies have implicated copper as one of the key environmental risk factors for the pathogenesis of depression. However, the precise mechanism by which copper contribute to the genesis of depression particularly the involvement of oxidative stress-driven neuroinflammation is yet to be fully investigated. Thus, this study was designed to evaluate the effects of copper sulfate (CuSO4) on depression-like behaviors and the role of oxidative stress and pro-inflammatory cytokines in mice. Forty male Swiss mice were distributed into control and three test groups (n = 10), and were treated orally with distilled water (10 mL/kg) or CuSO4 (25, 50 and 100 mg/kg) daily for 28 days. Afterwards, the tail suspension, forced swim, and sucrose splash tests were used for the detection of depression-like effects. The animals were then euthanized and the brains were processed for the estimation of biomarkers of oxidative stress and pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6). The histomorphological features and neuronal viability of the prefrontal cortex, hippocampus and striatum were also determined. Mice exposed to CuSO4 displayed depression-like features when compared with controls. The brain concentrations of malondialdehyde, nitrite and pro-inflammatory cytokines were elevated in CuSO4-treated mice. Mice exposed to CuSO4 also had reduced brain antioxidant status (glutathione, glutathione-s-transferase, total thiols, superoxide-dismutase and catalase), as well as altered histomorphological features, and decreased population of viable neuronal cells. These findings suggest that CuSO4 increases oxidative stress and pro-inflammatory cytokines to elicit depression-like effects in mice.
Collapse
Affiliation(s)
- Paul Ademola Adeleke
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta University, Abraka, Delta State, Nigeria
| | - Solomon Umukoro
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| |
Collapse
|
122
|
Shiry N, Darvishi P, Gholamhossieni A, Pastorino P, Faggio C. Exploring the combined interplays: Effects of cypermethrin and microplastic exposure on the survival and antioxidant physiology of Astacus leptodactylus. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104257. [PMID: 37922724 DOI: 10.1016/j.jconhyd.2023.104257] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Plastic waste and micro/nanoplastic particles pose a significant global environmental challenge, along with concerns surrounding certain pesticides' impact on aquatic organisms. This study investigated the effects of microplastic particles (MPPs) and cypermethrin (CYP) on crayfish, focusing on biochemical indices, lipid peroxidation, oxidative stress, hematological changes, and histopathological damage. After determining the LC50-96 h value (4.162 μg/L), crayfish were exposed to sub-lethal concentrations of CYP (1.00 ppb (20%) and 2.00 ppb (50%)) and fed a diet containing 100 mg/kg MPPs for 60 days. Hemolymph transfusion and histopathological examinations of the hepatopancreas were conducted. The results showed significant alterations in crayfish. Total protein levels decreased, indicating protein breakdown to counteract contaminants, while total cholesterol and triglyceride levels declined, suggesting impaired metabolism. Glucose levels increased in response to chemical stress. The decline in total antioxidant capacity highlighted the impact of prolonged xenobiotic exposure and oxidative stress, while increased CAT, SOD, and MDA activities helped mitigate oxidative stress and maintain cellular homeostasis. The elevated total hemocyte count, particularly in semi-granular cells, suggests their active involvement in the detoxification process. Further research is needed to fully understand the implications of these effects.
Collapse
Affiliation(s)
- Nima Shiry
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran
| | - Paria Darvishi
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran; Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Amin Gholamhossieni
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna, Torino, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
123
|
Wang J, Sun J, Khade RL, Chou T, An H, Zhang Y, Wang H. Liposome-Templated Green Synthesis of Mesoporous Metal Nanostructures with Universal Composition for Biomedical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304880. [PMID: 37452439 PMCID: PMC10865450 DOI: 10.1002/smll.202304880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Porous noble metal nanoparticles have received particular attention recently for their unique optical, thermal, and catalytic functions in biomedicine. However, limited progress has been made to synthesize such porous metallic nanostructures with large mesopores (≥25 nm). Here, a green yet facile synthesis strategy using biocompatible liposomes as templates to mediate the formation of mesoporous metallic nanostructures in a controllable fashion is reported. Various monodispersed nanostructures with well-defined mesoporous shape and large mesopores (≈ 40 nm) are successfully synthesized from mono- (Au, Pd, and Pt), bi- (AuPd, AuPt, AuRh, PtRh, and PdPt), and tri-noble metals (AuPdRh, AuPtRh, and AuPdPt). Along with a successful demonstration of its effectiveness in synthesis of various mesoporous nanostructures, the possible mechanism of liposome-guided formation of such nanostructures via time sectioning of the synthesis process (monitoring time-resolved growth of mesoporous structures) and computational quantum molecular modeling (analyzing chemical interaction energy between metallic cations and liposomes at the enthalpy level) is also revealed. These mesoporous metallic nanostructures exhibit a strong photothermal effect in the near-infrared region, effective catalytic activities in hydrogen peroxide decomposition reaction, and high drug loading capacity. Thus, the liposome-templated method provides an inspiring and robust avenue to synthesize mesoporous noble metal-based nanostructures for versatile biomedical applications.
Collapse
Affiliation(s)
- Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Jingyu Sun
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Tsengming Chou
- Laboratory for Multiscale Imaging, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| |
Collapse
|
124
|
Liu K, Liu Y, Li X, Zhang X, Xue Z, Zhao M. Efficient production of α-ketoglutaric acid using an economical double-strain cultivation and catalysis system. Appl Microbiol Biotechnol 2023; 107:6497-6506. [PMID: 37682299 DOI: 10.1007/s00253-023-12757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
The whole-cell catalysis strategy of alpha-ketoglutaric acid (α-KG) production from L-glutamic acid (L-Glu) using recombinant Escherichia coli, in which L-glutamate oxidase (LGox) was over-expressed, has replaced the traditional chemical synthesis strategy. However, large amounts of toxic by-product, H2O2, should be eliminated through co-expressing catalase (Cat), thus severely increasing burden in cells. To efficiently and economically produce α-KG, here, the genes SpLGox (from Streptomyces platensis NTU3304) and SlCat (from Streptomyces lividans TK24) were inserted into the low-dosage-IPTG (Isopropyl β-D-Thiogalactoside) inducible expression system, constructed in our previous work, in E. coli, respectively. Besides, a double-strain catalysis system was established and optimized to produce α-KG, and the productivity of α-KG was increased 97% compared with that through single strain catalysis. Finally, a double-strain cultivation strategy was designed and employed to simplify the scale-up fermentation. Using the optimized whole-cell biocatalyst conditions (pH 7.0, 35 °C), majority of the L-glutamic acid was transformed into α-KG and the titer reached 95.4 g/L after 6 h with the highest productivity at present. Therefore, this strategy may efficiently and cost-effectively produce α-KG, enhancing its potential for industrial applications. KEY POINTS: • SpLGox and SlCat were over-expressed to catalyze L-Glu to α-KG and eliminate by-product H2O2, respectively. • Double-strain cultivation and catalysis system can efficiently and cost-effectively produce α-KG from L-Glu.
Collapse
Affiliation(s)
- Kun Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yan Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiangfei Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiushan Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Zhenglian Xue
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| | - Ming Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| |
Collapse
|
125
|
Moreno-Ortiz G, Aguilar L, Caamal-Monsreal C, Noreña-Barroso E, Rosas C, Rodríguez-Fuentes G. Benzophenone-3 does not Cause Oxidative Stress or B-esterase Inhibition During Embryo Development of Octopus maya (Voss and Solís Ramírez, 1966). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:60. [PMID: 37903889 PMCID: PMC10615918 DOI: 10.1007/s00128-023-03788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/12/2023] [Indexed: 11/01/2023]
Abstract
Benzophenone-3 (BP-3) is an active ingredient in sunscreen lotions and personal-care products that protects against the damaging effects of ultraviolet rays. Given its worldwide dissemination, it has been linked with harmful effects on aquatic biota; however, its impact is not fully understood calling for further studies. To understand the impacts on an important economically and ecologically species, we evaluated the toxicity of BP-3 during the embryonic development of Octopus maya. Embryos were exposed to increasing concentrations of up to 500 µg BP-3/L until hatching. Antioxidant enzyme activities, oxidative-stress indicators, and B-esterases activities were measured at different developmental phases (organogenesis, activation, and growth). There were no significant differences between treatments, suggesting the lack of production of toxic metabolites that may be related to a protective chorion, an underdeveloped detoxification system, and the experimental conditions that limited phototoxicity.
