101
|
Detka D, Kalita K, Kaczmarek L. Activation function 1 domain plays a negative role in dimerization of estrogen receptor beta. J Steroid Biochem Mol Biol 2006; 99:157-60. [PMID: 16600591 DOI: 10.1016/j.jsbmb.2005.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 12/12/2005] [Indexed: 11/21/2022]
Abstract
Transcriptional potential of estrogen receptor beta (ERbeta) depends on the ligand binding and subsequent dimerization of the receptor protein. In order to examine the role of N-terminally located activation function 1 (AF-1) protein domain in the dimerization process of ERbeta, we used yeast SOS-Recruitment System (SRS). Two variants of ERbeta protein were expressed in the yeast cells: full length receptor and a truncated form, lacking AF-1. We observed that upon 17beta-estradiol treatment only the shorter form of the receptor dimerized, whereas the full-length one did not. This result suggests an inhibitory function of AF-1 in dimer formation and supports previous studies showing that N-terminal domain of ERbeta suppresses transcriptional activity.
Collapse
Affiliation(s)
- Daniel Detka
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, Warsaw 02-093, Poland
| | | | | |
Collapse
|
102
|
Abstract
p66Shc was the first mammalian gene whose mutation was demonstrated to increase resistance to oxidative stress and to prolong life span. Many hypotheses have been formulated to explain the biochemical and molecular basis of mammalian aging. Among them the free radical theory of aging, which was first proposed half a century ago by Harman, has received much attention by biomedical scientists. This theory proposed that, because of their high reactivity, reactive oxygen species (ROS) would lead to unavoidable and potentially deleterious by-products, and such an increasingly damaging process could be responsible for degenerative diseases and aging. Recent reports suggest an important role of p66Shc protein in the regulation of cellular responses to oxidative stress, apoptosis, and aging. In this review we discuss what has been discovered about p66Shc in the past 10 years and we focus particularly on its role in ROS regulation, which appears to be extremely promising to define mammalian aging processes.
Collapse
Affiliation(s)
- Enrica Migliaccio
- Experimental Oncology Department, European Institute of Oncology, Milan, Italy.
| | | | | |
Collapse
|
103
|
Bentires-Alj M, Gil SG, Chan R, Wang ZC, Wang Y, Imanaka N, Harris LN, Richardson A, Neel BG, Gu H. A role for the scaffolding adapter GAB2 in breast cancer. Nat Med 2005; 12:114-21. [PMID: 16369543 DOI: 10.1038/nm1341] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 11/09/2005] [Indexed: 11/08/2022]
Abstract
The scaffolding adapter GAB2 maps to a region (11q13-14) commonly amplified in human breast cancer, and is overexpressed in breast cancer cell lines and primary tumors, but its functional role in mammary carcinogenesis has remained unexplored. We found that overexpression of GAB2 (Grb2-associated binding protein 2) increases proliferation of MCF10A mammary cells in three-dimensional culture. Coexpression of GAB2 with antiapoptotic oncogenes causes lumenal filling, whereas coexpression with Neu (also known as ErbB2 and HER2) results in an invasive phenotype. These effects of GAB2 are mediated by hyperactivation of the Shp2-Erk pathway. Furthermore, overexpression of Gab2 potentiates, whereas deficiency of Gab2 ameliorates, Neu-evoked breast carcinogenesis in mice. Finally, GAB2 is amplified in some GAB2-overexpressing human breast tumors. Our data suggest that GAB2 may be a key gene within an 11q13 amplicon in human breast cancer and propose a role for overexpression of GAB2 in mammary carcinogenesis. Agents that target GAB2 or GAB2-dependent pathways may be useful for treating breast tumors that overexpress GAB2 or HER2 or both.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Culture Techniques
- Cell Line
- Cell Line, Tumor
- Chromosome Mapping
- Crosses, Genetic
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Intracellular Signaling Peptides and Proteins/metabolism
- Ki-67 Antigen/biosynthesis
- Male
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Neoplasm Invasiveness
- Phenotype
- Phosphoproteins/biosynthesis
- Phosphoproteins/physiology
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatases/metabolism
- Receptor, ErbB-2/biosynthesis
- Retroviridae/genetics
- Time Factors
Collapse
Affiliation(s)
- Mohamed Bentires-Alj
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, NRB 1030, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Gunde T, Barberis A. Yeast growth selection system for detecting activity and inhibition of dimerization-dependent receptor tyrosine kinase. Biotechniques 2005; 39:541-9. [PMID: 16235566 DOI: 10.2144/000112011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) play an important role in the control of fundamental cellular processes, including cell proliferation, migration, differentiation, and survival. Deregulated RTK signaling is critically involved in the development and progression of human cancer. Here, we present an assay for monitoring RTK activities in yeast, which provides an ideal heterologous cellular system to study these mammalian proteins in a null background environment. With our system, we have reconstituted aspects of the epidermal growth factor receptor (EGFR) signaling pathway as a model. Our approach is based on the Ras-recruitment system, in which membrane localization of a constitutively active human Ras achieved through protein-protein interactions can rescue growth of a temperature-sensitive yeast strain (cdc25-2). We show that co-expression of a dimerizing membrane-bound EGFR variant with specific adaptor proteins fused to the active Ras rescues growth of the cdc25-2 mutant yeast strain at the nonpermissive temperature. Using kinase-defective RTK mutants and selective EGFR kinase inhibitors, we demonstrate that growth rate of this yeast strain correlates with kinase activity of the EGFR derivatives. The RTK cellular assay presented here can be applied in high-throughput screens for selecting RTK-specific inhibitors that must be able to permeate the membrane and to function in an eukaryotic intrecellular environment.
