101
|
Fasinu PS, Phillips S, ElSohly MA, Walker LA. Current Status and Prospects for Cannabidiol Preparations as New Therapeutic Agents. Pharmacotherapy 2017; 36:781-96. [PMID: 27285147 DOI: 10.1002/phar.1780] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
States and the federal government are under growing pressure to legalize the use of cannabis products for medical purposes in the United States. Sixteen states have legalized (or decriminalized possession of) products high in cannabidiol (CBD) and with restricted ∆(9) -tetrahydrocannabinol (∆(9) -THC) content. In most of these states, the intent is for use in refractory epileptic seizures in children, but in a few states, the indications are broader. This review provides an overview of the pharmacology and toxicology of CBD; summarizes some of the regulatory, safety, and cultural issues relevant to the further exploitation of its antiepileptic or other pharmacologic activities; and assesses the current status and prospects for clinical development of CBD and CBD-rich preparations for medical use in the United States. Unlike Δ(9) -THC, CBD elicits its pharmacologic effects without exerting any significant intrinsic activity on the cannabinoid receptors, whose activation results in the psychotropic effects characteristic of Δ(9) -THC, and CBD possesses several pharmacologic activities that give it a high potential for therapeutic use. CBD exhibits neuroprotective, antiepileptic, anxiolytic, antipsychotic, and antiinflammatory properties. In combination with Δ(9) -THC, CBD has received regulatory approvals in several European countries and is currently under study in trials registered by the U.S. Food and Drug Administration in the United States. A number of states have passed legislation to allow for the use of CBD-rich, limited Δ(9) -THC-content preparations of cannabis for certain pathologic conditions. CBD is currently being studied in several clinical trials and is at different stages of clinical development for various medical indications. Judging from clinical findings reported so far, CBD and CBD-enriched preparations have great potential utility, but uncertainties regarding sourcing, long-term safety, abuse potential, and regulatory dilemmas remain.
Collapse
Affiliation(s)
- Pius S Fasinu
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS
| | - Sarah Phillips
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS
| | - Mahmoud A ElSohly
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS.,Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS
| | - Larry A Walker
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS
| |
Collapse
|
102
|
Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid. Int J Mol Sci 2017; 18:ijms18081669. [PMID: 28788104 PMCID: PMC5578059 DOI: 10.3390/ijms18081669] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection. The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes. Cannabidiol (CBD) is the main non-psychotomimetic cannabinoid derived from Cannabis. CBD is devoid of direct CB1 and CB2 receptor activity, but exerts a number of important effects in the brain. Here, we attempt to sum up the current findings on the effects of CBD on astrocyte activity, and in this way on central nervous system (CNS) functions, across various tested models and neuropathologies. The collected data shows that increased astrocyte activity is suppressed in the presence of CBD in models of ischemia, Alzheimer-like and Multiple-Sclerosis-like neurodegenerations, sciatic nerve injury, epilepsy, and schizophrenia. Moreover, CBD has been shown to decrease proinflammatory functions and signaling in astrocytes.
Collapse
|
103
|
Basavarajappa BS, Shivakumar M, Joshi V, Subbanna S. Endocannabinoid system in neurodegenerative disorders. J Neurochem 2017; 142:624-648. [PMID: 28608560 DOI: 10.1111/jnc.14098] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well-defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York City, New York, USA.,Department of Psychiatry, New York University Langone Medical Center, New York City, New York, USA
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| |
Collapse
|
104
|
Iffland K, Grotenhermen F. An Update on Safety and Side Effects of Cannabidiol: A Review of Clinical Data and Relevant Animal Studies. Cannabis Cannabinoid Res 2017; 2:139-154. [PMID: 28861514 PMCID: PMC5569602 DOI: 10.1089/can.2016.0034] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction: This literature survey aims to extend the comprehensive survey performed by Bergamaschi et al. in 2011 on cannabidiol (CBD) safety and side effects. Apart from updating the literature, this article focuses on clinical studies and CBD potential interactions with other drugs. Results: In general, the often described favorable safety profile of CBD in humans was confirmed and extended by the reviewed research. The majority of studies were performed for treatment of epilepsy and psychotic disorders. Here, the most commonly reported side effects were tiredness, diarrhea, and changes of appetite/weight. In comparison with other drugs, used for the treatment of these medical conditions, CBD has a better side effect profile. This could improve patients' compliance and adherence to treatment. CBD is often used as adjunct therapy. Therefore, more clinical research is warranted on CBD action on hepatic enzymes, drug transporters, and interactions with other drugs and to see if this mainly leads to positive or negative effects, for example, reducing the needed clobazam doses in epilepsy and therefore clobazam's side effects. Conclusion: This review also illustrates that some important toxicological parameters are yet to be studied, for example, if CBD has an effect on hormones. Additionally, more clinical trials with a greater number of participants and longer chronic CBD administration are still lacking.
Collapse
|
105
|
Niaz K, Khan F, Maqbool F, Momtaz S, Ismail Hassan F, Nobakht-Haghighi N, Rahimifard M, Abdollahi M. Endo-cannabinoids system and the toxicity of cannabinoids with a biotechnological approach. EXCLI JOURNAL 2017; 16:688-711. [PMID: 28827985 PMCID: PMC5547394 DOI: 10.17179/excli2017-257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/29/2017] [Indexed: 01/06/2023]
Abstract
Cannabinoids have shown diverse and critical effects on the body systems, which alter the physiological functions. Synthetic cannabinoids are comparatively innovative misuse drugs with respect to their nature of synthesis. Synthetic cannabinoids therapy in healthy, chain smokers, and alcoholic individuals cause damage to the immune and nervous system, eventually leading to intoxication throughout the body. Relevant studies were retrieved using major electronic databases such as PubMed, EMBASE, Medline, Scopus, and Google Scholar. The extensive use of Cannabis Sativa L. (C. Sativa) and its derivatives/analogues such as the nonpsychoactive dimethyl heptyl homolog (CBG-DMH), and tetrahydrocannabivarin (THCV) amongst juveniles and adults have been enhanced in recent years. Cannabinoids play a crucial role in the induction of respiratory, reproductive, immune and carcinogenic effects; however, potential data about mutagenic and developmental effects are still insufficient. The possible toxicity associated with the prolong use of cannabinoids acts as a tumor promoter in animal models and humans. Particular synthetic cannabinoids and analogues have low affinity for CB1 or CB2 receptors, while some synthetic members like Δ9-THC have high affinity towards these receptors. Cannabinoids and their derivatives have a direct or indirect association with acute and long-term toxicity. To reduce/attenuate cannabinoids toxicity, pharmaceutical biotechnology and cloning methods have opened a new window to develop cannabinoids encoding the gene tetrahydrocannabinolic acid (THCA) synthase. Plant revolution and regeneration hindered genetic engineering in C. Sativa. The genetic culture suspension of C. Sativa can be transmuted by the use of Agrobacterium tumefaciens to overcome its toxicity. The main aim of the present review was to collect evidence of the endo-cannabinoid system (ECS), cannabinoids toxicity, and the potential biotechnological approach of cannabinoids synthesis.
Collapse
Affiliation(s)
- Kamal Niaz
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faheem Maqbool
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Fatima Ismail Hassan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Nobakht-Haghighi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus Mersin 10, Turkey
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
106
|
Nahler G, Grotenhermen F, Zuardi AW, Crippa JA. A Conversion of Oral Cannabidiol to Delta9-Tetrahydrocannabinol Seems Not to Occur in Humans. Cannabis Cannabinoid Res 2017; 2:81-86. [PMID: 28861507 PMCID: PMC5510776 DOI: 10.1089/can.2017.0009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cannabidiol (CBD), a major cannabinoid of hemp, does not bind to CB1 receptors and is therefore devoid of psychotomimetic properties. Under acidic conditions, CBD can be transformed to delta9-tetrahydrocannabinol (THC) and other cannabinoids. It has been argued that this may occur also after oral administration in humans. However, the experimental conversion of CBD to THC and delta8-THC in simulated gastric fluid (SGF) is a highly artificial approach that deviates significantly from physiological conditions in the stomach; therefore, SGF does not allow an extrapolation to in vivo conditions. Unsurprisingly, the conversion of oral CBD to THC and its metabolites has not been observed to occur in vivo, even after high doses of oral CBD. In addition, the typical spectrum of side effects of THC, or of the very similar synthetic cannabinoid nabilone, as listed in the official Summary of Product Characteristics (e.g., dizziness, euphoria/high, thinking abnormal/concentration difficulties, nausea, tachycardia) has not been observed after treatment with CBD in double-blind, randomized, controlled clinical trials. In conclusion, the conversion of CBD to THC in SGF seems to be an in vitro artifact.
