101
|
Scheggi S, De Montis MG, Gambarana C. Making Sense of Rodent Models of Anhedonia. Int J Neuropsychopharmacol 2018; 21:1049-1065. [PMID: 30239762 PMCID: PMC6209858 DOI: 10.1093/ijnp/pyy083] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
A markedly reduced interest or pleasure in activities previously considered pleasurable is a main symptom in mood disorder and psychosis and is often present in other psychiatric disorders and neurodegenerative diseases. This condition can be labeled as "anhedonia," although in its most rigorous connotation the term refers to the lost capacity to feel pleasure that is one aspect of the complex phenomenon of processing and responding to reward. The responses to rewarding stimuli are relatively easy to study in rodents, and the experimental conditions that consistently and persistently impair these responses are used to model anhedonia. To this end, long-term exposure to environmental aversive conditions is primarily used, and the resulting deficits in reward responses are often accompanied by other deficits that are mainly reminiscent of clinical depressive symptoms. The different components of impaired reward responses induced by environmental aversive events can be assessed by different tests or protocols that require different degrees of time allocation, technical resources, and equipment. Rodent models of anhedonia are valuable tools in the study of the neurobiological mechanisms underpinning impaired behavioral responses and in the screening and characterization of drugs that may reverse these behavioral deficits. In particular, the antianhedonic or promotivational effects are relevant features in the spectrum of activities of drugs used in mood disorders or psychosis. Thus, more than the model, it is the choice of tests that is crucial since it influences which facets of anhedonia will be detected and should be tuned to the purpose of the study.
Collapse
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena
| | | | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena,Correspondence: Carla Gambarana, Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2 – 53100 Siena, Italy ()
| |
Collapse
|
102
|
McCann KE, Sinkiewicz DM, Rosenhauer AM, Beach LQ, Huhman KL. Transcriptomic Analysis Reveals Sex-Dependent Expression Patterns in the Basolateral Amygdala of Dominant and Subordinate Animals After Acute Social Conflict. Mol Neurobiol 2018; 56:3768-3779. [PMID: 30196395 DOI: 10.1007/s12035-018-1339-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
The basolateral amygdala (BLA) is a critical nucleus mediating behavioral responses after exposure to acute social conflict. Male and female Syrian hamsters both readily establish a stable dominant-subordinate relationship among same-sex conspecifics, and the goal of the current study was to determine potential underlying genetic mechanisms in the BLA facilitating the establishment of social hierarchy. We sequenced the BLA transcriptomes of dominant, subordinate, and socially neutral males and females, and using de novo assembly techniques and gene network analyses, we compared these transcriptomes across social status within each sex. Our results revealed 499 transcripts that were differentially expressed in the BLA across both males and females and 138 distinct gene networks. Surprisingly, we found that there was virtually no overlap in the transcript changes or in gene network patterns in males and females of the same social status. These results suggest that, although males and females reliably engage in similar social behaviors to establish social dominance, the molecular mechanisms in the BLA by which these statuses are obtained and maintained are distinct.
Collapse
Affiliation(s)
- Katharine E McCann
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - David M Sinkiewicz
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - Anna M Rosenhauer
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - Linda Q Beach
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30303, USA.
| |
Collapse
|
103
|
The Neural Mechanisms of Sexually Dimorphic Aggressive Behaviors. Trends Genet 2018; 34:755-776. [PMID: 30173869 DOI: 10.1016/j.tig.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Aggression is a fundamental social behavior that is essential for competing for resources and protecting oneself and families in both males and females. As a result of natural selection, aggression is often displayed differentially between the sexes, typically at a higher level in males than females. Here, we highlight the behavioral differences between male and female aggression in rodents. We further outline the aggression circuits in males and females, and compare their differences at each circuit node. Lastly, we summarize our current understanding regarding the generation of sexually dimorphic aggression circuits during development and their maintenance during adulthood. In both cases, gonadal steroid hormones appear to play crucial roles in differentiating the circuits by impacting on the survival, morphology, and intrinsic properties of relevant cells. Many other factors, such as environment and experience, may also contribute to sex differences in aggression and remain to be investigated in future studies.
Collapse
|
104
|
Cell-Type-Specific Role of ΔFosB in Nucleus Accumbens In Modulating Intermale Aggression. J Neurosci 2018; 38:5913-5924. [PMID: 29891732 PMCID: PMC6021989 DOI: 10.1523/jneurosci.0296-18.2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023] Open
Abstract
A growing number of studies implicate the brain's reward circuitry in aggressive behavior. However, the cellular and molecular mechanisms within brain reward regions that modulate the intensity of aggression as well as motivation for it have been underexplored. Here, we investigate the cell-type-specific influence of ΔFosB, a transcription factor known to regulate a range of reward and motivated behaviors, acting in the nucleus accumbens (NAc), a key reward region, in male aggression in mice. We show that ΔFosB is specifically increased in dopamine D1 receptor (Drd1)-expressing medium spiny neurons (D1-MSNs) in NAc after repeated aggressive encounters. Viral-mediated induction of ΔFosB selectively in D1-MSNs of NAc intensifies aggressive behavior without affecting the preference for the aggression-paired context in a conditioned place preference (CPP) assay. In contrast, ΔFosB induction selectively in D2-MSNs reduces the time spent exploring the aggression-paired context during CPP without affecting the intensity of aggression per se. These data strongly support a dissociable cell-type-specific role for ΔFosB in the NAc in modulating aggression and aggression reward.SIGNIFICANCE STATEMENT Aggressive behavior is associated with several neuropsychiatric disorders and can be disruptive for affected individuals as well as their victims. Studies have shown a positive reinforcement mechanism underlying aggressive behavior that shares many common features with drug addiction. Here, we explore the cell-type-specific role of the addiction-associated transcription factor ΔFosB in the nucleus accumbens in aggression. We found that ΔFosB expression promotes aggressive behavior, effects that are dissociable from its effects on aggression reward. This finding is a significant first step in identifying therapeutic targets for the reduction of aggressive behavior across a range of neuropsychiatric illnesses.
Collapse
|
105
|
Larrieu T, Sandi C. Stress-Induced Depression: Is Social Rank a Predictive Risk Factor? Bioessays 2018; 40:e1800012. [PMID: 29869396 DOI: 10.1002/bies.201800012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/27/2018] [Indexed: 12/17/2022]
Abstract
An intriguing question in the field of stress is what makes an individual more likely to be susceptible or resilient to stress-induced depression. Predisposition to stress susceptibility is believed to be influenced by genetic factors and early adversity. However, beyond genetics and life experiences, recent evidence has highlighted social rank as a key determinant of susceptibility to stress, underscoring dominant individuals as the vulnerable ones. This evidence is in conflict with epidemiological, clinical, and animal work pointing at a link between social subordination and depression. Here, we review and analyze rodent protocols addressing the relevance of social rank to predict vulnerability to chronic social stress. We also discuss whether a specific social status (i.e., dominance or subordination) is the appropriate predictor of vulnerability to develop stress-induced depression or rather, the loss of social rank and resources.
Collapse
Affiliation(s)
- Thomas Larrieu
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Carmen Sandi
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
106
|
Mouri A, Ukai M, Uchida M, Hasegawa S, Taniguchi M, Ito T, Hida H, Yoshimi A, Yamada K, Kunimoto S, Ozaki N, Nabeshima T, Noda Y. Juvenile social defeat stress exposure persistently impairs social behaviors and neurogenesis. Neuropharmacology 2018; 133:23-37. [DOI: 10.1016/j.neuropharm.2018.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/23/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
|
107
|
Harris AZ, Atsak P, Bretton ZH, Holt ES, Alam R, Morton MP, Abbas AI, Leonardo ED, Bolkan SS, Hen R, Gordon JA. A Novel Method for Chronic Social Defeat Stress in Female Mice. Neuropsychopharmacology 2018; 43:1276-1283. [PMID: 29090682 PMCID: PMC5916350 DOI: 10.1038/npp.2017.259] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 01/14/2023]
Abstract
Historically, preclinical stress studies have often omitted female subjects, despite evidence that women have higher rates of anxiety and depression. In rodents, many stress susceptibility and resilience studies have focused on males as one commonly used paradigm-chronic social defeat stress-has proven challenging to implement in females. We report a new version of the social defeat paradigm that works in female mice. By applying male odorants to females to increase resident male aggressive behavior, we find that female mice undergo repeated social defeat stress and develop social avoidance, decreased sucrose preference, and decreased time in the open arms of the elevated plus maze relative to control mice. Moreover, a subset of the female mice in this paradigm display resilience, maintaining control levels of social exploration and sucrose preference. This method produces comparable results to those obtained in male mice and will greatly facilitate studying female stress susceptibility.