Collapse
Affiliation(s)
- Tea Gunde
- ESBATech AG, Zürich-Schlieren, Switzerland
| | | |
Collapse
|
105
|
Rüegg C, Hasmim M, Lejeune FJ, Alghisi GC. Antiangiogenic peptides and proteins: from experimental tools to clinical drugs. Biochim Biophys Acta Rev Cancer 2005; 1765:155-77. [PMID: 16263219 DOI: 10.1016/j.bbcan.2005.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 09/18/2005] [Accepted: 09/20/2005] [Indexed: 12/27/2022]
Abstract
The formation of a 'tumor-associated vasculature', a process referred to as tumor angiogenesis, is a stromal reaction essential for tumor progression. Inhibition of tumor angiogenesis suppresses tumor growth in many experimental models, thereby indicating that tumor-associated vasculature may be a relevant target to inhibit tumor progression. Among the antiangiogenic molecules reported to date many are peptides and proteins. They include cytokines, chemokines, antibodies to vascular growth factors and growth factor receptors, soluble receptors, fragments derived from extracellular matrix proteins and small synthetic peptides. The polypeptide tumor necrosis factor (TNF, Beromun) was the first drug registered for the regional treatment of human cancer, whose mechanisms of action involved selective disruption of the tumor vasculature. More recently, bevacizumab (Avastin), an antibody against vascular endothelial growth factor (VEGF)-A, was approved as the first systemic antiangiogenic drug that had a significant impact on the survival of patients with advanced colorectal cancer, in combination with chemotherapy. Several additional peptides and antibodies with antiangiogenic activity are currently tested in clinical trials for their therapeutic efficacy. Thus, peptides, polypeptides and antibodies are emerging as leading molecules among the plethora of compounds with antiangiogenic activity. In this article, we will review some of these molecules and discuss their mechanism of action and their potential therapeutic use as anticancer agents in humans.
Collapse
Affiliation(s)
- Curzio Rüegg
- Centre Pluridisciplinaire d'Oncologie, Faculty of Biology and Medicine, University of Lausanne, Epalinges s/Lausanne, Switzerland.
| | | | | | | |
Collapse
|
106
|
Kim HK, Jeong MJ, Kong MY, Han MY, Son KH, Kim HM, Hong SH, Kwon BM. Inhibition of Shc/Grb2 protein-protein interaction suppresses growth of B104-1-1 tumors xenografted in nude mice. Life Sci 2005; 78:321-8. [PMID: 16146636 DOI: 10.1016/j.lfs.2005.04.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 04/26/2005] [Indexed: 11/19/2022]
Abstract
Actinomycin D was revealed as an inhibitor of Shc/Grb2 interaction in cell lines from our recent study. Shc and Grb2 proteins are important molecules in Ras signaling pathways leading to cellular differentiation and proliferation, which require dramatic morphological changes. It was detected by transmission electron microscopy that actinomycin D induced significant changes in cellular ultrastructures of B104-1-1 cells and confirmed that the changes were due to inhibition of Shc/Grb2 interaction by actinomycin D rather than its inhibitory effect on transcription. Because actinomycin D was dispersed mainly in cytoplasm and Shc peptide (synthetic 13 amino acid tyrosine phosphorylated polypeptide) successfully displaced actinomycin D binding to its cellular targets while the other polypeptide from PDGF receptor could not. We examined the effect of actinomycin D on growth of B104-1-1 tumor xenografted in nude mice. Tumor growth was inhibited in vivo after treatment with this inhibitor. Efficacy was correlated with a reduction in the levels of Shc/Grb2 binding in excised tumors. These results suggest that actinomycin D inhibited Shc/Grb2 interaction in B104-1-1 tumor xenografted in nude mice.
