101
|
Benkafadar N, François F, Affortit C, Casas F, Ceccato JC, Menardo J, Venail F, Malfroy-Camine B, Puel JL, Wang J. ROS-Induced Activation of DNA Damage Responses Drives Senescence-Like State in Postmitotic Cochlear Cells: Implication for Hearing Preservation. Mol Neurobiol 2019; 56:5950-5969. [PMID: 30693443 PMCID: PMC6614136 DOI: 10.1007/s12035-019-1493-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
Abstract
In our aging society, age-related hearing loss (ARHL) has become a major socioeconomic issue. Reactive oxygen species (ROS) may be one of the main causal factors of age-related cochlear cell degeneration. We examined whether ROS-induced DNA damage response drives cochlear cell senescence and contributes to ARHL from the cellular up to the system level. Our results revealed that sublethal concentrations of hydrogen peroxide (H2O2) exposure initiated a DNA damage response illustrated by increased γH2AX and 53BP1 expression and foci formation mainly in sensory hair cells, together with increased levels of p-Chk2 and p53. Interestingly, postmitotic cochlear cells exposed to H2O2 displayed key hallmarks of senescent cells, including dramatically increased levels of p21, p38, and p-p38 expression, concomitant with decreased p19 and BubR1 expression and positive senescence-associated β-galactosidase labeling. Importantly, the synthetic superoxide dismutase/catalase mimetic EUK-207 attenuated H2O2-induced DNA damage and senescence phenotypes in cochlear cells in vitro. Furthermore, systemic administration of EUK-207 reduced age-related loss of hearing and hair cell degeneration in senescence-accelerated mouse-prone 8 (SAMP8) mice. Altogether, these findings highlight that ROS-induced DNA damage responses drive cochlear cell senescence and contribute to accelerated ARHL. EUK-207 and likely other antioxidants with similar mechanisms of action could potentially postpone cochlear aging and prevent ARHL in humans.
Collapse
Affiliation(s)
- Nesrine Benkafadar
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Florence François
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Corentin Affortit
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - François Casas
- INRA, UMR 866 Différenciation Cellulaire et Croissance, 34060, Montpellier, France
| | - Jean-Charles Ceccato
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Julien Menardo
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Frederic Venail
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | | | - Jean-Luc Puel
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Jing Wang
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France.
- Université Montpellier, 34295, Montpellier, France.
| |
Collapse
|
102
|
Submandibular gland-specific inflammaging-induced hyposalivation in the male senescence-accelerated mouse prone -1 line (SAM-P1). Biogerontology 2019; 20:421-432. [PMID: 30684147 DOI: 10.1007/s10522-019-09797-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
Abstract
Aging has pronounced effects on mammalian tissues and cells, but the impacts of aging on salivary gland function are relatively unknown. This study aims to evaluate the effects of aging on submandibular gland (SMG) and parotid gland (PG) functions in the male senescence-accelerated mouse. In vivo analysis at the systemic level revealed that salivary secretion induced by pilocarpine, a muscarinic agonist, from the SMG was significantly decreased in aged mice, whereas salivary secretion from the PG was not affected. To evaluate organ-level function, the SMG was perfused with the muscarinic agonists carbachol and calcium ionophore A23187 ex vivo to induce salivary secretion, and decreased saliva production was also observed in the aged SMG. Histological analysis revealed the presence of CD4-positive lymphocytes infiltrating the aged SMG. Furthermore, real-time PCR revealed that the aged SMG exhibited accelerated cell aging, increased levels of the inflammatory cytokine interleukin-6, and decreased mRNA levels of the water channel protein aquaporin-5 (AQP5). In summary, these results demonstrate that SMG function in aged mice was diminished, and that cell senescence, chronic inflammation, and the decreased gene expression of AQP5 are the likely causes of hyposalivation in the SMG of aged mice.
Collapse
|
103
|
Katayama S, Nakamura S. Emerging roles of bioactive peptides on brain health promotion. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shigeru Katayama
- Department of Agriculture Graduate School of Science and Technology Shinshu University 8304 Minamiminowa Kamiina Nagano 399‐4598 Japan
| | - Soichiro Nakamura
- Department of Agriculture Graduate School of Science and Technology Shinshu University 8304 Minamiminowa Kamiina Nagano 399‐4598 Japan
| |
Collapse
|
104
|
Chan YC, Lee IT, Wang MF, Yeh WC, Liang BC. Tempeh attenuates cognitive deficit, antioxidant imbalance, and amyloid β of senescence-accelerated mice by modulating Nrf2 expression via MAPK pathway. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
105
|
Combination of Coenzyme Q 10 Intake and Moderate Physical Activity Counteracts Mitochondrial Dysfunctions in a SAMP8 Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8936251. [PMID: 30473743 PMCID: PMC6220380 DOI: 10.1155/2018/8936251] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
Aging skeletal muscles are characterized by a progressive decline in muscle mass and muscular strength. Such muscular dysfunctions are usually associated with structural and functional alterations of skeletal muscle mitochondria. The senescence-accelerated mouse-prone 8 (SAMP8) model, characterized by premature aging and high degree of oxidative stress, was used to investigate whether a combined intervention with mild physical exercise and ubiquinol supplementation was able to improve mitochondrial function and preserve skeletal muscle health during aging. 5-month-old SAMP8 mice, in a presarcopenia phase, have been randomly divided into 4 groups (n = 10): untreated controls and mice treated for two months with either physical exercise (0.5 km/h, on a 5% inclination, for 30 min, 5/7 days per week), ubiquinol 10 (500 mg/kg/day), or a combination of exercise and ubiquinol. Two months of physical exercise significantly increased mitochondrial damage in the muscles of exercised mice when compared to controls. On the contrary, ubiquinol and physical exercise combination significantly improved the overall status of the skeletal muscle, preserving mitochondrial ultrastructure and limiting mitochondrial depolarization induced by physical exercise alone. Accordingly, combination treatment while promoting mitochondrial biogenesis lowered autophagy and caspase 3-dependent apoptosis. In conclusion, the present study shows that ubiquinol supplementation counteracts the deleterious effects of physical exercise-derived ROS improving mitochondrial functionality in an oxidative stress model, such as SAMP8 in the presarcopenia phase.
Collapse
|
106
|
Wu Q, E S, Yamamoto K, Tsuduki T. Carbohydrate-restricted diet promotes skin senescence in senescence-accelerated prone mice. Biogerontology 2018; 20:71-82. [DOI: 10.1007/s10522-018-9777-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/29/2018] [Indexed: 02/04/2023]
|
107
|
Campillo S, Rancan L, Paredes SD, Higuera M, Izquierdo A, García C, Forman K, Tresguerres JA, Vara E. Effect of treatment with xanthohumol on cardiological alterations secondary to ageing. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
108
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
109
|
Bai L, Shi G, Yang Y, Chen W, Zhang L, Qin C. Rehmannia glutinosa exhibits anti-aging effect through maintaining the quiescence and decreasing the senescence of hematopoietic stem cells. Animal Model Exp Med 2018; 1:194-202. [PMID: 30891565 PMCID: PMC6388079 DOI: 10.1002/ame2.12034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The time-related decline in regenerative capacity and organ homeostasis is a major feature of aging. Rehmannia glutinosa and Astragalus membranaceus have been used as traditional Chinese herbal medicines for enhanced immunity and prolonged life. However, the mechanism by which this herbal medicine slows aging is unknown. In this study, we investigated the mechanism of the herbal anti-aging effect. METHODS Mice were fed diets supplemented with R. glutinosa or A. membranaceus for 10 months; the control group was fed a standard diet. The phenotypes were evaluated using a grading score system and survival analysis. The percentages of the senescence phenotypes of hematopoietic stem cells (HSCs) were determined by fluorescence-activated cell sorting analysis. The function and the mechanism of HSCs were analyzed by clonogenic assay and the real-time polymerase chain reaction. RESULTS The anti-aging effect of R. glutinosa is due to the enhanced function of HSCs. Mice fed with R. glutinosa displayed characteristics of a slowed aging process, including decreased senescence and increased rate of survival. Flow cytometry analysis showed decreased numbers of Lin-Sca1+c-kit- (LSK) cells, long-term HSCs (LT-HSCs) and short-term HSCs (ST-HSCs) in the R. glutinosa group. In vitro, clonogenic assays showed increased self-renewal ability of LT-HSCs from the R. glutinosa group as well as maintaining LSK quiescence through upregulated p18 expression. The R. glutinosa group also showed decreased reactive oxygen species levels and the percentage of β-gal+ cells through downregulation of the cellular senescence-associated protein p53 and p16. CONCLUSION Rehmannia glutinosa exerts anti-aging effects by maintaining the quiescence and decreasing the senescence of HSCs.