Collapse
Affiliation(s)
- Alexander Z Harris
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Piray Atsak
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Zachary H Bretton
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Emma S Holt
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Raisa Alam
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mitchell P Morton
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Atheir I Abbas
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - E David Leonardo
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Scott S Bolkan
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - René Hen
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Joshua A Gordon
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
108
|
Lin YE, Chou ST, Lin SH, Lu KH, Panyod S, Lai YS, Ho CT, Sheen LY. Antidepressant-like effects of water extract of Gastrodia elata Blume on neurotrophic regulation in a chronic social defeat stress model. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:132-139. [PMID: 29288827 DOI: 10.1016/j.jep.2017.12.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/31/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Gastrodia elata Blume (GE) is a traditional Chinese medicine commonly used to treat dizziness, epilepsy, paralysis and some emotional symptoms in east Asia. We previously showed that the water extract of Gastrodia elata Blume (WGE) possesses anti-depression like effects in a forced swimming test and chronic mild stress model. AIM OF THE STUDY The aim of this study was to investigate the antidepressant-like effects of WGE and potential mechanisms related to brain-derived neurotrophic factor (BDNF) regulation in mice exposed to chronic social defeat stress (CSDS) model. MATERIALS AND METHODS Fifty C57BL/6 mice were divided into 5 groups as follows: a control (CTL) group, CSDS group, and 3 WGE groups receiving 250, 500 or 1000mg/kg body weight in the CSDS model. Mice were administered WGE for 24 days by oral gavage, and the social defeat stress paradigm began on day 14, except for the control group. A social interaction test was conducted to evaluate the antidepressant-like effects of WGE. Blood samples were collected to measure serum corticosterone levels, and the brain was dissected to investigate the expression of BDNF-related signaling pathway proteins using western blotting. RESULTS Oral administration of WGE improved depression-like behaviors and stress-induced elevations of corticosterone. Further, WGE increased the protein expression of BDNF and promoted the hippocampal protein phosphorylation ratio of cAMP response element binding protein (CREB) and protein kinase B (Akt). CONCLUSION WGE exerts antidepressant-like effects on mice in a CSDS model, likely through activating of the BDNF/CREB/Akt pathway. Therefore, WGE has potential as a supplement or an adjuvant to prevent or treat clinical depressive disorders.
Collapse
Affiliation(s)
- Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC.
| | - Shao-Ting Chou
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC.
| | - Shih-Hang Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC.
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC.
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC.
| | - Yi-Syuan Lai
- Department of Hospitality Management, Yu Da University of Science and Technology, Miaoli 36143, Taiwan, ROC.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC; Center for Food and Biomolecules, National Taiwan University, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
109
|
Mul JD. Voluntary exercise and depression-like behavior in rodents: are we running in the right direction? J Mol Endocrinol 2018; 60:R77-R95. [PMID: 29330149 DOI: 10.1530/jme-17-0165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Acute or chronic exposure to stress can increase the risk to develop major depressive disorder, a severe, recurrent and common psychiatric condition. Depression places an enormous social and financial burden on modern society. Although many depressed patients are treated with antidepressants, their efficacy is only modest, underscoring the necessity to develop clinically effective pharmaceutical or behavioral treatments. Exercise training produces beneficial effects on stress-related mental disorders, indicative of clinical potential. The pro-resilient and antidepressant effects of exercise training have been documented for several decades. Nonetheless, the underlying molecular mechanisms and the brain circuitries involved remain poorly understood. Preclinical investigations using voluntary wheel running, a frequently used rodent model that mimics aspects of human exercise training, have started to shed light on the molecular adaptations, signaling pathways and brain nuclei underlying the beneficial effects of exercise training on stress-related behavior. In this review, I highlight several neurotransmitter systems that are putative mediators of the beneficial effects of exercise training on mental health, and review recent rodent studies that utilized voluntary wheel running to promote our understanding of exercise training-induced central adaptations. Advancements in our mechanistic understanding of how exercise training induces beneficial neuronal adaptations will provide a framework for the development of new strategies to treat stress-associated mental illnesses.
Collapse
Affiliation(s)
- Joram D Mul
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of EndocrinologyDepartment of Clinical Chemistry, University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| |
Collapse
|
110
|
Hasegawa S, Miyake Y, Yoshimi A, Mouri A, Hida H, Yamada K, Ozaki N, Nabeshima T, Noda Y. Dysfunction of Serotonergic and Dopaminergic Neuronal Systems in the Antidepressant-Resistant Impairment of Social Behaviors Induced by Social Defeat Stress Exposure as Juveniles. Int J Neuropsychopharmacol 2018; 21:837-846. [PMID: 29618006 PMCID: PMC6119297 DOI: 10.1093/ijnp/pyy038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Extensive studies have been performed on the role of monoaminergic neuronal systems in rodents exposed to social defeat stress as adults. In the present study, we investigated the role of monoaminergic neuronal systems in the impairment of social behaviors induced by social defeat stress exposure as juveniles. METHODS Juvenile, male C57BL/6J mice were exposed to social defeat stress for 10 consecutive days. From 1 day after the last stress exposure, desipramine, sertraline, and aripiprazole were administered for 15 days. Social behaviors were assessed at 1 and 15 days after the last stress exposure. Monoamine turnover was determined in specific regions of the brain in the mice exposed to the stress. RESULTS Stress exposure as juveniles induced the impairment of social behaviors in adolescent mice. In mice that showed impairment of social behaviors, turnover of serotonin and dopamine, but not noradrenaline, was decreased in specific brain regions. Acute and repeated administration of desipramine, sertraline, and aripiprazole failed to attenuate the impairment of social behaviors, whereas repeated administration of a combination of sertraline and aripiprazole showed additive attenuating effects. CONCLUSIONS These findings suggest that social defeat stress exposure as juveniles induces the treatment-resistant impairment of social behaviors in adolescents through dysfunction in the serotonergic and dopaminergic neuronal systems. The combination of sertraline and aripiprazole may be used as a new treatment strategy for treatment-resistant stress-related psychiatric disorders in adolescents with adverse juvenile experiences.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuriko Miyake
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Akihiro Mouri
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan,Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Hirotake Hida
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan,Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, Japan,Aino University, Ibaraki, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan,Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan,Correspondence: Yukihiro Noda, PhD, Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468–8503, Japan ()
| |
Collapse
|
111
|
Idova GV, Markova EV, Gevorgyan MM, Al'perina EL, Zhanaeva SY. Cytokine Production by Splenic Cells in C57BL/6J Mice with Depression-Like Behavior Depends on the Duration of Social Stress. Bull Exp Biol Med 2018; 164:645-649. [PMID: 29577194 DOI: 10.1007/s10517-018-4050-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Indexed: 10/17/2022]
Abstract
We studied the influence of depression-like behavior developed in C57BL/6J mice under conditions of social stress of different duration on cytokine production by splenic cells. Imbalance of the pro- and anti-inflammatory cytokines was detected at the early stage of depression-like behavior (10-day experience of defeats): increased production of proinflammatory IL-2 and IL-6 cytokines along with a decrease in anti-inflammatory IL-10 level; the levels of IL-1β, TNFα, IFNγ, and IL-4 remained unaffected. At later terms (20 days of confrontations), we revealed more pronounced changes in spontaneous production of proinflammatory cytokines that were not detected after shorter social stress. These findings suggest that cytokine profile depends on duration of social stress. Possible mechanisms of cytokine production during formation of depression-like state are discussed.
Collapse
Affiliation(s)
- G V Idova
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia. .,Novosibirsk National Research State University, Novosibirsk, Russia.
| | - E V Markova
- Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - M M Gevorgyan
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - E L Al'perina
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - S Ya Zhanaeva
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
112
|
Chronic social defeat stress suppresses locomotor activity but does not affect the free-running circadian period of the activity rhythm in mice. Neurobiol Sleep Circadian Rhythms 2018; 5:1-7. [PMID: 31236507 PMCID: PMC6584684 DOI: 10.1016/j.nbscr.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/30/2022] Open
Abstract
In mammals, daily rhythms in behavior and physiology are under control of an endogenous clock or pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN assures an optimal temporal organization of internal physiological process and also synchronizes rhythms in physiology and behavior to the cyclic environment. The SCN receives direct light input from the retina, which is capable of resetting the master clock and thereby synchronizes internally driven rhythms to the external light-dark cycle. In keeping with its function as a clock and pacemaker, the SCN appears to be well buffered against influences by other stimuli and conditions that contain no relevant timing information, such as acute stressors. On the other hand, it has been suggested that chronic forms of stress may have gradually accumulating effects that can disturb normal clock function and thereby contribute to stress-related disorders. Therefore, in the present study we investigated whether chronic intermittent social stress affects the endogenous period and phase of the free-running activity rhythm in mice. Adult male mice were maintained in constant dim red light conditions and exposed to a daily 20 min social defeat stress session for 10 consecutive days, either during the first half of their activity phase or the first half of their resting phase. The overall amount of running wheel activity was strongly suppressed during the 10 days of social defeat, to about 50% of the activity in non-defeated control mice. Activity levels gradually normalized during post-defeat recovery days. Despite the strong suppression of activity in defeated animals, the endogenous free-running circadian period of the activity rhythm and the phase of activity onset were not affected. These findings are thus in agreement with earlier studies suggesting that the circadian pacemaker in the SCN that is driving the rhythmicity in activity is well-protected against stress. Even severe social defeat stress for 10 consecutive days, which has a major effect on the levels of activity, does not affect the pace of the endogenous clock. Chronic intermittent social defeat stress strongly reduces locomotor activity in mice. Chronic intermittent social defeat stress does not affect the circadian period and phase of the free-running activity rhythm under constant conditions. Social defeat stress does not appear to affect the endogenous clock in the SCN driving the rhythmicity in activity.