Collapse
Affiliation(s)
- Hyae-Kyeong Kim
- Korea Research Institute of Bioscience and Biotechnology, 52 Uendong Yusung Taejon, 305-333, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Kuphal S, Bosserhoff AK. Influence of the cytoplasmic domain of E-cadherin on endogenous N-cadherin expression in malignant melanoma. Oncogene 2005; 25:248-59. [PMID: 16132038 DOI: 10.1038/sj.onc.1209054] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
E-cadherin is known to be an important molecule in epithelial-mesenchymal transition (EMT). Malignant transformation of melanocytes frequently attends with loss of E-cadherin expression and induction of expression of mesenchymal molecules like N-cadherin. The switch of the cadherin class is an interesting phenomenon of melanoma cells and in EMT in general. Therefore, we analysed the capacity of E-cadherin to regulate expression of N-cadherin in melanocytic cells. Our experiments revealed that melanoma cells downregulate endogenous N-cadherin expression after transient transfection of full-length E-cadherin, but also of the cytoplasmic domain of E-cadherin. Therefore, we concluded that the extracellular domain of E-cadherin and cell-cell contacts are not necessary for negative regulation of N-cadherin. Melanoma cells re-expressing full-length or cytoplasmatic E-cadherin have reduced NFkappaB activity in comparison to mock-transfected cells. Downregulation of NFkappaB activity, either directly or by re-expression of E-cadherin, led to a suppression of N-cadherin promoter activity and N-cadherin expression. Consequently, an NFkappaB-binding site in the N-cadherin promoter was characterized. In summary, our results suggest that N-cadherin is directly regulated by E-cadherin. Loss of E-cadherin induces NFkappaB activity and N-cadherin expression in tumorigenic EMT.
Collapse
Affiliation(s)
- S Kuphal
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
108
|
Wilkins A, Szafranski K, Fraser DJ, Bakthavatsalam D, Müller R, Fisher PR, Glöckner G, Eichinger L, Noegel AA, Insall RH. The Dictyostelium genome encodes numerous RasGEFs with multiple biological roles. Genome Biol 2005; 6:R68. [PMID: 16086850 PMCID: PMC1273635 DOI: 10.1186/gb-2005-6-8-r68] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/09/2005] [Accepted: 06/21/2005] [Indexed: 11/12/2022] Open
Abstract
A survey of the Dictyostelium genome reveals at least 25 RasGEFs, all of which appear to be expressed at some point in development. Disruption of several of these novel RasGEFs reveals that many have clear phenotypes, suggesting that the unexpectedly large number of RasGEF genes reflects an evolutionary expansion of the range of Ras signaling. Background Dictyostelium discoideum is a eukaryote with a simple lifestyle and a relatively small genome whose sequence has been fully determined. It is widely used for studies on cell signaling, movement and multicellular development. Ras guanine-nucleotide exchange factors (RasGEFs) are the proteins that activate Ras and thus lie near the top of many signaling pathways. They are particularly important for signaling in development and chemotaxis in many organisms, including Dictyostelium. Results We have searched the genome for sequences encoding RasGEFs. Despite its relative simplicity, we find that the Dictyostelium genome encodes at least 25 RasGEFs, with a few other genes encoding only parts of the RasGEF consensus domains. All appear to be expressed at some point in development. The 25 genes include a wide variety of domain structures, most of which have not been seen in other organisms. The LisH domain, which is associated with microtubule binding, is seen particularly frequently; other domains that confer interactions with the cytoskeleton are also common. Disruption of a sample of the novel genes reveals that many have clear phenotypes, including altered morphology and defects in chemotaxis, slug phototaxis and thermotaxis. Conclusion These results suggest that the unexpectedly large number of RasGEF genes reflects an evolutionary expansion of the range of Ras signaling rather than functional redundancy or the presence of multiple pseudogenes.
Collapse
Affiliation(s)
- Andrew Wilkins
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Karol Szafranski
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Derek J Fraser
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | - Deenadayalan Bakthavatsalam
- Centre for Biochemistry and Centre for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Rolf Müller
- Centre for Biochemistry and Centre for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Paul R Fisher
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | - Gernot Glöckner
- Genome Analysis, Institute for Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry and Centre for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Angelika A Noegel
- Centre for Biochemistry and Centre for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Robert H Insall
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
109
|
Dangi S, Shapiro P. Cdc2-mediated Inhibition of Epidermal Growth Factor Activation of the Extracellular Signal-regulated Kinase Pathway during Mitosis. J Biol Chem 2005; 280:24524-31. [PMID: 15888452 DOI: 10.1074/jbc.m414079200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibition of general transcription and translation occurs during mitosis to preserve the high energy requirements needed for the dynamic structural changes that are occurring at this time of the cell cycle. Although the mitotic kinase Cdc2 appears to directly phosphorylate and inhibit key proteins directly involved in transcription and translation, the role of Cdc2 in regulating up-stream growth factor receptor-mediated signal transduction pathways is limited. In the present study, we examined mechanisms involved in uncoupling receptor-mediated activation of the extracellular signal-regulated (ERK) signaling pathway in mitotic cells. Treatment with epidermal growth factor (EGF) failed to activate the ERK pathway in mitotic cells, although partial activation of ERK could be achieved in mitotic cells treated with phorbol 12-myristate 13-acetate (PMA). The discrepancy between EGF and PMA-mediated ERK activation suggested that multiple events in the ERK pathway were regulated during mitosis. We show that Cdc2 inhibits EGF-mediated ERK activation through direct interaction and phosphorylation of several ERK pathway proteins, including the guanine nucleotide exchange factor, Sos-1, and Raf-1 kinase. Inhibition of Cdc2 activity with roscovitine in mitotic cells restored ERK activation by EGF and PMA. Similarly, mitotic inhibition of ERK activity in cells expressing active mutants of H-Ras and Raf-1 kinase could also be reversed following Cdc2 inhibition. In contrast, ERK activation in cells expressing active MEK1 was not inhibited during mitosis or affected by roscovitine. These data suggest that Cdc2 inhibits growth factor receptor-mediated ERK activation during mitosis by primarily targeting signaling proteins that are upstream of MEK1.