Collapse
Affiliation(s)
- Lin Bai
- Key Laboratory of Human Disease Comparative MedicineMinistry of HealthInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences and Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Gui‐ying Shi
- Key Laboratory of Human Disease Comparative MedicineMinistry of HealthInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences and Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Ya‐jun Yang
- Key Laboratory of Human Disease Comparative MedicineMinistry of HealthInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences and Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Wei Chen
- Key Laboratory of Human Disease Comparative MedicineMinistry of HealthInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences and Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Lian‐feng Zhang
- Key Laboratory of Human Disease Comparative MedicineMinistry of HealthInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences and Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative MedicineMinistry of HealthInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences and Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| |
Collapse
|
110
|
Yamamoto K, Kushida M, Tsuduki T. The effect of dietary lipid on gut microbiota in a senescence-accelerated prone mouse model (SAMP8). Biogerontology 2018; 19:367-383. [DOI: 10.1007/s10522-018-9764-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022]
|
111
|
Khokhlov AN, Klebanov AA, Morgunova GV. On Choosing Control Objects in Experimental Gerontological Research. ACTA ACUST UNITED AC 2018. [DOI: 10.3103/s0096392518020049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
112
|
Huang SY, Chen LH, Wang MF, Hsu CC, Chan CH, Li JX, Huang HY. Lactobacillus paracasei PS23 Delays Progression of Age-Related Cognitive Decline in Senescence Accelerated Mouse Prone 8 (SAMP8) Mice. Nutrients 2018; 10:nu10070894. [PMID: 30002347 PMCID: PMC6073302 DOI: 10.3390/nu10070894] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/26/2022] Open
Abstract
Probiotic supplements are potential therapeutic agents for age-related disorders due to their antioxidant and anti-inflammatory properties. However, the effect of probiotics on age-related brain dysfunction remains unclear. To investigate the effects of Lactobacillus paracasei PS23 (LPPS23) on the progression of age-related cognitive decline, male and female senescence-accelerated mouse prone 8 (SAMP8) mice were divided into two groups (n = 6 each): the control and PS23 groups. From the age of 16 weeks, these groups were given saline and LPPS23, respectively, because SAMP8 mice start aging rapidly after four months of age. After 12 weeks of treatment, we evaluated the effect of LPPS23 by analyzing their appearance, behavior, neural monoamines, anti-oxidative enzymes, and inflammatory cytokines. The PS23 group showed lower scores of senescence and less serious anxiety-like behaviors and memory impairment compared to the control group. The control mice also showed lower levels of neural monoamines in the striatum, hippocampus, and serum. Moreover, LPPS23 induced the anti-oxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). Higher levels of tumor necrosis factor (TNF)-α and monocyte chemotactic protein-1 (MCP1) and lower levels of interleukin (IL)-10 indicated that LPPS23 modulated the inflammation. Our results suggest that LPPS23 supplements could delay age-related cognitive decline, possibly by preventing oxidation and inflammation and modulating gut–brain axis communication.
Collapse
Affiliation(s)
- Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan.
| | - Li-Han Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan.
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan.
| | | | - Ching-Hung Chan
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan.
| | - Jia-Xian Li
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan.
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan.
| |
Collapse
|
113
|
Tsuji R, Komano Y, Ohshio K, Ishii N, Kanauchi O. Long-term administration of pDC stimulative lactic acid bacteria, Lactococcus lactis strain Plasma, prevents immune-senescence and decelerates individual senescence. Exp Gerontol 2018; 111:10-16. [PMID: 29964182 DOI: 10.1016/j.exger.2018.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
Aging is accompanied by the decline in immune function, resulting in increasing susceptibility to infectious diseases and tumorigenesis. In our previous reports, we showed that Lactococcus lactis subsp. lactis strain Plasma (LC-Plasma) stimulated plasmacytoid dendritic cells (pDCs), which play an important role in viral infection, and oral administration of LC-Plasma showed prophylactic effects against viral infection both in mice and humans. However, the effects of long-term administration of LC-Plasma are not known. In this study, we investigated the effect of long-term oral administration of LC-Plasma on IFN-α induction activity and individual senescence in the senescence-accelerated mice strains Prone 1 (SAMP1) and Prone 10 (SAMP10). LC-Plasma administration promoted IFN-α induction activity and increased the naïve T cell ratio in SAMP1 mice. In SAMP10 mice, in addition to preventing a decrease in the naïve T cell ratio, aging-associated skin thinning was suppressed histologically and the expression of representative tight junction genes, such as Claudin-1 and Zo-1, was increased. Furthermore, age-related muscle weight loss tended to be suppressed in the LC-Plasma group and expression of the muscle degeneration gene FoxO-1 was significantly suppressed. Related to these phenotypes, the senescence score in the LC-Plasma group was significantly decreased at 47 weeks of age compared with that in the control group. Taken together, long-term oral administration of LC-Plasma could prevent immune-senescence and other senescence phenotypes at the organ level. Therefore, LC-Plasma is suggested to be a useful functional food material for decelerating individual senescence.
Collapse
Affiliation(s)
- Ryohei Tsuji
- Research Laboratories for Health Science and Food Technologies, Kirin Co., Ltd., 1-13-5 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| | - Yuta Komano
- Research Laboratories for Health Science and Food Technologies, Kirin Co., Ltd., 1-13-5 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Konomi Ohshio
- Research Laboratories for Health Science and Food Technologies, Kirin Co., Ltd., 1-13-5 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Naoaki Ishii
- Tokai University, School of Health Study, 1-13-5 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Osamu Kanauchi
- Research Laboratories for Health Science and Food Technologies, Kirin Co., Ltd., 1-13-5 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
114
|
Golubev A, Panchenko A, Anisimov V. Applying parametric models to survival data: tradeoffs between statistical significance, biological plausibility, and common sense. Biogerontology 2018; 19:341-365. [PMID: 29869230 DOI: 10.1007/s10522-018-9759-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
Parametric models for survival data help to differentiate aging from other lifespan determinants. However, such inferences suffer from small sizes of experimental animal samples and variable animals handling by different labs. We analyzed control data from a single laboratory where interventions in murine lifespan were studied over decades. The minimal Gompertz model (GM) was found to perform best with most murine strains. However, when several control datasets related to a particular strain are fitted to GM, strikingly rigid interdependencies between GM parameters emerge, consistent with the Strehler-Mildvan correlation (SMC). SMC emerges even when survival patterns do not conform to GM, as with cancer-prone HER2/neu mice, which die at a log-normally distributed age. Numerical experiments show that SMC includes an artifact whose magnitude depends on dataset deviation from conformance to GM irrespectively of the noisiness of small datasets, another contributor to SMC. Still another contributor to SMC is the compensation effect of mortality (CEM): a real tradeoff between the physiological factors responsible for initial vitality and the rate of its decline. To avoid misinterpretations, we advise checking experimental results against a SMC based on historical controls or on subgroups obtained by randomization of control animals. An apparent acceleration of aging associated with a decrease in the initial mortality is invalid if it is not greater than SMC suggests. This approach applied to published data suggests that the effects of calorie restriction and of drugs believed to mimic it are different. SMC and CEM relevance to human survival patterns is discussed.
Collapse
Affiliation(s)
- Alexey Golubev
- N.N. Petrov Research Institute of Oncology, Pesochny-2, Saint-Petersburg, 197758, Russia.
| | - Andrei Panchenko
- N.N. Petrov Research Institute of Oncology, Pesochny-2, Saint-Petersburg, 197758, Russia
| | - Vladimir Anisimov
- N.N. Petrov Research Institute of Oncology, Pesochny-2, Saint-Petersburg, 197758, Russia
| |
Collapse
|
115
|
Yamamoto K, Iwagaki Y, Watanabe K, Nochi T, Aso H, Tsuduki T. Effects of a moderate-fat diet that is enriched with fish oil on intestinal lipid absorption in a senescence-accelerated prone mouse model. Nutrition 2018; 50:26-35. [DOI: 10.1016/j.nut.2017.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/10/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022]
|
116
|
Azuma K, Zhou Q, Kubo KY. Morphological and molecular characterization of the senile osteoporosis in senescence-accelerated mouse prone 6 (SAMP6). Med Mol Morphol 2018; 51:139-146. [PMID: 29619545 DOI: 10.1007/s00795-018-0188-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/31/2018] [Indexed: 12/16/2022]
Abstract
Although the understanding of the complex pathogenesis for osteoporosis is appreciable, the underlying mechanism is not yet fully elucidated. There is a great need to further characterize the available animal models in osteoporosis research. The senescence-accelerated mouse prone 6 (SAMP6) mice have been developed as the spontaneous experimental model for senile osteoporosis. Here, we provide a comprehensive overview of current research regarding the bone morphological and molecular alterations and the possible mechanisms involved in these changes. There were significant decrease in trabecular bone mass at the axial and appendicular skeletal sites, with no marked alterations of cortical bone. Decreased bone formation on the endosteal surface and trabecular bone, and increased bone marrow adiposity were observed in SAMP6 mice. The elevated expression level of proliferator activator gamma (PPARγ) in the bone marrow suggest that PPARγ might regulate osteoblastic bone formation negatively in SAMP6 mice. The expression level of secreted frizzled-related protein 4 (Sfrp4) was found to be higher in SAMP6 mice. Sfrp4 is considered to suppress osteoblastic proliferation mediated by inhibition of Wnt signaling pathway. These findings may help us to gain more insight into the potential mechanism of senile osteoporosis.
Collapse
Affiliation(s)
- Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Qian Zhou
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kin-Ya Kubo
- Department of Food Science and Nutrition, Faculty of Human Life and Environmental Science, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-ku, Nagoya, Aichi, 467-8610, Japan
| |
Collapse
|
117
|
Baker DJ, Petersen RC. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Invest 2018; 128:1208-1216. [PMID: 29457783 PMCID: PMC5873891 DOI: 10.1172/jci95145] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Along with a general decline in overall health, most chronic degenerative human diseases are inherently associated with increasing age. Age-associated cognitive impairments and neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, are potentially debilitating conditions that lack viable options for treatment, resulting in a tremendous economic and societal cost. Most high-profile clinical trials for neurodegenerative diseases have led to inefficacious results, suggesting that novel approaches to treating these pathologies are needed. Numerous recent studies have demonstrated that senescent cells, which are characterized by sustained cell cycle arrest and production of a distinct senescence-associated secretory phenotype, accumulate with age and at sites of age-related diseases throughout the body, where they actively promote tissue deterioration. Cells with features of senescence have been detected in the context of brain aging and neurodegenerative disease, suggesting that they may also promote dysfunction. Here, we discuss the evidence implicating senescent cells in neurodegenerative diseases, the mechanistic contribution of these cells that may actively drive neurodegeneration, and how these cells or their effects may be targeted therapeutically.
