101
|
Sakurai A, Morita SY, Wakita K, Deharu Y, Nakano M, Handa T. Effects of cholesterol in chylomicron remnant models of lipid emulsions on apoE-mediated uptake and cytotoxicity of macrophages. J Lipid Res 2005; 46:2214-20. [PMID: 15930510 DOI: 10.1194/jlr.m500167-jlr200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chylomicron remnants have been suggested to be involved in the development of atherosclerosis. To investigate the mechanisms of chylomicron remnant-induced atherosclerosis, we prepared cholesterol (Chol)-containing emulsion particles as models for chylomicron remnants. Chol markedly increased the apolipoprotein E (apoE) binding maximum of emulsions without changing the binding affinity and thereby promoted emulsion uptake by J774 macrophages. Fluorescence measurements showed that Chol increased acyl chain order and head group hydration of the surface phospholipid (PL) layer of emulsions. The binding maximum of apoE was closely correlated with the hydration and the increase in the PL head group separation at the emulsion surface. From experiments using inhibitors for lipoprotein receptors, heparan sulfate proteoglycans and low density lipoprotein receptor-related protein were found to be the major contributors to the uptake of Chol-containing emulsions. Trypan blue dye exclusion revealed that the uptake of Chol-containing emulsions induced cytotoxicity to J774 macrophages. This study proposes a mechanism of atherosclerosis induced by chylomicron remnants.
Collapse
Affiliation(s)
- Atsushi Sakurai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
102
|
Berthier A, Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Pais de Barros JP, Monier S, Gambert P, Lizard G, Néel D. 7-Ketocholesterol-induced apoptosis. Involvement of several pro-apoptotic but also anti-apoptotic calcium-dependent transduction pathways. FEBS J 2005; 272:3093-104. [PMID: 15955068 DOI: 10.1111/j.1742-4658.2005.04723.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxysterols, and particularly 7-ketocholesterol, appear to be strongly involved in the physiopathology of atherosclerosis. These molecules are suspected to be cytotoxic to the cells of the vascular wall and monocytes/macrophages, particularly by inducing apoptosis. Previous studies have demonstrated that 7-ketocholesterol-induced apoptosis is triggered by a sustained increase of cytosolic-free Ca2+, which elicits the mitochondrial pathway of apoptosis by activation of the calcium-dependent phosphatase calcineurin, leading to dephosphorylation of the 'BH3 only' protein BAD. However, thorough study of the results suggests that other pathways are implicated in 7-ketocholesterol-induced cytotoxicity. In this study, we demonstrate the involvement of two other calcium-dependent pathways during 7-ketocholesterol-induced apoptosis. The activation of the MEK-->ERK pathway by the calcium-dependent tyrosine kinase PYK 2, a survival pathway which delays apoptosis as shown by the use of the MEK inhibitor U0126, and a pathway involving another pro-apoptotic BH3 only protein, Bim. Indeed, 7-ketocholesterol treatment of human monocytic THP-1 cells induces the release of Bim-LC8 from the microtubule-associated dynein motor complex, and its association with Bcl-2. Therefore, it appears that 7-ketocholesterol-induced apoptosis is a complex phenomenon resulting from calcium-dependent activation of several pro-apoptotic pathways and also one survival pathway.
Collapse
Affiliation(s)
- Arnaud Berthier
- INSERM U498--Métabolisme des lipoprotéines et interactions vasculaires, Dijon Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Freeman NE, Rusinol AE, Linton M, Hachey DL, Fazio S, Sinensky MS, Thewke D. Acyl-coenzyme A:cholesterol acyltransferase promotes oxidized LDL/oxysterol-induced apoptosis in macrophages. J Lipid Res 2005; 46:1933-43. [PMID: 15995174 PMCID: PMC2768430 DOI: 10.1194/jlr.m500101-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
7-Ketocholesterol (7KC) is a cytotoxic component of oxidized low density lipoproteins (OxLDLs) and induces apoptosis in macrophages by a mechanism involving the activation of cytosolic phospholipase A2 (cPLA2). In the current study, we examined the role of ACAT in 7KC-induced and OxLDL-induced apoptosis in murine macrophages. An ACAT inhibitor, Sandoz 58-035, suppressed 7KC-induced apoptosis in P388D1 cells and both 7KC-induced and OxLDL-induced apoptosis in mouse peritoneal macrophages (MPMs). Furthermore, compared with wild-type MPMs, ACAT-1-deficient MPMs demonstrated significant resistance to both 7KC-induced and OxLDL-induced apoptosis. Macrophages treated with 7KC accumulated ACAT-derived [14C]cholesteryl and [3H]7-ketocholesteryl esters. Tandem LC-MS revealed that the 7KC esters contained primarily saturated and monounsaturated fatty acids. An inhibitor of cPLA2, arachidonyl trifluoromethyl ketone, prevented the accumulation of 7KC esters and inhibited 7KC-induced apoptosis in P388D1 cells. The decrease in 7KC ester accumulation produced by the inhibition of cPLA2 was reversed by supplementing with either oleic or arachidonic acid (AA); however, only AA supplementation restored the induction of apoptosis by 7KC. These results suggest that 7KC not only initiates the apoptosis pathway by activating cPLA2, as we have reported previously, but also participates in the downstream signaling pathway when esterified by ACAT to form 7KC-arachidonate.
Collapse
Affiliation(s)
- Natalie E Freeman
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0581, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Svensson PA, Asea A, Englund MCO, Bausero MA, Jernås M, Wiklund O, Ohlsson BG, Carlsson LMS, Carlsson B. Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages. Atherosclerosis 2005; 185:32-8. [PMID: 15993884 PMCID: PMC1762098 DOI: 10.1016/j.atherosclerosis.2005.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 05/13/2005] [Accepted: 05/13/2005] [Indexed: 12/27/2022]
Abstract
Lipid accumulation and inflammation are key hallmarks of the atherosclerotic plaque and macrophage uptake of oxidized low-density lipoprotein (oxLDL) is believed to drive these processes. Initial experiments show that supernatants from oxLDL treated macrophages could induce IL-1beta production in naïve macrophages. To search for potential paracrine mediators that could mediate this effect a DNA microarray scan of oxLDL treated human macrophages was performed. This analysis revealed that oxLDL induced activation of heat shock protein (HSP) expression. HSPs have been implicated in the development of atherosclerosis, but the exact mechanisms for this is unclear. Extracellular heat shock protein 70 (HSP70) has been shown to elicit a pro-inflammatory cytokine response in monocytes and could therefore be a potential paracrine pro-inflammatory mediator. After 24 h of oxLDL treatment there was a significant increase of HSP70 concentrations in supernatants from oxLDL treated macrophages (oxLDLsup) compared to untreated controls (P<0.05). OxLDLsup could induce both interleukin (IL)-1beta and IL-12 secretion in naïve macrophages. We also demonstrate that the effect of oxLDLsup on cytokine production and release could be blocked by inhibition of HSP70 transcription or secretion or by the use of HSP70 neutralizing antibodies. This suggests that extracellular HSP70 can mediate pro-inflammatory changes in macrophages in response to oxLDL.
Collapse
Affiliation(s)
- Per-Arne Svensson
- Research Centre for Endocrinology and Metabolism, Division of Body Composition and Metabolism, Department of Internal Medicine, Vita straket 12, Sahlgrenska Academy, Göteborg University, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Yaraei K, Campbell LA, Zhu X, Liles WC, Kuo CC, Rosenfeld ME. Chlamydia pneumoniae augments the oxidized low-density lipoprotein-induced death of mouse macrophages by a caspase-independent pathway. Infect Immun 2005; 73:4315-22. [PMID: 15972525 PMCID: PMC1168605 DOI: 10.1128/iai.73.7.4315-4322.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/03/2005] [Accepted: 02/28/2005] [Indexed: 11/20/2022] Open
Abstract
Chlamydia pneumoniae is a common respiratory pathogen that is associated with an increased risk of cardiovascular disease. However, the mechanisms by which C. pneumoniae contributes to cardiovascular disease have not been determined yet. C. pneumoniae infection may accelerate the death of cells within atherosclerotic lesions and contribute to the formation of unstable lesions. To test this hypothesis, the impact of C. pneumoniae infection on the death of lipid-loaded mouse macrophages was investigated. It was observed that RAW 264.7 cells are highly susceptible to the toxic effects of oxidized low-density lipoprotein (LDL) and exhibit markers of cell death within 24 h of treatment with as little as 5 microg/ml oxidized LDL. Subsequent infection with either live C. pneumoniae or heat-killed or UV-inactivated C. pneumoniae at a low multiplicity of infection for 24 to 72 h stimulated both additional binding of annexin V and the uptake of propidium iodide. Thus, C. pneumoniae augments the effects of oxidized LDL on cell death independent of a sustained infection. However, unlike oxidized LDL, C. pneumoniae infection does not activate caspase 3 or induce formation of the mitochondrial transition pore or the fragmentation of DNA, all of which are classical markers of apoptosis. Furthermore, primary bone marrow macrophages isolated from mice deficient in Toll-like receptor 2 (TLR-2) but not TLR-4 are resistant to C. pneumoniae-induced death. These data suggest that C. pneumoniae kills cells by a caspase-independent pathway and that the process is potentially mediated by activation of TLR-2.