Collapse
Affiliation(s)
- Gissela Moreno-Ortiz
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México, C.P. 04510, México
| | - Letícia Aguilar
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Claudia Caamal-Monsreal
- Unidad Disciplinaria de Docencia e investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Elsa Noreña-Barroso
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Carlos Rosas
- Unidad Disciplinaria de Docencia e investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Gabriela Rodríguez-Fuentes
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México.
| |
Collapse
|
126
|
Yildirim F, Kesen AO, Varalan A. The comparative effect of creep and conventional feeding methods on growth performance and oxidative stress markers in Akkaraman lambs. Trop Anim Health Prod 2023; 55:382. [PMID: 37889373 DOI: 10.1007/s11250-023-03804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
This study aimed to determine the effect of conventional and creep-feeding methods on growth performance and oxidative stress in Akkaraman (AKK) lambs. For this purpose, the AKK lambs (n = 60) used in this study were divided into four groups (15 n × 2 sex × 2 feeding methods), and all of them were fed the same ration. In the conventional feeding method, the lambs were taken to their dams for suckling twice a day and then kept in a separate compartment for further feeding. In contrast, in the creep-feeding method, the lambs always stayed with their mothers and had free access to supplementary feed by passing through the creep-feeding area. The data for body weights, body measurements, and saliva samples were collected five times, 14 days apart, to evaluate lambs' growth performance and oxidative stress markers. The results showed a higher (P < 0.05) body weight gain in the creep-fed group than in the conventional-fed group. The difference between creep and conventional feeding was significant (P = 0.033), but the difference between the groups in terms of gender was nonsignificant (P = 0.438). The males fed with the creep-feeding (CR-M) group had the largest body length (BL), pectoral chest width (PCW), chest depth (CD), chest circumference (CC), head length (HL), and head width (HW) measurements. The males fed with the conventional feeding (CO-M) group had the largest wither height (WH) measurement, and females fed with the conventional feeding (CO-F) group had the largest back length (BAL) body size. When the overall improvement in body measurements was considered, it was determined that the body sizes of many males in creep-feeding increased more than those of other feeding groups. The oxidative stress marker malondialdehyde (MDA) was higher (P < 0.001) in the conventional feeding group. Other oxidative stress markers, superoxide dismutase (SOD), catalase (CAT), and glutathione s-transferase (GSH-ST), were higher in the creep-feeding group (P < 0.001). Considering these findings, it is possible to conclude that creep-feeding is superior to conventional feeding to get a higher growth rate and reduce oxidative stress in AKK lambs.
Collapse
Affiliation(s)
- F Yildirim
- Department of Animal Science, Faculty of Veterinary Medicine, University of Atatürk, Yakutiye, Erzurum, Turkey.
| | - Ali Osman Kesen
- Department of Animal Science, Faculty of Veterinary Medicine, University of Atatürk, Yakutiye, Erzurum, Turkey
| | - Alperen Varalan
- Department of Animal Health Economics and Management, Faculty of Veterinary Medicine, University of Atatürk, Yakutiye, Erzurum, Turkey
| |
Collapse
|
127
|
Klisic A, Bakic M, Karanikolic V. Comparative Analysis of Redox Homeostasis Biomarkers in Patients with Psoriasis and Atopic Dermatitis. Antioxidants (Basel) 2023; 12:1875. [PMID: 37891954 PMCID: PMC10604746 DOI: 10.3390/antiox12101875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Aim: There are no studies regarding comparative analysis of serum biomarkers of oxidative stress in patients with psoriasis (PsO) and atopic dermatitis (AD). We aimed to compare the serum redox homeostasis parameters in patients with PsO vs. AD in an attempt to find the sensitive and specific oxidative stress biomarker that could best reflect the existence of one of these disease entities. Methods: Forty patients with PsO and forty patients with AD were consecutively included in this cross-sectional study. Parameters of redox homeostasis, i.e., pro-oxidants [malondialdehyde (MDA) and advanced oxidation protein products (AOPP)] and antioxidants [catalase (CAT) and superoxide dismutase (SOD)] were determined. Results: There was no difference in oxidative stress biomarkers between the PsO and AD group, except for higher CAT activity in the AD group (p < 0.001). Among all examined redox homeostasis biomarkers, ROC analysis showed that only CAT exhibited good diagnostic accuracy (AUC = 0.719) in the discrimination of patients with PsO vs. AD, with 0.436 U/L as the cut-off value of CAT activity. Conclusions: The CAT exhibited good diagnostic accuracy in the discrimination of patients with AD from those with PsO. The obtained results could suggest the importance of the use of antioxidants as a potential therapeutic strategy in the treatment of these two skin inflammatory diseases.
Collapse
Affiliation(s)
- Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Mirjana Bakic
- Clinic for Dermatovenerology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Vesna Karanikolic
- Clinic for Skin Diseases of the Clinical Center Nis, School of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
128
|
Kryl’skii ED, Kravtsova SE, Popova TN, Matasova LV, Shikhaliev KS, Medvedeva SM. 6-Hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline Demonstrates Anti-Inflammatory Properties and Reduces Oxidative Stress in Acetaminophen-Induced Liver Injury in Rats. Curr Issues Mol Biol 2023; 45:8321-8336. [PMID: 37886968 PMCID: PMC10605539 DOI: 10.3390/cimb45100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
We examined the effects of 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline on markers of liver injury, oxidative status, and the extent of inflammatory and apoptotic processes in rats with acetaminophen-induced liver damage. The administration of acetaminophen caused the accumulation of 8-hydroxy-2-deoxyguanosine and 8-isoprostane in the liver and serum, as well as an increase in biochemiluminescence indicators. Oxidative stress resulted in the activation of pro-inflammatory cytokine and NF-κB factor mRNA synthesis and increased levels of immunoglobulin G, along with higher activities of caspase-3, caspase-8, and caspase-9. The administration of acetaminophen also resulted in the development of oxidative stress, leading to a decrease in the level of reduced glutathione and an imbalance in the function of antioxidant enzymes. This study discovered that 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline reduced oxidative stress by its antioxidant activity, hence reducing the level of pro-inflammatory cytokine and NF-κB mRNA, as well as decreasing the concentration of immunoglobulin G. These changes resulted in a reduction in the activity of caspase-8 and caspase-9, which are involved in the activation of ligand-induced and mitochondrial pathways of apoptosis and inhibited the effector caspase-3. In addition, 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline promoted the normalization of antioxidant system function in animals treated with acetaminophen. As a result, the compound being tested alleviated inflammation and apoptosis by decreasing oxidative stress, which led to improved liver marker indices and ameliorated histopathological alterations.
Collapse
Affiliation(s)
- Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Svetlana E. Kravtsova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Larisa V. Matasova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| | - Svetlana M. Medvedeva
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| |
Collapse
|
129
|
Zhang TJ, Ma Z, Ma HJ, Tian XS, Guo WL, Zhang C. Metabolic pathways modulated by coumarin to inhibit seed germination and early seedling growth in Eleusine indica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108035. [PMID: 37729857 DOI: 10.1016/j.plaphy.2023.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Coumarin is an allelochemical that is widely present in the plant kingdom and has great potential for weed control. However, its mechanisms of action remain largely unknown. This study employed metabolomic and transcriptomic analyses along with evaluations of amino acid profiles and related physiological indicators to investigate how coumarin inhibits the germination and seedling growth of Eleusine indica by modifying metabolic pathways. At 72 h of germination at 50 and 100 mg L-1 coumarin, E. indica had lower levels of soluble sugar and activities of amylases and higher levels of starch, O2-, H2O2, auxin (IAA) and abscisic acid (ABA) compared to the control. Metabolomic analysis demonstrated that coumarin treatments had a significant impact on the pathways associated with amino acid metabolism and transport and aminoacyl-tRNA biosynthesis. Exposure to coumarin induced significant alterations in the levels of 19 amino acids, with a decrease in 15 of them, including Met, Leu and γ-aminobutyric acid (GABA). Additionally, transcriptomic analysis showed that coumarin significantly disrupted several essential biological processes, including protein translation, secondary metabolite synthesis, and hormone signal transduction. The decrease in TCA cycle metabolite (cis-aconitate, 2-oxoglutarate, and malate) contents was associated with the suppression of transcription for related enzymes. Our findings indicate that the inhibition of germination and growth in E. indica by coumarin involves the suppression of starch conversion to sugars, modification of the amino acid profile, interference of hormone signalling and the induction of oxidative stress. The TCA cycle appears to be one of the most essential pathways affected by coumarin.