Collapse
Affiliation(s)
| | | | - Antonio Waldo Zuardi
- Department of Neuroscience and Behavior, University of São Paulo Ribeirão Preto, Brazil and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM)
| | - José A.S. Crippa
- Department of Neuroscience and Behavior, University of São Paulo Ribeirão Preto, Brazil and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM)
| |
Collapse
|
107
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
108
|
Valdeolivas S, Sagredo O, Delgado M, Pozo MA, Fernández-Ruiz J. Effects of a Sativex-Like Combination of Phytocannabinoids on Disease Progression in R6/2 Mice, an Experimental Model of Huntington's Disease. Int J Mol Sci 2017; 18:ijms18040684. [PMID: 28333097 PMCID: PMC5412270 DOI: 10.3390/ijms18040684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/16/2022] Open
Abstract
Several cannabinoids afforded neuroprotection in experimental models of Huntington’s disease (HD). We investigated whether a 1:1 combination of botanical extracts enriched in either ∆9-tetrahydrocannabinol (∆9-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex®, is beneficial in R6/2 mice (a transgenic model of HD), as it was previously shown to have positive effects in neurotoxin-based models of HD. We recorded the progression of neurological deficits and the extent of striatal deterioration, using behavioral, in vivo imaging, and biochemical methods in R6/2 mice and their corresponding wild-type mice. The mice were daily treated, starting at 4 weeks after birth, with a Sativex-like combination of phytocannabinoids (equivalent to 3 mg/kg weight of pure CBD + ∆9-THC) or vehicle. R6/2 mice exhibited the characteristic deterioration in rotarod performance that initiated at 6 weeks and progressed up to 10 weeks, and elevated clasping behavior reflecting dystonia. Treatment with the Sativex-like combination of phytocannabinoids did not recover rotarod performance, but markedly attenuated clasping behavior. The in vivo positron emission tomography (PET) analysis of R6/2 animals at 10 weeks revealed a reduced metabolic activity in the basal ganglia, which was partially attenuated by treatment with the Sativex-like combination of phytocannabinoids. Proton nuclear magnetic resonance spectroscopy (H+-MRS) analysis of the ex vivo striatum of R6/2 mice at 12 weeks revealed changes in various prognostic markers reflecting events typically found in HD patients and animal models, such as energy failure, mitochondrial dysfunction, and excitotoxicity. Some of these changes (taurine/creatine, taurine/N-acetylaspartate, and N-acetylaspartate/choline ratios) were completely reversed by treatment with the Sativex-like combination of phytocannabinoids. A Sativex-like combination of phytocannabinoids administered to R6/2 mice at the onset of motor symptoms produced certain benefits on the progression of striatal deterioration in these mice, which supports the interest of this cannabinoid-based medicine for the treatment of disease progression in HD patients.
Collapse
Affiliation(s)
- Sara Valdeolivas
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain.
| | - Onintza Sagredo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain.
| | - Mercedes Delgado
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, 28040 Madrid, Spain.
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| | - Miguel A Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, 28040 Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28040 Madrid, Spain.
| |
Collapse
|
109
|
Babalonis S, Haney M, Malcolm RJ, Lofwall MR, Votaw VR, Sparenborg S, Walsh SL. Oral cannabidiol does not produce a signal for abuse liability in frequent marijuana smokers. Drug Alcohol Depend 2017; 172:9-13. [PMID: 28088032 PMCID: PMC5361620 DOI: 10.1016/j.drugalcdep.2016.11.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Cannabidiol (CBD) is a naturally occurring constituent of the marijuana plant. In the past few years, there has been great interest in the therapeutic effects of isolated CBD and it is currently being explored for numerous disease conditions (e.g., pain, epilepsy, cancer, various drug dependencies). However, CBD remains a Schedule I drug on the U.S. Controlled Substances Act (CSA). Despite its status, there are no well-controlled data available regarding its abuse liability. METHODS Healthy, frequent marijuana users (n=31) were enrolled in this within subject, randomized, placebo-controlled, double-blind, multisite study that administered oral cannabidiol (0, 200, 400, 800mg) alone and in combination with smoked marijuana (0.01%, 5.3-5.8% THC). Participants received one dose combination across 8 once-weekly outpatient sessions (7.5h). The primary findings on the drug interaction effects were previously reported (Haney et al., 2016). The present study is a secondary analysis of the data to examine the abuse liability profile of oral cannabidiol (200, 400, 800mg) in comparison to oral placebo and active smoked marijuana (5.3-5.8% THC). RESULTS Active marijuana reliably produced abuse-related subjective effects (e.g., high) (p<0.05). However, CBD was placebo-like on all measures collected (p>0.05). CONCLUSIONS Overall, CBD did not display any signals of abuse liability at the doses tested and these data may help inform U.S. regulatory decisions regarding CBD schedule on the CSA.
Collapse
Affiliation(s)
- Shanna Babalonis
- University of Kentucky, Department of Behavioral Science, Center on Drug and Alcohol Research, Lexington, KY, USA.
| | - Margaret Haney
- Columbia University Medical Center, Division on Substance Abuse, New York State Psychiatric Institute and the Department of Psychiatry, New York, NY, USA
| | | | - Michelle R. Lofwall
- University of Kentucky, Department of Behavioral Science, Center on Drug and Alcohol Research, Lexington, KY, USA
| | - Victoria R. Votaw
- McLean Hospital, Division of Alcohol and Drug Abuse, Belmont, MA, USA
| | | | - Sharon L. Walsh
- University of Kentucky, Department of Behavioral Science, Center on Drug and Alcohol Research, Lexington, KY, USA
| |
Collapse
|
110
|
Sultan SR, Millar SA, England TJ, O'Sullivan SE. A Systematic Review and Meta-Analysis of the Haemodynamic Effects of Cannabidiol. Front Pharmacol 2017; 8:81. [PMID: 28286481 PMCID: PMC5323388 DOI: 10.3389/fphar.2017.00081] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/08/2017] [Indexed: 11/13/2022] Open
Abstract
Despite cannabidiol (CBD) having numerous cardiovascular effects in vitro, its haemodynamic effects in vivo are unclear. Nonetheless, the clinical use of CBD (Epidiolex) is becoming more widespread. The aim of this systematic review was to establish whether CBD is associated with changes in haemodynamics in vivo. Twenty-five studies that assessed the haemodynamic effects of CBD (from PubMed, Medline and EMBASE) were systematically reviewed and meta-analyzed. Data on blood pressure (BP), heart rate (HR), and blood flow (BF) were extracted and analyzed using random effects models. Twenty-two publications assessed BP and HR among 6 species (BP n = 344 and HR n = 395), and 5 publications assessed BF in 3 species (n = 56) after acute dosing of CBD. Chronic dosing was assessed in 4 publications in 3 species (total subjects BP, n = 6; HR, n = 27; BF, n = 3). Acute CBD dosing had no effect on BP or HR under control conditions. Similarly, chronic dosing with CBD had no effect on HR. In models of stress, acute CBD administration significantly reduced the increase in BP and HR induced by stress (BP, mean difference (MD) −3.54, 95% CI −5.19, −1.9, p < 0.0001; HR, MD −16.23, 95% CI −26.44, −6.02, p = 0.002). In mouse models of stroke, CBD significantly increased cerebral blood flow (CBF, standardized mean difference (SMD) 1.62, 95% CI 0.41, 2.83, p = 0.009). Heterogeneity among the studies was present, there was no publication bias except in HR of control and stressful conditions after acute CBD dosing, and median study quality was 5 out of 9 (ranging from 1 to 8). From the limited data available, we conclude that acute and chronic administration of CBD had no effect on BP or HR under control conditions, but reduces BP and HR in stressful conditions, and increases cerebral blood flow (CBF) in mouse models of stroke. Further studies are required to fully understand the potential haemodynamic effects of CBD in humans under normal and pathological conditions.