Collapse
Affiliation(s)
- Kambiz Yaraei
- Department of Pathobiology, Box 353410, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
106
|
Zhou J, Lhoták S, Hilditch BA, Austin RC. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 2005; 111:1814-21. [PMID: 15809369 DOI: 10.1161/01.cir.0000160864.31351.c1] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Apoptotic cell death contributes to atherosclerotic lesion instability, rupture, and thrombogenicity. Recent findings suggest that free cholesterol (FC) accumulation in macrophages induces endoplasmic reticulum (ER) stress/unfolded protein response (UPR) and apoptotic cell death; however, it is not known at what stage of lesion development the UPR is induced in macrophages or whether a correlation exists between UPR activation, FC accumulation, and apoptotic cell death. METHODS AND RESULTS Aortic root sections from apolipoprotein E-deficient (apoE-/-) mice at 9 weeks of age (early-lesion group) or 23 weeks of age (advanced-lesion group) fed a standard chow diet were examined for markers of UPR activation (GRP78, phospho-PERK, CHOP, and TDAG51), apoptotic cell death (TUNEL and cleaved caspase-3), and lipid accumulation (filipin and oil red O). UPR markers were dramatically increased in very early intimal macrophages and in macrophage foam cells from fatty streaks and advanced atherosclerotic lesions. Although accumulation of FC was observed in early-lesion-resident macrophage foam cells, no evidence of apoptotic cell death was observed; however, UPR activation, FC accumulation, and apoptotic cell death were observed in a small percentage of advanced-lesion-resident macrophage foam cells. CONCLUSIONS UPR activation occurs at all stages of atherosclerotic lesion development. The additional finding that macrophage apoptosis did not correlate with UPR activation and FC accumulation in early-lesion-resident macrophages suggests that activation of other cellular mediators and/or pathways are required for apoptotic cell death.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Pathology and Molecular Medicine, McMaster University, and the Henderson Research Centre, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
107
|
Asmis R, Begley JG, Jelk J, Everson WV. Lipoprotein aggregation protects human monocyte-derived macrophages from OxLDL-induced cytotoxicity. J Lipid Res 2005; 46:1124-32. [PMID: 15772426 DOI: 10.1194/jlr.m400485-jlr200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative modifications render low density lipoprotein cytotoxic and enhance its propensity to aggregate and fuse into particles similar to those found in atherosclerotic lesions. We showed previously that aggregation of oxidized LDL (OxLDL) promotes the transformation of human macrophages into lipid-laden foam cells (Asmis, R., and J. Jelk. 2000. Large variations in human foam cell formation in individuals. A fully autologous in vitro assay based on the quantitative analysis of cellular neutral lipids. Atherosclerosis. 148: 243-253). Here, we tested the hypothesis that aggregation of OxLDL enhances its clearance by human macrophages and thus may protect macrophages from OxLDL-induced cytotoxicity. We found that increased aggregation of OxLDL correlated with decreased macrophage injury. Using 3H-labeled and Alexa546-labeled OxLDL, we found that aggregation enhanced OxLDL uptake and increased cholesteryl ester accumulation but did not alter free cholesterol levels in macrophages. Acetylated LDL was a potent competitor of aggregated oxidized LDL (AggOxLDL) uptake, suggesting that scavenger receptor A plays an important role in the clearance of AggOxLDL. Inhibitors of actin polymerization, cytochalasin B, cytochalasin D, and latrunculin A, also prevented AggOxLDL uptake and restored OxLDL-induced cytotoxicity. This suggests that OxLDL-induced macrophage injury does not require OxLDL uptake and may occur on the cell surface. Our data demonstrate that aggregation of cytotoxic OxLDL enhances its clearance by macrophages without damage to the cells, thus allowing macrophages to avoid OxLDL-induced cell injury.
Collapse
Affiliation(s)
- Reto Asmis
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536-0200, USA.
| | | | | | | |
Collapse
|
108
|
Akishima Y, Akasaka Y, Ishikawa Y, Lijun Z, Kiguchi H, Ito K, Itabe H, Ishii T. Role of macrophage and smooth muscle cell apoptosis in association with oxidized low-density lipoprotein in the atherosclerotic development. Mod Pathol 2005; 18:365-73. [PMID: 15319783 DOI: 10.1038/modpathol.3800249] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To examine the role of the apoptosis of macrophages and smooth muscle cells in the development of atherosclerosis, human aortic tissues with intimal lesions were immunostained with antibodies against terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL), single-stranded DNA (clone F7-26), and active caspase-3. Apoptotic cells were detected in the intima using both TUNEL and single-stranded DNA, however, the latter method was the more sensitive one for detecting apoptotic cells in the early stages of atherosclerosis. The number of apoptotic cells increased as the disease progressed. It implies that the apoptosis of intimal cells is involved in the formation of atherosclerotic lesions. In addition, quantitative analyses of the cell types undergoing apoptosis using double-immunostaining revealed that the susceptibility of macrophages and smooth muscle cells to apoptosis was greater specifically in atheroma than in the other atherosclerotic lesions, and macrophages were more susceptible to apoptosis than smooth muscle cells. The frequency and spatial distribution of oxidized low-density lipoprotein (oxLDL) (FOH1a/DLH3)-positive cells were examined by immunohistochemistry, and the results resembled those of apoptotic cells. The number of oxLDL-positive cells in the intima significantly correlated with the susceptibility of smooth muscle cells, but not with that of macrophages, to apoptosis. These results suggest that oxLDL affects the apoptosis of smooth muscle cells during the atherosclerotic development.
Collapse
Affiliation(s)
- Yuri Akishima
- Department of Pathology, Toho University, School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Kavurma MM, Bhindi R, Lowe HC, Chesterman C, Khachigian LM. Vessel wall apoptosis and atherosclerotic plaque instability. J Thromb Haemost 2005; 3:465-72. [PMID: 15748235 DOI: 10.1111/j.1538-7836.2005.01120.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of death in the industrialized world. Most cardiovascular deaths result from acute coronary syndromes, including unstable angina pectoris and acute myocardial infarction. Coronary syndromes often arise from acute coronary thrombosis, itself commonly a result of disruption or rupture of the fibrous cap of a lipid-laden atherosclerotic plaque. Despite this huge clinical burden of atherosclerotic plaque instability, our understanding of the molecular mechanisms mediating atherosclerotic plaque disruption and rupture, at a cellular level, remains limited. Placed in a clinical context, this review discusses our current understanding of the molecular basis for atherosclerotic plaque instability, with particular emphasis on the process of apoptosis-or programmed cell death-seen increasingly as playing a key role in a number of cell types within the vessel wall.
Collapse
Affiliation(s)
- M M Kavurma
- Center for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
110
|
Nhan TQ, Liles WC, Schwartz SM. Role of caspases in death and survival of the plaque macrophage. Arterioscler Thromb Vasc Biol 2005; 25:895-903. [PMID: 15718496 DOI: 10.1161/01.atv.0000159519.07181.33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review considers the role of macrophage cell death in formation of the necrotic core and in plaque progression, and lists many of the possible mediators of macrophage cell death. Among these, perhaps the most cited toxic agent is oxidized low-density lipoprotein (oxLDL). Whereas oxLDL can kill macrophage, and whereas the form of death is morphologically apoptotic, caspase inhibitors appear to be ineffective in preventing death. This finding is consistent with recent literature showing how the canonical caspase pathways are used for physiological cellular functions other than cell death. Plaque macrophages appear to be among the cells with this nonapoptotic signaling function for activated caspases. In many of the other cell types, caspase activation appears to play a critical role in cell differentiation. We discuss possible functions of plaque macrophage using the nondeath caspase pathway. Recent literature shows that physiological and developmental functions of many cell types require active caspases without progressing to cell death. We discuss the role of macrophage cell death in plaque progression, possible mediators of macrophage cell death, and the possible functions of plaque macrophage using the nondeath caspase pathway.
Collapse
Affiliation(s)
- Thomas Q Nhan
- Department of Pathology, University of Washington, Seattle, Wash 98195-4717, USA
| | | | | |
Collapse
|
111
|
Hansson M, Wikvall K, Babiker A. Regulation of sterol 27-hydroxylase in human monocyte-derived macrophages: up-regulation by transforming growth factor β1. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1687:44-51. [PMID: 15708352 DOI: 10.1016/j.bbalip.2004.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 10/04/2004] [Accepted: 11/03/2004] [Indexed: 01/22/2023]
Abstract
Regulatory mechanisms for human CYP27A1 enzyme have not yet been fully investigated. Our approach was to add different hormones and cytokines to cultured human monocyte-derived macrophages, and assess the effects on the CYP27A1 by measuring the production of 27-hydroxylated cholesterol in the media. Of the different hormones and cytokines tested, only transforming growth factor beta1 (TGF-beta1) had a clear effect on CYP27A1. Further experiments showed a significant increase in 27-hydroxylated cholesterol products (27-hydroxycholesterol and 3beta-hydroxy-5-cholestenoic acid). A concomitant increase in CYP27A1 mRNA levels was also seen and this positive effect was confirmed using a human CYP27A1 luciferase reporter gene expressed in HepG2 cells. Experiments with progressive deletion/luciferase reporter gene constructs indicated that a TGF-beta1 responsive sequence might be localized in a region about 400 bp upstream of the CYP27A1 translation start. The possibility is discussed that induction of CYP27A1 by TGF-beta1 may be responsible for some of the anti-atherogenic properties of this cytokine.
Collapse
Affiliation(s)
- Magnus Hansson
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital at Huddinge, SE-141 86 Stockholm, Sweden
| | | | | |
Collapse
|
112
|
Chung BH, Franklin F, Liang P, Doran S, Cho BHS, Curcio CA. Phosphatidylcholine-rich acceptors, but not native HDL or its apolipoproteins, mobilize cholesterol from cholesterol-rich insoluble components of human atherosclerotic plaques. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:76-89. [PMID: 15749058 DOI: 10.1016/j.bbalip.2004.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 01/21/2004] [Accepted: 12/02/2004] [Indexed: 10/26/2022]
Abstract
To examine the potential of high density lipoproteins (HDL) to ameliorate atherosclerotic plaques in vivo, we examined the ability of native HDL, lipid-free HDL apolipoproteins (apo HDL), cholesterol-free discoidal reconstituted HDL (R-HDL) comprised of apo HDL and phosphatidylcholine (PC) and PC liposomes to release cholesterol from cholesterol-rich insoluble components of plaques (ICP) isolated from atherosclerotic human aorta. Isolated ICP had a free cholesterol (FC) to phospholipid (PL) mass ratio (0.8-3.1) and a sphingomyelin (SPM) to PC mass ratio (1.2-4.2) that exceeded those of plasma membranes of cultured cells. Surprisingly, native HDL and its apolipoproteins were not able to release cholesterol from ICP. However, R-HDL and PC liposomes were effectively released cholesterol from ICP. The release of ICP cholesterol by R-HDL was dose-dependent and accompanied by the transfer of > 8 x more PC in the reverse direction (i.e., from R-HDL to ICP), resulting in a marked enrichment of ICP with PC. Compared to R-HDL, PC liposomes were significantly less effective in releasing cholesterol from ICP but were somewhat more effective in enriching ICP with PC. Native HDL was minimally effective in enriching ICP with PC, but became effective after prior in vitro enrichment of HDL with PC from multilamellar PC liposomes. The enrichment of ICP with PC resulted in the dissolution of cholesterol crystals on ICP and allowed the removal of ICP cholesterol by apo HDL and plasma. Our study revealed that the removal of cholesterol from ICP in vivo will be possible through a change in the level, composition, and physical state of ICP lipids mediated by PC-enriched HDL.