Collapse
Affiliation(s)
- Darren J. Baker
- Department of Biochemistry and Molecular Biology
- Department of Pediatric and Adolescent Medicine, and
| | | |
Collapse
|
118
|
Sugimura T, Jounai K, Ohshio K, Suzuki H, Kirisako T, Sugihara Y, Fujiwara D. Long-term administration of pDC-Stimulative Lactococcus lactis strain decelerates senescence and prolongs the lifespan of mice. Int Immunopharmacol 2018; 58:166-172. [PMID: 29605632 DOI: 10.1016/j.intimp.2018.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/01/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
The decline in immune function caused by aging increases the risk of infectious diseases, tumorigeneses and chronic inflammation, resulting in accelerating senescence. We previously reported a lactic acid bacteria, Lactococcus lactis strain Plasma (synonym of Lactococcus lactis subsp. lactis JCM 5805, Lc-Plasma), that stimulates plasmacytoid dendritic cells (pDCs), which play a crucial role in phylaxis from viral infection. In this study, we investigated the anti-aging effects of long-term oral administration of Lc-Plasma in a senescence-accelerated mouse strain, SAMP6. Mice given Lc-Plasma showed a significant improvement in survival rate at 82 weeks and a decreased senescence score as compared with control mice throughout this study. Anatomic analysis at 82 weeks revealed that the frequency of altered hepatocellular foci was significantly lower, and the incidence of other pathological findings in the liver and lungs tended to be lower in Lc-Plasma mice than in control mice. Transcription level of the IL-1β gene in lungs also tended to be lower in Lc-Plasma mice. Furthermore, the thinning of skin and age-related decrease in muscle mass were also significantly suppressed in the Lc-Plasma group as compared with the control group. Consistent with these phenotypic features, pDCs activity was significantly higher in Lc-Plasma mice than in control mice. In conclusion, long-term administration of Lc-Plasma can decelerate senescence and prolong lifespan via maintenance of the immune system due to activation of pDCs.
Collapse
Affiliation(s)
- Tetsu Sugimura
- Central Laboratories for Key Technologies, Kirin Co. Ltd., Yokohama, Japan.
| | - Kenta Jounai
- Central Laboratories for Key Technologies, Kirin Co. Ltd., Yokohama, Japan; Technical Deveropment Center, Koiwai Dairy Products Co Ltd., Sayama, Japan
| | - Konomi Ohshio
- Central Laboratories for Key Technologies, Kirin Co. Ltd., Yokohama, Japan
| | - Hiroaki Suzuki
- Central Laboratories for Key Technologies, Kirin Co. Ltd., Yokohama, Japan
| | - Takayoshi Kirisako
- Central Laboratories for Key Technologies, Kirin Co. Ltd., Yokohama, Japan
| | - Yoshihiko Sugihara
- Central Laboratories for Key Technologies, Kirin Co. Ltd., Yokohama, Japan
| | - Daisuke Fujiwara
- Central Laboratories for Key Technologies, Kirin Co. Ltd., Yokohama, Japan
| |
Collapse
|
119
|
Okuda M, Fujita Y, Katsube T, Tabata H, Yoshino K, Hashimoto M, Sugimoto H. Highly water pressurized brown rice improves cognitive dysfunction in senescence-accelerated mouse prone 8 and reduces amyloid beta in the brain. Altern Ther Health Med 2018; 18:110. [PMID: 29587731 PMCID: PMC5869774 DOI: 10.1186/s12906-018-2167-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Abstract
Background Alzheimer’s disease (AD) is the most common form of dementia and the number of AD patients continues to increase worldwide. Components of the germ layer and bran of Brown rice (BR) help maintain good health and prevent AD. Because the germ layer and bran absorb little water and are very hard and difficult to cook, they are often removed during processing. To solve these problems, in this study, we tried to use a high-pressure (HP) technique. Methods We produced the highly water pressurized brown rice (HPBR) by pressurizing BR at 600 MPa, and then we fed it to an AD mouse model, senescence-accelerated mouse prone 8, to investigate the therapeutic effects of HPBR on cognitive dysfunction by Y-maze spatial memory test. Results HP treatment increased the water absorbency of BR without nutrient loss. HPBR ameliorated cognitive dysfunction and reduced the levels of amyloid-β, which is a major protein responsible for AD, in the brain. Conclusions These results suggest that HPBR is effective for preventing AD.
Collapse
|
120
|
Chen J, Fan J, Wang S, Sun Z. Secreted Klotho Attenuates Inflammation-Associated Aortic Valve Fibrosis in Senescence-Accelerated Mice P1. Hypertension 2018; 71:877-885. [PMID: 29581213 DOI: 10.1161/hypertensionaha.117.10560] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/09/2017] [Accepted: 03/01/2018] [Indexed: 01/04/2023]
Abstract
Senescence-accelerated mice P1 (SAMP1) is an aging model characterized by shortened lifespan and early signs of senescence. Klotho is an aging-suppressor gene. The purpose of this study is to investigate whether in vivo expression of secreted klotho (Skl) gene attenuates aortic valve fibrosis in SAMP1 mice. SAMP1 mice and age-matched (AKR/J) control mice were used. SAMP1 mice developed obvious fibrosis in aortic valves, namely fibrotic aortic valve disease. Serum level of Skl was decreased drastically in SAMP1 mice. Expression of MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), F4/80, and CD68 was increased in aortic valves of SAMP1 mice, indicating inflammation. An increase in expression of α-smooth muscle actin (myofibroblast marker), transforming growth factorβ-1, and scleraxis (a transcription factor of collagen synthesis) was also found in aortic valves of SAMP1 mice, suggesting that accelerated aging is associated with myofibroblast transition and collagen gene activation. We constructed adeno-associated virus 2 carrying mouse Skl cDNA for in vivo expression of Skl. Skl gene delivery effectively increased serum Skl of SAMP1 mice to the control level. Skl gene delivery inhibited inflammation and myofibroblastic transition in aortic valves and attenuated fibrotic aortic valve disease in SAMP1 mice. It is concluded that senescence-related fibrotic aortic valve disease in SAMP1 mice is associated with a decrease in serum klotho leading to inflammation, including macrophage infiltration and transforming growth factorβ-1/scleraxis-driven myofibroblast differentiation in aortic valves. Restoration of serum Skl levels by adeno-associated virus 2 carrying mouse Skl cDNA effectively suppresses inflammation and myofibroblastic transition and attenuates aortic valve fibrosis. Skl may be a potential therapeutic target for fibrotic aortic valve disease.
Collapse
Affiliation(s)
- Jianglei Chen
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Jun Fan
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Shirley Wang
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.
| |
Collapse
|
121
|
Lv YJ, Yang Y, Sui BD, Hu CH, Zhao P, Liao L, Chen J, Zhang LQ, Yang TT, Zhang SF, Jin Y. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice. Theranostics 2018; 8:2387-2406. [PMID: 29721087 PMCID: PMC5928897 DOI: 10.7150/thno.23620] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/18/2018] [Indexed: 01/08/2023] Open
Abstract
Rational: Senescence of mesenchymal stem cells (MSCs) and the related functional decline of osteogenesis have emerged as the critical pathogenesis of osteoporosis in aging. Resveratrol (RESV), a small molecular compound that safely mimics the effects of dietary restriction, has been well documented to extend lifespan in lower organisms and improve health in aging rodents. However, whether RESV promotes function of senescent stem cells in alleviating age-related phenotypes remains largely unknown. Here, we intend to investigate whether RESV counteracts senescence-associated bone loss via osteogenic improvement of MSCs and the underlying mechanism. Methods: MSCs derived from bone marrow (BMMSCs) and the bone-specific, senescence-accelerated, osteoblastogenesis/osteogenesis-defective mice (the SAMP6 strain) were used as experimental models. In vivo application of RESV was performed at 100 mg/kg intraperitoneally once every other day for 2 months, and in vitro application of RESV was performed at 10 μM. Bone mass, bone formation rates and osteogenic differentiation of BMMSCs were primarily evaluated. Metabolic statuses of BMMSCs and the mitochondrial activity, transcription and morphology were also examined. Mitofilin expression was assessed at both mRNA and protein levels, and short hairpin RNA (shRNA)-based gene knockdown was applied for mechanistic experiments. Results: Chronic intermittent application of RESV enhances bone formation and counteracts accelerated bone loss, with RESV improving osteogenic differentiation of senescent BMMSCs. Furthermore, in rescuing osteogenic decline under BMMSC senescence, RESV restores cellular metabolism through mitochondrial functional recovery via facilitating mitochondrial autonomous gene transcription. Molecularly, in alleviating senescence-associated mitochondrial disorders of BMMSCs, particularly the mitochondrial morphological alterations, RESV upregulates Mitofilin, also known as inner membrane protein of mitochondria (Immt) or Mic60, which is the core component of the mitochondrial contact site and cristae organizing system (MICOS). Moreover, Mitofilin is revealed to be indispensable for mitochondrial homeostasis and osteogenesis of BMMSCs, and that insufficiency of Mitofilin leads to BMMSC senescence and bone loss. More importantly, Mitofilin mediates resveratrol-induced mitochondrial and osteogenic improvements of BMMSCs in senescence. Conclusion: Our findings uncover osteogenic functional improvements of senescent MSCs as critical impacts in anti-osteoporotic practice of RESV, and unravel Mitofilin as a novel mechanism mediating RESV promotion on mitochondrial function in stem cell senescence.