Collapse
Affiliation(s)
- Tai-Jie Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China
| | - Zhao Ma
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hong-Ju Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xing-Shan Tian
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China
| | - Wen-Lei Guo
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China
| | - Chun Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China.
| |
Collapse
|
130
|
Umukoro S, Ajayi AM, Ben-Azu B, Ademola AP, Areelu J, Orji C, Okubena O. Jobelyn® improves motor dysfunctions induced by haloperidol in mice via neuroprotective mechanisms relating to modulation of cAMP response-element binding protein and mitogen-activated protein kinase. Metab Brain Dis 2023; 38:2269-2280. [PMID: 37347426 DOI: 10.1007/s11011-023-01253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
The clinical efficacy of haloperidol in the treatment of psychosis has been limited by its tendency to cause parkinsonian-like motor disturbances such as bradykinesia, muscle rigidity and postural instability. Oxidative stress-evoked neuroinflammation has been implicated as the key neuropathological mechanism by which haloperidol induces loss of dopaminergic neurons and motor dysfunctions. This study was therefore designed to evaluate the effect of Jobelyn® (JB), an antioxidant supplement, on haloperidol-induced motor dysfunctions and underlying molecular mechanisms in male Swiss mice. The animals were distributed into 5 groups (n = 8), and treated orally with distilled water (control), haloperidol (1 mg/kg) alone or in combination with each dose of JB (10, 20 and 40 mg/kg), daily for 14 days. Thereafter, changes in motor functions were evaluated on day 14. Brain biomarkers of oxidative stress, proinflammatory cytokines (tumor necrosis factor-alpha and interleukin-6), cAMP response-element binding protein (CREB), mitogen-activated protein kinase (MAPK) and histomorphological changes were also investigated. Haloperidol induces postural instability, catalepsy and impaired locomotor activity, which were ameliorated by JB. Jobelyn® attenuated haloperidol-induced elevated brain levels of MDA, nitrite, proinflammatory cytokines and also boosted neuronal antioxidant profiles (GSH and catalase) of mice. It also restored the deregulated brain activities of CREB and MAPK, and reduced the histomorphological distortions as well as loss of viable neuronal cells in the striatum and prefrontal cortex of haloperidol-treated mice. These findings suggest possible benefits of JB as adjunctive remedy in mitigating parkinsonian-like adverse effects of haloperidol through modulation of CREB/MAPK activities and oxidative/inflammatory pathways.
Collapse
Affiliation(s)
- Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria.
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta University, Abraka, Nigeria
| | - Adeleke Pual Ademola
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
| | - Jacob Areelu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
| | - Chika Orji
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
| | | |
Collapse
|
131
|
Vahdatiraad L, Heidari B, Zarei S, Sohrabi T, Ghafouri H. Biological responses of stellate sturgeon fingerlings (Acipenser stellatus) immersed in HSP inducer to salinity changes. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106145. [PMID: 37595360 DOI: 10.1016/j.marenvres.2023.106145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/15/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Changes in salinity is a stressful and energy-consuming process in fish which give rise to mortalities, especially in fish fingerlings that are more sensitive during the early stages of their life. In the present study, the effects of three salinities, 3‰ (downstream of river), 8‰ (estuarine), and 13‰ (the maximum salinity in the Caspian Sea), on HSP70 gene expression, cortisol level, immune response (lysozyme, complement C3, IgM), and antioxidant enzyme activities (SOD, CAT, T-AOC) of the stellate sturgeon fingerlings in the presence of HSP inducer compound (TEX-OE®) were evaluated. Our results showed that levels of plasma cortisol and heat shock protein (HSP70) in Acipenser stellatus fingerlings increased due to salinity changes. In the presence of the HSP inducer, HSP70 expression in both gill and liver was significantly increased, whereas cortisol level was notably decreased. Exposure to salinity changes resulted in an increase in antioxidant defense activities (SOD, CAT, and T-AOC) and immune response (lysozyme, IgM, and C3) in the presence of an HSP inducer. In conclusion, an HSP-inducing compounds can have a positive effect in strengthening the immunity and antioxidant system of sturgeon fingerlings by increasing the expression of the HSP70 gene against salinity fluctuations and generally increase the body's physiological tolerance.
Collapse
Affiliation(s)
- Leila Vahdatiraad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Tooraj Sohrabi
- International Caspian Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| |
Collapse
|
132
|
Mladenović M, Astolfi R, Tomašević N, Matić S, Božović M, Sapienza F, Ragno R. In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition-Activity Relationships Modeled through Machine Learning Algorithms. Antioxidants (Basel) 2023; 12:1815. [PMID: 37891894 PMCID: PMC10604248 DOI: 10.3390/antiox12101815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The antioxidant activity of essential oils (EOs) is an important and frequently studied property, yet it is not sufficiently understood in terms of the contribution of EOs mixtures' constituents and biological properties. In this study, a series of 61 commercial EOs were first evaluated as antioxidants in vitro, following as closely as possible the cellular pathways of reactive oxygen species (ROS) generation. Hence, EOs were assessed for the ability either to chelate metal ions, thus interfering with ROS generation within the respiratory chain, or to neutralize 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and lipid peroxide radicals (LOO•), thereby halting lipid peroxidation, as well as to neutralize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid cation radicals (ABTS•+) and hydroxyl radicals (OH•), thereby preventing the ROS species from damaging DNA nucleotides. Showing noteworthy potencies to neutralize all of the radicals at the ng/mL level, the active EOs were also characterized as protectors of DNA double strands from damage induced by peroxyl radicals (ROO•), emerging from 2,2'-azobis-2-methyl-propanimidamide (AAPH) as a source, and OH•, indicating some genome protectivity and antigenotoxicity effectiveness in vitro. The chemical compositions of the EOs associated with the obtained activities were then analyzed by means of machine learning (ML) classification algorithms to generate quantitative composition-activity relationships (QCARs) models (models published in the AI4EssOil database available online). The QCARs models enabled us to highlight the key features (EOSs' chemical compounds) for exerting the redox potencies and to define the partial dependencies of the features, viz. percentages in the mixture required to exert a given potency. The ML-based models explained either the positive or negative contribution of the most important chemical components: limonene, linalool, carvacrol, eucalyptol, α-pinene, thymol, caryophyllene, p-cymene, eugenol, and chrysanthone. Finally, the most potent EOs in vitro, Ylang-ylang (Cananga odorata (Lam.)) and Ceylon cinnamon peel (Cinnamomum verum J. Presl), were promptly administered in vivo to evaluate the rescue ability against redox damage caused by CCl4, thereby verifying their antioxidant and antigenotoxic properties either in the liver or in the kidney.