Collapse
Affiliation(s)
- Byung-Hong Chung
- Gerontology Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
113
|
Briggs RC, Atkinson JB, Miranda RN. Variable expression of human myeloid specific nuclear antigen MNDA in monocyte lineage cells in atherosclerosis. J Cell Biochem 2005; 95:293-301. [PMID: 15778972 DOI: 10.1002/jcb.20435] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MNDA (human myeloid nuclear differentiation antigen) is expressed in specific lineages of hematopoietic cells and most notably at high levels in macrophages at sites of inflammation. MNDA and related proteins appear to modulate the activity of transcription factors and in some cases have a role in mediating cell death. The expression of MNDA was characterized in normal and diseased human aorta. MNDA positive cells double labeled for CD68 in all tissue examined. Twenty percent of normal aortas were negative or contained rare MNDA positive cells while other normal aorta contained more frequent positive cells. In atherosclerotic aorta, the number of MNDA positive cells increased with progression of disease. In normal and early lesions, MNDA positive cells adjacent to the endothelium generally displayed a strong MNDA reactivity associated with small amount of CD68 reactive cytoplasm. In the same sections, MNDA positive cells at increasing distances from the endothelium displayed lower MNDA reactivity and were associated with larger amounts of CD68 reactive cytoplasm. Foam cells in fatty streaks exhibited MNDA reactivity that ranged from strong to weak or negative. In advanced lesions, cells in the shoulder and those in fibrous tissue surrounding an atheroma were highly reactive for MNDA. However, only a fraction of the CD68 positive foam cells near the lipid core under the cap and shoulder contained MNDA reactivity. The variation in MNDA expression appeared to change with phenotypic specialization of monocytes in atherosclerosis consistent with its association with inflammation and suspected roles in regulating gene expression or in mediating cell death.
Collapse
Affiliation(s)
- Robert C Briggs
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
114
|
Renou P. Athérome et auto-immunité. Presse Med 2005; 34:57-61. [PMID: 15685100 DOI: 10.1016/s0755-4982(05)83885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Philippe Renou
- Département de médecine interne et onco-hématologie, Centre hospitalier, Le Mans.
| |
Collapse
|
115
|
Liu J, Thewke DP, Su YR, Linton MF, Fazio S, Sinensky MS. Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 2004; 25:174-9. [PMID: 15499039 PMCID: PMC2649706 DOI: 10.1161/01.atv.0000148548.47755.22] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The majority of apoptotic cells in atherosclerotic lesions are macrophages. However, the pathogenic role of macrophage apoptosis in the development of atherosclerosis remains unclear. Elevated expression of Bax, one of the pivotal proapoptotic proteins of the Bcl-2 family, has been found in human atherosclerotic plaques. Activation of Bax also occurs in free cholesterol-loaded and oxysterol-treated mouse macrophages. In this study, we examined the effect of Bax deficiency in bone marrow-derived leukocytes on the development of atherosclerosis in low-density lipoprotein receptor-null (LDLR-/-) mice. METHODS AND RESULTS Fourteen 8-week-old male LDLR-/- mice were lethally irradiated and reconstituted with either wild-type (WT) C57BL6 or Bax-null (Bax-/-) bone marrow. Three weeks later, the mice were challenged with a Western diet for 10 weeks. No differences were found in the plasma cholesterol level between the WT and Bax-/- group. However, quantitation of cross sections from proximal aorta revealed a 49.2% increase (P=0.0259) in the mean lesion area of the Bax-/- group compared with the WT group. A 53% decrease in apoptotic macrophages in the Bax-/- group was found by TUNEL staining (P<0.05). CONCLUSIONS The reduction of apoptotic activity in macrophages stimulates atherosclerosis in LDLR-/- mice, which is consistent with the hypothesis that macrophage apoptosis suppresses the development of atherosclerosis.
Collapse
Affiliation(s)
- June Liu
- Department of Biochemistry and Molecular Biology, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | |
Collapse
|
116
|
Muralidhar B, Carpenter KLH, Müller K, Skepper JN, Arends MJ. Potency of arachidonic acid in polyunsaturated fatty acid-induced death of human monocyte-macrophages: implications for atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 2004; 71:251-62. [PMID: 15301796 DOI: 10.1016/j.plefa.2004.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 03/17/2004] [Indexed: 12/23/2022]
Abstract
Evidence suggests that oxidation of LDL is involved in the progression of atherosclerosis by inducing apoptosis in macrophages. Polyunsaturated fatty acids (PUFAs) are prominent components of LDL and are highly peroxidisable. We therefore tested PUFAs for induction of apoptosis in human monocyte-macrophages in vitro. Arachidonic acid (AA) induced the highest levels of apoptosis followed by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), despite DHA and EPA being more peroxidisable than AA. alpha-Linolenic acid induced lower levels of apoptosis. Linoleic and oleic acids were innocuous. Results of experiments with AA products and enzyme inhibitors suggest roles for peroxidation, cyclooxygenase and lipoxygenase in AA-induced apoptosis. Our results further suggest activation of PPARgamma by AA and DHA associated with apoptosis induction. These findings may be relevant to potential mechanisms of fatty acid influences on plaques and may suggest strategies for combating atherosclerosis progression.
Collapse
Affiliation(s)
- Balaji Muralidhar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | |
Collapse
|
117
|
Abstract
The 2 major general concepts about the cell biology of atherogenesis, growth of smooth muscle cells, and lipid accumulation in macrophages, ie, foam cell formation, have not been able to satisfactorily explain the genesis of acute coronary syndromes. Rather, the basic pathology behind the acute atherothrombotic events relates to erosion and rupture of unstable coronary plaques. At the cellular level, we now understand that a switch from cellular growth to cellular death, notably apoptosis, could be involved in turning at least some types of atherosclerotic plaques unstable. Because intimal cells require a proper matrix environment for normal function and survival, the vulnerability of an atherosclerotic plaque may critically depend on the integrity of the pericellular matrix of the plaque cells. In vitro studies have revealed that plaque-infiltrating inflammatory cells, such as macrophages, T-lymphocytes, and mast cells, by secreting a variety of proteases capable of degrading pericellular matrix components, induce death of endothelial cells and smooth muscle cells, and so provide a mechanistic explanation for inflammation-dependent plaque erosion and rupture. Thus, a novel link between inflammation and acute coronary syndromes is emerging. For a more explicit understanding of the role of proteases released by inflammatory cells in the conversion of a clinically silent plaque into a dangerous and potentially killing plaque, animal models of plaque erosion and rupture need to be established.
Collapse
|
118
|
Tabas I. Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell Death Differ 2004; 11 Suppl 1:S12-6. [PMID: 15143347 DOI: 10.1038/sj.cdd.4401444] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- I Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
119
|
Carpenter KLH, Challis IR, Arends MJ. Mildly oxidised LDL induces more macrophage death than moderately oxidised LDL: roles of peroxidation, lipoprotein-associated phospholipase A2and PPARγ. FEBS Lett 2003; 553:145-50. [PMID: 14550563 DOI: 10.1016/s0014-5793(03)01007-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Death of macrophages and smooth muscle cells (SMC) can lead to progression of atherosclerosis. Mildly oxidised low-density lipoprotein (mildly-oxLDL) induced more overall death and apoptosis than moderately oxidised LDL, in human monocyte-macrophages (HMM). Mildly-oxLDL also induced more overall death in human SMC than did moderately-oxLDL. Mildly-oxLDL contained more hydroperoxides, but less oxysterol, malondialdehyde and negative charge than moderately-oxLDL. Specific inhibition of lipoprotein-associated phospholipase A(2) (by SB222657) diminished death induction in HMM by both oxLDL types. Peroxisome proliferator-activated receptor gamma (PPARgamma) antagonist (GW9662) and agonist (ciglitazone) experiments suggested that non-hydrolysed, oxidised phospholipids in oxLDL activate PPARgamma as a cellular defence mechanism. These results may be relevant to LDL oxidation within atherosclerotic plaques and may suggest strategies for combating atherosclerosis progression.
Collapse
|
120
|
Feng B, Zhang D, Kuriakose G, Devlin CM, Kockx M, Tabas I. Niemann-Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis. Proc Natl Acad Sci U S A 2003; 100:10423-8. [PMID: 12923293 PMCID: PMC193577 DOI: 10.1073/pnas.1732494100] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2003] [Indexed: 12/30/2022] Open
Abstract
Macrophage death in advanced atherosclerotic lesions leads to lesional necrosis and likely promotes plaque instability, a precursor of acute vascular events. Macrophages in advanced lesions accumulate large amounts of unesterified cholesterol, which is a potent inducer of macrophage apoptosis. We have shown recently that induction of apoptosis in cultured macrophages requires cholesterol trafficking to the endoplasmic reticulum (ER). Moreover, macrophages from mice with a heterozygous mutation in the cholesterol-trafficking protein Npc1 have a selective defect in cholesterol trafficking to the ER and are protected from cholesterol-induced apoptosis. The goal of the present study was to test the importance of intracellular cholesterol trafficking in atherosclerotic lesional macrophage death by comparing lesion morphology in Npc1+/+;Apoe-/- and Npc1+/-;Apoe-/- mice. Although advanced lesions in Npc1+/+;Apoe-/- mice had extensive acellular areas that were rich in unesterified cholesterol and macrophage debris, the lesions of Npc1+/-;Apoe-/- mice were substantially more cellular and less necrotic. Moreover, compared with Npc1+/-;Apoe-/- lesions, Npc1+/+;Apoe-/- lesions had a greater number of large, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling)-positive areas surrounding necrotic areas, indicative of macrophage apoptosis. These differences were observed despite similar total lesion area and similar plasma lipid levels in the two groups of mice. These data provide in vivo evidence that intact intracellular cholesterol trafficking is important for macrophage apoptosis in advanced atherosclerotic lesions and that the ER-based model of cholesterol-induced cytotoxicity is physiologically relevant. Moreover, by showing that lesional necrosis can be diminished by a subtle defect in intracellular trafficking, these findings suggest therapeutic strategies to stabilize atherosclerotic plaques.