Collapse
Affiliation(s)
- Surabhi Dangi
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
110
|
Wu CH, Pan JS, Chang WC, Hung JS, Mao SJT. The molecular mechanism of actinomycin D in preventing neointimal formation in rat carotid arteries after balloon injury. J Biomed Sci 2005; 12:503-12. [PMID: 15959627 DOI: 10.1007/s11373-005-6900-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 05/02/2005] [Indexed: 11/24/2022] Open
Abstract
The pathological mechanism of restenosis is primarily attributed to excessive proliferation of vascular smooth muscle cells (SMC). Actinomycin D has been regarded as a potential candidate to prevent balloon injury-induced neointimal formation. To explore its molecular mechanism in regulating cell proliferation, we first showed that actinomycin D markedly reduced the SMC proliferation via the inhibition of BrdU incorporation at 80 nM. This was further supported by the G1-phase arrest using a flowcytometric analysis. Actinomycin D was extremely potent with an inhibitory concentration IC50 at 0.4 nM, whereas the lethal dose LD50 was at 260 microM. In an in vivo study, the pluronic gel containing 80 nM and 80 microM actinomycin D was applied topically to surround the rat carotid adventitia; the thickness of neointima was substantially reduced (45 and 55%, respectively). The protein expression levels of proliferating cell nuclear antigen (PCNA), focal adhesion kinase (FAK), and Raf were all suppressed by actinomycin D. Extracellular signal-regulated kinases (Erk) involved in cell-cycle arrest were found to increase by actinomycin D. These observations provide a detailed mechanism of actinomycin D in preventing cell proliferation thus as a potential intervention for restenosis.
Collapse
Affiliation(s)
- C H Wu
- Department of Pharmacology, School of Medicine, China Medical University, 91 Hsueh-Shieh Road, Taichung, 404, Taiwan.
| | | | | | | | | |
Collapse
|
111
|
Smith WW, Norton DD, Gorospe M, Jiang H, Nemoto S, Holbrook NJ, Finkel T, Kusiak JW. Phosphorylation of p66Shc and forkhead proteins mediates Abeta toxicity. ACTA ACUST UNITED AC 2005; 169:331-9. [PMID: 15837797 PMCID: PMC2171879 DOI: 10.1083/jcb.200410041] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive accumulation of amyloid β-peptide (Aβ) plays an early and critical role in synapse and neuronal loss in Alzheimer's Disease (AD). Increased oxidative stress is one of the mechanisms whereby Aβ induces neuronal death. Given the lessened susceptibility to oxidative stress exhibited by mice lacking p66Shc, we investigated the role of p66Shc in Aβ toxicity. Treatment of cells and primary neuronal cultures with Aβ caused apoptotic death and induced p66Shc phosphorylation at Ser36. Ectopic expression of a dominant-negative SEK1 mutant or chemical JNK inhibition reduced Aβ-induced JNK activation and p66Shc phosphorylation (Ser36), suggesting that JNK phosphorylates p66Shc. Aβ induced the phosphorylation and hence inactivation of forkhead transcription factors in a p66Shc-dependent manner. Ectopic expression of p66ShcS36A or antioxidant treatment protected cells against Aβ-induced death and reduced forkhead phosphorylation, suggesting that p66Shc phosphorylation critically influences the redox regulation of forkhead proteins and underlies Aβ toxicity. These findings underscore the potential usefulness of JNK, p66Shc, and forkhead proteins as therapeutic targets for AD.