Collapse
|
113
|
Fernandes SS, Koth AP, Parfitt GM, Cordeiro MF, Peixoto CS, Soubhia A, Moreira FP, Wiener CD, Oses JP, Kaszubowski E, Barros DM. Enhanced cholinergic-tone during the stress induce a depressive-like state in mice. Behav Brain Res 2018; 347:17-25. [PMID: 29501509 DOI: 10.1016/j.bbr.2018.02.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/06/2023]
Abstract
Major depressive disorder has a heterogeneous etiology, since it arises from the interaction of multiple factors and different pathophysiological mechanisms are involved in the symptomatology. This study aimed to investigate the role of the cholinergic system in the susceptibility to stress and, consequently, in the depression-like behavior. C57BL/6 mice were treated with Physostigmine (PHYS), an acetylcholinesterase (AChE) inhibitor, and were submitted to the social defeat stress. For the behavioral evaluation of the locomotor activity, anxiety-like and depression-like behaviors the open field, elevated plus maze, sucrose preference, social interaction and forced swim were used. Hippocampus and prefrontal cortex samples were collected for evaluation of AChE activity, as well as blood samples for analysis of serum cortisol levels. Our results showed that 15 min after the injection of PHYS there was a significant inhibition of AChE activity in the hippocampus and in the prefrontal cortex. On the other hand, in the end of the experimental design, day 12, there was no difference in AChE activity levels. Inhibition of AChE and exposure to the stress led to an increase in cortisol levels. Animals that received PHYS and were exposed to stress showed less social interaction and greater learned helplessness, anhedonia and anxious-like behavior. Taken together, our findings suggest that increasing the cholinergic tone shortly before stress induction impacts on the ability to cope with upcoming stressful situations, leading to a depressive-like state.
Collapse
Affiliation(s)
- Sara S Fernandes
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - André P Koth
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Gustavo M Parfitt
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Marcos F Cordeiro
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Carolina S Peixoto
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Andréa Soubhia
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Fernanda P Moreira
- Translational Science on Brain Disorders, Clinical Neuroscience Lab., Department of Health and Behavior, Catholic University of Pelotas (UCPel), Pelotas, RS, Brazil
| | - Carolina D Wiener
- Post-Graduation Program in Epidemiology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Jean P Oses
- Translational Science on Brain Disorders, Clinical Neuroscience Lab., Department of Health and Behavior, Catholic University of Pelotas (UCPel), Pelotas, RS, Brazil
| | - Erikson Kaszubowski
- Department of Psychology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Daniela M Barros
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil; Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil; Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
114
|
Bergamini G, Mechtersheimer J, Azzinnari D, Sigrist H, Buerge M, Dallmann R, Freije R, Kouraki A, Opacka-Juffry J, Seifritz E, Ferger B, Suter T, Pryce CR. Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice. Neurobiol Stress 2018; 8:42-56. [PMID: 29888303 PMCID: PMC5991330 DOI: 10.1016/j.ynstr.2018.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/19/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
Psychosocial stress is a major risk factor for depression, stress leads to peripheral and central immune activation, immune activation is associated with blunted dopamine (DA) neural function, DA function underlies reward interest, and reduced reward interest is a core symptom of depression. These states might be inter-independent in a complex causal pathway. Whilst animal-model evidence exists for some specific steps in the pathway, there is currently no animal model in which it has been demonstrated that social stress leads to each of these immune, neural and behavioural states. Such a model would provide important existential evidence for the complex pathway and would enable the study of causality and mediating mechanisms at specific steps in the pathway. Therefore, in the present mouse study we investigated for effects of 15-day resident-intruder chronic social stress (CSS) on each of these states. Relative to controls, CSS mice exhibited higher spleen levels of granulocytes, inflammatory monocytes and T helper 17 cells; plasma levels of inducible nitric oxide synthase; and liver expression of genes encoding kynurenine pathway enzymes. CSS led in the ventral tegmental area to higher levels of kynurenine and the microglia markers Iba1 and Cd11b and higher binding activity of DA D1 receptor; and in the nucleus accumbens (NAcc) to higher kynurenine, lower DA turnover and lower c-fos expression. Pharmacological challenge with DA reuptake inhibitor identified attenuation of DA stimulatory effects on locomotor activity and NAcc c-fos expression in CSS mice. In behavioural tests of operant responding for sucrose reward validated as sensitive assays for NAcc DA function, CSS mice exhibited less reward-directed behaviour. Therefore, this mouse study demonstrates that a chronic social stressor leads to changes in each of the immune, neural and behavioural states proposed to mediate between stress and disruption of DA-dependent reward processing. The model can now be applied to investigate causality and, if demonstrated, underlying mechanisms in specific steps of this immune-neural-behavioural pathway, and thereby to identify potential therapeutic targets. Mouse chronic social stress (CSS) leads to spleen and liver immune activation. Mouse CSS leads to mesolimbic immune activation and blunted dopamine function. Mouse CSS leads to reduced reward-directed behaviour in operant tests. This constitutes an important model for the study of pathophysiological mechanisms.
Collapse
Affiliation(s)
- Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Jonas Mechtersheimer
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Damiano Azzinnari
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Michaela Buerge
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Robert Dallmann
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Afroditi Kouraki
- Department of Life Sciences, University of Roehampton, London, UK
| | | | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Boris Ferger
- CNS Diseases Research Germany, Boehringer Ingelheim Pharma GmbH & Co. KG., Biberach, Germany
| | - Tobias Suter
- Neuroimmunology and MS Research, Neurology, and Clinical Research Priority Program Multiple Sclerosis, University Hospital Zurich, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
115
|
Vegas O, Poligone B, Blackcloud P, Gilmore ES, VanBuskirk J, Ritchlin CT, Pentland AP, Walter SA, Nousari Y, Tausk F. Chronic social stress Ameliorates psoriasiform dermatitis through upregulation of the Hypothalamic-Pituitary-Adrenal axis. Brain Behav Immun 2018; 68:238-247. [PMID: 29080684 PMCID: PMC5767548 DOI: 10.1016/j.bbi.2017.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/24/2023] Open
Abstract
Acute stress is a physiological response of an organism to adverse conditions, contributing to survival; however, persistence through time may lead to disease. Indeed, exacerbation of inflammatory conditions such as psoriasis has been reported to follow stressors in susceptible patients. Because chronic stress cannot ethically be elicited in patients under controlled laboratory conditions, we studied genetically modified mice that naturally develop psoriasiform dermatitis, and subjected them to an ethological chronic social contact stress paradigm. Although we found elevated pro-inflammatory neuropeptide production of substance P (SP), calcitonin-gene-related peptide (CGRP) and nerve-growth factor (NGF) mRNA in the dorsal root ganglia (DRG) as well as pro-inflammatory cytokines in response to the social stressor, stress paradoxically prevented the development of the skin lesions. This effect of stress could be reversed by the treatment with glucocorticoid (GC) receptor blockers, suggesting that it was mediated through the upregulation of corticosterone secretion. Extrapolating to humans, the worsening of disease in susceptible patients with psoriasis could be attributed to a defect in the Hypothalamic-Pituitary-Adrenal (HPA) axis with an impaired production of GC during situations of adversity, thus rendering them unable to counteract the pro-inflammatory effects of chronic stressors.
Collapse
Affiliation(s)
- Oscar Vegas
- Facultad de Psicología, Universidad del País Vasco UPV/EHU, San Sebastián, Spain.
| | - Brian Poligone
- Rochester General Hospital Research Institute, Center for Cancer & Blood Disorder, Rochester, NY
| | - Paul Blackcloud
- Sloan Kettering Memorial Hospital, Department of Medicine, New York, NY, United States.
| | | | - JoAnne VanBuskirk
- University of Rochester, Department of Dermatology, Rochester, NY, United States.
| | | | | | - Scott A. Walter
- Boston Medical Center, Department of Dermatology, Boston, MA
| | - Yasmine Nousari
- Integral Rheumatology and Immunology Specialists, Plantation FL
| | - Francisco Tausk
- University of Rochester, Department of Dermatology, Rochester, NY, United States.
| |
Collapse
|
116
|
Padurariu M, Antioch I, Balmus I, Ciobica A, El-Lethey HS, Kamel MM. Describing some behavioural animal models of anxiety and their mechanistics with special reference to oxidative stress and oxytocin relevance. Int J Vet Sci Med 2017; 5:98-104. [PMID: 30255057 PMCID: PMC6137856 DOI: 10.1016/j.ijvsm.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/14/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
It is now generally accepted that animal studies are playing an important role in the understanding of anxiety disorders, since they contribute to the current knowledge regarding the mechanisms and possible therapeutic approaches in anxiety. In the present review we will detail some essential aspects of behavioral animal models of anxiety related to social defeat paradigm, elevated plus maze, elevated zero or T maze, light/dark box, social interaction test or tests based on predator models, considering the latest theories and methodological approaches in this area of research, as well as our previous studies focusing on anxiety manifestations in a variety of species including rats, zebrafish, dogs and pigs. Moreover, in this context, we will focus on the recent theories concerning oxidative stress, as well as importance of oxytocin administration (especially the intranasal route). This could be important considering that these two factors are currently being investigated as possible mechanisms (oxidative stress status) and related therapeutic target (both intranasal oxytocin and antioxidants) in the pathology of the anxiety disorders.