Collapse
Affiliation(s)
- Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Roberta Astolfi
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Sanja Matić
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Mijat Božović
- Faculty of Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| |
Collapse
|
133
|
Basavaraju SM, Mudhol S, Peddha MS, Ud Din Wani S, Krishna KL, Mehdi S, Kinattingal N. Nanoemulsion-based piperine to enhance bioavailability for the treatment of LPS-induced depression-like behaviour in mice. Neurosci Lett 2023; 814:137441. [PMID: 37591360 DOI: 10.1016/j.neulet.2023.137441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
In the present study, the objective was to encapsulate piperine in nanoform by solvent evaporation method and to investigate the antidepressant-like activity of nanopiperine in lipopolysaccharide (LPS) induced depression in mice. LPS-induced depression in mice was reversed by repeated treatment of nanopiperine at dosages of 5 and 10 mg/kg body weight for 14 days. After 24 h of LPS injection, the animals were exposed to a (TST) tail suspension test and (FST) forced swim test. A sequence of behaviours was measured on days 0, 7, and 14. On day 14, the animals were euthanized, and the blood was collected; biochemical analysis was performed for the measurement of inflammatory and oxidative stress markers. Within the same period, nanopiperine improved hippocampal progenitor cell proliferation and increased brain-derived neurotrophic factor (BDNF) levels in the hippocampus of mice subjected to LPS-induced stress. In addition, the neurotransmitter estimation by the HPLC method showed that nanopiperine increased the levels of neurotransmitters. In summary, the nanopiperine showed potent neuroprotective and antidepressant activity, and stability relating to the elevated level of hippocampal BDNF level and as compared to pure piperine, the nanopiperine showed better oral bioavailability and stability.
Collapse
Affiliation(s)
- Shubha M Basavaraju
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy for Higher Education and Research, Mysore 570015, Karnataka, India
| | - Seema Mudhol
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore 570020, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore 570020, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India
| | - Kamsagara L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy for Higher Education and Research, Mysore 570015, Karnataka, India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy for Higher Education and Research, Mysore 570015, Karnataka, India.
| | - Nabeel Kinattingal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy for Higher Education and Research, Mysore 570015, Karnataka, India
| |
Collapse
|
134
|
Bölükbaşı Ş, Ürüşan H, Apaydın Yıldırım B. The effect of propolis addition to the laying-hen diet on performance, serum lipid profile and liver fat rate. Arch Anim Breed 2023; 66:225-232. [PMID: 37779600 PMCID: PMC10539770 DOI: 10.5194/aab-66-225-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
The aim of this study was to evaluate the effect of propolis (P) on performance, egg quality parameters, serum lipid profile, some liver enzymes and liver fat ratio. One-hundred-and-twenty Lohmann (LSL) laying hens were divided into five groups, and each group consisted of six subgroups. The control group was fed basal diet. The other groups were fed high-energy (HE) diets to induce fatty liver syndrome, and 0, 100, 200 and 300 mg kg- 1 of propolis were supplemented with high-energy feeds. During the 8-week trial, feed and water were given ad libitum. It was determined that egg production and feed conversion ratio were decreased in the high-energy feed group without the addition of propolis. The highest egg production was found in HE + 100 and HE + 200 mg kg- 1 of P groups. It was found that liver fat ratios were higher in the group fed with HE + 0 mg kg- 1 of P feed (P < 0.01 ) than other groups. But the addition of P decreased the liver fat rate significantly. The highest very low density lipoprotein (VLDL), triglyceride (TG) and low-density lipoprotein (LDL) values were found for the HE + 0 mg kg- 1 of P group. The addition of 200 mg kg- 1 of P to high-energy feed increased glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) values. In conclusion, high-energy feed adversely affected egg production and liver fat ratio, but the addition of 100 or 200 mg kg- 1 of propolis improved egg production and decreased liver fat ratio.
Collapse
Affiliation(s)
- Şaziye Canan Bölükbaşı
- Department of Animal Science, Faculty of Agriculture, Atatürk
University, Erzurum, Türkiye
| | - Hilal Ürüşan
- Plant and Animal Production
Department, Technical Sciences Vocational School, Erzurum, Türkiye
| | | |
Collapse
|
135
|
Sabi EM, AlAfaleq NO, Mujamammi AH, Al-Shouli ST, Althafar ZM, Bin Dahman LS, Sumaily KM. Gramine Exerts Cytoprotective Effects and Antioxidant Properties Against H2O2-Induced Oxidative Stress in HEK 293 Cells. Appl Biochem Biotechnol 2023. [DOI: https:/doi.org/10.1007/s12010-023-04693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 11/05/2023]
|
136
|
Drzymała J, Kalka J. Effects of diclofenac, sulfamethoxazole, and wastewater from constructed wetlands on Eisenia fetida: impacts on mortality, fertility, and oxidative stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:858-873. [PMID: 37633869 PMCID: PMC10533613 DOI: 10.1007/s10646-023-02690-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/28/2023]
Abstract
Soil contamination with micropollutants is an important global problem and the impact of these pollutants on living organisms cannot be underestimated. The effects of diclofenac (DCF) and sulfamethoxazole (SMX), their mixture (MIX), and wastewater containing these drugs on the mortality and reproduction of Eisenia fetida were investigated. The impact on the activities of antioxidant enzymes in earthworm cells was also assessed. Furthermore, the influence of the following parameters of the vertical flow constructed wetlands on wastewater toxicity was investigated: the dosing system, the presence of pharmaceuticals and the plants Miscanthus giganteus. The compounds and their mixture significantly affected the reproduction and mortality of earthworms. The calculated values of LC50,28 days values were 3.4 ± 0.3 mg kg-1 for DCF, 1.6 ± 0.3 mg kg-1 for SMX, and 0.9 ± 0.1 mg kg-1 for MIX. The EC50 (reproduction assay) for DCF was 1.2 ± 0.2 mg kg-1, whereas for SMX, it was 0.4 ± 0.1 mg kg-1, and for MIX, it was 0.3 ± 0.1 mg kg-1, respectively. The mixture toxicity index (MTI) was calculated to determine drug interactions. For both E. fetida mortality (MTI = 3.29) and reproduction (MTI = 3.41), the index was greater than 1, suggesting a synergistic effect of the mixture. We also observed a negative effect of wastewater (raw and treated) on mortality (32% for raw and 8% for treated wastewater) and fertility (66% and 39%, respectively) of E. fetida. It is extremely important to analyze the harmfulness of microcontaminants to organisms inhabiting natural environments, especially in the case of wastewater for irrigation of agricultural fields.
Collapse
Affiliation(s)
- Justyna Drzymała
- The Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| | - Joanna Kalka
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
137
|
Yasmeen S, Khan A, Anwar F, Akhtar MF, Yasmeen S, Shah SA. An insight into the hepatoprotective role of Velpatasvir and Sofosbuvir per se and in combination against carbon tetrachloride-induced hepatic fibrosis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95660-95672. [PMID: 37556059 DOI: 10.1007/s11356-023-29134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Hepatitis C is a global health issue. Hepatitis C Virus (HCV) induces fibrosis by redox reactions, which involve the deposition of collagen in extracellular matrix (ECM). This study aimed to examine the antifibrotic effect of direct-acting antivirals; Sofosbuvir and Velpatasvir, per se and in combination against carbon tetrachloride (CCl4)-induced fibrosis in rats. Carbon tetrachloride (intraperitoneal; 0.5 ml/kg) twice weekly for six weeks was used to induce hepatic fibrosis in rats. After two weeks of CCl4, oral administration of Sofosbuvir (20 mg/kg/d) and Velpatasvir (10 mg/kg/d) was administered to rats for the last four weeks. Liver function tests (LFTs), renal function tests (RFTs), oxidative stress markers, and the levels of TNF-a, NF-κB, and IL-6 were measured through ELISA and western blotting at the end of the study. CCl4 significantly ameliorated the values of RFTs, LFTs and lipid profiles in the diseased group, which were normalized by the SOF and VEL both alone and in combination. These drugs produced potent antioxidant effects by significantly increasing antioxidant enzymes. From the histopathology of hepatic tissues of rats treated with drugs, the antifibrotic effect was further manifested, which showed suppression of hepatic stellate cells (HSCs) in treated rats, as compared to the disease control group. The antifibrotic effect was further demonstrated by significantly decreasing the levels of TNF-a, NF-κB and IL-6 in serum and hepatic tissues of treated rats as compared to the disease control group. Sofosbuvir and Velpatasvir alone and in combination showed marked inhibition of fibrosis in the CCl4-induced non-HCV rat model, which was mediated by decreased levels of TNF-a/NF-κB and the IL-6 signaling pathway. Thus, it can be concluded that Sofosbuvir and Velpatasvir might have an antifibrotic effect that appears to be independent of their antiviral activity.