Collapse
|
122
|
Jin Y, Takeda Y, Kondo Y, Tripathi LP, Kang S, Takeshita H, Kuhara H, Maeda Y, Higashiguchi M, Miyake K, Morimura O, Koba T, Hayama Y, Koyama S, Nakanishi K, Iwasaki T, Tetsumoto S, Tsujino K, Kuroyama M, Iwahori K, Hirata H, Takimoto T, Suzuki M, Nagatomo I, Sugimoto K, Fujii Y, Kida H, Mizuguchi K, Ito M, Kijima T, Rakugi H, Mekada E, Tachibana I, Kumanogoh A. Double deletion of tetraspanins CD9 and CD81 in mice leads to a syndrome resembling accelerated aging. Sci Rep 2018; 8:5145. [PMID: 29572511 PMCID: PMC5865149 DOI: 10.1038/s41598-018-23338-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/09/2018] [Indexed: 01/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has been recently characterized as a disease of accelerated lung aging, but the mechanism remains unclear. Tetraspanins have emerged as key players in malignancy and inflammatory diseases. Here, we found that CD9/CD81 double knockout (DKO) mice with a COPD-like phenotype progressively developed a syndrome resembling human aging, including cataracts, hair loss, and atrophy of various organs, including thymus, muscle, and testis, resulting in shorter survival than wild-type (WT) mice. Consistent with this, DNA microarray analysis of DKO mouse lungs revealed differential expression of genes involved in cell death, inflammation, and the sirtuin-1 (SIRT1) pathway. Accordingly, expression of SIRT1 was reduced in DKO mouse lungs. Importantly, siRNA knockdown of CD9 and CD81 in lung epithelial cells additively decreased SIRT1 and Foxo3a expression, but reciprocally upregulated the expression of p21 and p53, leading to reduced cell proliferation and elevated apoptosis. Furthermore, deletion of these tetraspanins increased the expression of pro-inflammatory genes and IL-8. Hence, CD9 and CD81 might coordinately prevent senescence and inflammation, partly by maintaining SIRT1 expression. Altogether, CD9/CD81 DKO mice represent a novel model for both COPD and accelerated senescence.
Collapse
Affiliation(s)
- Yingji Jin
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | - Lokesh P Tripathi
- National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Sujin Kang
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hikari Takeshita
- Department of Geriatric Medicine &, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hanako Kuhara
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yohei Maeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayoshi Higashiguchi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Osamu Morimura
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taro Koba
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitomo Hayama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kaori Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeo Iwasaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Tetsumoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuyuki Tsujino
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Muneyoshi Kuroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayuki Takimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mayumi Suzuki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ken Sugimoto
- Department of Geriatric Medicine &, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuta Fujii
- Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenji Mizuguchi
- National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Mari Ito
- National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine &, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eisuke Mekada
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Isao Tachibana
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
123
|
|
124
|
Zhou CL, Zhao L, Shi HY, Liu JW, Shi JW, Kan BH, Li Z, Yu JC, Han JX. Combined acupuncture and HuangDiSan treatment affects behavior and synaptophysin levels in the hippocampus of senescence-accelerated mouse prone 8 after neural stem cell transplantation. Neural Regen Res 2018; 13:541-548. [PMID: 29623942 PMCID: PMC5900520 DOI: 10.4103/1673-5374.228760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sanjiao acupuncture and HuangDiSan can promote the proliferation, migration and differentiation of exogenous neural stem cells in senescence-accelerated mouse prone 8 (SAMP8) mice and can improve learning and memory impairment and behavioral function in dementia-model mice. Thus, we sought to determine whether Sanjiao acupuncture and HuangDiSan can elevate the effect of neural stem cell transplantation in Alzheimer's disease model mice. Sanjiao acupuncture was used to stimulate Danzhong (CV17), Zhongwan (CV12), Qihai (CV6), bilateral Xuehai (SP10) and bilateral Zusanli (ST36) 15 days before and after implantation of neural stem cells (5 × 105) into the hippocampal dentate gyrus of SAMP8 mice. Simultaneously, 0.2 mL HuangDiSan, containing Rehmannia Root and Chinese Angelica, was intragastrically administered. Our results demonstrated that compared with mice undergoing neural stem cell transplantation alone, learning ability was significantly improved and synaptophysin mRNA and protein levels were greatly increased in the hippocampus of mice undergoing both Sanjiao acupuncture and intragastric administration of HuangDiSan. We conclude that the combination of Sanjiao acupuncture and HuangDiSan can effectively improve dementia symptoms in mice, and the mechanism of this action might be related to the regulation of synaptophysin expression.
Collapse
Affiliation(s)
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Hui-yan Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Jian-wei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiang-wei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo-hong Kan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Zhen Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Jian-chun Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing-xian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
125
|
Elucidation of the mechanism of changes in the antioxidant function with the aging in the liver of the senescence-accelerated mouse P10 (SAMP10). Exp Gerontol 2018; 106:46-53. [PMID: 29477336 DOI: 10.1016/j.exger.2018.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/30/2017] [Accepted: 02/22/2018] [Indexed: 11/23/2022]
Abstract
Senescence-accelerated mice are known to display a variety of deficits and signs of accelerated aging, but the specific mechanisms involved in this process are still unclear. In this study, we examined the expression levels of antioxidant enzymes, transcription factors responsible for the regulation of expression of these enzymes, and mitochondrial proteins in the liver of SAMP10 and SAMR1 mice at 3 and 12 months of age using western blotting analysis. To investigate the amount of oxidative damage to DNA, levels of 8-OHdG were measured in the liver of these mice. At 3 months of age, the levels of catalase, Mn-SOD, GPx, UQCRC2 and COXIV were significantly upregulated in SAMP10 mice compared with that in SAMR1 mice. However, NDUFS3 levels were not significantly different at this young age. In contrast, the expression level of catalase was significantly lower, and the levels of phosphorylated FoxO-1a and UQCRC2 were significantly higher in SAMP10 mice compared to those in SAMR1 mice; however, at 12 months of age, there were no significant differences in Mn-SOD, GPx, total -FoxO-1a, COXIV, and NDUFS3 expression between the two groups of mice. The levels of 8-OHdG in the liver were markedly higher in 12-month-old SAMP10 mice than those in 3-month-old SAMP10 and SAMR1 mice. These results suggest that an increase in number of mitochondria or a collapse in the balance between the levels of complexes I and III results in an increase in the amount of ROS and induces the expression of antioxidant enzymes in the liver of SAMP10 mice at 3 months of age. Although young SAMP10 mice produce a large amount of ROS, they also produce suitable levels of antioxidant enzymes that decompose ROS; consequently accelerated aging does not occur in young SAMP10 mice. In addition to excessive ROS production which is an important cause of aging, the level of catalase was significantly lower in SAMP10 than that in SAMR1 mice. These results suggested that overexpression of ROS and a decrease in the levels of catalase resulted in the accelerated aging observed in older SAMP10 mice. Moreover, the level of phosphorylated FoxO-1a was increased in SAMP10 compared to that in SAMR1 mice though the total amount of FoxO-1a was not significantly different between the two groups in old age. These results suggest that some impairment in the regulation mechanism of FoxO-1a phosphorylation is responsible for abnormal catalase expression and that a significant decrease in the level of catalase with aging decisively affects the metabolic balance of ROS; thus, ROS that cannot be metabolized contributes to the accelerated aging of SAMP10 mice.
Collapse
|
126
|
Hao ZH, Huang Y, Wang MR, Huo TT, Jia Q, Feng RF, Fan P, Wang JH. SS31 ameliorates age-related activation of NF-κB signaling in senile mice model, SAMP8. Oncotarget 2018; 8:1983-1992. [PMID: 28030844 PMCID: PMC5356771 DOI: 10.18632/oncotarget.14077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/12/2016] [Indexed: 01/29/2023] Open
Abstract
Aging has been attributed to oxidative stress and inflammatory response, in which NF-κB and Nrf2-ARE signaling pathways play significant roles. Senescence accelerated mouse prone 8 (SAMP8) is generally used an animal model for aging studies. Here, we investigated the NF-κB and Nrf2-ARE signaling pathways in SAMP8 brains at different ages and their responses to SS31 peptide treatment. Thirty six SAMP8 mice were separated into aging groups and SS31-treatment groups. The hippocampus from each mouse was dissected for RNA and protein extraction. Cytokines and ROS levels were measured using ELISA and standardised method. Gene expressions of NF-κB, Nrf2 and HO-1 were measured by RT-qPCR. Total protein amount of NF-κB and HO-1, as well as the concentrations of nuclear and cytoplasmic Nrf2 were measured using Western blots. Our data showed that aging could activate both NF-κB and Nrf2-ARE signaling pathways, which could be suppressed and activated by SS31 treatment respectively. Regression analysis revealed that NF-κB gene expression was the most important parameter predicting aging process and SS31 treatment effects in SAMP8. Our findings suggested that SS31 treatment may modulate the inflammatory and oxidative stress status of the aged brains and exert protective effects during brain aging.