Collapse
Affiliation(s)
- Manuela Padurariu
- “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
| | - Iulia Antioch
- “Alexandru Ioan Cuza” University, 11, Carol I, 700506 Iaşi, Romania
| | - Ioana Balmus
- “Alexandru Ioan Cuza” University, 11, Carol I, 700506 Iaşi, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University, 11, Carol I, 700506 Iaşi, Romania
- Center of Biomedical Research of the Romanian Academy, Iasi Branch, Romania
- The Academy of the Romanian Scientists, Bucharest, Splaiul Independentei 54, 050094, Romania
| | - Heba S. El-Lethey
- Department of Animal Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mervat M. Kamel
- Department of Animal Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
117
|
Kappel S, Hawkins P, Mendl MT. To Group or Not to Group? Good Practice for Housing Male Laboratory Mice. Animals (Basel) 2017; 7:ani7120088. [PMID: 29186765 PMCID: PMC5742782 DOI: 10.3390/ani7120088] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Wild mice live in territories inhabited by one adult male, several females, and their offspring. This cannot be replicated in the laboratory, so male mice are usually housed in single-sex groups or individually. However, there can be serious animal welfare problems associated with both these approaches, such as lack of social contact when housed individually or aggression between males when kept in groups. Group housing is widely recommended to give male laboratory mice the opportunity to behave as ‘social animals’, but social stress can be detrimental to the welfare of these animals, even without injurious fighting. All of this can also affect the quality of the science, giving rise to ethical concerns. This review discusses whether it is in the best welfare interests of male mice to be housed in groups, or alone. We conclude that it is not possible to give general recommendations for good practice for housing male laboratory mice, as responses to single- and group-housing can be highly context-dependent. The welfare implications of housing protocols should be researched and considered in each case. Abstract It is widely recommended to group-house male laboratory mice because they are ‘social animals’, but male mice do not naturally share territories and aggression can be a serious welfare problem. Even without aggression, not all animals within a group will be in a state of positive welfare. Rather, many male mice may be negatively affected by the stress of repeated social defeat and subordination, raising concerns about welfare and also research validity. However, individual housing may not be an appropriate solution, given the welfare implications associated with no social contact. An essential question is whether it is in the best welfare interests of male mice to be group- or singly housed. This review explores the likely impacts—positive and negative—of both housing conditions, presents results of a survey of current practice and awareness of mouse behavior, and includes recommendations for good practice and future research. We conclude that whether group- or single-housing is better (or less worse) in any situation is highly context-dependent according to several factors including strain, age, social position, life experiences, and housing and husbandry protocols. It is important to recognise this and evaluate what is preferable from animal welfare and ethical perspectives in each case.
Collapse
Affiliation(s)
- Sarah Kappel
- Bristol Veterinary School, Bristol University, Langford House, Langford BS40 5DU, UK;
- Correspondence: (S.K.); (P.H.); Tel.: +44-1403-793-231 (P.H.)
| | - Penny Hawkins
- Research Animals Department, RSPCA, Wilberforce Way, Southwater, West Sussex RH13 9RS, UK
- Correspondence: (S.K.); (P.H.); Tel.: +44-1403-793-231 (P.H.)
| | - Michael T. Mendl
- Bristol Veterinary School, Bristol University, Langford House, Langford BS40 5DU, UK;
| |
Collapse
|
118
|
Laman-Maharg A, Trainor BC. Stress, sex, and motivated behaviors. J Neurosci Res 2017; 95:83-92. [PMID: 27870436 DOI: 10.1002/jnr.23815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/01/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Abstract
Stress is a major risk factor for development of psychiatric disorders such as depression and development of substance use disorder. Although there are important sex differences in the prevalence of these disorders, most preclinical models used to study stress-induced disorders have used males only. Social defeat stress is a commonly used method to induce stress in an ethologically relevant way but has only recently begun to be used in female rodents. Using these new female models, recent studies have examined how social defeat stress affects males and females differently at the behavioral, circuit, and molecular levels. This Mini-Review discusses sex differences in the effects of social defeat stress on social behavior and drug-seeking behavior as well as its impact on the mesolimbic dopamine system and the highly connected region of the bed nucleus of the stria terminalis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abigail Laman-Maharg
- Neuroscience Graduate Group, University of California, Davis, Davis, California.,Department of Psychology, University of California, Davis, Davis, California.,Center for Neuroscience, University of California, Davis, Davis, California
| | - Brian C Trainor
- Neuroscience Graduate Group, University of California, Davis, Davis, California.,Department of Psychology, University of California, Davis, Davis, California.,Center for Neuroscience, University of California, Davis, Davis, California
| |
Collapse
|
119
|
Establishment of a repeated social defeat stress model in female mice. Sci Rep 2017; 7:12838. [PMID: 28993631 PMCID: PMC5634448 DOI: 10.1038/s41598-017-12811-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/15/2017] [Indexed: 11/18/2022] Open
Abstract
Numerous studies have employed repeated social defeat stress (RSDS) to study the neurobiological mechanisms of depression in rodents. An important limitation of RSDS studies to date is that they have been conducted exclusively in male mice due to the difficulty of initiating attack behavior directed toward female mice. Here, we establish a female mouse model of RSDS by inducing male aggression toward females through chemogenetic activation of the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl). We demonstrate that females susceptible to RSDS display social avoidance, anxiety-like behavior, reduction of body weight, and elevated levels of circulating interleukin 6. In contrast, a subset of mice we term resilient only display anxiety-like behaviors after RSDS. This model allows for investigation of sex differences in the neurobiological mechanisms of defeat‒induced depression‒like behaviors. A robust female social defeat model is a critical first step in the identification and development of novel therapeutic compounds to treat depression and anxiety disorders in women.
Collapse
|
120
|
Genetic disruption of ankyrin-G in adult mouse forebrain causes cortical synapse alteration and behavior reminiscent of bipolar disorder. Proc Natl Acad Sci U S A 2017; 114:10479-10484. [PMID: 28894008 DOI: 10.1073/pnas.1700689114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Genome-wide association studies have implicated the ANK3 locus in bipolar disorder, a major human psychotic illness. ANK3 encodes ankyrin-G, which organizes the neuronal axon initial segment (AIS). We generated a mouse model with conditional disruption of ANK3 in pyramidal neurons of the adult forebrain (Ank-G cKO). This resulted in the expected loss of pyramidal neuron AIS voltage-gated sodium and potassium channels. There was also dramatic loss of markers of afferent GABAergic cartridge synapses, resembling the cortical microcircuitry changes in brains from psychotic patients, and suggesting disinhibition. Expression of c-fos was increased in cortical pyramidal neurons, consistent with increased neuronal activity due to disinhibition. The mice showed robust behavioral phenotypes reminiscent of aspects of human mania, ameliorated by antimania drugs lithium and valproate. Repeated social defeat stress resulted in repeated episodes of dramatic behavioral changes from hyperactivity to "depression-like" behavior, suggestive of some aspects of human bipolar disorder. Overall, we suggest that this Ank-G cKO mouse model recapitulates some of the core features of human bipolar disorder and indicates that cortical microcircuitry alterations during adulthood may be involved in pathogenesis. The model may be useful for studying disease pathophysiology and for developing experimental therapeutics.
Collapse
|
121
|
Labaka A, Gómez-Lázaro E, Vegas O, Pérez-Tejada J, Arregi A, Garmendia L. Reduced hippocampal IL-10 expression, altered monoaminergic activity and anxiety and depressive-like behavior in female mice subjected to chronic social instability stress. Behav Brain Res 2017; 335:8-18. [DOI: 10.1016/j.bbr.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 12/25/2022]
|
122
|
Models of progressive neurological dysfunction originating early in life. Prog Neurobiol 2017; 155:2-20. [DOI: 10.1016/j.pneurobio.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/11/2015] [Accepted: 10/11/2015] [Indexed: 01/01/2023]
|
123
|
Interaction of Depression and Anxiety in the Development of Mixed Anxiety/Depression Disorder. Experimental Studies of the Mechanisms of Comorbidity (review). ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0458-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
124
|
Han QQ, Yang L, Huang HJ, Wang YL, Yu R, Wang J, Pilot A, Wu GC, Liu Q, Yu J. Differential GR Expression and Translocation in the Hippocampus Mediates Susceptibility vs. Resilience to Chronic Social Defeat Stress. Front Neurosci 2017; 11:287. [PMID: 28588443 PMCID: PMC5440566 DOI: 10.3389/fnins.2017.00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
While social stress exposure is a common risk factor for affective disorders, most individuals exposed to it can maintain normal physical and psychological functioning. However, factors that determine susceptibility vs. resilience to social stress remain unclear. Here, the resident-intruder model of social defeat was used as a social stressor in male C57BL/6J mice to investigate the difference between susceptibility and resilience. As depression is often characterized by hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, we conducted the present study to further investigate the individual differences in the HPA axis response and glucocorticoid receptor (GR) protein expression and translocation between susceptible mice and resilient mice. We found that hypercortisolemia, induced by social defeat stress occurred in susceptible mice, but not in resilient mice. Moreover, susceptible mice exhibited significantly less GR protein expression and nuclear translocation in the hippocampus than resilient mice. Treatment with escitalopram could decrease the serum corticosterone (CORT), increase GR protein expression as well as nuclear translocation in the hippocampus and ultimately reverse social withdrawal behaviors in susceptible mice. These results indicate that the up-regulation of GR and the enhancement of GR nuclear translocation in the hippocampus play an important role in resilience to chronic social defeat stress.