Collapse
Affiliation(s)
- Bo Feng
- Department of Medicine, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
121
|
Gargalovic P, Dory L. Cellular apoptosis is associated with increased caveolin-1 expression in macrophages. J Lipid Res 2003; 44:1622-32. [PMID: 12777465 DOI: 10.1194/jlr.m300140-jlr200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophage apoptosis is an important factor in determining the efficiency of the immune response, atherosclerotic lesion stability, and clearance of aged cells by phagocytosis. The involvement of caveolin-1 in the regulation of apoptosis has been previously suggested in fibroblasts and epithelial cells. Here we show that treatment of thioglycollate-elicited mouse peritoneal macrophages with various unrelated apoptotic agents, including simvastatin, camptothecin, or glucose deprivation, is associated with a specific and large increase in caveolin-1 expression. In contrast, caveolin-2 levels remain unaffected. Induction of apoptosis was measured by changes in cell morphology, annexin V-labeling, and DNA fragmentation. We demonstrate that caveolin-1 in macrophages is present in lipid rafts and colocalizes with phosphatidylserine (PS) at the cell surface of apoptotic macrophages. Our data suggest that caveolin-1 increase is an early event, closely accompanied by PS externalization and independent of caspase activation and nuclear DNA fragmentation. The increase in caveolin-1 levels does not require new protein synthesis, as cycloheximide does not prevent the apoptosis-mediated increase in caveolin-1 levels. We propose that increased levels of caveolin-1 characterize the apoptotic phenotype of macrophages. Caveolin-1 may be involved in the efficient externalization of PS at the surface of the apoptotic cells.
Collapse
Affiliation(s)
- Peter Gargalovic
- Department of Molecular Biology & Immunology, The University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | | |
Collapse
|
122
|
Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 2003; 5:781-92. [PMID: 12907943 DOI: 10.1038/ncb1035] [Citation(s) in RCA: 669] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 07/10/2003] [Indexed: 11/09/2022]
Abstract
Excess cellular cholesterol induces apoptosis in macrophages, an event likely to promote progression of atherosclerosis. The cellular mechanism of cholesterol-induced apoptosis is unknown but had previously been thought to involve the plasma membrane. Here we report that the unfolded protein response (UPR) in the endoplasmic reticulum is activated in cholesterol-loaded macrophages, resulting in expression of the cell death effector CHOP. Cholesterol loading depletes endoplasmic reticulum calcium stores, an event known to induce the UPR. Furthermore, endoplasmic reticulum calcium depletion, the UPR, caspase-3 activation and apoptosis are markedly inhibited by selective inhibition of cholesterol trafficking to the endoplasmic reticulum, and Chop-/- macrophages are protected from cholesterol-induced apoptosis. We propose that cholesterol trafficking to endoplasmic reticulum membranes, resulting in activation of the CHOP arm of the UPR, is the key signalling step in cholesterol-induced apoptosis in macrophages.
Collapse
Affiliation(s)
- Bo Feng
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Monier S, Samadi M, Prunet C, Denance M, Laubriet A, Athias A, Berthier A, Steinmetz E, Jürgens G, Nègre-Salvayre A, Bessède G, Lemaire-Ewing S, Néel D, Gambert P, Lizard G. Impairment of the cytotoxic and oxidative activities of 7 beta-hydroxycholesterol and 7-ketocholesterol by esterification with oleate. Biochem Biophys Res Commun 2003; 303:814-24. [PMID: 12670484 DOI: 10.1016/s0006-291x(03)00412-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atherosclerosis involves inflammatory processes, as well as cytotoxic and oxidative reactions. In atherosclerotic plaques, these phenomena are revealed by the presence of dead cells, oxidized lipids, and oxidative DNA damage, but the molecules triggering these events are still unknown. As 7 beta-hydroxycholesterol and 7-ketocholesterol, which are present at elevated concentrations in atherosclerotic lesions, are strongly cytotoxic and pro-oxidative, their effects were determined on cell death, superoxide anion and nitric oxide production, lipid peroxidation, and oxidative DNA damage. 7-Ketocholesterol- and 7 beta-hydroxycholesterol-induced cell death leads to a loss of mitochondrial potential, to increased permeability to propidium iodide, and to morphological nuclear changes (swelling, fragmentation, and/or condensation of nuclei). These effects are preceded by the formation of cytoplasmic monodansylcadaverine-positive structures and are associated with a rapid enhancement of cells overproducing superoxide anions, a decrease in cells producing nitric oxide, lipid peroxidation (formation of malondialdehyde and 4-hydroxynonenal adducts, low ratio of [unsaturated fatty acids]/[saturated fatty acids]) as well as oxidative DNA damage (8-oxoguanine formation). Noteworthy, none of the cytotoxic features previously observed with 7 beta-hydroxycholesterol and 7-ketocholesterol were noted with cholesterol, 7 beta-hydroxycholesteryl-3-oleate and 7-ketocholesteryl-3-oleate, with the exception of a slight increase in superoxide anion production with 7 beta-hydroxycholesteryl-3-oleate. This finding supports the theory that 7 beta-hydroxycholesterol and 7-ketocholesterol could induce cytotoxic and oxidative processes observed in atherosclerotic lesions and that esterification of these compounds may contribute to reducing atherosclerosis progression.
Collapse
Affiliation(s)
- Serge Monier
- Inserm U498/IFR 100 Inserm, CHU/Hôpital du Bocage, Laboratoire de Biochimie Médicale, BP 77908, Dijon Cedex 21079, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Hansson M, Ellis E, Hunt MC, Schmitz G, Babiker A. Marked induction of sterol 27-hydroxylase activity and mRNA levels during differentiation of human cultured monocytes into macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1593:283-9. [PMID: 12581873 DOI: 10.1016/s0167-4889(02)00398-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sterol 27-hydroxylase has been suggested to be involved in an alternative pathway for the elimination of cholesterol from macrophages and early atherosclerotic lesions. We have previously shown that human lung macrophages as well as monocyte-derived macrophages have a relatively high activity of sterol 27-hydroxylase (CYP27). This enzyme converts intracellular cholesterol into 27-hydroxycholesterol and cholestenoic acid that flux from cultured cells into the medium. It is shown here that human monocytes have very low CYP27 activity and CYP27 mRNA levels. During differentiation into macrophages, both CYP27 activity and CYP27 mRNA levels increase markedly after 4 days of culture in serum-free medium. Addition of macrophage-colony stimulating factor had no significant effect on the induction and addition of fetal calf serum had an inhibitory effect. Cholesterol synthesis was found to be a critical factor for the production of 27-oxygenated products by the macrophages cultured in serum-free medium. The increased capacity of the differentiated cells to eliminate intracellular cholesterol is of interest and supports the contention that CYP27 is an antiatherogenic factor.
Collapse
Affiliation(s)
- Magnus Hansson
- Department of Medical Laboratory Sciences and Technology, Division of Clinical Chemistry, Karolinska Institutet, Huddinge University Hospital, SE-141 86, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
125
|
Asmis R, Begley JG. Oxidized LDL promotes peroxide-mediated mitochondrial dysfunction and cell death in human macrophages: a caspase-3-independent pathway. Circ Res 2003; 92:e20-9. [PMID: 12522131 DOI: 10.1161/01.res.0000051886.43510.90] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several studies suggest that macrophage death and subsequent lysis contribute to the development of advanced atherosclerotic lesions. Although oxidized LDL (OxLDL) is thought to contribute to lesion formation and induces macrophage apoptosis, the mechanisms underlying macrophage lysis have not been well defined. To determine if induction of apoptosis in human macrophages also promotes cell lysis, we studied caspase-3 activation by OxLDL and activating anti-Fas antibodies. We found that Fas-induced activation of caspase-3 does not promote macrophage lysis and caspase-3 activation is not required for OxLDL-induced macrophage lysis. OxLDL induces the formation of peroxides, but not superoxide, and decreases mitochondrial membrane potential. Scavengers of peroxyl radicals restore mitochondrial membrane potential and prevent macrophage lysis, implicating peroxyl radicals in both mitochondrial dysfunction and macrophage lysis induced by OxLDL. We conclude that macrophage death induced by OxLDL results in cell lysis, but it does not require activation of Fas or caspase-3. The full text of this article is available at http://www.circresaha.org.