Collapse
Affiliation(s)
- Zhi-Hua Hao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China.,Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yue Huang
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Mei-Rong Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China.,Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tian-Tian Huo
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qian Jia
- Graduate School,Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rong-Fang Feng
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ping Fan
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian-Hua Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
127
|
Virgili J, Lebbadi M, Tremblay C, St-Amour I, Pierrisnard C, Faucher-Genest A, Emond V, Julien C, Calon F. Characterization of a 3xTg-AD mouse model of Alzheimer's disease with the senescence accelerated mouse prone 8 (SAMP8) background. Synapse 2018; 72. [DOI: 10.1002/syn.22025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jessica Virgili
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Meryem Lebbadi
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Isabelle St-Amour
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Caroline Pierrisnard
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Audrey Faucher-Genest
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Carl Julien
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Frédéric Calon
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| |
Collapse
|
128
|
Mitsuoka K, Kikutani T, Miwa Y, Sato I. Expression of CGRP neurotransmitter and vascular genesis marker mRNA is age-dependent in superior cervical ganglia of senescence-accelerated prone mice. Neurosci Lett 2018; 664:144-151. [PMID: 29154859 DOI: 10.1016/j.neulet.2017.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 11/30/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a neurotransmitter that is released from the superior cervical ganglion (SCG) and causes head and neck pain. The morphological properties of human SCG neurons, including neurotransmitter content, are altered during aging. However, morphological changes in CGRP in the SCG during aging are not known. Therefore, we investigated CGRP and other markers in the SCG during aging in an aging model of senescence-accelerated prone mouse (SAMP8) and senescence-accelerated resistant mice (SAMR1) using real-time RT-PCR mRNA analyses and in situ hybridization. The abundance of neurotransmitter (CGRP, NPY, TRPV1), vascular genesis marker (CD31, LYVE-1), and cytochrome C mRNA differed between 12-week-old and 24-week-old SAMP8 and SAMR1. Abundance of TRPV1, CD31 and cytochrome C mRNAs of SAMP8 decreased between 12- and 24-week-old. The ratio of CGRP mRNA positive cells and CGRP mRNA abundance levels of the SCG of aging mouse such as SAMP8 have already been also higher than that of SAMR1 at 12-week-old. The CGRP positive shrunken ganglion cells was increased from 12- to 24-weeks-old mouse in SAMR1 and SAMP8. The SCG primarily affected the internal and external carotid arteries, larynx thyroid gland, and pharyngeal muscle during aging.
Collapse
Affiliation(s)
- Kazuyuki Mitsuoka
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan; Division of Oral Rehabilitation, Nippon Dental University Graduate School of Life Dentistry, Tokyo, Japan
| | - Takeshi Kikutani
- Division of Oral Rehabilitation, Nippon Dental University Graduate School of Life Dentistry, Tokyo, Japan; Nippon Dental University Tama Oral Rehabilitation Clinic, Japan
| | - Yoko Miwa
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Iwao Sato
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| |
Collapse
|
129
|
The contribution of transgenic and nontransgenic animal models in Alzheimer's disease drug research and development. Behav Pharmacol 2018; 28:95-111. [PMID: 28177983 DOI: 10.1097/fbp.0000000000000296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the last few years, several papers have become available in the literature on both the main hallmarks of Alzheimer's disease (AD) and the several intracellular pathways whose alteration is responsible for its onset and progression. The use of transgenic and nontransgenic animal models has played a key role in achieving such a remarkable amount of preclinical data, allowing researchers to dissect the cellular changes occurring in the AD brain. In addition, the huge amount of preclinical evidence arising from these animal models was necessary for the further clinical development of pharmacological agents capable of interfering with most of the impaired neural pathways in AD patients. In this respect, a significant role is played by the dysfunction of excitatory and inhibitory neurotransmission responsible for the cognitive and behavioral symptoms described in AD patients. The aim of this review is to summarize the main animal models that contributed toward unraveling the pathological changes in neurotransmitter synthesis, release, and receptor binding in AD preclinical studies. The review also provides an updated description of the current pharmacological agents - still under clinical development - acting on the neurotransmitter systems.
Collapse
|
130
|
Wang F, Feng J, Yang Y, Liu J, Liu M, Wang Z, Pei H, Wei Y, Li H. The Chinese herbal formula Fuzheng Quxie Decoction attenuates cognitive impairment and protects cerebrovascular function in SAMP8 mice. Neuropsychiatr Dis Treat 2018; 14:3037-3051. [PMID: 30519025 PMCID: PMC6233692 DOI: 10.2147/ndt.s175484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE This study was designed to explore the underlying mechanism of action for a Fuzheng Quxie Decoction (FQD) in Alzheimer's disease (AD), to validate its neuroprotective effects, and to provide experimental support for its predicted mechanism of action. METHODS An integrative approach to network pharmacology was performed to predict the mechanism of action for treatment of AD with FQD. The predicted mechanism was validated in SAMP8 mice. RESULTS With predicted putative FQD targets and a collection of AD-related genes, 245 possible regulatory targets of FQD were identified for the treatment of AD. Pathway-enrichment analysis for the possible regulatory targets indicated that vascular endothelial growth factor (VEGF) and VEGF-receptor signaling were pivotal in the treatment of AD with FQD. In vivo experiments confirmed the neuroprotective effect and the predicted mechanism of action for treatment of AD with FQD. CONCLUSION This study contributes to an understanding of the neuroprotective effect of FQD and its potential mechanism of action for the treatment of AD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Jianchao Feng
- Intensive Care Unit, Heze Hospital of Traditional Chinese Medicine, Heze, Shandong, China
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Jiangang Liu
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Zhiyong Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| |
Collapse
|
131
|
Namikawa M, Sano A, Tateno T. Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice. Front Aging Neurosci 2017; 9:395. [PMID: 29311894 PMCID: PMC5732918 DOI: 10.3389/fnagi.2017.00395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 11/15/2022] Open
Abstract
The prevalence of tinnitus is known to increase with age. The age-dependent mechanisms of tinnitus may have important implications for the development of new therapeutic treatments. High doses of salicylate can be used experimentally to induce transient tinnitus and hearing loss. Although accumulating evidence indicates that salicylate induces tinnitus by directly targeting neurons in the peripheral and central auditory systems, the precise effect of salicylate on neural networks in the auditory cortex (AC) is unknown. Here, we examined salicylate-induced changes in stimulus-driven laminar responses of AC slices with salicylate superfusion in young and aged senescence-accelerated-prone (SAMP) and -resistant (SAMR) mice. Of the two strains, SAMP1 is known to be a more suitable model of presbycusis. We recorded stimulus-driven laminar local field potential (LFP) responses at multi sites in AC slice preparations. We found that for all AC slices in the two strains, salicylate always reduced stimulus-driven LFP responses in all layers. However, for the amplitudes of the LFP responses, the two senescence-accelerated mice (SAM) strains showed different laminar properties between the pre- and post-salicylate conditions, reflecting strain-related differences in local circuits. As for the relationships between auditory brainstem response (ABR) thresholds and the LFP amplitude ratios in the pre- vs. post-salicylate condition, we found negative correlations in layers 2/3 and 4 for both older strains, and in layer 5 (L5) in older SAMR1. In contrast, the GABAergic agonist muscimol (MSC) led to positive correlations between ABR thresholds and LFP amplitude ratios in the pre- vs. post-MSC condition in younger SAM mice from both strains. Further, in younger mice, salicylate decreased the firing rate in AC L4 pyramidal neurons. Thus, salicylate can directly reduce neural excitability of L4 pyramidal neurons and thereby influence AC neural circuit activity. That we observed age-dependent effects of salicylate and varied GABAergic sensitivity in the AC among mouse strains with hearing loss implies that potential therapeutic mechanisms for tinnitus may operate differently in young vs. aged subjects. Therefore, scientists developing new therapeutic modalities for tinnitus treatment should consider using both aged and young animals.
Collapse
Affiliation(s)
- Minoru Namikawa
- Department of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Ayaka Sano
- Department of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Takashi Tateno
- Department of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
132
|
Valero-Muñoz M, Backman W, Sam F. Murine Models of Heart Failure with Preserved Ejection Fraction: a "Fishing Expedition". JACC Basic Transl Sci 2017; 2:770-789. [PMID: 29333506 PMCID: PMC5764178 DOI: 10.1016/j.jacbts.2017.07.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of HF in the presence of a normal left ventricular (LV) ejection fraction (EF). Despite accounting for up to 50% of all clinical presentations of HF, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension and renal dysfunction are highly associated with HFpEF. Yet, the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models, used to study the HFpEF phenotype.
Collapse
Affiliation(s)
- Maria Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Warren Backman
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
133
|
Tanaka S, Nagashima H. Establishment of an Alzheimer's disease model with latent herpesvirus infection using PS2 and Tg2576 double transgenic mice. Exp Anim 2017; 67:185-192. [PMID: 29187699 PMCID: PMC5955750 DOI: 10.1538/expanim.17-0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A relationship between Alzheimer’s disease and herpes simplex virus infection has been
pointed out. We established a model of Alzheimer’s disease with a latent herpesvirus
infection using a mouse model of Alzheimer’s disease (PS2Tg2576) and examined the changes
in amyloid β (Aβ) in the brain. We crossbred female PS2 mice with male Tg2576 hemi mice
and chose PS2Tg2576 mice. After priming 5-week-old male mice with anti-pseudorabies virus
swine serum, we challenged the mouse with 100 LD50 of YS-81, a wild-type strain
of pseudorabies virus. The viral DNA was detected in nasal swabs by a reactivation test
and in the trigeminal ganglia. At two months after infection, the Aβ40 and Aβ42 levels in
the brains of the mice of the latently infected group were increased; the increase was
greater than that observed in the noninfected group. Latent pseudorabies virus infection
was established in PS2Tg2576 mice and the level of Aβ increased with the reactivation of
the latent virus.