Collapse
Affiliation(s)
- Salahaden R Sultan
- Vascular Medicine, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham Derby, UK
| | - Sophie A Millar
- Vascular Medicine, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham Derby, UK
| | - Timothy J England
- Vascular Medicine, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham Derby, UK
| | - Saoirse E O'Sullivan
- Vascular Medicine, Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital Centre, School of Medicine, University of Nottingham Derby, UK
| |
Collapse
|
111
|
Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, Abate M, Faggiana G, Proto MC, Fiore D, Laezza C, Bifulco M. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol Ther 2017; 175:133-150. [PMID: 28232276 DOI: 10.1016/j.pharmthera.2017.02.041] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past years, several lines of evidence support a therapeutic potential of Cannabis derivatives and in particular phytocannabinoids. Δ9-THC and cannabidiol (CBD) are the most abundant phytocannabinoids in Cannabis plants and therapeutic application for both compounds have been suggested. However, CBD is recently emerging as a therapeutic agent in numerous pathological conditions since devoid of the psychoactive side effects exhibited instead by Δ9-THC. In this review, we highlight the pharmacological activities of CBD, its cannabinoid receptor-dependent and -independent action, its biological effects focusing on immunomodulation, angiogenetic properties, and modulation of neuronal and cardiovascular function. Furthermore, the therapeutic potential of cannabidiol is also highlighted, in particular in nuerological diseases and cancer.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy.
| | - Anna Maria Malfitano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Anna Lamberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Roberta Ranieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Gaia Cuomo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Giorgio Faggiana
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | | | | | | | - Maurizio Bifulco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy; Corporea, Fondazione Idis-Città della Scienza, Naples, Italy.
| |
Collapse
|
112
|
Grotenhermen F, Russo E, Zuardi AW. Even High Doses of Oral Cannabidol Do Not Cause THC-Like Effects in Humans: Comment on Merrick et al. Cannabis and Cannabinoid Research 2016;1(1):102-112; DOI: 10.1089/can.2015.0004. Cannabis Cannabinoid Res 2017; 2:1-4. [PMID: 28861499 PMCID: PMC5531368 DOI: 10.1089/can.2016.0036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This short communication examines the question whether the experimental data presented in a study by Merrick et al. are of clinical relevance. These authors found that cannabidiol (CBD), a major cannabinoid of the cannabis plant devoid of psychotropic effects and of great interest for therapeutic use in several medical conditions, may be converted in gastric fluid into the psychoactive cannabinoids delta-8-THC and delta-9-THC to a relevant degree. They concluded that “the acidic environment during normal gastrointestinal transit can expose orally CBD-treated patients to levels of THC and other psychoactive cannabinoids that may exceed the threshold for a positive physiological response.” They issued a warning concerning oral use of CBD and recommend the development of other delivery methods. However, the available clinical data do not support this conclusion and recommendation, since even high doses of oral CBD do not cause psychological, psychomotor, cognitive, or physical effects that are characteristic for THC or cannabis rich in THC. On the contrary, in the past decades and by several groups, high doses of oral CBD were consistently shown to cause opposite effects to those of THC in clinical studies. In addition, administration of CBD did not result in detectable THC blood concentrations. Thus, there is no reason to avoid oral use of CBD, which has been demonstrated to be a safe means of administration of CBD, even at very high doses.
Collapse
|
113
|
Babayeva M, Assefa H, Basu P, Chumki S, Loewy Z. Marijuana Compounds: A Nonconventional Approach to Parkinson's Disease Therapy. PARKINSON'S DISEASE 2016; 2016:1279042. [PMID: 28050308 PMCID: PMC5165161 DOI: 10.1155/2016/1279042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is the second most common neurological illness in United States. Neurologically, it is characterized by the selective degeneration of a unique population of cells, the nigrostriatal dopamine neurons. The current treatment is symptomatic and mainly involves replacement of dopamine deficiency. This therapy improves only motor symptoms of Parkinson's disease and is associated with a number of adverse effects including dyskinesia. Therefore, there is unmet need for more comprehensive approach in the management of PD. Cannabis and related compounds have created significant research interest as a promising therapy in neurodegenerative and movement disorders. In this review we examine the potential benefits of medical marijuana and related compounds in the treatment of both motor and nonmotor symptoms as well as in slowing the progression of the disease. The potential for cannabis to enhance the quality of life of Parkinson's patients is explored.
Collapse
Affiliation(s)
- Mariana Babayeva
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Haregewein Assefa
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Paramita Basu
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Sanjeda Chumki
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Zvi Loewy
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| |
Collapse
|
114
|
Gruber SA, Sagar KA, Dahlgren MK, Racine MT, Smith RT, Lukas SE. Splendor in the Grass? A Pilot Study Assessing the Impact of Medical Marijuana on Executive Function. Front Pharmacol 2016; 7:355. [PMID: 27790138 PMCID: PMC5062916 DOI: 10.3389/fphar.2016.00355] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Currently, 25 states and Washington DC have enacted full medical marijuana (MMJ) programs while 18 states allow limited access to MMJ products. Limited access states permit low (or zero) tetrahydrocannabinol (THC) and high cannabidiol (CBD) products to treat specified conditions such as uncontrolled epilepsy. Although MMJ products are derived from the same plant species as recreational MJ, they are often selected for their unique cannabinoid constituents and ratios, not typically sought by recreational users, which may impact neurocognitive outcomes. To date, few studies have investigated the potential impact of MMJ use on cognitive performance, despite a well-documented association between recreational marijuana (MJ) use and executive dysfunction. The current study assessed the impact of 3 months of MMJ treatment on executive function, exploring whether MMJ patients would experience improvement in cognitive functioning, perhaps related to primary symptom alleviation. As part of a larger longitudinal study, 24 patients certified for MMJ use completed baseline executive function assessments and 11 of these so far have returned for their first follow-up visit 3 months after initiating treatment. Results suggest that in general, MMJ patients experienced some improvement on measures of executive functioning, including the Stroop Color Word Test and Trail Making Test, mostly reflected as increased speed in completing tasks without a loss of accuracy. On self-report questionnaires, patients also indicated moderate improvements in clinical state, including reduced sleep disturbance, decreased symptoms of depression, attenuated impulsivity, and positive changes in some aspects of quality of life. Additionally, patients reported a notable decrease in their use of conventional pharmaceutical agents from baseline, with opiate use declining more than 42%. While intriguing, these findings are preliminary and warrant further investigation at additional time points and in larger sample sizes. Given the likelihood of increased MMJ use across the country, it is imperative to determine the potential impact of short- and long-term treatment on cognitive performance as well as the efficacy of MMJ treatment itself.
Collapse
Affiliation(s)
- Staci A. Gruber
- Cognitive and Clinical Neuroimaging Core, McLean Hospital Imaging CenterBelmont, MA, USA
- Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA
| | - Kelly A. Sagar
- Cognitive and Clinical Neuroimaging Core, McLean Hospital Imaging CenterBelmont, MA, USA
- Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA
| | - Mary K. Dahlgren
- Cognitive and Clinical Neuroimaging Core, McLean Hospital Imaging CenterBelmont, MA, USA
- Department of Psychology, Tufts UniversityMedford, MA, USA
| | - Megan T. Racine
- Cognitive and Clinical Neuroimaging Core, McLean Hospital Imaging CenterBelmont, MA, USA
| | - Rosemary T. Smith
- Cognitive and Clinical Neuroimaging Core, McLean Hospital Imaging CenterBelmont, MA, USA
| | - Scott E. Lukas
- Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA
- Behavioral Psychopharmacology Research Laboratory, McLean Hospital Imaging Center, McLean HospitalBelmont, MA, USA
| |
Collapse
|
115
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
116
|
Pharmacologic Effects of Cannabidiol on Acute Reperfused Myocardial Infarction in Rabbits: Evaluated With 3.0T Cardiac Magnetic Resonance Imaging and Histopathology. J Cardiovasc Pharmacol 2016; 66:354-63. [PMID: 26065843 DOI: 10.1097/fjc.0000000000000287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cannabidiol (CBD) has anti-inflammatory effects. We explored its therapeutic effects on cardiac ischemia-reperfusion injury with an experimental imaging platform. Reperfused acute myocardial infarction (AMI) was induced in rabbits with a 90-minute coronary artery occlusion followed by 24-hour reperfusion. Before reperfusion, rabbits received 2 intravenous doses of 100 μg/kg CBD (n = 10) or vehicle (control, n = 10). Evans blue was intravenously injected for later detection of the AMI core. Cardiac magnetic resonance imaging was performed to evaluate cardiac morphology and function. After euthanasia, blood troponin I (cTnI) was assessed, and the heart was excised and infused with multifunctional red iodized oil dye. The heart was sliced for digital radiography to quantify the perfusion density rate, area at risk (AAR), and myocardial salvage index, followed by histomorphologic staining. Compared with controls, CBD treatment improved systolic wall thickening (P < 0.05), significantly increased blood flow in the AAR (P < 0.05), significantly decreased microvascular obstruction (P < 0.05), increased the perfusion density rate by 1.7-fold, lowered the AMI core/AAR ratio (P < 0.05), and increased the myocardial salvage index (P < 0.05). These improvements were associated with reductions in serum cTnI, cardiac leukocyte infiltration, and myocellular apoptosis (P < 0.05). Thus, CBD therapy reduced AMI size and facilitated restoration of left ventricular function. We demonstrated that this experimental platform has potential theragnostic utility.
Collapse
|
117
|
Neuroimmunology of Huntington's Disease: Revisiting Evidence from Human Studies. Mediators Inflamm 2016; 2016:8653132. [PMID: 27578922 PMCID: PMC4992798 DOI: 10.1155/2016/8653132] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by selective loss of neurons in the striatum and cortex, which leads to progressive motor dysfunction, cognitive decline, and psychiatric disorders. Although the cause of HD is well described—HD is a genetic disorder caused by a trinucleotide (CAG) repeat expansion in the gene encoding for huntingtin (HTT) on chromosome 4p16.3—the ultimate cause of neuronal death is still uncertain. Apart from impairment in systems for handling abnormal proteins, other metabolic pathways and mechanisms might contribute to neurodegeneration and progression of HD. Among these, inflammation seems to play a role in HD pathogenesis. The current review summarizes the available evidence about immune and/or inflammatory changes in HD. HD is associated with increased inflammatory mediators in both the central nervous system and periphery. Accordingly, there have been some attempts to slow HD progression targeting the immune system.