Collapse
Affiliation(s)
- Reto Asmis
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Ky 40536-0230, USA.
| | | |
Collapse
|
126
|
Feng B, Tabas I. ABCA1-mediated cholesterol efflux is defective in free cholesterol-loaded macrophages. Mechanism involves enhanced ABCA1 degradation in a process requiring full NPC1 activity. J Biol Chem 2002; 277:43271-80. [PMID: 12215451 DOI: 10.1074/jbc.m207532200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In advanced atherosclerosis, macrophage foam cells progressively accumulate large amounts of unesterified or "free" cholesterol (FC), a process that is thought to contribute to foam cell death and lesional necrosis. The cellular consequences of early FC accumulation, including those that lead to further FC accumulation, are poorly understood. In this context, we show that cholesterol and phospholipid efflux mediated by ABCA1, which is initially induced in the cholesterol-loaded macrophage, was inhibited by approximately 80% in pre-toxic FC-loaded macrophages. Cholesterol efflux to HDL(2), which is mediated by a non-ABCA1 pathway, was inhibited by only approximately 20% in FC-loaded macrophages. FC loading led to decreased levels of ABCA1 protein via increased degradation of ABCA1, and not by decreased transcription or translation of AbcA1 mRNA. The decrease in ABCA1 protein occurred relatively early and was not prevented by caspase inhibitors, indicating that it was not a consequence of FC-induced apoptosis. However, inhibition of proteasomal function by lactacystin largely prevented the degradation of ABCA1. Importantly, the FC-induced decrease in ABCA1 function and protein was almost entirely prevented in macrophages that had partial deficiency of npc1 or were exposed to nanomolar concentrations of U18666A, both of which lead to defective cholesterol trafficking to the endoplasmic reticulum, but leave trafficking to the plasma membrane largely intact. Thus, a relatively early event during FC loading of macrophages is increased degradation of ABCA1, which appears to require trafficking of cholesterol to a peripheral cellular site, but not bulk trafficking of excess cholesterol to the plasma membrane. These findings provide new insight into the post-translational regulation of ABCA1 and the pathobiology of the FC-loaded macrophage.
Collapse
Affiliation(s)
- Bo Feng
- Department of Medicine, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
127
|
Abstract
We investigated the modes of participation of macrophages in the formation of non-specific (i.e., unrelated to membranous lipodystrophy) membranocystic lesions (MCLs). Surgical specimens of atherosclerosis and chronic panniculitis containing MCLs as well as experimentally formed MCLs were examined, using paraffin sections, by Sudan black B (SBB) stain and by immunostaining for CD68, Bax protein and advanced glycation end products (AGEs). In the atherosclerotic lesions, MCLs were formed by a gradual fusion of SBB-positive multivesicular structures in the macrophages, associated with the cell breakdown. MCLs in the panniculitis were formed in the macrophages, as in atherosclerosis, or derived from degenerative fat cells, often with attachment of macrophages. CD68 was demonstrated in some MCLs or around them, and Bax was also present in some MCLs as well as some macrophages in both lesions. On the other hand, macrophages were not involved in the experimental MCLs. AGEs were widely detected in some MCLs, macrophages and degenerative background in all specimens. These results suggest that MCLs share AGEs as common components with various types of fat degeneration, and are formed physicochemically in the event that macrophages cannot dispose of the degenerative fat sufficiently due to their relative functional impairment and/or the physical circumstances.
Collapse
|
128
|
Wu T, Geigerman C, Lee YS, Wander RC. Enrichment of LDL with EPA and DHA decreased oxidized LDL-induced apoptosis in U937 cells. Lipids 2002; 37:789-96. [PMID: 12371750 DOI: 10.1007/s11745-002-0962-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidized LDL (oxLDL) may contribute to the accumulation of apoptotic cells in atherosclerotic plaques. Although it is well established in monophasic chemical systems that the highly unsaturated EPA and DHA will oxidize more readily than FA that contain fewer double bonds, our previous studies showed that enrichment of LDL, which has discrete polar and nonpolar phases, with these FA did not increase oxidation. The objective of this study was to compare the extent of apoptosis induced by EPA/DHA-rich oxLDL to that induced by EPA/DHA-non-rich oxLDL in U937 cells. LDL was obtained from one healthy subject three times before and after supplementation for 5 wk with 15 g/d of fish oil (FO), an amount easily obtainable from a diet that contains fatty fish. After supplementation, an EPA/DHA-rich LDL was obtained. Oxidative susceptibility of LDL, as determined by measuring the formation of conjugated dienes and the accumulation of cholesteryl ester hydroperoxides, was not higher in EPA/DHA-rich LDL. The oxLDL-induced cell apoptosis was detected by the activation of caspase-3, the translocation of PS to the outer surface of the plasma membrane using the Annexin V-fluorescein isothiocyanate binding assay, and the presence of chromatin condensation and nuclear fragmentation using the 4,6-diamidino-2-phenylindole staining assay. All three measures showed that after FO supplementation, EPA/DHA-rich oxLDL-induced cell apoptosis decreased. The decrease was not related to the concentration of lipid hydroperoxides. This study suggests that a possible protective effect of EPA/DHA-rich diets on atherosclerosis may be through lessening cell apoptosis in the arterial wall.
Collapse
Affiliation(s)
- Tianying Wu
- Human Nutrition Research Laboratory, University of North Carolina at Greensboro, 27402-6170, USA
| | | | | | | |
Collapse
|
129
|
Lang D, Dohle F, Terstesse M, Bangen P, August C, Pauels HG, Heidenreich S. Down-regulation of monocyte apoptosis by phagocytosis of platelets: involvement of a caspase-9, caspase-3, and heat shock protein 70-dependent pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6152-8. [PMID: 12055227 DOI: 10.4049/jimmunol.168.12.6152] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocytes interact and cross-talk with platelets in many settings including inflammation, hemostasis, or vascular disorders. During inflammatory diseases, there is a rapid targeting of monocytes and platelets to points of inflammation and endothelial injury, where they lie side-by-side. In this in vitro study, we investigated different interactions between monocytes and platelets and elucidated whether platelets might affect monocyte apoptosis. Freshly isolated human monocytes were rendered apoptotic by serum deprivation or CD95 ligation and cocultured with platelets. Monocyte apoptosis was determined by flow cytometry, TUNEL staining, DNA electrophoresis, and transmission electron microscopy imaging. We could show that monocyte apoptosis was highly suppressed when platelets were added to the cultures. Transmission electron microscopy depicted that monocytes completely ingested thrombocytes by phagocytosis. Blocking thrombocyte uptake by the phagocytosis inhibitor cytochalasin D abrogated the enhanced monocyte survival and led to high apoptosis levels. Monocyte survival was paralleled by down-regulation of caspase-9 and -3 and up-regulation of heat shock protein 70 during uptake of platelets. Platelet supernatants and contents of platelet granules were ineffective in altering monocyte senescence. Also, ingestion of latex beads or zymosan by monocytes was ineffective to mimic platelet-dependent rescue from apoptosis. In conclusion, this study shows that platelets can suppress apoptosis of monocytes by a specific phagocytosis-dependent process with further consequences for atherosclerotic or inflammatory conditions.
Collapse
Affiliation(s)
- Detlef Lang
- Department of Medicine and Institutes of Pathology and Immunology, University of Münster, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
130
|
Villablanca AC, Lewis KA, Rutledge JC. Time- and dose-dependent differential upregulation of three genes by 17 beta-estradiol in endothelial cells. J Appl Physiol (1985) 2002; 92:1064-73. [PMID: 11842041 DOI: 10.1152/japplphysiol.00374.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to identify genetic targets in the vasculature for estrogen by profiling genes expressed in female human aortic endothelial cells exposed to various doses of 17 beta-estradiol at differing concentrations and for differing periods of time. Our approach employed a RT-PCR-based cloning strategy of DNA differential display analysis, with differential expression verified by semiquantitative PCR performed with gene-specific primers. A significant increase in mRNA expression in response to 17 beta-estradiol was observed for the following three genes: aldose reductase (3.4-fold), caspase homologue-alpha protein (4.2-fold), and plasminogen activator inhibitor-1 intron e (2.3-fold). For all three upregulated genes, estradiol-induced upregulation occurred with a similar time course and temporally clustered to the first 24 h after hormone treatment. In addition, the effect of estradiol dose on gene expression was consistent and occurred at physiological concentrations. Our results describe previously uncharacterized estradiol-sensitive time- and dose-dependent regulation of genes with potential importance to vascular function in human endothelial cells.
Collapse
Affiliation(s)
- Amparo C Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, California 95616-8636, USA.
| | | | | |
Collapse
|
131
|
Yao PM, Tabas I. Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem 2001; 276:42468-76. [PMID: 11533046 DOI: 10.1074/jbc.m101419200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage death in advanced atherosclerotic lesions leads to lesional necrosis and possibly plaque rupture and acute vascular occlusion. Among the likely causes of lesional macrophage death is intracellular accumulation of excess free cholesterol (FC), which is known to occur in vivo. We recently showed that FC loading of macrophages causes apoptosis, approximately 50% of which is mediated by activation of cell-surface FasL and triggering of the Fas pathway (Yao, P. M., and Tabas, I. (2000) J. Biol. Chem. 275, 23807-23813). To elucidate other pathways of death in FC-loaded macrophages, we investigated mitochondrial transmembrane potential (DeltaPsi(m)) and the mitochondrial apoptosis pathway in FC-loaded mouse peritoneal macrophages. Starting between 3 and 6 h of FC loading, DeltaPsi(m) was markedly decreased in the majority of macrophages and was independent of the Fas pathway. The decrease in DeltaPsi(m) by FC loading was not prevented by GSH, thus distinguishing it from 7-ketocholesterol-induced mitochondrial dysfunction. Cytochrome c release into the cytosol was noted by 4 h of FC loading, and activation of caspase-9 and effector caspases was observed at 6 h. Finally, we found that both cellular and mitochondrial levels of the pro-apoptotic protein Bax were increased severalfold as early as 4 h after FC loading. Thus, FC loading, perhaps via increased levels of Bax and/or cholesterol overloading of mitochondria, triggers cytochrome c release and activation of caspase-9 and the effector caspases, leading to macrophage apoptosis. These findings and our previous data support a model in which FC loading of macrophages promotes a dual program of caspase-mediated death.
Collapse
Affiliation(s)
- P M Yao
- Department of Medicine and Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
132
|
Affiliation(s)
- T C Sykes
- Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | |
Collapse
|
133
|
Carpenter KL, Dennis IF, Challis IR, Osborn DP, Macphee CH, Leake DS, Arends MJ, Mitchinson MJ. Inhibition of lipoprotein-associated phospholipase A2 diminishes the death-inducing effects of oxidised LDL on human monocyte-macrophages. FEBS Lett 2001; 505:357-63. [PMID: 11576528 DOI: 10.1016/s0014-5793(01)02840-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The death of macrophages contributes to atheroma formation. Oxidation renders low-density lipoprotein (LDL) cytotoxic to human monocyte-macrophages. Lipoprotein-associated phospholipase A2 (Lp-PLA2), also termed platelet-activating factor acetylhydrolase, hydrolyses oxidised phospholipids. Inhibition of Lp-PLA2 by diisopropyl fluorophosphate or Pefabloc (broad-spectrum serine esterase/protease inhibitors), or SB222657 (a specific inhibitor of Lp-PLA2) did not prevent LDL oxidation, but diminished the ensuing toxicity and apoptosis induction when the LDL was oxidised, and inhibited the rise in lysophosphatidylcholine levels that occurred in the inhibitors' absence. Hydrolysis products of oxidised phospholipids thus account for over a third of the cytotoxic and apoptosis-inducing effects of oxidised LDL on macrophages.