Collapse
Affiliation(s)
- Wanli W Smith
- Molecular Neurobiology Unit, Laboratory of Cellular and Molecular Biology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Arun KHS, Kaul CL, Ramarao P. Green fluorescent proteins in receptor research: An emerging tool for drug discovery. J Pharmacol Toxicol Methods 2005; 51:1-23. [PMID: 15596111 DOI: 10.1016/j.vascn.2004.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 07/27/2004] [Indexed: 01/20/2023]
Abstract
In the last five years, green fluorescent protein (GFP) has emerged from being a mere curiosity to become a reliable tool for molecular pharmacological research. GFP produces an intense and stable green fluorescence noncatalytically by absorbing blue light maximally at 395 nm and emitting green light with a peak at 509 nm. It consists of 238 amino acids and its molecular mass is 27-30 kDa. GFP fluorescence occurs without cofactors and this property allows GFP fluorescence to be utilised in nonnative organisms, wherein it can be used as a reporter. This use of GFP permits real-time analysis of receptor dynamics. The emitted fluorescence can be used as a nontoxic marker and detected using fluorescence-activated cell sorting (FACS), thus avoiding any staining procedure, expensive mRNA analysis or hazardous radiolabeled binding assays. The potential value of GFP has also been recognized in orphan receptor research, where various GFP-tagged therapeutic proteins have been constructed in an attempt to identify the endogenous ligand(s). These chimeric proteins have been used to determine the site and time course of receptor expression and to relate receptor dynamics with therapeutic outcome. The preparation of new GFP constructs for identifying germ layer cells (endodermal, ectodermal, and mesodermal), as well as neuronal, haematopoietic, endothelial, and cartilage cells, has provided a useful battery of tissue/receptor-specific screening assays for new chemical entities. Genetically engineered cells with GFP expression have provided a valuable tool for automated analysis, and can be adapted for high-throughput systems. GFP is being increasingly utilised for the study of receptor dynamics, where, having already proved beneficial, it will likely continue to contribute towards the search for new classes of drugs, as well as to "de-orphaning" orphan receptors.
Collapse
Affiliation(s)
- K H S Arun
- Cardiovascular and Receptorology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Phase-X, Sector 67, S.A.S. Nagar (Mohali)-160 062, Punjab, India
| | | | | |
Collapse
|
113
|
Sondermann H, Soisson SM, Boykevisch S, Yang SS, Bar-Sagi D, Kuriyan J. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 2004; 119:393-405. [PMID: 15507210 DOI: 10.1016/j.cell.2004.10.005] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 08/30/2004] [Accepted: 09/02/2004] [Indexed: 12/19/2022]
Abstract
The classical model for the activation of the nucleotide exchange factor Son of sevenless (SOS) involves its recruitment to the membrane, where it engages Ras. The recent discovery that Ras*GTP is an allosteric activator of SOS indicated that the regulation of SOS is more complex than originally envisaged. We now present crystallographic and biochemical analyses of a construct of SOS that contains the Dbl homology-pleckstrin homology (DH-PH) and catalytic domains and show that the DH-PH unit blocks the allosteric binding site for Ras and suppresses the activity of SOS. SOS is dependent on Ras binding to the allosteric site for both a lower level of activity, which is a result of Ras*GDP binding, and maximal activity, which requires Ras*GTP. The action of the DH-PH unit gates a reciprocal interaction between Ras and SOS, in which Ras converts SOS from low to high activity forms as Ras*GDP is converted to Ras*GTP by SOS.
Collapse
Affiliation(s)
- Holger Sondermann
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology and Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
114
|
Chahdi A, Miller B, Sorokin A. Endothelin 1 induces beta 1Pix translocation and Cdc42 activation via protein kinase A-dependent pathway. J Biol Chem 2004; 280:578-84. [PMID: 15513924 DOI: 10.1074/jbc.m411130200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
p21-activated kinase (Pak)-interacting exchange factor (Pix), a Rho family guanine nucleotide exchange factor (GEF), has been shown to co-localize with Pak and form activated Cdc42- and Rac1-driven focal complexes. In this study we have presented evidence that treatment of human mesangial cells (HMC) with endothelin 1 (ET-1) and stimulation of adenylate cyclase with either forskolin or with the cAMP analog 8-Br-cAMP activated the GTP loading of Cdc42. Transient expression of constitutively active G alpha(s) also stimulated Cdc42. In addition, overexpression of beta(1)Pix enhanced ET-1-induced Cdc42 activation, whereas the expression of beta(1)Pix SH3m(W43K), which lacks the ability to bind Pak, and beta(1)PixDHm(L238R/L239S), which lacks GEF activity, decreased ET-1-induced Cdc42 activation. Furthermore, ET-1 stimulation induced beta(1)Pix translocation to focal complexes. Interestingly, pretreatment of HMC with protein kinase A (PKA) inhibitors blocked both Cdc42 activation and beta(1)Pix translocation induced by ET-1, indicating the involvement of the PKA pathway. Through site-directed mutagenesis studies of consensus PKA phosphorylation sites and in vitro PKA kinase assay, we have shown that beta(1)Pix is phosphorylated by PKA. Using purified recombinant beta(1)Pix(wt) and beta(1)Pix mutants, we have identified Ser-516 and Thr-526 as the major phosphorylation sites by PKA. beta(1)Pix(S516A/T526A), in which both phosphorylation sites are replaced by alanine, blocks beta(1)Pix translocation and Cdc42 activation. Our results have provided evidence that stimulation of PKA pathway by ET-1 or cAMP analog results in beta(1)Pix phosphorylation, which in turn controls beta(1)Pix translocation to focal complexes and Cdc42 activation.