Collapse
Affiliation(s)
- Qiu-Qin Han
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Liu Yang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Hui-Jie Huang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Ya-Lin Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Rui Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Jing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Adam Pilot
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of ShanghaiShanghai, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|
125
|
Bondar N, Bryzgalov L, Ershov N, Gusev F, Reshetnikov V, Avgustinovich D, Tenditnik M, Rogaev E, Merkulova T. Molecular Adaptations to Social Defeat Stress and Induced Depression in Mice. Mol Neurobiol 2017; 55:3394-3407. [DOI: 10.1007/s12035-017-0586-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
|
126
|
Kudryavtseva NN, Smagin DA, Kovalenko IL, Galyamina AG, Vishnivetskaya GB, Babenko VN, Orlov YL. Serotonergic genes in the development of anxiety/depression-like state and pathology of aggressive behavior in male mice: RNA-seq data. Mol Biol 2017. [DOI: 10.1134/s0026893317020133] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
127
|
Goto T, Tomonaga S, Toyoda A. Effects of Diet Quality and Psychosocial Stress on the Metabolic Profiles of Mice. J Proteome Res 2017; 16:1857-1867. [PMID: 28332841 DOI: 10.1021/acs.jproteome.6b00859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There has been an increasing interest in relationship between stress and diet. To address this relationship, we evaluated an animal model of depression: male C57BL/6J mice subjected to subchronic mild social defeat stress (sCSDS) for 10 consecutive days using male ICR mice under two different calorie-adjusted diets conditions-nonpurified (MF) and semipurified (AIN) diets made from natural and chemical ingredients mainly, respectively. Our previous study indicates that diet quality and purity affect stress susceptibility in sCSDS mice. We therefore hypothesized that there are some key peripheral metabolites to change stress-susceptible behavior. GC-MS metabolomics of plasma, liver, and cecal content were performed on four test groups: sCSDS + AIN diet (n = 7), sCSDS + MF diet (n = 6), control (no sCSDS) + AIN diet (n = 8), and control + MF diet (n = 8). Metabolome analyses revealed that the number of metabolites changed by food was larger than the number changed by stress in all tissues. Enrichment analysis of the liver metabolite set altered by food implies that stress-susceptible mice show increased glycolysis-related substrates in the liver. We found metabolites that were affected by stress (e.g., plasma and liver 4-hydroxyproline and plasma beta-alanine are higher in sCSDS than in control) and a stress × food interaction (e.g., plasma GABA is lower in sCSDS + AIN than in sCSDS + MF). Because functional compounds were altered by both stress and food, diet may be able to attenuate various stress-induced symptoms by changing metabolites in peripheral tissues.
Collapse
Affiliation(s)
- Tatsuhiko Goto
- College of Agriculture, Ibaraki University , Ami, Ibaraki 300-0393, Japan.,Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM) , Ami, Ibaraki 300-0393, Japan
| | - Shozo Tomonaga
- Graduate School of Agriculture, Kyoto University , Kyoto 606-8502, Japan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki University , Ami, Ibaraki 300-0393, Japan.,Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM) , Ami, Ibaraki 300-0393, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology , Fuchu-city, Tokyo 183-8509, Japan
| |
Collapse
|
128
|
Duque A, Vinader-Caerols C, Monleón S. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice. PLoS One 2017; 12:e0173182. [PMID: 28278165 PMCID: PMC5344348 DOI: 10.1371/journal.pone.0173182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022] Open
Abstract
We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10–12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.
Collapse
Affiliation(s)
- Aránzazu Duque
- Department of Psychobiology, University of Valencia, Valencia, Spain
| | | | - Santiago Monleón
- Department of Psychobiology, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
129
|
Ahnaou A, Drinkenburg WHIM. Simultaneous Changes in Sleep, qEEG, Physiology, Behaviour and Neurochemistry in Rats Exposed to Repeated Social Defeat Stress. Neuropsychobiology 2017; 73:209-23. [PMID: 27287886 DOI: 10.1159/000446284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022]
Abstract
Depression is a heterogeneous disorder characterized by alterations at psychological, behavioural, physiological, neurophysiological, and neurochemical levels. Social stress is a prevalent stress in man, and the repeated social defeat stress model in rats has been proposed as being the rodent equivalent to loss of control, which in subordinate animals produces alterations that resemble several of the cardinal symptoms found in depressed patients. Here, rats followed a resident-intruder protocol for 4 consecutive days during which behavioural, physiological, and electroencephalographic (EEG) parameters were simultaneously monitored in subordinate rats. On day 5, prefrontal dopamine (DA) and hippocampal serotonin (5-HT) as well as corticosterone were measured in submissive rats that had visual, acoustic, and olfactory (but no physical) contact with a dominant, resident conspecific rat. Socially defeated rats demonstrated increases in ultrasonic vocalizations (20-25 KHz), freezing, submissive defensive behaviour, inactivity, and haemodynamic response, while decreases were found in repetitive grooming behaviour and body weight. Additionally, alterations in the sleep-wake architecture were associated with reduced active waking, enhanced light sleep, and increased frequency of transitions from light sleep to quiet wakefulness, indicating sleep instability. Moreover, the attenuation of EEG power over the frequency range of 4.2-30 Hz, associated with a sharp transient increase in delta oscillations, appeared to reflect increased brain activity and metabolism in subordinate animals. These EEG changes were synchronous with a marked increase in body temperature and a decrease in locomotor activity. Furthermore, psychosocial stress consistently increased 5-HT, DA, and corticosterone levels. The increased levels of cortical DA and hippocampal 5-HT during social threat may reflect a coping mechanism to promote alertness and psychological adaptation to provocative and threatening stimuli. These neurophysiological changes are hypothesized to be the consequence of dynamics in monoamine systems, which could be useful markers for disease progression in the aetiology of depression.
Collapse
Affiliation(s)
- A Ahnaou
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | | |
Collapse
|
130
|
Sakamoto Y, Ogawa T, Ogawa M, Matsuo Y, Hashikawa N, Hashikawa N. [Effects of 15-day chronic stress on behavior and neurological changes in the hippocampus of ICR mice]. YAKUGAKU ZASSHI 2017; 135:151-8. [PMID: 25743912 DOI: 10.1248/yakushi.14-00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous rodent models of depression have been reported, most requiring a long experimental period and significant effort. We explored a new potential mouse model for depression by investigating whether exposure to a 15-day chronic stress paradigm could induce depression-like behavior in ICR mice. Animals in the stress-exposed groups were subjected to 3 h of restraint while immersed in a 28°C water bath daily for 15 consecutive days. Immobility time in the forced swim test was increased in the chronic stress-exposed mice compared with the controls. Serum corticosterone levels were also much higher in the stressed mice than in the control mice. Hippocampal cell survival (BrdU-positive cells) and neurotrophic factor (NGF, TrkA) mRNA levels were significantly decreased in the chronic stress-exposed mice compared with controls. Administration of the anti-depressant drugs clomipramine (20 mg/kg/d) or imipramine (30 mg/kg/d) did not change the immobility time in the forced swim test, but treatment with lithium (100 mg/kg/d) did result in slight improvement. These results suggest that this 15-day chronic stress paradigm can induce depression-like behavior and neurological changes, in a short time and with minimal effort, facilitating the assessment of treatments for depression.
Collapse
|
131
|
Chronic Social Defeat Stress Modulates Dendritic Spines Structural Plasticity in Adult Mouse Frontal Association Cortex. Neural Plast 2017; 2017:6207873. [PMID: 28197343 PMCID: PMC5286490 DOI: 10.1155/2017/6207873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/04/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022] Open
Abstract
Chronic stress is associated with occurrence of many mental disorders. Previous studies have shown that dendrites and spines of pyramidal neurons of the prefrontal cortex undergo drastic reorganization following chronic stress experience. So the prefrontal cortex is believed to play a key role in response of neural system to chronic stress. However, how stress induces dynamic structural changes in neural circuit of prefrontal cortex remains unknown. In the present study, we examined the effects of chronic social defeat stress on dendritic spine structural plasticity in the mouse frontal association (FrA) cortex in vivo using two-photon microscopy. We found that chronic stress altered spine dynamics in FrA and increased the connectivity in FrA neural circuits. We also found that the changes in spine dynamics in FrA are correlated with the deficit of sucrose preference in defeated mice. Our findings suggest that chronic stress experience leads to adaptive change in neural circuits that may be important for encoding stress experience related memory and anhedonia.