Collapse
Affiliation(s)
- Sadaf Yasmeen
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, 13 KM Raiwind Road, Lahore, Pakistan
| | - Aslam Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, 13 KM Raiwind Road, Lahore, Pakistan.
| | - Fareeha Anwar
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, 13 KM Raiwind Road, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, 13 KM Raiwind Road, Lahore, Pakistan
| | - Sidra Yasmeen
- Department of Pharmaceutics, Faculty of Pharmacy, Jinnah University for Women, Karachi, Pakistan
| | - Shafeeq Ali Shah
- Faculty of Pharmacy, Superior University, Raiwind Road, Lahore, Pakistan
| |
Collapse
|
138
|
Senat A, Kabadayi-Sahin E, Sogut I, Duymaz T, Erel O. Evaluation of Atherosclerotic Risk by Oxidative Contributors in Alcohol Use Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:526-533. [PMID: 37424420 PMCID: PMC10335906 DOI: 10.9758/cpn.22.1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 07/11/2023]
Abstract
Objective Alcohol Use Disorder (AUD) is a condition described as the inability to control or stop alcohol consumption. The patients with AUD have an increased risk of developing atherosclerosis-related diseases. The present study aimed to evaluate oxidative contributors of atherosclerotic risk factors in patients with AUD. Methods The male subjects diagnosed with AUD (n = 45) and the male subjects as control (n = 35) were enrolled in this study. All participants were undergone psychiatric evaluation and sociodemographic tests. Also, serum oxidative contributors of atherosclerosis including myeloperoxidase (MPO), ferroxidase, catalase (CAT), and lipid hydroperoxides (LOOH) were measured. Additionally, serum lipid profile tests and atherogenic indicators including atherogenic index of plasma (AIP) and non-high-density lipoprotein (HDL) cholesterol were also analyzed. Results The AUD subject had significantly elevated MPO activity and LOOH levels with decreased antioxidant capacity. AIP and non-HDL cholesterol levels, the atherogenic indicators, were also higher in AUD group compared to the control group. We found the MPO activity and LOOH levels were positively correlated with AIP, non-HDL cholesterol levels, and amount of alcohol consumption. Additionally, CAT activity was negatively correlated with duration of alcohol consumption. Conclusion Our results revealed that MPO and LOOH levels were elevated by severe alcohol intake and the atherogenic indicators, AIP and non-HDL cholesterol, were significantly correlated alcohol induced elevated oxidative risk factors. Therefore, it can be suggested that MPO activity and LOOH levels may be useful to determine jeopardy of atherosclerotic and the therapeutic interventions that reduce oxidative load could be taken into account to prevent atherosclerotic diseases before clinical manifestation.
Collapse
Affiliation(s)
- Almila Senat
- Department of Biochemistry, Istanbul Taksim Training and Research Hospital, Istanbul, Turkey
| | - Esra Kabadayi-Sahin
- Department of Psychiatry, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Ibrahim Sogut
- Department of Biochemistry, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Tomris Duymaz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Bilgi University, Istanbul, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
139
|
Zhang J, Gu B, Wu S, Liu L, Gao Y, Yao Y, Yang D, Du J, Yang C. M1 Macrophage-Biomimetic Targeted Nanoparticles Containing Oxygen Self-Supplied Enzyme for Enhancing the Chemotherapy. Pharmaceutics 2023; 15:2243. [PMID: 37765212 PMCID: PMC10534656 DOI: 10.3390/pharmaceutics15092243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Tumor hypoxia is considered one of the key causes of the ineffectiveness of various strategies for cancer treatment, and the non-specific effects of chemotherapy drugs on tumor treatment often lead to systemic toxicity. Thus, we designed M1 macrophage-biomimetic-targeted nanoparticles (DOX/CAT@PLGA-M1) which contain oxygen self-supplied enzyme (catalase, CAT) and chemo-therapeutic drug (doxorubicin, DOX). The particle size of DOX/CAT@PLGA-M1 was 202.32 ± 2.27 nm (PDI < 0.3). DOX/CAT@PLGA-M1 exhibited a characteristic core-shell bilayer membrane structure. The CAT activity of DOX/CAT@PLGA-M1 was 1000 (U/mL), which indicated that the formation of NPs did not significantly affect its enzymatic activity. And in vitro drug release showed that the cumulative release rate of DOX/CAT@PLGA-M1 was enhanced from 26.93% to 50.10% in the release medium of hydrogen peroxide, which was attributed to the reaction of CAT in the NPs. DOX/CAT@PLGA-M1 displayed a significantly higher uptake in 4T1 cells, because VCAM-1 in tumor cells interacted with specific integrin (α4 and β1), and thereby achieved tumor sites. And the tumor volume of the DOX/CAT@PLGA-M1 group was significantly reduced (0.22 cm3), which further proved the active targeting effect of the M1 macrophage membrane. Above all, a novel multifunctional nano-therapy was developed which improved tumor hypoxia and obtained tumor targeting activity.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Bing Gu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Shimiao Wu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Lin Liu
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Ying Gao
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Yucen Yao
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Degong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Juan Du
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Chunrong Yang
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| |
Collapse
|
140
|
Wu T, Liu Y, Zheng T, Dai Y, Li Z, Lin D. Fe-Based Nanomaterials and Plant Growth Promoting Rhizobacteria Synergistically Degrade Polychlorinated Biphenyls by Producing Extracellular Reactive Oxygen Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12771-12781. [PMID: 37583057 DOI: 10.1021/acs.est.3c02495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) produce extracellular reactive oxygen species (ROS) to protect plants from external stresses. Fe-based nanomaterials can potentially interact with PGPR and synergistically degrade organic pollutants, yet they have received no study. Here, we studied how the interaction between a typical PGPR (Pseudomonas chlororaphis, JD37) and Fe-based nanomaterials facilitated the degradation of 2,4,4'-trichlorobiphenyl (PCB28), by comparing the zerovalent iron of 20 nm (nZVI20), 100 nm (nZVI100), and 5 μm; iron oxide nanomaterials (α-Fe2O3, γ-Fe2O3, and Fe3O4) of ca. 20 nm; and ferrous and ferric salts. Although all Fe materials (0.1 g L-1) alone could not degrade aqueous PCB28 (0.1 mg L-1) under dark or aerobic conditions, nZVI20, nZVI100, α-Fe2O3, and Fe2+ promoted PCB28 degradation by JD37, with the half-life of PCB28 shortened from 16.5 h by JD37 alone to 8.1 h with nZVI100 cotreatment. Mechanistically, the nanomaterials stimulated JD37 to secrete phenazine-1-carboxylic acid and accelerated the NADH/NAD+ conversion, promoting O2*- generation; JD37 increased Fe(II) dissolution from the nanomaterials, facilitating *OH generation; and the ROS gradually degraded PCB28 into benzoic acid through dihydroxy substitution, oxidation to quinone, and Michael addition. These findings provide a new strategy of nanoenabled biodegradation of organic pollutants by applying Fe-based nanomaterials and PGPR.