Collapse
|
118
|
Andrzejewski K, Barbano R, Mink J. Cannabinoids in the treatment of movement disorders: A systematic review of case series and clinical trials. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.baga.2016.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
119
|
Oral Cannabidiol does not Alter the Subjective, Reinforcing or Cardiovascular Effects of Smoked Cannabis. Neuropsychopharmacology 2016; 41:1974-82. [PMID: 26708108 PMCID: PMC4908634 DOI: 10.1038/npp.2015.367] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 11/08/2022]
Abstract
Cannabidiol (CBD), a constituent of cannabis with few psychoactive effects, has been reported in some studies to attenuate certain aspects of Δ(9)-tetrahydrocannabinol (THC) intoxication. However, most studies have tested only one dose of CBD in combination with one dose of oral THC, making it difficult to assess the nature of this interaction. Further, the effect of oral CBD on smoked cannabis administration is unknown. The objective of this multi-site, randomized, double-blind, within-subject laboratory study was to assess the influence of CBD (0, 200, 400, 800 mg, p.o.) pretreatment on the reinforcing, subjective, cognitive, and physiological effects of smoked cannabis (0.01 (inactive), 5.30-5.80% THC). Non-treatment-seeking, healthy cannabis smokers (n=31; 17M, 14 F) completed eight outpatient sessions. CBD was administered 90 min prior to cannabis administration. The behavioral and cardiovascular effects of cannabis were measured at baseline and repeatedly throughout the session. A subset of participants (n=8) completed an additional session to measure plasma CBD concentrations after administration of the highest CBD dose (800 mg). Under placebo CBD conditions, active cannabis (1) was self-administered by significantly more participants than placebo cannabis and (2) produced significant, time-dependent increases in ratings of 'High', 'Good Effect', ratings of the cannabis cigarette (eg, strength, liking), and heart rate relative to inactive cannabis. CBD, which alone produced no significant psychoactive or cardiovascular effects, did not significantly alter any of these outcomes. Cannabis self-administration, subjective effects, and cannabis ratings did not vary as a function of CBD dose relative to placebo capsules. These findings suggest that oral CBD does not reduce the reinforcing, physiological, or positive subjective effects of smoked cannabis.
Collapse
|
120
|
Katchan V, David P, Shoenfeld Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun Rev 2016; 15:513-28. [DOI: 10.1016/j.autrev.2016.02.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
|
121
|
A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J Neurol 2016; 263:1390-400. [DOI: 10.1007/s00415-016-8145-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
122
|
Safety and pharmacokinetics of oral cannabidiol when administered concomitantly with intravenous fentanyl in humans. J Addict Med 2016; 9:204-10. [PMID: 25748562 DOI: 10.1097/adm.0000000000000118] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Cannabidiol (CBD) is hypothesized as a potential treatment for opioid addiction, with safety studies an important first step for medication development. We determined CBD safety and pharmacokinetics when administered concomitantly with a high-potency opioid in healthy subjects. METHODS This double-blind, placebo-controlled cross-over study of CBD, coadministered with intravenous fentanyl, was conducted at the Clinical Research Center in Mount Sinai Hospital, a tertiary care medical center in New York City. Participants were healthy volunteers aged 21 to 65 years with prior opioid exposure, regardless of the route. Blood samples were obtained before and after 400 or 800 mg of CBD pretreatment, followed by a single 0.5 (session 1) or 1.0 μg/kg (session 2) of intravenous fentanyl dose. The primary outcome was the Systematic Assessment for Treatment Emergent Events (SAFTEE) to assess safety and adverse effects. CBD peak plasma concentrations, time to reach peak plasma concentrations (tmax), and area under the curve (AUC) were measured. RESULTS SAFTEE data were similar between groups without respiratory depression or cardiovascular complications during any test session. After low-dose CBD, tmax occurred at 3 and 1.5 hours in sessions 1 and 2, respectively. After high-dose CBD, tmax occurred at 3 and 4 hours in sessions 1 and 2, respectively. There were no significant differences in plasma CBD or cortisol (AUC P = NS) between sessions. CONCLUSIONS Cannabidiol does not exacerbate adverse effects associated with intravenous fentanyl administration. Coadministration of CBD and opioids was safe and well tolerated. These data provide the foundation for future studies examining CBD as a potential treatment for opioid abuse.
Collapse
|
123
|
Ujváry I, Hanuš L. Human Metabolites of Cannabidiol: A Review on Their Formation, Biological Activity, and Relevance in Therapy. Cannabis Cannabinoid Res 2016; 1:90-101. [PMID: 28861484 PMCID: PMC5576600 DOI: 10.1089/can.2015.0012] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cannabidiol (CBD), the main nonpsychoactive constituent of Cannabis sativa, has shown a wide range of therapeutically promising pharmacological effects either as a sole drug or in combination with other drugs in adjunctive therapy. However, the targets involved in the therapeutic effects of CBD appear to be elusive. Furthermore, scarce information is available on the biological activity of its human metabolites which, when formed in pharmacologically relevant concentration, might contribute to or even account for the observed therapeutic effects. The present overview summarizes our current knowledge on the pharmacokinetics and metabolic fate of CBD in humans, reviews studies on the biological activity of CBD metabolites either in vitro or in vivo, and discusses relevant drug–drug interactions. To facilitate further research in the area, the reported syntheses of CBD metabolites are also catalogued.
Collapse
Affiliation(s)
| | - Lumír Hanuš
- Institute for Drug Research, Hebrew University Medical Faculty, Jerusalem, Israel
| |
Collapse
|
124
|
Patel AD. Medical Marijuana in Pediatric Neurological Disorders. J Child Neurol 2016; 31:388-91. [PMID: 26060306 DOI: 10.1177/0883073815589761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/11/2015] [Indexed: 11/17/2022]
Abstract
Marijuana and marijuana-based products have been used to treat medical disease. Recently, derivatives of the plant have been separated or synthesized to treat various neurological disorders, many of them affecting children. Unfortunately, data are sparse in regard to treating children with neurologic illness. Therefore, formal conclusions about the potential efficacy, benefit, and adverse effects for these products cannot be made at this time. Further robust research using strong scientific methodology is desperately needed to formally evaluate the role of these products in children.
Collapse
Affiliation(s)
- Anup D Patel
- Nationwide Children's Hospital and the Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
125
|
Campos AC, Fogaça MV, Sonego AB, Guimarães FS. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol Res 2016; 112:119-127. [PMID: 26845349 DOI: 10.1016/j.phrs.2016.01.033] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/31/2022]
Abstract
Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has possible therapeutic effects over a broad range of neuropsychiatric disorders. CBD attenuates brain damage associated with neurodegenerative and/or ischemic conditions. It also has positive effects on attenuating psychotic-, anxiety- and depressive-like behaviors. Moreover, CBD affects synaptic plasticity and facilitates neurogenesis. The mechanisms of these effects are still not entirely clear but seem to involve multiple pharmacological targets. In the present review, we summarized the main biochemical and molecular mechanisms that have been associated with the therapeutic effects of CBD, focusing on their relevance to brain function, neuroprotection and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alline C Campos
- Department of Pharmacology, Medical School of of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil.
| | - Manoela V Fogaça
- Department of Pharmacology, Medical School of of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Andreza B Sonego
- Department of Pharmacology, Medical School of of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Medical School of of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| |
Collapse
|
126
|
Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM. Biased Type 1 Cannabinoid Receptor Signaling Influences Neuronal Viability in a Cell Culture Model of Huntington Disease. Mol Pharmacol 2015; 89:364-75. [PMID: 26700564 DOI: 10.1124/mol.115.101980] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022] Open
Abstract
Huntington disease (HD) is an inherited, autosomal dominant, neurodegenerative disorder with limited treatment options. Prior to motor symptom onset or neuronal cell loss in HD, levels of the type 1 cannabinoid receptor (CB1) decrease in the basal ganglia. Decreasing CB1 levels are strongly correlated with chorea and cognitive deficit. CB1 agonists are functionally selective (biased) for divergent signaling pathways. In this study, six cannabinoids were tested for signaling bias in in vitro models of medium spiny projection neurons expressing wild-type (STHdh(Q7/Q7)) or mutant huntingtin protein (STHdh(Q111/Q111)). Signaling bias was assessed using the Black and Leff operational model. Relative activity [ΔlogR (τ/KA)] and system bias (ΔΔlogR) were calculated relative to the reference compound WIN55,212-2 for Gαi/o, Gαs, Gαq, Gβγ, and β-arrestin1 signaling following treatment with 2-arachidonoylglycerol (2-AG), anandamide (AEA), CP55,940, Δ(9)-tetrahydrocannabinol (THC), cannabidiol (CBD), and THC+CBD (1:1), and compared between wild-type and HD cells. The Emax of Gαi/o-dependent extracellular signal-regulated kinase (ERK) signaling was 50% lower in HD cells compared with wild-type cells. 2-AG and AEA displayed Gαi/o/Gβγ bias and normalized CB1 protein levels and improved cell viability, whereas CP55,940 and THC displayed β-arrestin1 bias and reduced CB1 protein levels and cell viability in HD cells. CBD was not a CB1 agonist but inhibited THC-dependent signaling (THC+CBD). Therefore, enhancing Gαi/o-biased endocannabinoid signaling may be therapeutically beneficial in HD. In contrast, cannabinoids that are β-arrestin-biased--such as THC found at high levels in modern varieties of marijuana--may be detrimental to CB1 signaling, particularly in HD where CB1 levels are already reduced.