Collapse
Affiliation(s)
- Ahmed Chahdi
- Department of Medicine, Division of Nephrology, Kidney Disease Center and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
115
|
Robinson KN, Manto K, Buchsbaum RJ, MacDonald JIS, Meakin SO. Neurotrophin-dependent tyrosine phosphorylation of Ras guanine-releasing factor 1 and associated neurite outgrowth is dependent on the HIKE domain of TrkA. J Biol Chem 2004; 280:225-35. [PMID: 15513915 DOI: 10.1074/jbc.m410454200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras guanine-releasing factor 1 (RasGrf1), a guanine nucleotide exchange factor for members of the Ras and Rho family of GTPases, is highly expressed in the brain. It is regulated by two separate mechanisms, calcium regulation through interaction with its calcium/calmodulin-binding IQ domain and serine and tyrosine phosphorylation. RasGrf1 is activated downstream of G-protein-coupled receptors and the non-receptor tyrosine kinases, Src and Ack1. Previously, we demonstrated a novel interaction between the intracellular domain of the nerve growth factor-regulated TrkA receptor tyrosine kinase and an N-terminal fragment of RasGrf1. We now show that RasGrf1 is phosphorylated and interacts with TrkA, -B, and -C in co-transfection studies. This interaction and phosphorylation of RasGrf1 is dependent on the HIKE domain of TrkA (a region shown to interact with pleckstrin homology domains) but not on any of the phosphotyrosine residues that act as docking sites for intracellular signaling molecules such as Shc and FRS-2. The PH1 domain alone of RasGrf1 is sufficient for phosphorylation by the TrkA receptor. A potential role for Trk activation of RasGrf1 is suggested through transfection studies in PC12 cells in which RasGrf1 significantly increases neurite outgrowth at low doses of neurotrophin stimulation. Notably, this neurite outgrowth is dependent on an intact HIKE domain, as nnr5-S10 cells expressing a TrkA HIKE domain mutant do not exhibit potentiated neurite outgrowth in the presence of RasGrf1. These studies identify RasGrf1 as a novel target of neurotrophin activation and suggest an additional pathway whereby neurotrophin-stimulated neurite outgrowth may be regulated.
Collapse
Affiliation(s)
- Kim N Robinson
- Laboratory of Neural Signaling, The Robarts Research Institute, London, Ontario N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
116
|
Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M. Replicative senescence: a critical review. Mech Ageing Dev 2004; 125:827-48. [PMID: 15541776 DOI: 10.1016/j.mad.2004.07.010] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cells in culture have a limited proliferative capacity. After a period of vigorous proliferation, the rate of cell division declines and a number of changes occur in the cells including increases in size, in secondary lysosomes and residual bodies, nuclear changes and a number of changes in gene expression which provide biomarkers for senescence. Although human cells in culture have been used for over 40 years as models for understanding the cellular basis of aging, the relationship of replicative senescence to aging of the organism is still not clear. In this review, we discuss replicative senescence in the light of current information on signal transduction and mitogenesis, cell stress, apoptosis, telomere changes and finally we discuss replicative senescence as a model of aging in vivo.
Collapse
Affiliation(s)
- Vincent J Cristofalo
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA.
| | | | | | | | | |
Collapse
|
117
|
Sondermann H, Soisson SM, Bar-Sagi D, Kuriyan J. Tandem histone folds in the structure of the N-terminal segment of the ras activator Son of Sevenless. Structure 2004; 11:1583-93. [PMID: 14656442 DOI: 10.1016/j.str.2003.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ras activator Son of Sevenless (Sos) contains a Cdc25 homology domain, responsible for nucleotide exchange, as well as Dbl/Pleckstrin homology (DH/PH) domains. We have determined the crystal structure of the N-terminal segment of human Sos1 (residues 1-191) and show that it contains two tandem histone folds. While the N-terminal domain is monomeric in solution, its structure is surprisingly similar to that of histone dimers, with both subunits of the histone "dimer" being part of the same peptide chain. One histone fold corresponds to the region of Sos that is clearly similar in sequence to histones (residues 91-191), whereas the other is formed by residues in Sos (1-90) that are unrelated in sequence to histones. Residues that form a contiguous patch on the surface of the histone domain of Sos are conserved from C. elegans to humans, suggesting a potential role for this domain in protein-protein interactions.