Collapse
Affiliation(s)
- Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
- Xi'an Center, China Geological Survey, Ministry of Natural Resources, Xi'an 710119, P. R. China
| | - Yangzhi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tianying Zheng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yunbu Dai
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhongyu Li
- Xi'an Center, China Geological Survey, Ministry of Natural Resources, Xi'an 710119, P. R. China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang Ecological Civilization Academy, Anji 313300, P. R. China
| |
Collapse
|
141
|
Temirbekova SK, Polivanova OB, Sardarova II, Bastaubaeva SO, Kalashnikova EA, Begeulov MS, Ashirbekov MZ, Afanasyeva YV, Zhemchuzhina NS, Ionova NE, Statsyuk NV, Kirakosyan RN, Saleh A. Naked Oat and Fusarium culmorum (W.G.Sm.) Sacc. Responses to Growth Regulator Effects. Pathogens 2023; 12:1051. [PMID: 37624011 PMCID: PMC10459904 DOI: 10.3390/pathogens12081051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The antioxidant defense system can be stimulated by growth regulators in plants when they are under stress, such as exposure to pathogens. There are a lot of natural growth regulators on the market, but no research has been carried out yet to determine how effective they are. This field and laboratory study examines the impact of two commonly used Russian growth regulators, Crezacin and Zircon, along with artificial infection with Fusarium culmorum on the antioxidant system of naked oat. The results show that, compared to the control, Crezacin-treated plants had higher contents of low molecular weight fructose and nonenzymatic antioxidants like proline, phenolic compounds, and flavonoids. Zircon-treated plants had a lower content of proline, carbohydrates, and lower total antioxidant activity than the control plants. The obtained data show that Crezacin treatment mainly affected nonenzymatic systems of the antioxidant defense. This treatment was more successful than the Zircon application, which did not show any appreciable effectiveness and was typically associated with an improvement in oat productivity. The treatment with growth regulators and a fungal suspension performed at the flowering phase provided the best effect on the biochemical parameters and productivity of naked oats. Moreover, oat treatment with the pathogen promoted the reproductive capabilities of the plants, while growth regulators helped in avoiding infectious stress.
Collapse
Affiliation(s)
- Sulukhan K. Temirbekova
- All-Russian Research Institute of Phytopathology, Bolshye Vyazemy 143050, Russia; (I.I.S.); (N.S.Z.); (N.V.S.)
| | - Oksana B. Polivanova
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (O.B.P.); (E.A.K.); (M.S.B.); (R.N.K.); (A.S.)
| | - Irina I. Sardarova
- All-Russian Research Institute of Phytopathology, Bolshye Vyazemy 143050, Russia; (I.I.S.); (N.S.Z.); (N.V.S.)
| | - Sholpan O. Bastaubaeva
- Kazakh Scientific Research Institute of Agriculture and Plant Growing, Almalybakvillage 021601, Kazakhstan;
| | - Elena A. Kalashnikova
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (O.B.P.); (E.A.K.); (M.S.B.); (R.N.K.); (A.S.)
| | - Marat Sh. Begeulov
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (O.B.P.); (E.A.K.); (M.S.B.); (R.N.K.); (A.S.)
| | - Mukhtar Zh. Ashirbekov
- Department of Agronomy and Forestry, Faculty of Agronomy, Manash Kozybayev North Kazakhstan University, 86 Pushkin St., Petropavlovsk 150000, Kazakhstan;
| | - Yuliya V. Afanasyeva
- Federal Horticultural Center for Breeding, Agrotechnology and Nursery, Zagoryevskaya Street 4, Moscow 115598, Russia;
| | - Natalya S. Zhemchuzhina
- All-Russian Research Institute of Phytopathology, Bolshye Vyazemy 143050, Russia; (I.I.S.); (N.S.Z.); (N.V.S.)
| | - Natalya E. Ionova
- Biotechnology and Pharmacology, Department of Biochemistry, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Russia;
| | - Natalia V. Statsyuk
- All-Russian Research Institute of Phytopathology, Bolshye Vyazemy 143050, Russia; (I.I.S.); (N.S.Z.); (N.V.S.)
| | - Rima N. Kirakosyan
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (O.B.P.); (E.A.K.); (M.S.B.); (R.N.K.); (A.S.)
| | - Abdulrahman Saleh
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (O.B.P.); (E.A.K.); (M.S.B.); (R.N.K.); (A.S.)
| |
Collapse
|
142
|
Thomaz MS, Sertorio MN, Gazarini ML, Ribeiro DA, Pisani LP, Nagaoka MR. Effect of Kinins on the Hepatic Oxidative Stress in Mice Treated with a Methionine-Choline Deficient Diet. Biomedicines 2023; 11:2199. [PMID: 37626696 PMCID: PMC10452290 DOI: 10.3390/biomedicines11082199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic fatty liver is the leading cause of hepatic disease worldwide and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) due to cell injury, oxidative stress, and apoptosis. The kinins' role in the liver has been studied in experimental fibrosis, partial hepatectomy, and ischemia-reperfusion and is related to cell death and regeneration. We investigated its role in experimental NASH induced by a methionine-choline deficient diet for 4 weeks. After that, liver perfusion was performed, and bradykinin (BK) or des-Arg9-BK was infused. Cell death was evaluated by cathepsin-B and caspase-3 activity and oxidative stress by catalase (CAT), glutathione S-transferase, and superoxide dismutase (SOD) activities, as well as malondialdehyde and carbonylated proteins. In control livers, DABK increased CAT activity, which was reversed by antagonist DALBK. In the NASH group, kinins tend to decrease antioxidant activity, with SOD activity being significantly reduced by BK and DABK. Malondialdehyde levels increased in all NASH groups, but carbonylated protein did not. DABK significantly decreased cathepsin-B in the NASH group, while caspase-3 was increased by BK in control animals. Our results suggest that B1R and/or B2R activation did not induce oxidative stress but affected the antioxidant system, reducing SOD in the NASH group.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcia Regina Nagaoka
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil; (M.S.T.)
| |
Collapse
|
143
|
Patra I, Dewi AP, Fawzi M, Hussam F, Obayes IK, Jamal MA, Hammoodi HA, Abbass ZR, Dadras M, Narimanizad F. Effects of Dietary Medlar ( Mespilus germanica L.) Extract on Growth Performance, Innate Immune Characteristics, Antioxidant Status, and Responses to Crowding Stress in Rainbow Trout ( Oncorhynchus mykiss). AQUACULTURE NUTRITION 2023; 2023:7613330. [PMID: 37564114 PMCID: PMC10412272 DOI: 10.1155/2023/7613330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023]
Abstract
High stocking density is a stress factor that potentially affects physiological and immune responses. In this study, the effects of medlar (Mespilus germanica) extract (ME) supplementation on growth performance, antioxidant, immune status, and stress responses in rainbow trout (Oncorhynchus mykiss) were studied. Six hundred fish (40.19 ± 1.09 g; average fish weight ± standard error) were distributed randomly into five experimental groups (assayed in triplicates). The experimental diets were formulated as follows: 0 (T1, control), 0.5% (T2), 1% (T3), 1.5% (T4), and 2% (T4). After 60 days feeding trial, the fish were confined, and the density increased (60 kg/m3) for further 14 days. Results showed significant increases in final weight (FW), weight gain (WG), specific growth rate, and feed intake in the T4 compared to the control (P < 0.05). The feed conversion ratio (FCR) in T4 significantly decreased compared to the control (P < 0.05). Also, the treated groups showed significant improvements in catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), lysozyme (LYZ), total immunoglobulin (total Ig), respiratory burst activity (RBA), total protein, and phagocytosis (PHA) (P < 0.05). Moreover, compared with the control group, supplementation could significantly decrease glucose (GLU) and cortisol (CORT), alanine transaminase (ALT), lactate dehydrogenase (LDH), aspartate transaminase (AST), and alkaline phosphatase (ALP) (P < 0.05). After the challenge, FW and WG in all treated challenge groups were significantly improved compared to the control group (P < 0.05). FCR showed a significant decrease in all treated challenged groups compared to the control group (P < 0.05). However, malondialdehyde, CAT, GPx, SOD, LYZ, complement activity (C3 and C4), total Ig, RBA, peroxidase, and PHA in challenged treated groups were significantly increased compared to the control group (P < 0.05). All treated challenged groups showed lower ALT, LDH, AST, ALP, GLU, and CORT levels than the control group (P < 0.05). The experiment herein successfully demonstrated that dietary ME stimulated fish growth, antioxidant status, and immune responses in crowding conditions and can be recommended as beneficial feed additives for rainbow trout.