Collapse
Affiliation(s)
- Robert B Laprairie
- Departments of Pharmacology and Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Amina M Bagher
- Departments of Pharmacology and Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melanie E M Kelly
- Departments of Pharmacology and Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eileen M Denovan-Wright
- Departments of Pharmacology and Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
127
|
Abstract
Cannabis has been used for many medicinal purposes, including management of spasms, dystonia, and dyskinesias, with variable success. Its use for tetanus was described in the second century BCE, but the literature continues to include more case reports and surveys of its beneficial effects in managing symptoms of hyperkinetic movement disorders than randomized controlled trials, making evidence-based recommendations difficult. This paper reviews clinical research using various formulations of cannabis (botanical products, oral preparations containing ∆(9)-tetrahydrocannabinol and/or cannabidiol) and currently available preparations in the USA (nabilone and dronabinol). This has been expanded from a recent systematic review of cannabis use in several neurologic conditions to include case reports and case series and results of anonymous surveys of patients using cannabis outside of medical settings, with the original evidence classifications marked for those papers that followed research protocols. Despite overlap in some patients, dyskinesias will be treated separately from dystonia and chorea; benefit was not established beyond individual patients for these conditions. Tics, usually due to Tourettes, did respond to cannabis preparations. Side effects reported in the trials will be reviewed but those due to recreational use, including the dystonia that can be secondary to synthetic marijuana preparations, are outside the scope of this paper.
Collapse
Affiliation(s)
- Barbara S Koppel
- New York Medical College, Metropolitan Hospital, 1901 First Ave. Suite 7C5, New York, NY, 10029, USA.
| |
Collapse
|
128
|
Arjmand S, Vaziri Z, Behzadi M, Abbassian H, Stephens GJ, Shabani M. Cannabinoids and Tremor Induced by Motor-related Disorders: Friend or Foe? Neurotherapeutics 2015; 12:778-87. [PMID: 26152606 PMCID: PMC4604184 DOI: 10.1007/s13311-015-0367-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Tremor arises from an involuntary, rhythmic muscle contraction/relaxation cycle and is a common disabling symptom of many motor-related diseases such as Parkinson disease, multiple sclerosis, Huntington disease, and forms of ataxia. In the wake of anecdotal, largely uncontrolled, observations claiming the amelioration of some symptoms among cannabis smokers, and the high density of cannabinoid receptors in the areas responsible for motor function, including basal ganglia and cerebellum, many researchers have pursued the question of whether cannabinoid-based compounds could be used therapeutically to alleviate tremor associated with central nervous system diseases. In this review, we focus on possible effects of cannabinoid-based medicines, in particular on Parkinsonian and multiple sclerosis-related tremors and the common probable molecular mechanisms. While, at present, inconclusive results have been obtained, future investigations should extend preclinical studies with different cannabinoids to controlled clinical trials to determine potential benefits in tremor.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Vaziri
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Behzadi
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Abbassian
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Gary J Stephens
- School of Pharmacy, University of Reading, Whiteknights, P.O. Box 228, Reading, RG6 6AJ, UK.
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
129
|
Benbadis SR, Sanchez-Ramos J, Bozorg A, Giarratano M, Kalidas K, Katzin L, Robertson D, Vu T, Smith A, Zesiewicz T. Medical marijuana in neurology. Expert Rev Neurother 2015; 14:1453-65. [PMID: 25427150 DOI: 10.1586/14737175.2014.985209] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constituents of the Cannabis plant, cannabinoids, may be of therapeutic value in neurologic diseases. The most abundant cannabinoids are Δ(9)-tetrahydrocannabinol, which possesses psychoactive properties, and cannabidiol, which has no intrinsic psychoactive effects, but exhibits neuroprotective properties in preclinical studies. A small number of high-quality clinical trials support the safety and efficacy of cannabinoids for treatment of spasticity of multiple sclerosis, pain refractory to opioids, glaucoma, nausea and vomiting. Lower level clinical evidence indicates that cannabinoids may be useful for dystonia, tics, tremors, epilepsy, migraine and weight loss. Data are also limited in regards to adverse events and safety. Common nonspecific adverse events are similar to those of other CNS 'depressants' and include weakness, mood changes and dizziness. Cannabinoids can have cardiovascular adverse events and, when smoked chronically, may affect pulmonary function. Fatalities are rare even with recreational use. There is a concern about psychological dependence, but physical dependence is less well documented. Cannabis preparations may presently offer an option for compassionate use in severe neurologic diseases, but at this point, only when standard-of-care therapy is ineffective. As more high-quality clinical data are gathered, the therapeutic application of cannabinoids will likely expand.
Collapse
Affiliation(s)
- Selim R Benbadis
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
|
131
|
Cannabidiol for the Prevention of Graft-versus-Host-Disease after Allogeneic Hematopoietic Cell Transplantation: Results of a Phase II Study. Biol Blood Marrow Transplant 2015; 21:1770-5. [PMID: 26033282 DOI: 10.1016/j.bbmt.2015.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022]
Abstract
Graft-versus-host-disease (GVHD) is a major obstacle to successful allogeneic hematopoietic cell transplantation (alloHCT). Cannabidiol (CBD), a nonpsychotropic ingredient of Cannabis sativa, possesses potent anti-inflammatory and immunosuppressive properties. We hypothesized that CBD may decrease GVHD incidence and severity after alloHCT. We conducted a phase II study. GVHD prophylaxis consisted of cyclosporine and a short course of methotrexate. Patients transplanted from an unrelated donor were given low-dose anti-T cell globulin. CBD 300 mg/day was given orally starting 7 days before transplantation until day 30. Forty-eight consecutive adult patients undergoing alloHCT were enrolled. Thirty-eight patients (79%) had acute leukemia or myelodysplastic syndrome and 35 patients (73%) were given myeloablative conditioning. The donor was either an HLA-identical sibling (n = 28), a 10/10 matched unrelated donor (n = 16), or a 1-antigen-mismatched unrelated donor (n = 4). The median follow-up was 16 months (range, 7 to 23). No grades 3 to 4 toxicities were attributed to CBD. None of the patients developed acute GVHD while consuming CBD. In an intention-to-treat analysis, we found that the cumulative incidence rates of grades II to IV and grades III to IV acute GVHD by day 100 were 12.1% and 5%, respectively. Compared with 101 historical control subjects given standard GVHD prophylaxis, the hazard ratio of developing grades II to IV acute GVHD among subjects treated with CBD plus standard GVHD prophylaxis was .3 (P = .0002). Rates of nonrelapse mortality at 100 days and at 1 year after transplantation were 8.6% and 13.4%, respectively. Among patients surviving more than 100 days, the cumulative incidences of moderate-to-severe chronic GVHD at 12 and 18 months were 20% and 33%, respectively. The combination of CBD with standard GVHD prophylaxis is a safe and promising strategy to reduce the incidence of acute GVHD. A randomized double-blind controlled study is warranted. (clinicaltrials.gov: NCT01385124).
Collapse
|
132
|
Kluger B, Triolo P, Jones W, Jankovic J. The therapeutic potential of cannabinoids for movement disorders. Mov Disord 2015; 30:313-27. [PMID: 25649017 DOI: 10.1002/mds.26142] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023] Open
Abstract
There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and, particularly, for neurological conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science as well as preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. The pharmacology of cannabis is complex, with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits, but more consistently suggest potential neuroprotective effects in several animal models of Parkinson's (PD) and Huntington's disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia, or ataxia and nonexistent for myoclonus or RLS. Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological, and therapeutic effects of this class of drugs in movement disorders.