Collapse
Affiliation(s)
- Holger Sondermann
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
118
|
Wang B, Pelletier J, Massaad MJ, Herscovics A, Shore GC. The yeast split-ubiquitin membrane protein two-hybrid screen identifies BAP31 as a regulator of the turnover of endoplasmic reticulum-associated protein tyrosine phosphatase-like B. Mol Cell Biol 2004; 24:2767-78. [PMID: 15024066 PMCID: PMC371098 DOI: 10.1128/mcb.24.7.2767-2778.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the past decade, traditional yeast two-hybrid techniques have identified a plethora of interactions among soluble proteins operating within diverse cellular pathways. The discovery of associations between membrane proteins by genetic approaches, on the other hand, is less well established due to technical limitations. Recently, a split-ubiquitin system was developed to overcome this barrier, but so far, this system has been limited to the analysis of known membrane protein interactions. Here, we constructed unique split-ubiquitin-linked cDNA libraries and provide details for implementing this system to screen for binding partners of a bait protein, in this case BAP31. BAP31 is a resident integral protein of the endoplasmic reticulum, where it operates as a chaperone or cargo receptor and regulator of apoptosis. Here we describe a novel human member of the protein tyrosine phosphatase-like B (PTPLB) family, an integral protein of the endoplasmic reticulum membrane with four membrane-spanning alpha helices, as a BAP31-interacting protein. PTPLB turns over rapidly through degradation by the proteasome system. Comparisons of mouse cells with a deletion of Bap31 or reconstituted with human BAP31 indicate that BAP31 is required to maintain PTPLB, consistent with a chaperone or quality control function for BAP31 in the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- Bing Wang
- Department of Biochemistry. McGill Cancer Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
119
|
Heim N, Griesbeck O. Genetically Encoded Indicators of Cellular Calcium Dynamics Based on Troponin C and Green Fluorescent Protein. J Biol Chem 2004; 279:14280-6. [PMID: 14742421 DOI: 10.1074/jbc.m312751200] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic calcium probes offer tremendous potential in the fields of neuroscience, cell biology, and pharmaceutical screening. Previously, ratiometric and non-ratiometric indicators of cellular calcium dynamics have been described that consist of mutants of the green fluorescent protein (GFP) as fluorophores and calmodulin as calcium-binding moiety in several configurations. However, these calmodulin-based types of probes have a series of deficiencies, such as reduced dynamic ranges, when expressed within transgenic organisms and lack of calcium sensitivity in certain targetings. We developed novel types of calcium probes based on troponin C variants from skeletal and cardiac muscle. These indicators have ratio changes up to 140%, K(d)s ranging from 470 nm to 29 microm, and improved subcellular targeting properties. We targeted the indicators to the plasma membrane of HEK293 cells and primary hippocampal neurons. Upon long lasting depolarization, submembrane calcium levels in hippocampal neurons were found to be in equilibrium with bulk cytosolic calcium levels, suggesting no standing gradient persists from the membrane toward the cytosol. We expect that such novel indicators using specialized calcium sensing proteins will be minimally interacting with the cellular biochemical machinery.
Collapse
Affiliation(s)
- Nicola Heim
- AG Zelluläre Dynamik, Max-Planck-Institut für Neurobiologie, 82152 Martinsried, Germany
| | | |
Collapse
|
120
|
Yoshida-Koide U, Matsuda T, Saikawa K, Nakanuma Y, Yokota T, Asashima M, Koide H. Involvement of Ras in extraembryonic endoderm differentiation of embryonic stem cells. Biochem Biophys Res Commun 2004; 313:475-81. [PMID: 14697213 DOI: 10.1016/j.bbrc.2003.11.138] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Embryonic stem (ES) cells, derived from the inner cell mass of blastocyst can differentiate into multiple cell lineages. In this study, we examined the possible involvement of Ras in ES cell differentiation. We found that Ras was activated upon formation of embryoid bodies (EBs), an initial step in ES cell differentiation. When expressed during EB differentiation, a dominant-negative mutant of Ras suppressed induction of marker genes for extraembryonic endoderm differentiation, including GATA-4, GATA-6, alpha-fetoprotein, and hepatocyte nuclear factor 3beta, while an activated mutant promoted their induction. Expression of a Ras mutant that selectively activates the Raf/MEK/Erk pathway also enhanced induction of extraembryonic endoderm markers, and treatment with a MEK inhibitor resulted in their decreased expression. In addition, Ras stimulated downregulation of Nanog, a suppressor of endoderm differentiation in ES cells. These data suggest that Ras activation during EB differentiation plays a crucial role in initiation of extraembryonic endoderm differentiation.