Collapse
Affiliation(s)
| | - Afiska Prima Dewi
- Department of Nutrition, Faculty of Health, Universitas Aisyah Pringsewu, Lampung, Indonesia
| | | | - Fadhil Hussam
- College of Medical Technology, Medical Lab Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Israa K. Obayes
- Medical Laboratory Techniques Department, AL-Mustaqbal University College, Hilla, Iraq
| | | | | | - Zainab R. Abbass
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mahnaz Dadras
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fariborz Narimanizad
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
144
|
Yuan N, Ding J, Wu J, Bao E, Chu Y, Hu F. A multibiomarker approach to assess the ecotoxicological effects of diclofenac on Asian clam Corbicula fluminea (O. F. Müller, 1774). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88598-88611. [PMID: 37438503 DOI: 10.1007/s11356-023-28702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Diclofenac (DCF), one of the most current and widely used nonsteroidal anti-inflammatory drugs (NSAIDs), has been frequently detected in aquatic environments worldwide. However, the ecotoxicological effects of DCF on freshwater invertebrates remain largely unknown. In the present study, Corbicula fluminea were exposed to environmentally relevant concentrations of DCF (0, 2, 20, and 200 μg/L) for 28 days, and the potential adverse effects of DCF on siphoning behavior, antioxidant responses, and apoptosis were investigated. Our results showed that the siphon efficiencies of clams were significantly suppressed under DCF stress. DCF exerted neurotoxicity via reducing the activity of acetylcholinesterase (AChE) in gills and digestive gland of C. fluminea. Exposure to DCF induced antioxidant stress and increased malondialdehyde (MDA) levels in both gills and digestive gland of C. fluminea. Transcriptional alterations of apoptosis-related genes indicated that DCF might induce apoptosis by triggering mitochondrial apoptotic pathway. These findings can improve our understanding of the ecological risk of DCF in freshwater ecosystems.
Collapse
Affiliation(s)
- Nan Yuan
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiasang Wu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Erqin Bao
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaoyao Chu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
145
|
Kryl'skii ED, Popova TN, Zhaglin DA, Razuvaev GA, Oleynik SA. SkQ1 Improves Immune Status and Normalizes Activity of NADPH-Generating and Antioxidant Enzymes in Rats with Adjuvant-Induced Rheumatoid Arthritis. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1092-1104. [PMID: 37758309 DOI: 10.1134/s0006297923080047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 10/03/2023]
Abstract
Rheumatoid arthritis (RA) is a severe systemic autoimmune inflammatory disease. Oxidative stress and excessive formation of reactive oxygen species (ROS) by the mitochondria are considered as the central pathogenetic mechanisms of connective tissue destruction and factors responsible for a highly active inflammatory process and autoimmune response. The aim of this work was to evaluate the effect of mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) on the immune status, intensity of free radical-induced oxidation, and functioning of the antioxidant system (AOS) and NADPH-generating enzymes in rats with the adjuvant-induced RA. Laboratory animals were divided into 4 groups: control group; animals with RA; animals injected intraperitoneally with SkQ1 at the doses of 1250 and 625 nmol/kg, respectively, every 24 h for 8 days starting from day 7 of RA development. Tissue samples for analysis were collected on day 15 of the experiment. Erythrocyte sedimentation rate, the content of circulating immune complexes, and the concentration of class A, M, and G immunoglobulins were determined by enzyme immunoassay. The intensity of free radical-induced oxidation was evaluated based on the assessment of the iron-induced biochemiluminescence, diene conjugate content, and activity of aconitate hydratase. Enzymatic activity and metabolite content in the tissue samples were analyzed spectrophotometrically. It was shown that the development of RA was associated with an increase in the manifestation of immune response markers and intensity of free radical-induced oxidation, as well as with disruption of the AOS functioning and activation of NADPH-generating enzymes. SkQ1 administration resulted in a dose-dependent changes in the oxidative status indicators towards the control values and normalization of the immune status parameters. SkQ1 decreased the level of mitochondrial ROS, resulting in the suppression of the inflammatory response, which might cause inhibition of free radical generation by immunocompetent cells and subsequent mitigation of the oxidative stress severity in the tissues.
Collapse
|
146
|
Folahan JT, Olorundare OE, Ajayi AM, Oyewopo AO, Soyemi SS, Adeneye AA, Okoye II, Afolabi SO, Njan AA. Oxidized dietary lipids induce vascular inflammation and atherogenesis in post-menopausal rats: estradiol and selected antihyperlipidemic drugs restore vascular health in vivo. Lipids Health Dis 2023; 22:107. [PMID: 37495992 PMCID: PMC10369757 DOI: 10.1186/s12944-023-01818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Thermoxidation of edible oil through deep fat frying results in the generation of several oxidized products that promote lipid peroxidation and ROS production when eaten. Consumption of thermoxidized oil in post-menopausal conditions where the estrogen level is low contributes to cardiovascular disease. This study evaluates the role of estradiol and antihyperlipidemic agents (AHD) in restoring the vascular health of ovariectomized (OVX) rats fed with thermoxidized palm oil (TPO) and thermoxidized soya oil (TSO) diets. METHOD A total of 10 groups of rats (n = 6) were set up for the experiment. Group I (normal control) rats were sham handled while other groups were OVX to bring about estrogen deficient post-menopausal state. Group II (OVX only) was not treated and received normal rat chow. Groups III-X were fed with either TPO or TSO diet for 12 weeks and treated with estradiol (ETD) 0.2 mg/kg/day, atorvastatin (ATV) 10 mg/kg/day, and a fixed-dose combination of ezetimibe and ATV (EZE 3 mg/kg/day + ATV 10 mg/kg/day). RESULTS Pro-atherogenic lipids levels were significantly elevated in untreated TSO and TPO groups compared to OVX and sham, resulting in increased atherogenic and Coronary-risk indices. Treatment with Estradiol and AHDs significantly reduced the total cholesterol, triglycerides, low-density lipoprotein cholesterol as well as AI and CRI compared to untreated TSO and TPO groups, whereas TSO and TPO groups showed significant elevation in these parameters compared to Group I values. Moreover, aortic TNF-α levels were extremely elevated in the untreated TSO and TPO compared to Group I. TNF-α levels were significantly reduced in rats treated with AHDs and ETD. Localized oxidative stress was indicated in the aortic tissues of TSO and TPO-fed OVX rats by increased malondialdehyde and decreased glutathione, catalase, and superoxide dismutase levels. This contributed to a depletion in aortic nitric oxide. AHDs and ETD replenished the nitric oxide levels significantly. Histological evaluation of the aorta of TSO and TPO rats revealed increased peri-adventitia fat, aortic medial hypertrophy, and aortic recanalization. These pathologic changes were less seen in AHDs and ETD rats. CONCLUSION This study suggests that ETD and AHDs profoundly attenuate oxidized lipid-induced vascular inflammation and atherogenesis through oxidative-stress reduction and inhibition of TNF-α signaling.
Collapse
Affiliation(s)
- Joy Temiloluwa Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71209, USA
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| | - Olufunke Esan Olorundare
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria.