Collapse
Affiliation(s)
- Benzi Kluger
- Movement Disorders Center, Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
133
|
Chiurchiù V, Leuti A, Maccarrone M. Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses. J Neuroimmune Pharmacol 2015; 10:268-80. [PMID: 25601726 DOI: 10.1007/s11481-015-9584-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/12/2015] [Indexed: 12/21/2022]
Abstract
The concept of the central nervous system (CNS) as an immune-privileged site, essentially due to the presence of the blood brain barrier, appears to be overly simplistic. Indeed, within healthy CNS immune activities are permitted and are required for neuronal function and host defense, not only due to the presence of the resident innate immune cells of the brain, but also by virtue of a complex cross-talk of the CNS with peripheral immune cells. Nonetheless, long-standing and persisting neuroinflammatory responses are most often detrimental and characterize several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and amyotrophic lateral sclerosis. A growing body of evidence suggests that Cannabis sativa-derived phytocannabinoids, as well as synthetic cannabinoids, are endowed with significant immunoregulatory and anti-inflammatory properties, both in peripheral tissues and in the CNS, through the activation of cannabinoid receptors. In this review, the immunomodulatory effects of cannabinoid signaling on the most relevant brain immune cells will be discussed. In addition, the impact of cannabinoid regulation on the overall integration of the manifold brain immune responses will also be highlighted, along with the implication of these compounds as potential agents for the management of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, via Alvaro del Portillo 21, 00128, Rome, Italy
| | | | | |
Collapse
|
134
|
Valdeolivas S, Navarrete C, Cantarero I, Bellido ML, Muñoz E, Sagredo O. Neuroprotective properties of cannabigerol in Huntington's disease: studies in R6/2 mice and 3-nitropropionate-lesioned mice. Neurotherapeutics 2015; 12:185-99. [PMID: 25252936 PMCID: PMC4322067 DOI: 10.1007/s13311-014-0304-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Different plant-derived and synthetic cannabinoids have shown to be neuroprotective in experimental models of Huntington's disease (HD) through cannabinoid receptor-dependent and/or independent mechanisms. Herein, we studied the effects of cannabigerol (CBG), a nonpsychotropic phytocannabinoid, in 2 different in vivo models of HD. CBG was extremely active as neuroprotectant in mice intoxicated with 3-nitropropionate (3NP), improving motor deficits and preserving striatal neurons against 3NP toxicity. In addition, CBG attenuated the reactive microgliosis and the upregulation of proinflammatory markers induced by 3NP, and improved the levels of antioxidant defenses that were also significantly reduced by 3NP. We also investigated the neuroprotective properties of CBG in R6/2 mice. Treatment with this phytocannabinoid produced a much lower, but significant, recovery in the deteriorated rotarod performance typical of R6/2 mice. Using HD array analysis, we were able to identify a series of genes linked to this disease (e.g., symplekin, Sin3a, Rcor1, histone deacetylase 2, huntingtin-associated protein 1, δ subunit of the gamma-aminobutyric acid-A receptor (GABA-A), and hippocalcin), whose expression was altered in R6/2 mice but partially normalized by CBG treatment. We also observed a modest improvement in the gene expression for brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and peroxisome proliferator-activated receptor-γ (PPARγ), which is altered in these mice, as well as a small, but significant, reduction in the aggregation of mutant huntingtin in the striatal parenchyma in CBG-treated animals. In conclusion, our results open new research avenues for the use of CBG, alone or in combination with other phytocannabinoids or therapies, for the treatment of neurodegenerative diseases such as HD.
Collapse
Affiliation(s)
- Sara Valdeolivas
- />Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, 28040 Spain
- />Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad Complutense, Madrid, Spain
- />Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - Irene Cantarero
- />Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBC)/Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | | | - Eduardo Muñoz
- />Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBC)/Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Onintza Sagredo
- />Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, 28040 Spain
- />Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad Complutense, Madrid, Spain
- />Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
135
|
Cannabinoids: new promising agents in the treatment of neurological diseases. Molecules 2014; 19:18781-816. [PMID: 25407719 PMCID: PMC6271458 DOI: 10.3390/molecules191118781] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 01/19/2023] Open
Abstract
Nowadays, Cannabis sativa is considered the most extensively used narcotic. Nevertheless, this fame obscures its traditional employ in native medicine of South Africa, South America, Turkey, Egypt and in many regions of Asia as a therapeutic drug. In fact, the use of compounds containing Cannabis and their introduction in clinical practice is still controversial and strongly limited by unavoidable psychotropic effects. So, overcoming these adverse effects represents the main open question on the utilization of cannabinoids as new drugs for treatment of several pathologies. To date, therapeutic use of cannabinoid extracts is prescribed in patients with glaucoma, in the control of chemotherapy-related vomiting and nausea, for appetite stimulation in patients with anorexia-cachexia syndrome by HIV, and for the treatment of multiple sclerosis symptoms. Recently, researcher efforts are aimed to employ the therapeutic potentials of Cannabis sativa in the modulation of cannabinoid receptor activity within the central nervous system, particularly for the treatment of neurodegenerative diseases, as well as psychiatric and non-psychiatric disorders. This review evaluates the most recent available data on cannabinoids utilization in experimental and clinical studies, and highlights their beneficial effects in the prevention of the main neurological diseases and for the clinical treatment of symptoms with them correlated.
Collapse
|
136
|
Koppel BS, Brust JCM, Fife T, Bronstein J, Youssof S, Gronseth G, Gloss D. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2014; 82:1556-63. [PMID: 24778283 DOI: 10.1212/wnl.0000000000000363] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To determine the efficacy of medical marijuana in several neurologic conditions. METHODS We performed a systematic review of medical marijuana (1948-November 2013) to address treatment of symptoms of multiple sclerosis (MS), epilepsy, and movement disorders. We graded the studies according to the American Academy of Neurology classification scheme for therapeutic articles. RESULTS Thirty-four studies met inclusion criteria; 8 were rated as Class I. CONCLUSIONS The following were studied in patients with MS: (1) Spasticity: oral cannabis extract (OCE) is effective, and nabiximols and tetrahydrocannabinol (THC) are probably effective, for reducing patient-centered measures; it is possible both OCE and THC are effective for reducing both patient-centered and objective measures at 1 year. (2) Central pain or painful spasms (including spasticity-related pain, excluding neuropathic pain): OCE is effective; THC and nabiximols are probably effective. (3) Urinary dysfunction: nabiximols is probably effective for reducing bladder voids/day; THC and OCE are probably ineffective for reducing bladder complaints. (4) Tremor: THC and OCE are probably ineffective; nabiximols is possibly ineffective. (5) Other neurologic conditions: OCE is probably ineffective for treating levodopa-induced dyskinesias in patients with Parkinson disease. Oral cannabinoids are of unknown efficacy in non-chorea-related symptoms of Huntington disease, Tourette syndrome, cervical dystonia, and epilepsy. The risks and benefits of medical marijuana should be weighed carefully. Risk of serious adverse psychopathologic effects was nearly 1%. Comparative effectiveness of medical marijuana vs other therapies is unknown for these indications.
Collapse
Affiliation(s)
- Barbara S Koppel
- From the Department of Neurology (B.S.K.), New York Medical College, New York; the Department of Neurology (J.C.M.B.), Columbia University College of Physicians & Surgeons, New York Neurological Institute, New York; University of Arizona College of Medicine (T.F.), Phoenix; the Department of Neurology (J.B.), David Geffen School of Medicine at University of California Los Angeles, The VA Greater Los Angeles Healthcare System; the Department of Neurology (S.Y.), University of New Mexico Health Sciences Center, Albuquerque; the Department of Neurology (G.G.), University of Kansas School of Medicine, Kansas City; and the Department of Neurology (D.G.), Geisinger Health System, Danville, PA
| | | | | | | | | | | | | |
Collapse
|
137
|
Salem L, Saleh N, Youssov K, Olivier A, Charles P, Scherer C, Verny C, Bachoud-Lévi AC, Maison P. The most appropriate primary outcomes to design clinical trials on Huntington's disease: meta-analyses of cohort studies and randomized placebo-controlled trials. Fundam Clin Pharmacol 2014; 28:700-10. [DOI: 10.1111/fcp.12077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/07/2014] [Accepted: 04/01/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Linda Salem
- Inserm; U955; Equipe 01; Créteil 94010 France
- Université Paris Est; Faculté de médecine; Créteil 94010 France
- AP-HP; Hôpital H. Mondor- A. Chenevier; Pharmacologie clinique; Créteil 94010 France
- Ecole Normale Supérieure; Département d'études cognitives; Paris 75005 France
| | - Nadine Saleh
- Inserm; U955; Equipe 01; Créteil 94010 France
- Université Paris Est; Faculté de médecine; Créteil 94010 France
- Ecole Normale Supérieure; Département d'études cognitives; Paris 75005 France
- AP-HP; Hôpital H. Mondor- A. Chenevier; Centre de référence maladie de Huntington; Créteil 94010 France
| | - Katia Youssov
- AP-HP; Hôpital H. Mondor- A. Chenevier; Centre de référence maladie de Huntington; Créteil 94010 France
| | - Audrey Olivier
- CHU Angers; Département de Neurologie; Angers 49000 France
| | - Perrine Charles
- AP-HP; Hôpital H. Mondor- A. Chenevier; Centre de référence maladie de Huntington; Créteil 94010 France
| | | | | | - Anne-Catherine Bachoud-Lévi
- Inserm; U955; Equipe 01; Créteil 94010 France
- Université Paris Est; Faculté de médecine; Créteil 94010 France
- Ecole Normale Supérieure; Département d'études cognitives; Paris 75005 France
- AP-HP; Hôpital H. Mondor- A. Chenevier; Centre de référence maladie de Huntington; Créteil 94010 France
| | - Patrick Maison
- Inserm; U955; Equipe 01; Créteil 94010 France
- Université Paris Est; Faculté de médecine; Créteil 94010 France
- AP-HP; Hôpital H. Mondor- A. Chenevier; Pharmacologie clinique; Créteil 94010 France
- Ecole Normale Supérieure; Département d'études cognitives; Paris 75005 France
| |
Collapse
|
138
|
Massi P, Solinas M, Cinquina V, Parolaro D. Cannabidiol as potential anticancer drug. Br J Clin Pharmacol 2013; 75:303-12. [PMID: 22506672 DOI: 10.1111/j.1365-2125.2012.04298.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the past years, several lines of evidence support an antitumourigenic effect of cannabinoids including Δ(9)-tetrahydrocannabinol (Δ(9)-THC), synthetic agonists, endocannabinoids and endocannabinoid transport or degradation inhibitors. Indeed, cannabinoids possess anti-proliferative and pro-apoptotic effects and they are known to interfere with tumour neovascularization, cancer cell migration, adhesion, invasion and metastasization. However, the clinical use of Δ(9)-THC and additional cannabinoid agonists is often limited by their unwanted psychoactive side effects, and for this reason interest in non-psychoactive cannabinoid compounds with structural affinity for Δ(9)-THC, such as cannabidiol (CBD), has substantially increased in recent years. The present review will focus on the efficacy of CBD in the modulation of different steps of tumourigenesis in several types of cancer and highlights the importance of exploring CBD/CBD analogues as alternative therapeutic agents.