Collapse
|
132
|
Golden SA, Aleyasin H, Heins R, Flanigan M, Heshmati M, Takahashi A, Russo SJ, Shaham Y. Persistent conditioned place preference to aggression experience in adult male sexually-experienced CD-1 mice. GENES, BRAIN, AND BEHAVIOR 2017; 16:44-55. [PMID: 27457669 PMCID: PMC5243174 DOI: 10.1111/gbb.12310] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 01/26/2023]
Abstract
We recently developed a conditioned place preference (CPP) procedure, commonly used to study rewarding drug effects, to demonstrate that dominant sexually-experienced CD-1 male mice form CPP to contexts previously associated with defeating subordinate male C57BL/6J mice. Here we further characterized conditioned and unconditioned aggression behavior in CD-1 mice. In Exp. 1 we used CD-1 mice that displayed a variable spectrum of unconditioned aggressive behavior toward younger subordinate C57BL/6J intruder mice. We then trained the CD-1 mice in the CPP procedure where one context was intruder-paired, while a different context was not. We then tested for aggression CPP 1 day after training. In Exp. 2, we tested CD-1 mice for aggression CPP 1 day and 18 days after training. In Exp. 3-4, we trained the CD-1 mice to lever-press for palatable food and tested them for footshock punishment-induced suppression of food-reinforced responding. In Exp. 5, we characterized unconditioned aggression in hybrid CD-1 × C57BL/6J D1-Cre or D2-Cre F1 generation crosses. Persistent aggression CPP was observed in CD-1 mice that either immediately attacked C57BL/6J mice during all screening sessions or mice that gradually developed aggressive behavior during the screening phase. In contrast, CD-1 mice that did not attack the C57BL/6J mice during screening did not develop CPP to contexts previously paired with C57BL/6J mice. The aggressive phenotype did not predict resistance to punishment-induced suppression of food-reinforced responding. CD-1 × D1-Cre or D2-Cre F1 transgenic mice showed strong unconditioned aggression. Our study demonstrates that aggression experience causes persistent CPP and introduces transgenic mice for circuit studies of aggression.
Collapse
Affiliation(s)
- Sam A. Golden
- Behavioral Neuroscience Branch, Intramural Research Program, NIDA, NIH, Baltimore MD
| | - Hossein Aleyasin
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Robert Heins
- Behavioral Neuroscience Branch, Intramural Research Program, NIDA, NIH, Baltimore MD
| | - Meghan Flanigan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Mitra Heshmati
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Aki Takahashi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Japan
| | - Scott J. Russo
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program, NIDA, NIH, Baltimore MD
| |
Collapse
|
133
|
Favoretto CA, Macedo GC, Quadros IMH. Effects of ethanol on social avoidance induced by chronic social defeat stress in mice. Stress 2017; 20:68-74. [PMID: 28068856 DOI: 10.1080/10253890.2017.1280667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In rodents, chronic social defeat stress promotes deficits in social interest and social interaction. We further explored these antisocial effects by comparing the consequences of two different defeat stress protocols (episodic vs. continuous stress) in a social investigation test. We expected that continuous, but not episodic, stress would induce social deficits in this model. Furthermore, we tested whether a potentially anxiolytic dose of ethanol reverses social deficits induced by defeat stress. Male Swiss mice were exposed to a 10-day social defeat protocol, using daily confrontations with an aggressive resident mouse. Episodic stress consisted of brief defeat episodes, after which the defeated mouse was returned to its home cage, until the next defeat 24 h later (n = 7-11/group). For continuous stress, similar defeat episodes were followed by cohabitation with the aggressive resident for 24 h, separated by a perforated divider, until the following defeat (n = 8-14/group). Eight days after stress termination, defeated and control mice were assessed in a social investigation test, after treatment with ethanol (1.0 g/kg, i.p.) or 0.9% saline. Considering the time spent investigating a social target, mice exposed to episodic or continuous social stress showed less social investigation than controls (p < .05). Deficits in social interest were not reversed by acute ethanol treatment. However, ethanol reduced time spent in social interaction in one control group (p < .05). Locomotor activity was not affected by social stress or ethanol. Thus, a history of social defeat stress, whether episodic or continuous, promotes deficits in social investigation that were not reversed by acute treatment with ethanol.
Collapse
Affiliation(s)
- Cristiane A Favoretto
- a Department of Psychobiology , Universidade Federal de São Paulo, UNIFESP , São Paulo , Brazil
| | - Giovana C Macedo
- a Department of Psychobiology , Universidade Federal de São Paulo, UNIFESP , São Paulo , Brazil
| | - Isabel M H Quadros
- a Department of Psychobiology , Universidade Federal de São Paulo, UNIFESP , São Paulo , Brazil
| |
Collapse
|
134
|
Validity Assessment of 5 Day Repeated Forced-Swim Stress to Model Human Depression in Young-Adult C57BL/6J and BALB/cJ Mice. eNeuro 2016; 3:eN-NRS-0201-16. [PMID: 28058270 PMCID: PMC5197406 DOI: 10.1523/eneuro.0201-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/06/2016] [Accepted: 10/28/2016] [Indexed: 01/07/2023] Open
Abstract
The development of animal models with construct, face, and predictive validity to accurately model human depression has been a major challenge. One proposed rodent model is the 5 d repeated forced swim stress (5d-RFSS) paradigm, which progressively increases floating during individual swim sessions. The onset and persistence of this floating behavior has been anthropomorphically characterized as a measure of depression. This interpretation has been under debate because a progressive increase in floating over time may reflect an adaptive learned behavioral response promoting survival, and not depression (Molendijk and de Kloet, 2015). To assess construct and face validity, we applied 5d-RFSS to C57BL/6J and BALB/cJ mice, two mouse strains commonly used in neuropsychiatric research, and measured a combination of emotional, homeostatic, and psychomotor symptoms indicative of a depressive-like state. We also compared the efficacy of 5d-RFSS and chronic social defeat stress (CSDS), a validated depression model, to induce a depressive-like state in C57BL/6J mice. In both strains, 5d-RFSS progressively increased floating behavior that persisted for at least 4 weeks. 5d-RFSS did not alter sucrose preference, body weight, appetite, locomotor activity, anxiety-like behavior, or immobility behavior during a tail-suspension test compared with nonstressed controls. In contrast, CSDS altered several of these parameters, suggesting a depressive-like state. Finally, predictive validity was assessed using voluntary wheel running (VWR), a known antidepressant intervention. Four weeks of VWR after 5d-RFSS normalized floating behavior toward nonstressed levels. These observations suggest that 5d-RFSS has no construct or face validity but might have predictive validity to model human depression.
Collapse
|
135
|
Heterogeneity of Brain Ribosomal Genes Expression Following Positive Fighting Experience in Male Mice as Revealed by RNA-Seq. Mol Neurobiol 2016; 55:390-401. [DOI: 10.1007/s12035-016-0327-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/29/2016] [Indexed: 01/31/2023]
|
136
|
Iñiguez SD, Aubry A, Riggs LM, Alipio JB, Zanca RM, Flores-Ramirez FJ, Hernandez MA, Nieto SJ, Musheyev D, Serrano PA. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice. Neurobiol Stress 2016; 5:54-64. [PMID: 27981196 PMCID: PMC5154707 DOI: 10.1016/j.ynstr.2016.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022] Open
Abstract
Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes for 10 consecutive days. Twenty-four h later, separate groups of mice were tested on the social interaction and tail suspension tests. Hippocampi were then dissected and Western blots were conducted to quantify protein levels for various markers important for synaptic plasticity including protein kinase M zeta (PKMζ), protein kinase C zeta (PKCζ), the dopamine-1 (D1) receptor, tyrosine hydroxylase (TH), and the dopamine transporter (DAT). Furthermore, we examined the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor subunit GluA2 as well as colocalization with the post-synaptic density 95 (PSD95) protein, within different spine subtypes (filopodia, stubby, long-thin, mushroom) using an immunohistochemistry and Golgi-Cox staining technique. The results revealed that social defeat induced a depression-like behavioral profile, as inferred from decreased social interaction levels, increased immobility on the tail suspension test, and decreases in body weight. Whole hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radiatum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers within long-thin and mushroom spine types. Together, these results indicate that juvenile social stress induces GluA2- and dopamine-associated dysregulation in the hippocampus - a neurobiological mechanism potentially underlying the development of mood-related syndromes as a consequence of adolescent bullying.