Collapse
Affiliation(s)
- K L Carpenter
- Department of Pathology, University of Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Liu W, Kato M, Itoigawa M, Murakami H, Yajima M, Wu J, Ishikawa N, Nakashima I. Distinct involvement of NF-kappaB and p38 mitogen-activated protein kinase pathways in serum deprivation-mediated stimulation of inducible nitric oxide synthase and its inhibition by 4-hydroxynonenal. J Cell Biochem 2001; 83:271-80. [PMID: 11573244 DOI: 10.1002/jcb.1234] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cytokine-induced expression of inducible nitric oxide synthase (iNOS) and concomitant production of nitric oxide (NO) involve activation of mitogen-activated protein (MAP) kinases and are in most cases mediated by the transcription factor NF-kappaB. We investigated the role of p38 MAP kinase activation and IkappaB phosphorylation in iNOS expression in a novel iNOS-inducing model in mouse macrophages. Deprivation of serum from the culture medium of RAW 264.7 cells up-regulated iNOS and NO production, which were inhibited by 4-hydroxy-2-nonenal (HNE), a component of oxidatively modified low-density lipoprotein (oxLDL). Serum withdrawal induced phosphorylation of Akt, IkappaB, and p38 MAP kinase. Pretreatment with the potent PI3 kinase inhibitor wortmannin, the NF-kappaB inhibitor PDTC or the specific p38 MAP kinase inhibitor SB203580 each partially attenuated the induction of iNOS and NO production, demonstrating that both p38 activation and IkappaB phosphorylation are required for iNOS expression. SB203580, however, did not prevent the phosphorylation of Akt and IkappaB, suggesting that the p38 MAP kinase signal contributes to iNOS gene expression through an IkappaB-phosphorylation-independent pathway. HNE, which markedly inhibited iNOS expression and NO production, prevented the serum withdrawal-triggered IkappaB phosphorylation but not that of Akt or p38 MAP kinase. A high concentration of HNE stimulated dephosphorylation of IkappaB but promoted activation of p38 MAP kinase. Taken together, these results suggest that NF-kappaB and p38 MAP kinase lie in separate signal pathways for serum deprivation-stimulated iNOS expression and NO production. HNE selectively suppresses the former pathway, targeting a site downstream of Akt.
Collapse
Affiliation(s)
- W Liu
- Department of Pharmacology, Aichi Medical University School of Medicine, Aichi 480-1195, Japan
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Hegyi L, Hardwick SJ, Siow RC, Skepper JN. Macrophage death and the role of apoptosis in human atherosclerosis. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:27-42. [PMID: 11276357 DOI: 10.1089/152581601750098192] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The arterial disease atherosclerosis is responsible for severe morbidity and is the most common cause of death in the Western population. The complete pathogenesis of the disease is unknown, but multiple risk factors have been identified that correlate with the development of its complications such as heart attack and stroke. Evidence suggests that atherosclerosis is an inflammatory disease and the major cell types involved are smooth muscle cells, macrophages, and T lymphocytes. In this paper, we review the function of macrophages in the context of atherosclerosis and we also discuss the role and significance of macrophage death, including apoptosis. There is much evidence, certainly in vitro, suggesting that low-density lipoprotein becomes atherogenic when it undergoes cell-mediated oxidation within the artery wall. Besides inducing apoptosis in vitro, oxidized low-density lipoprotein may also cause extensive DNA damage in intimal cells, which might presage apoptosis. We review the results of experimental and clinical studies, which may indicate how the complications of atherosclerosis could be prevented by using different therapeutical strategies including bone marrow transplantation and gene therapy.
Collapse
Affiliation(s)
- L Hegyi
- Division of Cardiovascular Medicine, Department of Medicine, ACCI, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK.
| | | | | | | |
Collapse
|
136
|
Abstract
OBJECTIVE 27-hydroxycholesterol is the product of the mitochondrial cytochrome P450 sterol 27-hydroxylase, a key enzyme in cholesterol metabolism present in most tissues of the body. 27-hydroxycholesterol increases in abundance with progression of human atherosclerotic lesions, therefore the aim of this study was to determine the pattern of sterol 27-hydroxylase gene expression in normal and diseased arteries and to identify the cell types responsible for its expression. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) analysis and in situ hybridisation, utilising a sterol 27-hydroxylase cDNA probe, and immunohistochemistry, utilising an antibody to sterol 27-hydroxylase, together with an antibody to smooth muscle cell alpha-actin and an antibody to CD68, a marker for macrophages, were used to study expression of 27-hydroxylase in arterial specimens. In addition, RT-PCR was used to study expression of 27-hydroxylase in cultured macrophages and smooth muscle cells. RESULTS Semi-quantitative RT-PCR analysis of normal and atherosclerotic human aortas showed that 27-hydroxylase is constitutively expressed in the normal artery wall, and is substantially up-regulated in atherosclerosis. RT-PCR analysis of 27-hydroxylase expression in vitro demonstrated that macrophages constitutively express high levels throughout their differentiation in culture whilst de-differentiated vascular smooth muscle cells express very low levels. In situ hybridisation revealed that in normal artery and fatty streaks, expression of mRNA for 27-hydroxylase was low in the media, but higher in intimal smooth muscle cells. The macrophages of fatty streaks expressed low or undetectable levels of 27-hydroxylase. However in advanced lesions the highest expression of 27-hydroxylase was detectable in macrophages. Immunohistochemistry demonstrated that high levels of 27-hydroxylase protein occurred in macrophages near the shoulder region of plaques, at the edge of the lipid core. CONCLUSIONS 27-hydroxylase may constitute a protective mechanism for removing cholesterol from macrophages and smooth muscle cells. Genetic heterogeneity resulting in differences in sterol 27-hydroxylase activity between individuals may affect their ability to deal with accumulated cholesterol in the arterial intima, and hence their relative degree of predisposition to atherosclerosis.
Collapse
MESH Headings
- Actins/immunology
- Actins/metabolism
- Adolescent
- Adult
- Aged
- Antibodies/analysis
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/immunology
- Aorta/enzymology
- Aorta/pathology
- Arteriosclerosis/enzymology
- Arteriosclerosis/pathology
- Biomarkers
- Cells, Cultured
- Child
- Child, Preschool
- Cholestanetriol 26-Monooxygenase
- Coronary Vessels/enzymology
- Coronary Vessels/pathology
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/immunology
- Cytochrome P-450 Enzyme System/metabolism
- DNA Probes/chemistry
- DNA, Complementary/analysis
- Female
- Gene Expression
- Humans
- Hydroxycholesterols/metabolism
- In Situ Hybridization
- Macrophages/enzymology
- Macrophages/immunology
- Male
- Middle Aged
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Steroid Hydroxylases/genetics
- Steroid Hydroxylases/immunology
- Steroid Hydroxylases/metabolism
- Tunica Intima/enzymology
- Tunica Intima/pathology
Collapse
Affiliation(s)
- C M Shanahan
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, CB2 2QQ, Cambridge, UK.
| | | | | |
Collapse
|
137
|
Fazio S, Major AS, Swift LL, Gleaves LA, Accad M, Linton MF, Farese RV. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest 2001; 107:163-71. [PMID: 11160132 PMCID: PMC198874 DOI: 10.1172/jci10310] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During atherogenesis, circulating macrophages migrate into the subendothelial space, internalize cholesterol-rich lipoproteins, and become foam cells by progressively accumulating cholesterol esters. The inhibition of macrophage acyl coenzyme A:cholesterol acyltransferase (ACAT), which catalyzes the formation of cholesterol esters, has been proposed as a strategy to reduce foam cell formation and to treat atherosclerosis. We show here, however, that hypercholesterolemic LDL receptor-deficient (LDLR(-/-)) mice reconstituted with ACAT1-deficient macrophages unexpectedly develop larger atherosclerotic lesions than control LDLR(-/-) mice. The ACAT1-deficient lesions have reduced macrophage immunostaining and more free cholesterol than control lesions. Our findings suggest that selective inhibition of ACAT1 in lesion macrophages in the setting of hyperlipidemia can lead to the accumulation of free cholesterol in the artery wall, and that this promotes, rather than inhibits, lesion development.
Collapse
Affiliation(s)
- S Fazio
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 315 Medical Research Building, Nashville, Tennessee 37232-6300, USA.
| | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
Cholesterol-loaded macrophages are present at all stages of atherogenesis, and recent in vivo data indicate that these cells play important roles in both early lesion development and late lesion complications. To understand how these cells promote atherogenesis, it is critical that we understand how lesional macrophages interact with subendothelial lipoproteins, the consequences of this interaction, and the impact of subsequent intracellular metabolic events. In the arterial wall, macrophages likely interact with both soluble and matrix-retained lipoproteins, and a new challenge is to understand how certain consequences of these two processes might differ. Initially, the major intracellular metabolic route of the lipoprotein-derived cholesterol is esterification to fatty acids, but macrophages in advanced atherosclerotic lesions progressively accumulate large amounts of unesterified, or free, cholesterol (FC). In cultured macrophages, excess FC accumulation stimulates phospholipid biosynthesis, which is an adaptive response to protect the macrophage from FC-induced cytotoxicity. This phospholipid response eventually decreases with continued FC loading, leading to a series of cellular death reactions involving both death receptor-induced signaling and mitochondrial dysfunction. Because macrophage death in advanced lesions is thought to promote plaque instability, these intracellular processes involving cholesterol, phospholipid, and death pathways may play a critical role in the acute clinical manifestations of advanced atherosclerotic lesions.