Collapse
Affiliation(s)
- Paola Massi
- Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
139
|
Fernández-Ruiz J, Sagredo O, Pazos MR, García C, Pertwee R, Mechoulam R, Martínez-Orgado J. Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol 2013; 75:323-33. [PMID: 22625422 DOI: 10.1111/j.1365-2125.2012.04341.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cannabidiol (CBD) is a phytocannabinoid with therapeutic properties for numerous disorders exerted through molecular mechanisms that are yet to be completely identified. CBD acts in some experimental models as an anti-inflammatory, anticonvulsant, anti-oxidant, anti-emetic, anxiolytic and antipsychotic agent, and is therefore a potential medicine for the treatment of neuroinflammation, epilepsy, oxidative injury, vomiting and nausea, anxiety and schizophrenia, respectively. The neuroprotective potential of CBD, based on the combination of its anti-inflammatory and anti-oxidant properties, is of particular interest and is presently under intense preclinical research in numerous neurodegenerative disorders. In fact, CBD combined with Δ(9)-tetrahydrocannabinol is already under clinical evaluation in patients with Huntington's disease to determine its potential as a disease-modifying therapy. The neuroprotective properties of CBD do not appear to be exerted by the activation of key targets within the endocannabinoid system for plant-derived cannabinoids like Δ(9)-tetrahydrocannabinol, i.e. CB(1) and CB(2) receptors, as CBD has negligible activity at these cannabinoid receptors, although certain activity at the CB(2) receptor has been documented in specific pathological conditions (i.e. damage of immature brain). Within the endocannabinoid system, CBD has been shown to have an inhibitory effect on the inactivation of endocannabinoids (i.e. inhibition of FAAH enzyme), thereby enhancing the action of these endogenous molecules on cannabinoid receptors, which is also noted in certain pathological conditions. CBD acts not only through the endocannabinoid system, but also causes direct or indirect activation of metabotropic receptors for serotonin or adenosine, and can target nuclear receptors of the PPAR family and also ion channels.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
In recent years, a growing interest has been dedicated to the study of the endocannabinoid system. The isolation of Cannabis sativa main psychotropic compound, Δ(9)-tetrahydrocannabinol (THC), has led to the discovery of an atypical neurotransmission system that modulates the release of other neurotransmitters and participates in many biological processes, including the cascade of inflammatory responses. In this context, cannabinoids have been studied for their possible therapeutic properties in neuroinflammatory diseases. In this review, historic and biochemical aspects of cannabinoids are discussed, as well as their function as modulators of inflammatory processes and therapeutic perspectives for neurodegenerative disorders, particularly, multiple sclerosis.
Collapse
Affiliation(s)
- Viviane M Saito
- Laboratory of Immunopharmacology, Graduate Program in Neurosciences, UFMG, Belo Horizonte, Brazil
| | | | | |
Collapse
|
141
|
Crippa JAS, Hallak JEC, Machado-de-Sousa JP, Queiroz RHC, Bergamaschi M, Chagas MHN, Zuardi AW. Cannabidiol for the treatment of cannabis
withdrawal syndrome: a case report. J Clin Pharm Ther 2012; 38:162-4. [DOI: 10.1111/jcpt.12018] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
142
|
Cannabidiol in humans-the quest for therapeutic targets. Pharmaceuticals (Basel) 2012; 5:529-52. [PMID: 24281562 PMCID: PMC3763649 DOI: 10.3390/ph5050529] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 12/20/2022] Open
Abstract
Cannabidiol (CBD), a major phytocannabinoid constituent of cannabis, is attracting growing attention in medicine for its anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, up to this point, a comprehensive literature review of the effects of CBD in humans is lacking. The aim of the present systematic review is to examine the randomized and crossover studies that administered CBD to healthy controls and to clinical patients. A systematic search was performed in the electronic databases PubMed and EMBASE using the key word “cannabidiol”. Both monotherapy and combination studies (e.g., CBD + ∆9-THC) were included. A total of 34 studies were identified: 16 of these were experimental studies, conducted in healthy subjects, and 18 were conducted in clinical populations, including multiple sclerosis (six studies), schizophrenia and bipolar mania (four studies), social anxiety disorder (two studies), neuropathic and cancer pain (two studies), cancer anorexia (one study), Huntington’s disease (one study), insomnia (one study), and epilepsy (one study). Experimental studies indicate that a high-dose of inhaled/intravenous CBD is required to inhibit the effects of a lower dose of ∆9-THC. Moreover, some experimental and clinical studies suggest that oral/oromucosal CBD may prolong and/or intensify ∆9-THC-induced effects, whereas others suggest that it may inhibit ∆9-THC-induced effects. Finally, preliminary clinical trials suggest that high-dose oral CBD (150–600 mg/d) may exert a therapeutic effect for social anxiety disorder, insomnia and epilepsy, but also that it may cause mental sedation. Potential pharmacokinetic and pharmacodynamic explanations for these results are discussed.
Collapse
|
143
|
Valdeolivas S, Satta V, Pertwee RG, Fernández-Ruiz J, Sagredo O. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors. ACS Chem Neurosci 2012; 3:400-6. [PMID: 22860209 DOI: 10.1021/cn200114w] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/09/2012] [Indexed: 11/29/2022] Open
Abstract
We have investigated whether a 1:1 combination of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is neuroprotective in Huntington's disease (HD), using an experimental model of this disease generated by unilateral lesions of the striatum with the mitochondrial complex II inhibitor malonate. This toxin damages striatal neurons by mechanisms that primarily involve apoptosis and microglial activation. We monitored the extent of this damage and the possible preservation of the striatal parenchyma by treatment with a Sativex-like combination of phytocannabinoids using different histological and biochemical markers. Results were as follows: (i) malonate increased the volume of edema measured by in vivo NMR imaging and the Sativex-like combination of phytocannabinoids partially reduced this increase; (ii) malonate reduced the number of Nissl-stained cells, while enhancing the number of degenerating cells stained with FluoroJade-B, and the Sativex-like combination of phytocannabinoids reversed both effects; (iii) malonate caused a strong glial activation (i.e., reactive microglia labeled with Iba-1, and astrogliosis labeled with GFAP) and the Sativex-like combination of phytocannabinoids attenuated both responses; and (iv) malonate increased the expression of inducible nitric oxide synthase and the neurotrophin IGF-1, and both responses were attenuated after the treatment with the Sativex-like combination of phytocannabinoids. We also wanted to establish whether targets within the endocannabinoid system (i.e., CB(1) and CB(2) receptors) are involved in the beneficial effects induced in this model by the Sativex-like combination of phytocannabinoids. This we did using selective antagonists for both receptor types (i.e., SR141716 and AM630) combined with the Sativex-like phytocannabinoid combination. Our results indicated that the effects of this combination are blocked by these antagonists and hence that they do result from an activation of both CB(1) and CB(2) receptors. In summary, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying signs of disease progression in a proinflammatory model of HD, which adds to previous data obtained in models priming oxidative mechanisms of striatal injury. However, the interest here is that, in contrast with these previous data, we have now obtained evidence that both CB(1) and CB(2) receptors appear to be involved in the effects produced by a Sativex-like phytocannabinoid combination, thus stressing the broad-spectrum properties of Sativex that may combine activity at the CB(1) and/or CB(2) receptors with cannabinoid receptor-independent actions.