Collapse
Affiliation(s)
- Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Antonio Aubry
- Department of Psychology, Hunter College, New York, NY, 10065, USA
- The Graduate Center of CUNY, New York, NY, USA
| | - Lace M. Riggs
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Jason B. Alipio
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | | | - Francisco J. Flores-Ramirez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
| | - Mirella A. Hernandez
- Department of Psychology, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79902, USA
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - Steven J. Nieto
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA
| | - David Musheyev
- Department of Psychology, Hunter College, New York, NY, 10065, USA
| | - Peter A. Serrano
- Department of Psychology, Hunter College, New York, NY, 10065, USA
- The Graduate Center of CUNY, New York, NY, USA
| |
Collapse
|
137
|
Koch CE, Bartlang MS, Kiehn JT, Lucke L, Naujokat N, Helfrich-Förster C, Reber SO, Oster H. Time-of-day-dependent adaptation of the HPA axis to predictable social defeat stress. J Endocrinol 2016; 231:209-221. [PMID: 27660201 DOI: 10.1530/joe-16-0163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/22/2016] [Indexed: 11/08/2022]
Abstract
In modern societies, the risk of developing a whole array of affective and somatic disorders is associated with the prevalence of frequent psychosocial stress. Therefore, a better understanding of adaptive stress responses and their underlying molecular mechanisms is of high clinical interest. In response to an acute stressor, each organism can either show passive freezing or active fight-or-flight behaviour, with activation of sympathetic nervous system and the hypothalamus-pituitary-adrenal (HPA) axis providing the necessary energy for the latter by releasing catecholamines and glucocorticoids (GC). Recent data suggest that stress responses are also regulated by the endogenous circadian clock. In consequence, the timing of stress may critically affect adaptive responses to and/or pathological effects of repetitive stressor exposure. In this article, we characterize the impact of predictable social defeat stress during daytime versus nighttime on bodyweight development and HPA axis activity in mice. While 19 days of social daytime stress led to a transient reduction in bodyweight without altering HPA axis activity at the predicted time of stressor exposure, more detrimental effects were seen in anticipation of nighttime stress. Repeated nighttime stressor exposure led to alterations in food metabolization and reduced HPA axis activity with lower circulating adrenocorticotropic hormone (ACTH) and GC concentrations at the time of predicted stressor exposure. Our data reveal a circadian gating of stress adaptation to predictable social defeat stress at the level of the HPA axis with impact on metabolic homeostasis underpinning the importance of timing for the body's adaptability to repetitive stress.
Collapse
Affiliation(s)
- C E Koch
- University of LübeckChronophysiology Group, Medical Department 1, Lübeck, Germany
| | - M S Bartlang
- University of WürzburgBiocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg, Germany
| | - J T Kiehn
- University of LübeckChronophysiology Group, Medical Department 1, Lübeck, Germany
| | - L Lucke
- Department of Behavioral and Molecular NeurobiologyUniversity of Regensburg, Regensburg, Germany
| | - N Naujokat
- University of LübeckChronophysiology Group, Medical Department 1, Lübeck, Germany
| | - C Helfrich-Förster
- University of WürzburgBiocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Würzburg, Germany
| | - S O Reber
- Department of Behavioral and Molecular NeurobiologyUniversity of Regensburg, Regensburg, Germany
| | - H Oster
- University of LübeckChronophysiology Group, Medical Department 1, Lübeck, Germany
| |
Collapse
|
138
|
Pryce CR, Fuchs E. Chronic psychosocial stressors in adulthood: Studies in mice, rats and tree shrews. Neurobiol Stress 2016; 6:94-103. [PMID: 28229112 PMCID: PMC5314423 DOI: 10.1016/j.ynstr.2016.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 11/27/2022] Open
Abstract
Human psychological stress is the major environmental risk factor for major depression and certain of the anxiety disorders. Psychological stressors often occur in the context of the adult social environment, and they or the memory formed of them impact on the individual across an extended period, thereby constituting chronic psychosocial stress (CPS). Psychosocial stressors often involve loss to the individual, such as the ending of a social relationship or the onset of interpersonal conflict leading to loss of social control and predictability. Given the difficulty in studying the etio-pathophysiological processes mediating between CPS and brain and behavior pathologies in human, considerable effort has been undertaken to study manipulations of the social environment that constitute adulthood chronic psychosocial stressors in other mammals. The majority of such research has been conducted in rodents; the focus for a considerable time period was on rats and more recently both rats and mice have been investigated, the latter species in particular providing the opportunity for essential gene x chronic psychosocial stressor interaction studies. Key studies in the tree shrew demonstrate that this approach should not be limited to rodents, however. The animal adult CPS paradigms are based on resident-intruder confrontations. These are typified by the intruder-subject's brief proximate interactions with and attacks by, and otherwise continuous distal exposure to, the resident stressor. In contrast to humans where cognitive capacities are such that the stressor pertains in its physical absence, the periods of continuous distal exposure are apparently essential in these species. Whilst the focus of this review is on the stressor rather than the stress response, we also describe some of the depression- and anxiety disorder-relevant effects on behavior, physiology and brain structure-function of chronic psychosocial stressors, as well as evidence for the predictive validity of such models in terms of chronic antidepressant efficacy. Nonetheless, there are limitations in the methods used to date, most importantly the current emphasis on studying CPS in males, despite the much higher disorder prevalence in women compared to men. Future studies will need to address these limitations.
Collapse
|
139
|
Koch CE, Leinweber B, Drengberg BC, Blaum C, Oster H. Interaction between circadian rhythms and stress. Neurobiol Stress 2016; 6:57-67. [PMID: 28229109 PMCID: PMC5314421 DOI: 10.1016/j.ynstr.2016.09.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/26/2016] [Accepted: 09/05/2016] [Indexed: 01/24/2023] Open
Abstract
Life on earth has adapted to the day-night cycle by evolution of internal, so-called circadian clocks that adjust behavior and physiology to the recurring changes in environmental conditions. In mammals, a master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus receives environmental light information and synchronizes peripheral tissues and central non-SCN clocks to geophysical time. Regulatory systems such as the hypothalamus-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS), both being important for the regulation of stress responses, receive strong circadian input. In this review, we summarize the interaction of circadian and stress systems and the resulting physiological and pathophysiological consequences. Finally, we critically discuss the relevance of rodent stress studies for humans, addressing complications of translational approaches and offering strategies to optimize animal studies from a chronobiological perspective.
Collapse
Affiliation(s)
- C E Koch
- University of Lübeck, Chronophysiology Group, Medical Department 1, Lübeck, Germany
| | - B Leinweber
- University of Lübeck, Chronophysiology Group, Medical Department 1, Lübeck, Germany
| | - B C Drengberg
- University of Lübeck, Chronophysiology Group, Medical Department 1, Lübeck, Germany
| | - C Blaum
- University of Lübeck, Chronophysiology Group, Medical Department 1, Lübeck, Germany
| | - H Oster
- University of Lübeck, Chronophysiology Group, Medical Department 1, Lübeck, Germany
| |
Collapse
|
140
|
Bergamini G, Cathomas F, Auer S, Sigrist H, Seifritz E, Patterson M, Gabriel C, Pryce CR. Mouse psychosocial stress reduces motivation and cognitive function in operant reward tests: A model for reward pathology with effects of agomelatine. Eur Neuropsychopharmacol 2016; 26:1448-1464. [PMID: 27422761 DOI: 10.1016/j.euroneuro.2016.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/20/2016] [Accepted: 06/18/2016] [Indexed: 12/31/2022]
Abstract
A major domain of depression is decreased motivation for reward. Translational automated tests can be applied in humans and animals to study operant reward behaviour, aetio-pathophysiology underlying deficits therein, and effects of antidepressant treatment. Three inter-related experiments were conducted to investigate depression-relevant effects of chronic psychosocial stress on operant behaviour in mice. (A) Non-manipulated mice were trained on a complex reversal learning (CRL) test with sucrose reinforcement; relative to vehicle (VEH), acute antidepressant agomelatine (AGO, 25mg/kg p.o.) increased reversals. (B) Mice underwent chronic social defeat (CSD) or control handling (CON) on days 1-15, and were administered AGO or VEH on days 10-22. In a progressive ratio schedule motivation test for sucrose on day 15, CSD mice made fewer responses; AGO tended to reverse this effect. In a CRL test on day 22, CSD mice completed fewer reversals; AGO tended to increase reversals in CSD mice associated with an adaptive increase in perseveration. (C) Mice with continuous operant access to water and saccharin solution in the home cage were exposed to CSD or CON; CSD mice made fewer responses for saccharin and water and drank less saccharin in the active period, and drank more water in the inactive period. In a separate CSD cohort, repeated AGO was without effect on these home cage operant and consummatory changes. Overall, this study demonstrates that psychosocial stress in mice leads to depression-relevant decreases in motivation and cognition in operant reward tests; partial reversal of these deficits by AGO provides evidence for predictive validity.
Collapse
Affiliation(s)
- Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
| | - Flurin Cathomas
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Sandra Auer
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Erich Seifritz
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Michael Patterson
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | - Cecilia Gabriel
- Institut de Recherches Internationales Servier (IRIS), Suresnes, France
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
141
|
Meshalkina DA, Kalueff AV. Commentary: Ethological Evaluation of the Effects of Social Defeat Stress in Mice: Beyond the Social Interaction Ratio. Front Behav Neurosci 2016; 10:155. [PMID: 27558083 PMCID: PMC4978706 DOI: 10.3389/fnbeh.2016.00155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Affiliation(s)
- Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University St. Petersburg, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|
142
|
Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3975101. [PMID: 27563374 PMCID: PMC4983669 DOI: 10.1155/2016/3975101] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/12/2023]
Abstract
The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context.