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Adeoye Oyetunji Oyewopo
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara- State, Nigeria
| | - Sunday Sokunle Soyemi
- Department of Pathology and Forensic Medicine, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Adejuwon Adewale Adeneye
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Ikechukwu Innocent Okoye
- Department of Oral Pathology and Medicine, Faculty of Dentistry, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Saheed Olanrewaju Afolabi
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| | - Anoka Ayembe Njan
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| |
Collapse
|
147
|
Banaee M, Faraji J, Amini M, Multisanti CR, Faggio C. Rainbow trout (Oncorhynchus mykiss) physiological response to microplastics and enrofloxacin: Novel pathways to investigate microplastic synergistic effects on pharmaceuticals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106627. [PMID: 37393734 DOI: 10.1016/j.aquatox.2023.106627] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Enrofloxacin (ENR) is a broad-spectrum antibiotic widely used due to its efficacy against pathogens. Microplastics (MPs) may bind to ENR and reduce its efficiency, whereas there would be an increase in its toxicity, bioavailability, and bio-accumulation rates. Therefore, the hypothesis is that the interaction between MPs and ENR can alter their toxicity and bioavailability. The subjective of this study is to examine the toxicity of various concentrations of ENR (0, 1.35, and 2.7 ml Kg-1 diet) and MPs (0, 1000, and 2000 mg Kg-1 diet) alone and in combination for 21 days. The rainbow trout (Oncorhynchus mykiss) is an economic aquaculture species used as an experimental model in ecotoxicology studies. Blood biochemical analytes indicated that ENR and MPs combination led to increasing enzymatic activity of each biomarker, except for gamma-glutamyl-transferase (GGT). Alterations related to triglycerides, cholesterol, glucose, urea, creatinine, total protein, and albumin blood contents were observed. An elevation in the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glucose 6-phosphate dehydrogenase (G6PDH) was found in the liver. In contrast, catalase (CAT) and glutathione peroxidase (GPx) levels decreased. Furthermore, a decline was observed in the cellular total antioxidant (ANT) levels. These findings suggested that ENR and MPs could affect fish health both independently and together. Consequently, the study determined that when both ENR and MPs were present in high concentrations, the toxicity of ENR was amplified, providing further evidence of the synergistic impact of MPs on ENR toxicity.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Javad Faraji
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mohammad Amini
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
148
|
Liu K, Yu D, Xin M, Lü F, Zhang Z, Zhou J, Liu T, Liu X, Song J, Wu H. Exposure to manganese (II) chloride induces developmental toxicity, oxidative stress and inflammatory response in Marine medaka (Oryzias melastigma) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106622. [PMID: 37392728 DOI: 10.1016/j.aquatox.2023.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Manganese (Mn) is an essential metal for organisms, but high levels can induce serious toxicity. To date, the toxic mechanism of Mn to marine fish is still poorly understood. In the present study, Oryzias melastigma embryos were exposed to different concentrations of MnCl2 (0-152.00 mg/L) to investigate its effect on early development. The results showed that exposure to MnCl2 caused developmental toxicity to embryos, including increased heart rate, delayed hatching time, decreased hatching rate and increased malformation rate. MnCl2 exposure could induce oxidative stress in O. melastigma embryos, as indicated by increased the contents of malondialdehyde (MDA) and the activities of the antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT)). The heart might be an important target organ for MnCl2 because of cardiac malformations and disruption in the expression of cardiac development-related genes (ATPase, epo, fg8g, cox1, cox2, bmp4 and gata4). In addition, the expression levels of stress- (omTERT and p53) and inflammation-related genes (TNFα and il1β) were significantly up-regulated, suggesting that MnCl2 can trigger stress and inflammatory response in O. melastigma embryos. In conclusion, this study demonstrated that MnCl2 exposure can induce developmental toxicity, oxidative stress and inflammatory response in O. melastigma embryos, providing insights into the toxic mechanism of Mn to the early development of marine fish.
Collapse
Affiliation(s)
- Kaikai Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Daode Yu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Meili Xin
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Fang Lü
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Zhipeng Zhang
- Ministry of Transport, Tianjin Research Institute for Water Transport Engineering, Tianjin 300456, China
| | - Jian Zhou
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266104, China
| | - Tong Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Xiaohui Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Jingjing Song
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China.
| | - Haiyi Wu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China.
| |
Collapse
|
149
|
Zhou S, Yang Q, Song Y, Cheng B, Ai X. Effect of Copper Sulphate Exposure on the Oxidative Stress, Gill Transcriptome and External Microbiota of Yellow Catfish, Pelteobagrus fulvidraco. Antioxidants (Basel) 2023; 12:1288. [PMID: 37372018 DOI: 10.3390/antiox12061288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the potential adverse effects of the practical application of copper sulfate on yellow catfish (Pelteobagrus fulvidraco) and to provide insights into the gill toxicity induced by copper sulphate. Yellow catfish were exposed to a conventional anthelmintic concentration of copper sulphate (0.7 mg/L) for seven days. Oxidative stress biomarkers, transcriptome, and external microbiota of gills were examined using enzymatic assays, RNA-sequencing, and 16S rDNA analysis, respectively. Copper sulphate exposure led to oxidative stress and immunosuppression in the gills, with increased levels of oxidative stress biomarkers and altered expression of immune-related differentially expressed genes (DEGs), such as IL-1β, IL4Rα, and CCL24. Key pathways involved in the response included cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and Toll-like receptor signaling pathway. The 16S rDNA analysis revealed copper sulphate altered the diversity and composition of gill microbiota, as evidenced by a significant decrease in the abundance of Bacteroidotas and Bdellovibrionota and a significant increase in the abundance of Proteobacteria. Notably, a substantial 8.5-fold increase in the abundance of Plesiomonas was also observed at the genus level. Our findings demonstrated that copper sulphate induced oxidative stress, immunosuppression, and gill microflora dysbiosis in yellow catfish. These findings highlight the need for sustainable management practices and alternative therapeutic strategies in the aquaculture industry to mitigate the adverse effects of copper sulphate on fish and other aquatic organisms.
Collapse
Affiliation(s)
- Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Yi Song
- Chinese Academy of Fishery Sciences, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
- Key Laboratory of Aquatic Product Quality and Safety Control, Ministry of Agriculture, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
| | - Bo Cheng
- Chinese Academy of Fishery Sciences, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
- Key Laboratory of Aquatic Product Quality and Safety Control, Ministry of Agriculture, No.150, Qingta West Road, Fengtai District, Beijing 100141, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| |
Collapse
|
150
|
Nanas I, Dokou S, Athanasiou LV, Dovolou E, Chouzouris TM, Vasilopoulos S, Grigoriadou K, Giannenas I, Amiridis GS. Feeding Flaxseed and Lupins during the Transition Period in Dairy Cows: Effects on Production Performance, Fertility and Biochemical Blood Indices. Animals (Basel) 2023; 13:1972. [PMID: 37370482 DOI: 10.3390/ani13121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Flaxseed and lupin seed were offered as an alternative dietary approach in dairy cows, through the partial substitution of soybean meal. Milk production and fertility traits were investigated. A total of 330 animals were allocated into two groups, treated (n = 176) and control (n = 154). From each group, 30 animals were selected for hematological and cytological studies. The experimental feeding period lasted for 81 days (25 days prepartum and 56 days postpartum). The control ration (group C) contained corn, barley, soybean meal, rapeseed cake, corn silage and lucerne hay; whereas, in the treatment group (group T), 50% of the soybean meal was replaced by an equal mixture of flaxseed and lupins. The two rations were formulated to be isonitrogenous and isoenergetic. Milk samples were analyzed for chemical composition, somatic cell count (SCC) content and total colony forming units (CFU). Blood samples were collected, and serum was analyzed for non-esterified fatty acids (NEFA), acute phase proteins (haptoglobin and serum amyloid) and lipid oxidation indices, namely thiobarbituric-acid-reactive substances (TBARS) and catalase activity. To assess polymorphonuclear neutrophils (PMN) numbers, endometrial samples from each cow were collected on days 21 and 42. No difference was recorded between groups in milk yield (p > 0.05). In multiparous cows, NEFA (mMol/L) concentrations were significantly lower in group T than in group C on day 14 (p > 0.009) and on day 42 (p = 0.05), while no difference was detected in the group of primiparous cows. At all time points, serum TBARS and catalase values were similar in both groups (p > 0.05). Multiparous cows in group T expressed the first postpartum estrus and conceived earlier than cows in group C (p ≤ 0.05). Between days 21 to 42 postpartum, the PMN reduction rate was higher in group T animals (p ≤ 0.05). Acute phase protein levels were in general lower in group T animals, and at specific time points differed significantly from group C (p ≤ 0.05). It was concluded that the partial replacement of soybean meal by flaxseed and lupins had no negative effect on milk yield or milk composition, and improved cow fertility; which, along with the lower cost of flaxseed and lupins mixture, may increase milk production profitability.
Collapse
Affiliation(s)
- Ioannis Nanas
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - Stella Dokou
- Laboratory of Nutrition, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Labrini V Athanasiou
- Department of Medicine, Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - Eleni Dovolou
- Laboratory of Reproduction, Department of Animal Science, University of Thessaly, 41223 Larissa, Greece
| | - Thomas M Chouzouris
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - Stelios Vasilopoulos
- Laboratory of Nutrition, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katerina Grigoriadou
- ELVIZ Hellenic Feedstuff Industry S.A., 59300 Plati, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-DEMETER, 57001 Thermi, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios S Amiridis
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|