Collapse
Affiliation(s)
- Seiichi Tanaka
- Center for Experimental Animals, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Hiroshi Nagashima
- Animal-care Co., Ltd., 5-18-14 Shinjuku, Shinjuku-ku, Tokyo 160-0022, Japan
| |
Collapse
|
134
|
Yang H, Albiol L, Chan WL, Wulsten D, Seliger A, Thelen M, Thiele T, Spevak L, Boskey A, Kornak U, Checa S, Willie BM. Examining tissue composition, whole-bone morphology and mechanical behavior of Gorab Prx1 mice tibiae: A mouse model of premature aging. J Biomech 2017; 65:145-153. [PMID: 29108851 DOI: 10.1016/j.jbiomech.2017.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/05/2017] [Accepted: 10/15/2017] [Indexed: 11/30/2022]
Abstract
Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (GorabPrx1) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the GorabPrx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that GorabPrx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the GorabPrx1 tibiae (p < .05), suggesting delayed mineralization. In vivo strain gauge measurement and finite element analysis showed ∼two times higher tissue-level strains within the GorabPrx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that GorabPrx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the GorabPrx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO.
Collapse
Affiliation(s)
- Haisheng Yang
- Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China; Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Laia Albiol
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wing-Lee Chan
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Germany
| | - Dag Wulsten
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Seliger
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Thelen
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Germany
| | - Tobias Thiele
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada; Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
135
|
Zhao L, Zhou C, Li L, Liu J, Shi H, Kan B, Li Z, Li Y, Han J, Yu J. Acupuncture Improves Cerebral Microenvironment in Mice with Alzheimer's Disease Treated with Hippocampal Neural Stem Cells. Mol Neurobiol 2017; 54:5120-5130. [PMID: 27558235 DOI: 10.1007/s12035-016-0054-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Abstract
Transplantation with neural stem cells (NSCs) is a promising clinical therapy for Alzheimer's disease (AD). However, the final fate of grafted NSCs is mainly determined by the host microenvironment. Therefore, this study investigated the role of Sanjiao acupuncture in the NSCs-treated hippocampus of a mouse model, senescence-accelerated mouse prone 8 (SAMP8) using Western blot, real-time fluorescent PCR, and immunofluorescence techniques. Meanwhile, we developed a co-culture model of hippocampal tissue specimens and NSCs in vitro, to observe the effects of acupuncture on survival, proliferation and differentiation of grafted NSCs using flow cytometry. Results showed that acupuncture pre- and post-NSCs transplantation significantly improved senescence-induced cognitive dysfunction (P < 0.05); upregulated the expression of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and brain-derived neurotrophic factor (BDNF) (P < 0.05); and also increased the count of neuron-specific nuclear protein (NeuN)- and glial fibrillary acidic protein (GFAP)-positive cells (P < 0.05). Therapeutic acupuncture may regulate the cytokine levels associated with survival, proliferation, and differentiation of NSCs in hippocampal microenvironment, to promote the repair of damaged cells, resulting in improved cognitive performance in mice.
Collapse
Affiliation(s)
- Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Chunlei Zhou
- Tianjin First Center Hospital, Tianjin, 300192, China
| | - Li Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Huiyan Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bohong Kan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zhen Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yunzhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jingxian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jianchun Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
136
|
Cortegano I, Rodríguez M, Martín I, Prado MC, Ruíz C, Hortigüela R, Alía M, Vilar M, Mira H, Cano E, Domínguez M, de Andrés B, Gaspar ML. Altered marginal zone and innate-like B cells in aged senescence-accelerated SAMP8 mice with defective IgG1 responses. Cell Death Dis 2017; 8:e3000. [PMID: 28817118 PMCID: PMC5596542 DOI: 10.1038/cddis.2017.351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 12/31/2022]
Abstract
Aging has a strong impact on the activity of the immune system, enhancing susceptibility to pathogens and provoking a predominant pre-inflammatory status, whereas dampening responses to vaccines in humans and mice. Here, we demonstrate a loss of marginal zone B lymphocytes (MZ, CD19+CD45R+CD21++CD23lo) and a decrease of naive B cells (CD19+IgD+), whereas there is an enhancement of a CD19+CD45Rlo innate-like B cell population (B1REL) and the so-called aged B cell compartment (ABC, CD45R+CD21loCD23loCD5-CD11b-) in aged senescence-accelerated (SAMP8) mice but not in aged senescence-resistant (SAMR1) mice. These changes in aged SAMP8 mice were associated with lower IgG isotype levels, displaying low variable gene usage repertoires of the immunoglobulin heavy chain (VH) diversity, with a diminution on IgG1-memory B cells (CD11b-Gr1-CD138-IgM-IgD-CD19+CD38+IgG1+), an increase in T follicular helper (TFH, CD4+CXCR5+PD1+) cell numbers, and an altered MOMA-1 (metallophilic macrophages) band in primary follicles. LPS-mediated IgG1 responses were impaired in the B1REL and ABC cell compartments, both in vitro and in vivo. These data demonstrate the prominent changes to different B cell populations and in structural follicle organization that occur upon aging in SAMP8 mice. These novel results raise new questions regarding the importance of the cellular distribution in the B cell layers, and their effector functions needed to mount a coordinated and effective humoral response.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Death/drug effects
- Cell Proliferation/drug effects
- Gene Expression Regulation, Developmental
- IgG Deficiency/genetics
- IgG Deficiency/metabolism
- IgG Deficiency/pathology
- Immunity, Humoral
- Immunity, Innate
- Immunoglobulin D/genetics
- Immunoglobulin D/metabolism
- Immunoglobulin G/genetics
- Immunoglobulin G/metabolism
- Immunoglobulin Heavy Chains
- Immunoglobulin M/genetics
- Immunoglobulin M/metabolism
- Immunologic Memory
- Lipopolysaccharides/pharmacology
- Mice, Inbred C57BL
- Mice, Transgenic
- Primary Cell Culture
- Signal Transduction
- Spleen/cytology
- Spleen/drug effects
- Spleen/immunology
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Isabel Cortegano
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Mercedes Rodríguez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Isabel Martín
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Maria Carmen Prado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Carolina Ruíz
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Rafael Hortigüela
- Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| | - Mario Alía
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia, Valencia 46010, Spain
| | - Helena Mira
- Instituto de Biomedicina de Valencia, Valencia 46010, Spain
| | - Eva Cano
- Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| | - Mercedes Domínguez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Belén de Andrés
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - María Luisa Gaspar
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
137
|
Rancán L, Paredes SD, García I, Muñoz P, García C, López de Hontanar G, de la Fuente M, Vara E, Tresguerres JAF. Protective effect of xanthohumol against age-related brain damage. J Nutr Biochem 2017; 49:133-140. [PMID: 28950154 DOI: 10.1016/j.jnutbio.2017.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 05/09/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022]
Abstract
It has been recently shown that xanthohumol, a flavonoid present in hops, possesses antioxidant, anti-inflammatory and chemopreventive properties. However, its role in the aging brain has not been addressed so far. Therefore, this study aimed to investigate the possible neuroprotective activity of xanthohumol against age-related inflammatory and apoptotic brain damage in male senescence-accelerated prone mice (SAMP8). Animals were divided into 4 groups: Untreated young mice, untreated old mice and old mice treated either with 1 mg kg-1 day-1 or 5 mg kg-1 day-1 xanthohumol. Young and old senescence accelerated resistant mice (SAMR1) were used as controls. After 30 days of treatment, animals were sacrificed and their brains were collected and immediately frozen in liquid nitrogen. mRNA (GFAP, TNF-α, IL-1β, AIF, BAD, BAX, XIAP, NAIP and Bcl-2) and protein (GFAP, TNF-α, IL-1β, AIF, BAD, BAX, BDNF, synaptophysin and synapsin) expressions were measured by RT-PCR and Western blotting, respectively. Significant increased levels of pro-inflammatory (TNF-α, IL-1β) and pro-apoptotic (AIF, BAD, BAX) markers were observed in both SAMP8 and SAMR1 old mice compared to young animals (P<.05) and also in SAMP8 untreated old mice compared to SAMR1 (P<.05). These alterations were significantly less evident in animals treated with both doses of xanthohumol (P<.05). Also, a reduced expression of synaptic markers was observed in old mice compared to young ones (P<.05) but it significantly recovered with 5 mg kg-1 day-1 xanthohumol treatment (P<.05). In conclusion, xanthohumol treatment modulated the inflammation and apoptosis of aged brains, exerting a protective effect on damage induced by aging.