Collapse
Affiliation(s)
- I Tabas
- Department of Medicine and Anatomy, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
139
|
Zhang D, Tang W, Yao PM, Yang C, Xie B, Jackowski S, Tabas I. Macrophages deficient in CTP:Phosphocholine cytidylyltransferase-alpha are viable under normal culture conditions but are highly susceptible to free cholesterol-induced death. Molecular genetic evidence that the induction of phosphatidylcholine biosynthesis in free cholesterol-loaded macrophages is an adaptive response. J Biol Chem 2000; 275:35368-76. [PMID: 10944538 DOI: 10.1074/jbc.m007099200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages in atherosclerotic lesions accumulate excess free cholesterol (FC) and phospholipid. Because excess FC is toxic to macrophages, these observations may have relevance to macrophage death and necrosis in atheromata. Previous work by us showed that at early stages of FC loading, when macrophages are still healthy, there is activation of the phosphatidylcholine (PC) biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CT), and accumulation of PC mass. We hypothesized that this is an adaptive response, albeit transient, that prevents the FC:PC ratio from reaching a toxic level. To test this hypothesis directly, we created mice with macrophage-targeted disruption of the major CT gene, CTalpha, using the Cre-lox system. Surprisingly, the number of peritoneal macrophages harvested from CTalpha-deficient mice and their overall health under normal culture conditions appeared normal. Moreover, CT activity and PC biosynthesis and in vitro CT activity were decreased by 70-90% but were not absent. As a likely explanation of this residual activity, we showed that CTbeta2, a form of CT that arises from another gene, is induced in CTalpha-deficient macrophages. To test our hypothesis that increased PC biosynthesis is an adaptive response to FC loading, the viability of wild-type versus CTalpha-deficient macrophages under control and FC-loading conditions was compared. After 5 h of FC loading, death increased from 0.7% to only 2.0% in wild-type macrophages but from 0. 9% to 29.5% in CTalpha-deficient macrophages. These data offer the first molecular genetic evidence that activation of CTalpha and induction of PC biosynthesis in FC-loaded macrophages is an adaptive response. Furthermore, the data reveal that CTbeta2 in macrophages is induced in the absence of CTalpha and that a low level of residual CT activity, presumably due to CTbeta2, is enough to keep the cells viable in the peritoneum in vivo and under normal culture conditions.
Collapse
Affiliation(s)
- D Zhang
- Departments of Medicine and Anatomy & Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Boyle JJ, Wilson B, Bicknell R, Harrower S, Weissberg PL, Fan TP. Expression of angiogenic factor thymidine phosphorylase and angiogenesis in human atherosclerosis. J Pathol 2000; 192:234-42. [PMID: 11004701 DOI: 10.1002/1096-9896(2000)9999:9999<::aid-path699>3.0.co;2-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In atherosclerosis, leukocyte migration into the plaque is thought to occur across the endothelium of the arterial lumen. However, intraplaque microvessels have been noted. While the significance of, and stimuli for these are uncertain, it seems possible that they may represent a second portal of entry for leukocytes into the plaque. This study performed a basic characterization of intraplaque microvessels and tested the hypothesis that the novel angiogenic factor thymidine phosphorylase (TP) is expressed in atherosclerosis. Immunocytochemistry was performed on aortic and coronary plaques and morphometry on coronary plaques. In plaques from both sites, macrophages, foam cells, and giant cells were immunoreactive for the angiogenic factors TP and vascular endothelial growth factor. Venule-like intraplaque microvessels expressed endothelial leukocyte adhesion molecules HLA-DR and ICAM-1, in contrast to the endothelium overlying the plaque. In coronary plaques, there was a correlation between severity of stenosis and plaque microvascular density. These results are consistent with a role for plaque macrophage/foam cell TP in stimulating plaque angiogenesis. While attention has focused on dysfunction of the endothelium overlying the plaque, microvascular endothelium may also represent a portal of entry for leukocytes into established plaques.
Collapse
Affiliation(s)
- J J Boyle
- Department of Medicine, Cambridge University, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
141
|
Kunishima A, Takemura G, Takatsu H, Hayakawa Y, Kanoh M, Qiu X, Fujiwara T, Fujiwara H. Mode and role of cell death during progression of atherosclerotic lesions in hypercholesterolemic rabbits. Heart Vessels 2000; 14:295-306. [PMID: 10901485 DOI: 10.1007/bf03257242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two cell types, macrophages and smooth muscle cells (SMCs), play important roles in the development of atherosclerotic lesions. Both contribute to the formation of the lesions not only by their presence but also by taking in or releasing extracellular substrates during life and at death. The present study aimed to elucidate their turnover, focusing on the detailed description of the modes of death in each cell type, and the roles of their death in the progression from early into advanced atherosclerotic lesions. Ascending aortas were obtained from New Zealand white male rabbits fed a diet with 1% cholesterol for 3 months (3-M group, n= 6) and 6 months (6-M group, n = 6). They were histologically examined, and the cell death was checked by in situ nick end-labeling (TUNEL), using a Taq polymerase-based in situ ligation assay with/without combination of immunohistochemistry, electron microscopy (EM), and TUNEL at the EM level. Intimal hyperplasia and luminal stenosis advanced with increased dietary interval, and the aortic intima of the 3-M group consisted of histological types I-III atherosclerotic lesions, whereas that of the 6-M group included types III-V. Along with the progression, the cellular population decreased, but the area of fibrosis increased. The percentage area of macrophages declined (from 60% +/- 5% to 23% +/- 2%), but that of SMCs increased (from 5% +/- 1% to 10% +/- 2%). The positive cells for in situ ligation were less frequent in the 6-M group (0.05% +/- 0.01%) than in the 3-M group (0.2% +/- 0.04%), which was due to a decrease in SMCs positive for in situ ligation. The frequency of TUNEL-positive cells was higher than that of in situ ligation-positive cells in both groups, suggesting that cell death involved not only apoptosis but also oncosis. This was confirmed using EM: cell death occurred via both apoptosis and oncosis. EM-TUNEL positively labeled not only apoptotic but also some oncotic nuclei. Death of macrophages and SMCs involves both apoptosis and oncosis in the aortic intima of hypercholesterolemic rabbits. Decline in the dying rate of SMCs might be associated with the formation of SMC-rich and collagen-rich lesions in the late advanced stage of atherosclerosis, although such a cause-effect relationship is to be further confirmed.
Collapse
Affiliation(s)
- A Kunishima
- Second Department of Internal Medicine, Gifu University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Yao PM, Tabas I. Free cholesterol loading of macrophages induces apoptosis involving the fas pathway. J Biol Chem 2000; 275:23807-13. [PMID: 10791964 DOI: 10.1074/jbc.m002087200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Macrophage death is an important feature of atherosclerosis, but the cellular mechanism for this process is largely unknown. There is increasing interest in cellular free cholesterol (FC) excess as an inducer of lesional macrophage death because macrophages accumulate large amounts of FC in vivo, and FC loading of macrophages in culture causes cell death. In this study, a cell culture model was used to explore the cellular mechanisms involved in the initial stages of FC-induced macrophage death. After 9 h of FC loading, some of the macrophages exhibited externalization of phosphatidylserine and DNA fragmentation, indicative of an apoptotic mechanism. Incubation of the cells with Z-DEVD-fluoromethylketone blocked these events, indicating dependence upon effector caspases. Macrophages from mice with mutations in either Fas or Fas ligand (FasL) demonstrated substantial resistance to FC-induced apoptosis, and FC-induced death in wild-type macrophages was blocked by an anti-FasL antibody. FC loading had no effect on the expression of cell-surface Fas but caused a small yet reproducible increase in cell-surface FasL. To determine the physiological significance of this finding, unloaded and FC-loaded Fas-deficient macrophages, which can only present FasL, were compared for their ability to induce apoptosis in secondarily added Fas-bearing macrophages. The FC-loaded macrophages were much more potent inducers of apoptosis than the unloaded macrophages, and this effect was almost completely blocked by an inhibitory anti-FasL antibody. In summary, during the early stages of FC loading of macrophages, a fraction of cells exhibited biochemical changes that are indicative of apoptosis. An important part of this event is FC-induced activation of FasL that leads to Fas-mediated apoptosis. In light of recent in vivo findings that show that apoptotic macrophages in atherosclerotic lesions express both Fas and FasL, we present a cellular model of Fas-mediated death in lesional foam cells.
Collapse
Affiliation(s)
- P M Yao
- Departments of Medicine and Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
143
|
Patel RP, Moellering D, Murphy-Ullrich J, Jo H, Beckman JS, Darley-Usmar VM. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic Biol Med 2000; 28:1780-94. [PMID: 10946220 DOI: 10.1016/s0891-5849(00)00235-5] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- R P Patel
- Center for Free Radical Biology, University of Alabama, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
144
|
Kawamura M, Miyazaki S, Teramoto T, Ashidate K, Thoda H, Ando N, Kaneko K. Gemfibrozil metabolite inhibits in vitro low-density lipoprotein (LDL) oxidation and diminishes cytotoxicity induced by oxidized LDL. Metabolism 2000; 49:479-85. [PMID: 10778872 DOI: 10.1016/s0026-0495(00)80012-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We hypothesized that M1, a metabolite of gemfibrozil, may have antioxidant properties because of its hydroxylated phenol ring, 5-(4-hydroxy-2,5-dimethyl-phenoxy)-2,2-dimethyl pentanoic acid. The susceptibility of low-density lipoprotein (LDL) to oxidative modification was investigated by a method using 2,2-azobis(4-methoxy-2,4-dimethylvaleronitrile [MeO-AMVN]) or Cu2+ as previously reported. Conjugated dienes (CDs), lipid hydroperoxide (LPO), and thiobarbituric acid-reactive substances (TBARS) were measured to evaluate the degree of LDL oxidation. Oxidized LDL (OxLDL), which is used for cytotoxicity studies, was prepared by the dialysis method using Cu2+ as the oxidation inducer. Cytotoxicity induced by OxLDL was studied in J774 macrophages by colorimetric assay using 3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT assay). The oxidative modification of LDL was inhibited by M1 in a dose-dependent manner. The antioxidant effect of M1 on LDL oxidation was diminished by dialysis of the LDL incubated with M1 against phosphate-buffered saline (PBS), suggesting that M1 is hydrophilic rather than lipophilic. M1 diminished the cytotoxicity induced by OxLDL, although it was milder versus probucol. These data suggest that this gemfibrozil metabolite has an antioxidant effect on LDL, and thus M1 may contribute to the antiatherogenic effects of gemfibrozil.