Collapse
|
143
|
Golden SA, Heshmati M, Flanigan M, Christoffel DJ, Guise K, Pfau ML, Aleyasin H, Menard C, Zhang H, Hodes GE, Bregman D, Khibnik L, Tai J, Rebusi N, Krawitz B, Chaudhury D, Walsh JJ, Han MH, Shapiro ML, Russo SJ. Basal forebrain projections to the lateral habenula modulate aggression reward. Nature 2016; 534:688-92. [PMID: 27357796 PMCID: PMC4930107 DOI: 10.1038/nature18601] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/17/2016] [Indexed: 02/08/2023]
Abstract
Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing.
Collapse
Affiliation(s)
- Sam A. Golden
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mitra Heshmati
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meghan Flanigan
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan J. Christoffel
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, CA, USA
| | - Kevin Guise
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madeline L. Pfau
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hossein Aleyasin
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caroline Menard
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongxing Zhang
- Pharmacology and Systems Therapeutics and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgia E. Hodes
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dana Bregman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lena Khibnik
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Tai
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole Rebusi
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Krawitz
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dipesh Chaudhury
- Pharmacology and Systems Therapeutics and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica J. Walsh
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, CA, USA
| | - Ming-Hu Han
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pharmacology and Systems Therapeutics and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt L. Shapiro
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J. Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
144
|
Khibnik LA, Beaumont M, Doyle M, Heshmati M, Slesinger PA, Nestler EJ, Russo SJ. Stress and Cocaine Trigger Divergent and Cell Type-Specific Regulation of Synaptic Transmission at Single Spines in Nucleus Accumbens. Biol Psychiatry 2016; 79:898-905. [PMID: 26164802 PMCID: PMC4670821 DOI: 10.1016/j.biopsych.2015.05.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Repeated exposure to cocaine or social stress leads to lasting structural and functional synaptic alterations in medium spiny neurons (MSNs) of nucleus accumbens (NAc). Although cocaine-induced and stress-induced structural changes in dendritic spines have been well documented, few studies have investigated functional consequences of cocaine and stress at the level of single spines. METHODS We exposed mice to chronic cocaine or chronic social defeat stress and used two-photon laser scanning microscopy with glutamate photo-uncaging and whole-cell recording to examine synaptic strength at individual spines on two distinct types of NAc MSNs in acute slices after 24 hours of cocaine withdrawal and after chronic social defeat stress. RESULTS In animals treated with cocaine, average synaptic strength was reduced specifically at large mushroom spines of MSNs expressing dopamine receptor type 1 (D1-MSNs). In contrast, cocaine promoted a rightward shift in the distribution of synaptic weights toward larger synaptic responses in MSNs expressing dopamine receptor type 2 (D2-MSNs). After chronic social defeat stress, resilient animals displayed an upregulation of synaptic strength at large mushroom spines of D1-MSNs and a concomitant downregulation in D2-MSNs. Although susceptible mice did not exhibit a significant overall change in synaptic strength on D1-MSNs or D2-MSNs, we observed a slight leftward shift in cumulative distribution of large synaptic responses in both cell types. CONCLUSIONS This study provides the first functional cell type-specific and spine type-specific comparison of synaptic strength at a single spine level between cocaine-induced and stress-induced neuroadaptations and demonstrates that psychoactive drugs and stress trigger divergent changes in synaptic function in NAc.
Collapse
Affiliation(s)
- Lena A. Khibnik
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Michael Beaumont
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Marie Doyle
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Mitra Heshmati
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Paul A. Slesinger
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Eric J. Nestler
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Scott J. Russo
- Corresponding author: Icahn School of Medicine at Mount Sinai, Room 10-20A, 1425 Madison Avenue, New York, NY 10029, Tel: (212)659-5917,
| |
Collapse
|
145
|
Bouchatta O, Ouhaz Z, Ba-Mhamed S, Kerekes N, Bennis M. Acute and chronic glue sniffing effects and consequences of withdrawal on aggressive behavior. Life Sci 2016; 152:14-20. [DOI: 10.1016/j.lfs.2016.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/23/2023]
|
146
|
Fureix C, Walker M, Harper L, Reynolds K, Saldivia-Woo A, Mason G. Stereotypic behaviour in standard non-enriched cages is an alternative to depression-like responses in C57BL/6 mice. Behav Brain Res 2016; 305:186-90. [DOI: 10.1016/j.bbr.2016.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 12/31/2022]
|
147
|
Kovalenko IL, Smagin DA, Galyamina AG, Orlov YL, Kudryavtseva NN. Changes in the expression of dopaminergic genes in brain structures of male mice exposed to chronic social defeat Stress: An RNA-seq study. Mol Biol 2016. [DOI: 10.1134/s0026893316010088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
148
|
Goto T, Tomonaga S, Okayama T, Toyoda A. Murine Depression Model and its Potential Applications for Discovering Foods and Farm Products with Antidepressant-Like Effects. Front Neurosci 2016; 10:72. [PMID: 26973450 PMCID: PMC4771721 DOI: 10.3389/fnins.2016.00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/16/2016] [Indexed: 12/26/2022] Open
Abstract
Advanced societies face increased health problems related to various stresses. Chronic psychological stress is a major risk factor for psychiatric disorders such as depression. Although therapeutic agents reduce several symptoms of depression, most have side effects in a broad range of the population. Furthermore, some victims of depression do not show significant improvement with any drugs, so alternative approaches are needed. Good dietary habits may potentially reduce depressive symptoms, but there is little scientific evidence thus far. Murine depression models are useful to test nutritional approaches in vivo. Our model mice subjected to a subchronic mild social defeat stress (sCSDS) paradigm show several alterations in physiological parameters and social behavior. These stress-induced symptoms in sCSDS mice can be used as cues to identify antidepressant-like natural resources including foods and farm products. We previously discovered that sCSDS mice show more vulnerability to social stress by changing dietary condition. In addition, we developed a more objective system for analyzing mouse behavior using a 3D depth-sensing camera to understand relationships between diet and behavior. The combination of sCSDS mice with 3D behavioral analysis is a powerful method for screening ingredients in foods and farm products for antidepressant-like effects.
Collapse
Affiliation(s)
- Tatsuhiko Goto
- Department of Biological Production Science, College of Agriculture, Ibaraki UniversityAmi, Ibaraki, Japan; Department of Biological Production Science, Ibaraki University Cooperation between Agriculture and Medical ScienceAmi, Ibaraki, Japan
| | - Shozo Tomonaga
- Graduate School of Agriculture, Kyoto University Kyoto, Japan
| | - Tsuyoshi Okayama
- Department of Biological Production Science, College of Agriculture, Ibaraki UniversityAmi, Ibaraki, Japan; Department of Biological Production Science, Ibaraki University Cooperation between Agriculture and Medical ScienceAmi, Ibaraki, Japan; Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and TechnologyFuchu, Japan
| | - Atsushi Toyoda
- Department of Biological Production Science, College of Agriculture, Ibaraki UniversityAmi, Ibaraki, Japan; Department of Biological Production Science, Ibaraki University Cooperation between Agriculture and Medical ScienceAmi, Ibaraki, Japan; Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and TechnologyFuchu, Japan
| |
Collapse
|
149
|
Henriques-Alves AM, Queiroz CM. Ethological Evaluation of the Effects of Social Defeat Stress in Mice: Beyond the Social Interaction Ratio. Front Behav Neurosci 2016; 9:364. [PMID: 26869895 PMCID: PMC4737906 DOI: 10.3389/fnbeh.2015.00364] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/19/2015] [Indexed: 11/13/2022] Open
Abstract
In rodents, repeated exposure to unavoidable aggression followed by sustained sensory treat can lead to prolonged social aversion. The chronic social defeat stress model explores that phenomenon and it has been used as an animal model for human depression. However, some authors have questioned whether confounding effects may arise as the model also boosts anxiety-related behaviors. Despite its wide acceptance, most studies extract limited information from the behavior of the defeated animal. Often, the normalized occupancy around the social stimulus, the interaction zone, is taken as an index of depression. We hypothesized that this parameter is insufficient to fully characterize the behavioral consequences of this form of stress. Using an ethological approach, we showed that repeated social defeat delayed the expression of social investigation in long (10 min) sessions of social interaction. Also, the incidence of defensive behaviors, including stretched-attend posture and high speed retreats, was significantly higher in defeated mice in comparison to controls. Interestingly, a subpopulation of defeated mice showed recurrent and non-habituating stretched-attend posture and persistent flights during the entire session. Two indexes were created based on defensive behaviors to show that only recurrent flights correlates with sucrose intake. Together, the present study corroborates the idea that this model of social stress can precipitate a myriad of behaviors not readily disentangled. We propose that long sessions (>150 s) and detailed ethological evaluation during social interaction tests are necessary to provide enough information to correctly classify defeated animals in terms of resilience and susceptibility to social defeat stress.
Collapse
Affiliation(s)
| | - Claudio M Queiroz
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|
150
|
Joana PT, Amaia A, Arantza A, Garikoitz B, Eneritz GL, Larraitz G. Central immune alterations in passive strategy following chronic defeat stress. Behav Brain Res 2016; 298:291-300. [DOI: 10.1016/j.bbr.2015.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/03/2023]
|