Collapse
Affiliation(s)
- Lisa Rancán
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Sergio D Paredes
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Irene García
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Pedro Muñoz
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Cruz García
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Guzmán López de Hontanar
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Mónica de la Fuente
- Department of Physiology (Animal Physiology II), School of Biology, Complutense University of Madrid, Madrid, Spain.
| | - Elena Vara
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Jesús A F Tresguerres
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
138
|
Okuda M, Fujita Y, Hijikuro I, Wada M, Uemura T, Kobayashi Y, Waku T, Tanaka N, Nishimoto T, Izumi Y, Kume T, Akaike A, Takahashi T, Sugimoto H. PE859, A Novel Curcumin Derivative, Inhibits Amyloid-β and Tau Aggregation, and Ameliorates Cognitive Dysfunction in Senescence-Accelerated Mouse Prone 8. J Alzheimers Dis 2017; 59:313-328. [DOI: 10.3233/jad-161017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michiaki Okuda
- Graduate School of Brain Science, Doshisha University, Kizugawa, Kyoto, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Pharma Eight Co., Ltd., Kyoto, Japan
| | - Yuki Fujita
- Graduate School of Brain Science, Doshisha University, Kizugawa, Kyoto, Japan
- Pharma Eight Co., Ltd., Kyoto, Japan
| | | | - Mei Wada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Takuya Uemura
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Yukako Kobayashi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Naoki Tanaka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | | | - Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akinori Akaike
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Takahashi
- Natural Product Chemistry & Pharmaceutical Research Center, Yokohama College of Pharmacy, Yokohama, Japan
| | - Hachiro Sugimoto
- Graduate School of Brain Science, Doshisha University, Kizugawa, Kyoto, Japan
| |
Collapse
|
139
|
Bodea L, Evans HT, Van der Jeugd A, Ittner LM, Delerue F, Kril J, Halliday G, Hodges J, Kiernan MC, Götz J. Accelerated aging exacerbates a pre-existing pathology in a tau transgenic mouse model. Aging Cell 2017; 16:377-386. [PMID: 28160413 PMCID: PMC5334525 DOI: 10.1111/acel.12565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2016] [Indexed: 12/31/2022] Open
Abstract
Age is a critical factor in the prevalence of tauopathies, including Alzheimer's disease. To observe how an aging phenotype interacts with and affects the pathological intracellular accumulation of hyperphosphorylated tau, the tauopathy mouse model pR5 (expressing P301L mutant human tau) was back‐crossed more than ten times onto a senescence‐accelerated SAMP8 background to establish the new strain, SApT. Unlike SAMP8 mice, pR5 mice are characterized by a robust tau pathology particularly in the amygdala and hippocampus. Analysis of age‐matched SApT mice revealed that pathological tau phosphorylation was increased in these brain regions compared to those in the parental pR5 strain. Moreover, as revealed by immunohistochemistry, phosphorylation of critical tau phospho‐epitopes (P‐Ser202/P‐Ser205 and P‐Ser235) was significantly increased in the amygdala of SApT mice in an age‐dependent manner, suggesting an age‐associated effect of tau phosphorylation. Anxiety tests revealed that the older cohort of SApT mice (10 months vs. 8 months) exhibited a behavioural pattern similar to that observed for age‐matched tau transgenic pR5 mice and not the SAMP8 parental mice. Learning and memory, however, appeared to be governed by the accelerated aging background of the SAMP8 strain, as at both ages investigated, SAMP8 and SApT mice showed a decreased learning capacity compared to pR5 mice. We therefore conclude that accelerated aging exacerbates pathological tau phosphorylation, leading to changes in normal behaviour. These findings further suggest that SApT mice may be a useful novel model in which to study the role of a complex geriatric phenotype in tauopathy.
Collapse
Affiliation(s)
- Liviu‐Gabriel Bodea
- Clem Jones Centre for Ageing Dementia Research (CJCADR) Queensland Brain Institute (QBI) The University of Queensland Brisbane Qld Australia
| | - Harrison Tudor Evans
- Clem Jones Centre for Ageing Dementia Research (CJCADR) Queensland Brain Institute (QBI) The University of Queensland Brisbane Qld Australia
| | - Ann Van der Jeugd
- Clem Jones Centre for Ageing Dementia Research (CJCADR) Queensland Brain Institute (QBI) The University of Queensland Brisbane Qld Australia
| | - Lars M. Ittner
- University of New South Wales and Neuroscience Research Australia Sydney NSW Australia
| | - Fabien Delerue
- University of New South Wales and Neuroscience Research Australia Sydney NSW Australia
| | - Jillian Kril
- Discipline of Pathology Sydney Medical School University of Sydney Sydney NSW Australia
| | - Glenda Halliday
- University of New South Wales and Neuroscience Research Australia Sydney NSW Australia
| | - John Hodges
- University of New South Wales and Neuroscience Research Australia Sydney NSW Australia
| | | | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR) Queensland Brain Institute (QBI) The University of Queensland Brisbane Qld Australia
| |
Collapse
|
140
|
Yamamura D, Sano A, Tateno T. An analysis of current source density profiles activated by local stimulation in the mouse auditory cortex in vitro. Brain Res 2017; 1659:96-112. [PMID: 28119054 DOI: 10.1016/j.brainres.2017.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 01/27/2023]
|
141
|
Wang HL, Xian XH, Song QY, Pang C, Wang JL, Wang MW, Li WB. Age-related alterations of neuronal excitability and voltage-dependent Ca 2+ current in a spontaneous mouse model of Alzheimer's disease. Behav Brain Res 2017; 321:209-213. [PMID: 28069411 DOI: 10.1016/j.bbr.2017.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder, characterized by a progressive dysfunction of central neurons, and senescence-accelerated mouse prone 8 (SAMP8), a spontaneous AD mouse model, appears to be an excellent model to investigate the process of AD. Previous studies have indicated that neuronal excitability is impaired in transgenic AD mice. In this study, the cognition of SAMP8 mice was tested using the passive avoidance task and Morris water maze; whole-cell current-clamp recordings were used to evaluate the neuronal excitability, including the resting membrane potential, the number of action potentials, and after-hyperpolarization; and the voltage-dependent Ca2+ current in hippocampal slices was measured using whole-cell voltage-clamp recordings. We found that compared to the young mice, the performance in the learning and memory behavior tasks was impaired in aged mice, and the hippocampal CA1 pyramidal neurons of the aged mice showed a significantly depolarized resting membrane potential, increased numbers of action potentials after injection of depolarizing current, and increased after-hyperpolarization after the action potentials. Consistent with the above changes, the voltage-dependent Ca2+ current was larger in aged mice than in young mice. These data suggested that the aged SAMP8 neurons were hyperexcitable, and the alterations in the voltage-dependent Ca2+ current of aged neurons occurred in parallel to the elevation in excitability.
Collapse
Affiliation(s)
- Hua-Long Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, PR China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Qiao-Yun Song
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang 050051, Hebei, PR China
| | - Chao Pang
- Department of Pathology, The First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, PR China
| | - Jia-Lei Wang
- Department of Laboratory Diagnosis, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Ming-Wei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, PR China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang 050031, Hebei, PR China.
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang 050031, Hebei, PR China.
| |
Collapse
|
142
|
Rhea EM, Banks WA. The SAMP8 mouse for investigating memory and the role of insulin in the brain. Exp Gerontol 2016; 94:64-68. [PMID: 27979769 DOI: 10.1016/j.exger.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 02/01/2023]
Abstract
SAMP8 mice exhibit changes that commonly occur with normal aging late in life, but do so at a much earlier age. These changes include impairments in learning and memory as early as 8months of age and so the SAMP8 is a useful model to investigate those age-related brain changes that may affect cognition. As brain insulin signaling and memory decline with aging, the SAMP8 model is useful for investigating these changes and interventions that might prevent the decline. This review will summarize the SAMP8 mouse model, highlight changes in brain insulin signaling and its role in memory, and discuss intranasal insulin delivery in investigating effects on insulin metabolism and memory in the SAMP8 mice.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, United States.
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, United States
| |
Collapse
|
143
|
Yanai S, Toyohara J, Ishiwata K, Ito H, Endo S. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier. Neuropharmacology 2016; 116:247-259. [PMID: 27979612 DOI: 10.1016/j.neuropharm.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/18/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2-18F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan; Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Fukushima 963-8052, Japan; Department of Biofunctional Imaging, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan.
| |
Collapse
|
144
|
von Zglinicki T, Varela-Nieto I, Brites D, Karagianni N, Ortolano S, Georgopoulos S, Cardoso AL, Novella S, Lepperdinger G, Trendelenburg AU, van Os R. Frailty in mouse ageing: A conceptual approach. Mech Ageing Dev 2016; 160:34-40. [DOI: 10.1016/j.mad.2016.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 01/21/2023]
|
145
|
Tsuboi I, Morimoto K, Hirabayashi Y, Li GX, Aizawa S, Mori KJ, Kanno J, Inoue T. Senescent B Lymphopoiesis is Balanced in Suppressive Homeostasis: Decrease in Interleukin-7 and Transforming Growth Factor-β Levels in Stromal Cells of Senescence-Accelerated Mice. Exp Biol Med (Maywood) 2016; 229:494-502. [PMID: 15169968 DOI: 10.1177/153537020422900607] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The suppression of the B cell population during senescence has been considered to be due to the suppression of interleukin-7 (IL-7) production and responsiveness to IL-7; however, the upregulation of transforming growth factor-β (TGF-β) was found to contribute to B cell suppression. To investigate the mechanism of this suppression based on the interrelationship between IL-7 and TGF-β during senescence, senescence-accelerated mice (SAMs), the mouse model of aging, were used in this study to elucidate the mechanisms of B lymphopoietic suppression during aging. Similar to regular senescent mice, SAMs showed a decrease in the number of IL-7–responding B cell progenitors (i.e., colony-forming unit pre-B [CFU-pre-B] cells in the femoral bone marrow [BM]). A co-culture system of B lymphocytes and stromal cells that the authors established showed a significantly lower number of CFU-pre-B cells harvested when BM cells were co-cultured with senescent stromal cells than when they were co-cultured with young stromal cells. Interestingly, cells harvested from a senescent stroma and those from the control culture without stromal cells were higher in number than those harvested from a young stroma, thereby implying that an altered senescent stromal cell is unable to maintain self-renewal of the stem cell compartment. Because TGF-β is supposed to suppress the proliferative capacity of pro-B/pre-B cells, we added a neutralizing anti-TGF-β antibody to the co-culture system with a pro-B/pre-B cell-rich population to determine whether such suppression may be rescued. However, unexpectedly, any rescue was not observed and the number of CFU-pre-B cells remained unchanged when BM cells were co-cultured with senescent stromal cells compared with the co-culture with young stromal cells, which essentially showed an increase in the number of CFU-pre-B cells (P < 0.001 in 5 μg/ml). Furthermore, TGF-β protein level in the supernatant of cultured senescent stroma cells was evaluated by enzyme-linked immunoabsorbent assay, but surprisingly, it was found that TGF-β concentration was significantly lower than that of cultured young stromal cells. Thus, TGF-β activity was assumed to decline particularly in a senescent stroma, which means a distinct difference between the senescent suppression of B lymphopoiesis and secondary B lymphocytopenia. Concerning proliferative signaling, on the other hand, the level of IL-7 gene expression in cells from freshly isolated BM decreased significantly with age. Therefore, the acceleration of proliferative signaling and the deceleration of suppressive signaling may both be altered and weakened in a senescent stroma (i.e., homeosupression).