Collapse
Affiliation(s)
- M Kawamura
- Department of Internal Medicine, Tokyo Teishin Hospital, Japan
| | | | | | | | | | | | | |
Collapse
|
145
|
Fyfe DJ, Abbey M. Effects of n-3 fatty acids on growth and survival of J774 macrophages. Prostaglandins Leukot Essent Fatty Acids 2000; 62:201-7. [PMID: 10841044 DOI: 10.1054/plef.2000.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To further understand potential mechanisms underlying the protective effects of eicosapentanoic acid (EPA) against atherosclerosis, J774 macrophages were used to explore cellular responses to growth in the presence of PUFA in vitro. Clonogenic assays indicated that 15 microg/ml of EPA killed over 90% of J774 populations. Docosapentaenoic acid (DPA) was more cytotoxic than either EPA or docosahexaenoic acid (DHA). EPA was shown to be elongated to DPA. Cytotoxicity induced by EPA was not inhibited by the presence of alpha-tocopherol (a-toc) in the medium. Immunological screening for caspase enzymes and microscopic examination indicated that apoptosis was not the major cause of cell death. Proliferation assays demonstrated that total cell numbers of EPA-treated cells were not significantly different to control cells. Increasing does of EPA were correlated with increasing levels of intracellular malondialdehyde (MDA). These observations suggest that EPA may influence the growth parameters of macrophages whilst inducing moderately elevated levels of oxidative stress.
Collapse
Affiliation(s)
- D J Fyfe
- CSIRO Health Sciences and Nutrition, Adelaide, SA, Australia.
| | | |
Collapse
|
146
|
Abstract
Normal arteries are characterized by a low turnover of endothelial (EC) and smooth muscle cells (SMC). Different mechanisms protect the EC and SMC against apoptosis in the normal artery. In hypertension, SMC replication is increased but this is not counterbalanced by increased apoptosis, resulting in thickening of the media of arteries and arterioles. The significance of apoptosis in atherosclerosis depends on the stage of the plaque, localization and the cell types involved. Both macrophages and SMC undergo apoptosis in atherosclerotic plaques. Apoptosis of macrophages is mainly present in regions showing signs of DNA synthesis/repair. SMC apoptosis is mainly present in less cellular regions and is not associated with DNA synthesis/repair. Even in the early stages of atherosclerosis SMC become susceptible to apoptosis since they increase different pro-apoptotic factors. Moreover, recent data indicate that SMC may be killed by activated macrophages. The loss of the SMC can be detrimental for plaque stability since most of the interstitial collagen fibres, which are important for the tensile strength of the fibrous cap, are produced by SMC. Apoptosis of macrophages could be beneficial for plaque stability if apoptotic bodies were removed. Apoptotic cells that are not scavenged in the plaque activate thrombin, which could further induce intraplaque thrombosis. It can be concluded that apoptosis in primary atherosclerosis is detrimental since it could lead to plaque rupture and thrombosis. Recent data of our group indicate that apoptosis decreased after lipid lowering which could be important in the understanding of the cell biology of plaque stabilization.
Collapse
Affiliation(s)
- M M Kockx
- Department of Pathology, A.Z. Middelheim, Antwerp, Belgium.
| | | |
Collapse
|
147
|
Wang X, Reape TJ, Li X, Rayner K, Webb CL, Burnand KG, Lysko PG. Induced expression of adipophilin mRNA in human macrophages stimulated with oxidized low-density lipoprotein and in atherosclerotic lesions. FEBS Lett 1999; 462:145-50. [PMID: 10580108 DOI: 10.1016/s0014-5793(99)01521-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidized low-density lipoprotein (OxLDL) plays a critical role in foam cell formation and atherosclerogenesis. A cDNA encoding adipophilin was identified in cultured human macrophages stimulated with OxLDL using mRNA differential display. Adipophilin is a 50 kDa protein known to be a specific marker for adipocyte cell differentiation and lipid accumulation in a variety of cells. The time-dependent induction of adipophilin mRNA in macrophages was specific to OxLDL but not native LDL, and not to various cytokines and serum. In human atherosclerotic lesions, adipophilin mRNA expression was localized in a subset of lipid-rich macrophages. These data suggest that adipophilin-expressing macrophages may represent foam cells and this gene expression is likely to be associated with the lipid accumulation in foam cells of the atherosclerotic lesions.
Collapse
Affiliation(s)
- X Wang
- Department of Cardiovascular Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | |
Collapse
|
148
|
Buton X, Mamdouh Z, Ghosh R, Du H, Kuriakose G, Beatini N, Grabowski GA, Maxfield FR, Tabas I. Unique cellular events occurring during the initial interaction of macrophages with matrix-retained or methylated aggregated low density lipoprotein (LDL). Prolonged cell-surface contact during which ldl-cholesteryl ester hydrolysis exceeds ldl protein degradation. J Biol Chem 1999; 274:32112-21. [PMID: 10542246 DOI: 10.1074/jbc.274.45.32112] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A critical event in atherogenesis is the interaction of arterial wall macrophages with subendothelial lipoproteins. Although most studies have investigated this interaction by incubating cultured macrophages with monomeric lipoproteins dissolved in media, arterial wall macrophages encounter lipoproteins that are mostly bound to subendothelial extracellular matrix, and these lipoproteins are often aggregated or fused. Herein, we utilize a specialized cell-culture system to study the initial interaction of macrophages with aggregated low density lipoprotein (LDL) bound to extracellular matrix. The aggregated LDL remains extracellular for a relatively prolonged period of time and becomes lodged in invaginations in the surface of the macrophages. As expected, the degradation of the protein moiety of the LDL was very slow. Remarkably, however, hydrolysis of the cholesteryl ester (CE) moiety of the LDL was 3-7-fold higher than that of the protein moiety, in stark contrast to the situation with receptor-mediated endocytosis of acetyl-LDL. Similar results were obtained using another experimental system in which the degradation of aggregated LDL protein was delayed by LDL methylation rather than by retention on matrix. Additional experiments indicated the following properties of this interaction: (a) LDL-CE hydrolysis is catalyzed by lysosomal acid lipase; (b) neither scavenger receptors nor the LDL receptor appear necessary for the excess LDL-CE hydrolysis; and (c) LDL-CE hydrolysis in this system is resistant to cellular potassium depletion, which further distinguishes this process from receptor-mediated endocytosis. In summary, experimental systems specifically designed to mimic the in vivo interaction of arterial wall macrophages with subendothelial lipoproteins have demonstrated an initial period of prolonged cell-surface contact in which CE hydrolysis exceeds protein degradation.
Collapse
Affiliation(s)
- X Buton
- Department of Medicine, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Affiliation(s)
- E Falk
- Coronary Pathology Research, Aarhus University Hospital (Skejby), Aarhus, Denmark.
| |
Collapse
|
150
|
Marathe S, Kuriakose G, Williams KJ, Tabas I. Sphingomyelinase, an enzyme implicated in atherogenesis, is present in atherosclerotic lesions and binds to specific components of the subendothelial extracellular matrix. Arterioscler Thromb Vasc Biol 1999; 19:2648-58. [PMID: 10559007 DOI: 10.1161/01.atv.19.11.2648] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerotic lesions contain an extracellular sphingomyelinase (SMase) activity that hydrolyzes the sphingomyelin of subendothelial low density lipoprotein (LDL). This SMase activity may promote atherosclerosis by enhancing subendothelial LDL retention and aggregation, foam cell formation, and possibly other atherogenic processes. The results of recent cell-culture studies have led to the hypothesis that a specific molecule called secretory SMase (S-SMase) is responsible for the SMase activity known to be in lesions, although its presence in atheromata had not been examined directly. Herein we provide immunohistochemical and biochemical support for this hypothesis. First, 2 different antibodies against S-SMase detected extracellular immunoreactive protein in the intima of mouse, rabbit, and human atherosclerotic lesions. Much of this material in lesions appeared in association with the subendothelial matrix. Second, binding studies in vitro demonstrated that (125)I-S-SMase adheres to the extracellular matrix of cultured aortic smooth muscle and endothelial cells, specifically to the laminin and collagen components. Third, in its bound state, S-SMase retains substantial enzymatic activity against lipoprotein substrates. Overall, these data support the hypothesis that S-SMase is an extracellular arterial wall SMase that contributes to the hydrolysis of the sphingomyelin of subendothelial LDL. S-SMase may therefore be an important participant in atherogenesis through local enzymatic effects that stimulate subendothelial retention and aggregation of atherogenic lipoproteins.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Arteriosclerosis/enzymology
- Arteriosclerosis/etiology
- Cattle
- Cells, Cultured
- Chondroitin Sulfates/metabolism
- Chondroitin Sulfates/pharmacology
- Collagen/metabolism
- Collagen/pharmacology
- Dermatan Sulfate/metabolism
- Dermatan Sulfate/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/enzymology
- Extracellular Matrix Proteins/metabolism
- Female
- Fibronectins/metabolism
- Fibronectins/pharmacology
- Heparin/metabolism
- Heparin/pharmacology
- Humans
- Iodine Radioisotopes
- Laminin/analysis
- Laminin/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Protein Binding/physiology
- Rabbits
- Serum Albumin, Bovine/metabolism
- Serum Albumin, Bovine/pharmacology
- Sphingomyelin Phosphodiesterase/analysis
- Sphingomyelin Phosphodiesterase/metabolism
Collapse
Affiliation(s)
- S Marathe
- Departments of Medicine and Anatomy & Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|