Collapse
Affiliation(s)
| | | | - Roger G. Pertwee
- School of Medical Sciences,
Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | | | | |
Collapse
|
144
|
Kleiner D, Ditrói K. [The potential use of cannabidiol in the therapy of metabolic syndrome]. Orv Hetil 2012; 153:499-504. [PMID: 22430005 DOI: 10.1556/oh.2012.29308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cannabidiol, a cannabinoid and serotonin receptor antagonist, may alleviate hyperphagia without the side effects of rimonabant (for example depression and reduced insulin sensitivity). Similar to the peroxisome proliferator-activated receptor-gamma agonists, it may also help the differentation of adipocytes. Cannabidiol has an immunomodulating effect, as well, that helps lessen the progression of atherosclerosis induced by high glucose level. It may also be effective in fighting ischaemic diseases, the most harmful complications of metabolic syndrome. However, it can only be administered as an adjuvant therapy because of its low binding potency, and its inhibiting effect of cytochrome P450 enzymes should also be considered. Nevertheless, it may be beneficially used in adjuvant therapy because of its few side effects.
Collapse
Affiliation(s)
- Dénes Kleiner
- Semmelweis Egyetem, Gyógyszerésztudományi Kar Farmakognóziai Intézet Budapest Üllői út 26. 1085.
| | | |
Collapse
|
145
|
|
146
|
Mestre TA, Ferreira JJ. An evidence-based approach in the treatment of Huntington's disease. Parkinsonism Relat Disord 2011; 18:316-20. [PMID: 22177624 DOI: 10.1016/j.parkreldis.2011.10.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/26/2011] [Accepted: 10/30/2011] [Indexed: 10/14/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disease with diverse symptoms for which there is no curative or disease-modifying treatment available. Currently, tetrabenazine is the only drug approved for HD by a regulatory agency, and only for the treatment of chorea. In the current review, we present updated results from recent clinical trials and ongoing clinical research efforts to find effective and safe treatments for HD motor, and neuropsychiatric and cognitive symptoms. We used a systematic review approach that included data from well-designed randomised controlled trials. The authors conclude that there is weak evidence to support most of the treatment decisions in HD and thus clinicians may be guided only by expert opinion-based therapeutic recommendations. Ongoing research is considerable and is expected to have an impact in the management of HD in upcoming years.
Collapse
Affiliation(s)
- T A Mestre
- Neurological Clinical Research Unit, Instituto de Medicina Molecular, Lisbon, Portugal.
| | | |
Collapse
|
147
|
Hill AJ, Williams CM, Whalley BJ, Stephens GJ. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther 2011; 133:79-97. [PMID: 21924288 DOI: 10.1016/j.pharmthera.2011.09.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body's endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB(1) receptors by the major pCB, Δ(9)-tetrahydrocannabinol (Δ(9)-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ(9)-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ(9)tetrahydrocannabivarin (Δ(9)-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ(9)-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ(9)-THC pCB-based medicines.
Collapse
Affiliation(s)
- Andrew J Hill
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6UB, United Kingdom
| | | | | | | |
Collapse
|
148
|
Kozela E, Lev N, Kaushansky N, Eilam R, Rimmerman N, Levy R, Ben-Nun A, Juknat A, Vogel Z. Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice. Br J Pharmacol 2011; 163:1507-19. [PMID: 21449980 PMCID: PMC3165959 DOI: 10.1111/j.1476-5381.2011.01379.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabis extracts and several cannabinoids have been shown to exert broad anti-inflammatory activities in experimental models of inflammatory CNS degenerative diseases. Clinical use of many cannabinoids is limited by their psychotropic effects. However, phytocannabinoids like cannabidiol (CBD), devoid of psychoactive activity, are, potentially, safe and effective alternatives for alleviating neuroinflammation and neurodegeneration. EXPERIMENTAL APPROACH We used experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein (MOG) in C57BL/6 mice, as a model of multiple sclerosis. Using immunocytochemistry and cell proliferation assays we evaluated the effects of CBD on microglial activation in MOG-immunized animals and on MOG-specific T-cell proliferation. KEY RESULTS Treatment with CBD during disease onset ameliorated the severity of the clinical signs of EAE. This effect of CBD was accompanied by diminished axonal damage and inflammation as well as microglial activation and T-cell recruitment in the spinal cord of MOG-injected mice. Moreover, CBD inhibited MOG-induced T-cell proliferation in vitro at both low and high concentrations of the myelin antigen. This effect was not mediated via the known cannabinoid CB(1) and CB(2) receptors. CONCLUSIONS AND IMPLICATIONS CBD, a non-psychoactive cannabinoid, ameliorates clinical signs of EAE in mice, immunized against MOG. Suppression of microglial activity and T-cell proliferation by CBD appeared to contribute to these beneficial effects.
Collapse
Affiliation(s)
- Ewa Kozela
- The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Physiology and Pharmacology Department, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | - Nirit Lev
- Neurology Department, Rabin Medical Center, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | | | - Raya Eilam
- Histology Department, Weizmann Institute of ScienceRehovot, Israel
| | - Neta Rimmerman
- Neurobiology Department, Weizmann Institute of ScienceRehovot, Israel
| | - Rivka Levy
- Neurobiology Department, Weizmann Institute of ScienceRehovot, Israel
| | - Avraham Ben-Nun
- Immunology Department, Weizmann Institute of ScienceRehovot, Israel
| | - Ana Juknat
- The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Physiology and Pharmacology Department, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | - Zvi Vogel
- The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Physiology and Pharmacology Department, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
- Neurobiology Department, Weizmann Institute of ScienceRehovot, Israel
| |
Collapse
|
149
|
Sagredo O, Pazos MR, Satta V, Ramos JA, Pertwee RG, Fernández-Ruiz J. Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington's disease. J Neurosci Res 2011; 89:1509-18. [PMID: 21674569 DOI: 10.1002/jnr.22682] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/20/2011] [Accepted: 04/06/2011] [Indexed: 01/24/2023]
Abstract
We studied whether combinations of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, provide neuroprotection in rat models of Huntington's disease (HD). We used rats intoxicated with 3-nitropropionate (3NP) that were given combinations of Δ(9)-THC- and CBD-enriched botanical extracts. The issue was also studied in malonate-lesioned rats. The administration of Δ(9)-THC- and CBD-enriched botanical extracts combined in a ratio of 1:1 as in Sativex attenuated 3NP-induced GABA deficiency, loss of Nissl-stained neurons, down-regulation of CB(1) receptor and IGF-1 expression, and up-regulation of calpain expression, whereas it completely reversed the reduction in superoxide dismutase-1 expression. Similar responses were generally found with other combinations of Δ(9)-THC- and CBD-enriched botanical extracts, suggesting that these effects are probably related to the antioxidant and CB(1) and CB(2) receptor-independent properties of both phytocannabinoids. In fact, selective antagonists for both receptor types, i.e., SR141716 and AM630, respectively, were unable to prevent the positive effects on calpain expression caused in 3NP-intoxicated rats by the 1:1 combination of Δ(9)-THC and CBD. Finally, this combination also reversed the up-regulation of proinflammatory markers such as inducible nitric oxide synthase observed in malonate-lesioned rats. In conclusion, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying disease progression in HD, a disorder that is currently poorly managed in the clinic, prompting an urgent need for clinical trials with agents showing positive results in preclinical studies.
Collapse
Affiliation(s)
- Onintza Sagredo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
150
|
Mukhopadhyay P, Rajesh M, Horváth B, Bátkai S, Park O, Tanashian G, Gao RY, Patel V, Wink DA, Liaudet L, Haskó G, Mechoulam R, Pacher P. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death. Free Radic Biol Med 2011; 50:1368-81. [PMID: 21362471 PMCID: PMC3081988 DOI: 10.1016/j.freeradbiomed.2011.02.021] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/07/2011] [Accepted: 02/19/2011] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion (I/R) is a pivotal mechanism of liver damage after liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol (CBD), the nonpsychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, and gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor α (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, intercellular adhesion molecule 1 mRNA levels; tissue neutrophil infiltration; nuclear factor κB (NF-κB) activation), stress signaling (p38MAPK and JNK), and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress, and cell death and also attenuated the bacterial endotoxin-triggered NF-κB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecule expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB2 knockout mice and were not prevented by CB1/2 antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent of classical CB1/2 receptors.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Mohanraj Rajesh
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Béla Horváth
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Sándor Bátkai
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Ogyi Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Galin Tanashian
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel Y Gao
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Vivek Patel
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - David A. Wink
- Radiation Biology Branch, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | - György Haskó
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Raphael Mechoulam
- Department for Medicinal Chemistry and Natural Products, Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|