Collapse
Affiliation(s)
- Isao Tsuboi
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Joffre C, Grégoire S, De Smedt V, Acar N, Bretillon L, Nadjar A, Layé S. Modulation of brain PUFA content in different experimental models of mice. Prostaglandins Leukot Essent Fatty Acids 2016; 114:1-10. [PMID: 27926457 DOI: 10.1016/j.plefa.2016.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
The relative amounts of arachidonic acid (AA) and docosahexaenoic acid (DHA) govern the different functions of the brain. Their brain levels depend on structures considered, on fatty acid dietary supply and the age of animals. To have a better overview of the different models available in the literature we here compared the brain fatty acid composition in various mice models (C57BL/6J, CD1, Fat-1, SAMP8 mice) fed with different n-3 PUFA diets (deficient, balanced, enriched) in adults and aged animals. Our results demonstrated that brain AA and DHA content is 1) structure-dependent; 2) strain-specific; 3) differently affected by dietary approaches when compared to genetic model of PUFA modulation; 4) different in n-3 PUFA deficient aged C57BL6/J when compared to SAMP8 mouse model of aging. From these experiments, we highlight the difficulty to compare results obtained in different mouse models, different strains, different brain regions and different ages.
Collapse
Affiliation(s)
- Corinne Joffre
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Stéphane Grégoire
- UMR CSGA 1324 INRA - 6265 CNRS - Université de Bourgogne, Eye, Nutrition and Signalization Research Group, F-21000 Dijon, France
| | - Véronique De Smedt
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Niyazi Acar
- UMR CSGA 1324 INRA - 6265 CNRS - Université de Bourgogne, Eye, Nutrition and Signalization Research Group, F-21000 Dijon, France
| | - Lionel Bretillon
- UMR CSGA 1324 INRA - 6265 CNRS - Université de Bourgogne, Eye, Nutrition and Signalization Research Group, F-21000 Dijon, France
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
147
|
Farr SA, Niehoff ML, Ceddia MA, Herrlinger KA, Lewis BJ, Feng S, Welleford A, Butterfield DA, Morley JE. Effect of botanical extracts containing carnosic acid or rosmarinic acid on learning and memory in SAMP8 mice. Physiol Behav 2016; 165:328-38. [PMID: 27527000 DOI: 10.1016/j.physbeh.2016.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 06/22/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
Oxidative damage is one of the hallmarks of the aging process. The current study evaluated effects of two proprietary antioxidant-based ingredients, rosemary extract and spearmint extract containing carnosic acid and rosmarinic acid, respectively, on learning and memory in the SAMP8 mouse model of accelerated aging. The two rosemary extracts contained carnosic acid (60% or 10% carnosic acid) and one spearmint extract contained 5% rosmarinic acid. Three doses of actives in each extract were tested: 32, 16, 1.6 or 0mg/kg. After 90days of treatment mice were tested in T-maze foot shock avoidance, object recognition and lever press. Rosemary extract containing 60% carnosic acid improved acquisition and retention in T-maze foot shock, object recognition and lever press. Rosemary extract with 10% carnosic acid improved retention in T-maze foot shock avoidance and lever press. Spearmint with 5% rosmarinic acid improved acquisition and retention in T-maze foot shock avoidance and object recognition. 4-hydroxynonenal (HNE) was reduced in the brain cortex after treatment with all three extracts (P<0.001) compared to the vehicle treated SAMP8. Protein carbonyls were reduced in the hippocampus after administration of rosemary with 10% carnosic acid (P<0.05) and spearmint containing 5% rosmarinic acid (P<0.001). The current results indicate that the extracts from spearmint and rosemary have beneficial effects on learning and memory and brain tissue markers of oxidation that occur with age in SAMP8 mice.
Collapse
Affiliation(s)
- Susan A Farr
- VA Medical Center, 915 North Grand Blvd, St. Louis, MO, 63106, United States; St. Louis University School of Medicine, Division of Geriatrics, 1402 South Grand Blvd., St. Louis, MO 63104, United States.
| | - Michael L Niehoff
- St. Louis University School of Medicine, Division of Geriatrics, 1402 South Grand Blvd., St. Louis, MO 63104, United States
| | - Michael A Ceddia
- Kemin Foods, L.C, 2100 Maury St., Des Moines, IA, 50307, United States
| | | | - Brandon J Lewis
- Kemin Foods, L.C, 2100 Maury St., Des Moines, IA, 50307, United States
| | - Shulin Feng
- Kemin Foods, L.C, 2100 Maury St., Des Moines, IA, 50307, United States
| | - Andrew Welleford
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, 249 Chemistry-Physics, Lexington, KY 40506, United States
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, 249 Chemistry-Physics, Lexington, KY 40506, United States
| | - John E Morley
- St. Louis University School of Medicine, Division of Geriatrics, 1402 South Grand Blvd., St. Louis, MO 63104, United States; St. Louis University School of Medicine, Division of Endocrinology, 1402 South Grand Blvd., St. Louis, MO, 63104, United States
| |
Collapse
|
148
|
Different Mechanisms of Longevity in Long-Lived Mouse and Caenorhabditis elegans Mutants Revealed by Statistical Analysis of Mortality Rates. Genetics 2016; 204:905-920. [PMID: 27638422 DOI: 10.1534/genetics.116.192369] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/28/2016] [Indexed: 12/23/2022] Open
Abstract
Mouse and Caenorhabditis elegans mutants with altered life spans are being used to investigate the aging process and how genes determine life span. The survival of a population can be modeled by the Gompertz function, which comprises two parameters. One of these parameters ("G") describes the rate at which mortality accelerates with age and is often described as the "rate of aging." The other parameter ("A") may correspond to the organism's baseline vulnerability to deleterious effects of disease and the environment. We show that, in mice, life-span-extending mutations systematically fail to affect the age-dependent acceleration of mortality (G), but instead affect only baseline vulnerability (A). This remains true even when comparing strains maintained under identical environmental conditions. In contrast, life-span-extending mutations in C. elegans were associated with decreases in G These observations on mortality rate kinetics suggest that the mechanisms of aging in mammals might fundamentally differ from those in nematodes.
Collapse
|
149
|
New selective glucocorticoid receptor modulators reverse amyloid-β peptide–induced hippocampus toxicity. Neurobiol Aging 2016; 45:109-122. [DOI: 10.1016/j.neurobiolaging.2016.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
|
150
|
Pérez-Cañamás A, Sarroca S, Melero-Jerez C, Porquet D, Sansa J, Knafo S, Esteban JA, Sanfeliu C, Ledesma MD. A diet enriched with plant sterols prevents the memory impairment induced by cholesterol loss in senescence-accelerated mice. Neurobiol Aging 2016; 48:1-12. [PMID: 27622776 DOI: 10.1016/j.neurobiolaging.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/07/2016] [Accepted: 08/09/2016] [Indexed: 01/02/2023]
Abstract
Cholesterol reduction at the neuronal plasma membrane has been related to age-dependent cognitive decline. We have used senescent-accelerated mice strain 8 (SAMP8), an animal model for aging, to examine the association between cholesterol loss and cognitive impairment and to test strategies to revert this process. We show that the hippocampus of SAMP8 mice presents reduced cholesterol levels and enhanced amount of its degrading enzyme Cyp46A1 (Cyp46) already at 6 months of age. Cholesterol loss accounts for the impaired long-term potentiation in these mice. Plant sterol (PSE)-enriched diet prevents long-term potentiation impairment and cognitive deficits in SAMP8 mice without altering cholesterol levels. PSE diet also reduces the abnormally high amyloid peptide levels in SAMP8 mice brains and restores membrane compartmentalization of presenilin1, the catalytic component of the amyloidogenic γ-secretase. These results highlight the influence of cholesterol loss in age-related cognitive decline and provide with a noninvasive strategy to counteract it. Our results suggest that PSE overtake cholesterol functions in the brain contributing to reduce deleterious consequences of cholesterol loss during aging.
Collapse
Affiliation(s)
| | - Sara Sarroca
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Barcelona, Spain
| | | | - David Porquet
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Barcelona, Spain
| | - Joan Sansa
- Departament de Psicologia Bàsica, Universitat de Barcelona, Barcelona, Spain
| | - Shira Knafo
- Centro Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain; Unidad de Biofísica CSIC-UPV/EHU, Campus Universidad del País Vasco, Leioa, Spain; IkerBasque, Basque Foundation for Science, Basque Country, Spain
| | - Jose A Esteban
- Centro Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | | |
Collapse
|