Collapse
Affiliation(s)
- Urara Yoshida-Koide
- Department of Stem Cell Biology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
121
|
Namekata K, Enokido Y, Iwasawa K, Kimura H. MOCA induces membrane spreading by activating Rac1. J Biol Chem 2004; 279:14331-7. [PMID: 14718541 DOI: 10.1074/jbc.m311275200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The modifier of cell adhesion protein (MOCA), or Dock3, initially identified as presenilin-binding protein (PBP), belongs to the Dock180 family of proteins and is localized specifically in neurons. Here we demonstrate that MOCA binds to Rac1 and enhances its activity, which leads to the activation of c-Jun NH(2)-terminal kinase (JNK) and causes changes in cell morphology. Farnesylated MOCA, which is localized in the plasma membrane, enhances the activation of Rac1 and JNK more markedly than wild-type MOCA, and cells expressing farnesylated MOCA show flattened morphology similar to those expressing a constitutive active mutant of Rac1, Rac1Q61L. On poly-d-lysine-coated dishes, endogenous MOCA is concentrated on the leading edge of broad membrane protrusions (lamellipodia) where actin filaments are co-localized. MOCA is also concentrated with actin on the growth cone in primary cultures of cortical neurons. These observations suggest that MOCA may induce cytoskeletal reorganization and changes in cell adhesion by regulating the activity of Rac1.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | | | | | | |
Collapse
|
122
|
Mohney RP, Das M, Bivona TG, Hanes R, Adams AG, Philips MR, O'Bryan JP. Intersectin activates Ras but stimulates transcription through an independent pathway involving JNK. J Biol Chem 2003; 278:47038-45. [PMID: 12970366 DOI: 10.1074/jbc.m303895200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intersectin (ITSN) is a molecular scaffold involved in regulating endocytosis and mitogenic signaling. We previously demonstrated that ITSN transformed rodent fibroblasts, accelerated hormone-induced maturation of Xenopus oocytes, and activated the Elk-1 transcription factor through an MEK- and Erk-independent mechanism. We now demonstrate that ITSN complexes with the Ras guanine nucleotide exchange factor Sos1 leading to increased RasGTP levels. Using fluorescence resonant energy transfer analysis, we demonstrate that ITSN complexes with Ras in living cells leading to Ras activation on intracellular vesicles. These vesicles contain epidermal growth factor receptor but are distinct from transferrin-positive vesicles. However, Ras is not required for ITSN stimulation of transcription. Rather, we demonstrate that ITSN signals through JNK to activate Elk-1. Although ITSN activation of Elk-1 was Ras-independent, ITSN cooperates with Ras to synergistically activate JNK. These findings indicate that ITSN activates multiple intracellular signaling pathways and suggest that this adaptor protein may coordinately regulate the activity of these pathways in vivo.
Collapse
Affiliation(s)
- Robert P Mohney
- Laboratory of Signal Transduction, National Institute of Environmental Health Services, NIH/DHHS, Building 101, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Gregg D, Rauscher FM, Goldschmidt-Clermont PJ. Rac regulates cardiovascular superoxide through diverse molecular interactions: more than a binary GTP switch. Am J Physiol Cell Physiol 2003; 285:C723-34. [PMID: 12958025 DOI: 10.1152/ajpcell.00230.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The small G protein Rac has been implicated in multiple cardiovascular processes. Rac has two major functions: 1) it regulates the organization of the actin cytoskeleton, and 2) it controls the activity of the key enzyme complex NADPH oxidase to control superoxide production in both phagocytes and nonphagocytic cells. In phagocytes, superoxide derived from NADPH has a bactericidal function, whereas Rac-derived superoxide in the cardiovascular system has a diverse array of functions that have recently been a subject of intense interest. Rac is differentially activated by cellular receptors coupled to distinct Rac-activating adapter molecules, with each leading to pathway-specific arrays of downstream effects. Thus it may be important to investigate not just whether Rac is activated but also where, how, and for what effector. An understanding of the biochemical functions of Rac and its effectors lays the groundwork for a dissection of the exact array of effects produced by Rac in common cardiovascular processes, including cardiac and vascular hypertrophy, hypertension, leukocyte migration, platelet biology, and atherosclerosis. In addition, investigation of the spatiotemporal regulation of both Rac activation and consequent superoxide generation may produce new insights into the development of targeted antioxidant therapies for cardiovascular disease and enhance our understanding of important cardiovascular drugs, including angiotensin II antagonists and statins, that may depend on Rac modulation for their effect.
Collapse
Affiliation(s)
- David Gregg
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
124
|
|
125
|
Thaminy S, Auerbach D, Arnoldo A, Stagljar I. Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system. Genome Res 2003; 13:1744-53. [PMID: 12840049 PMCID: PMC403748 DOI: 10.1101/gr.1276503] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Analysis of membrane protein interactions is difficult because of the hydrophobic nature of these proteins, which often renders conventional biochemical and genetic assays fruitless. This is a substantial problem because proteins that are integral or associated with membranes represent approximately one-third of all proteins in a typical eukaryotic cell. We have shown previously that the modified split-ubiquitin system can be used as a genetic assay for the in vivo detection of interactions between the two characterized yeast transmembrane proteins, Ost1p and Wbp1p. This so-called split-ubiquitin membrane yeast two-hybrid (YTH) system uses the split-ubiquitin approach in which reconstitution of two ubiquitin halves is mediated by a protein-protein interaction. Here we converted the split-ubiquitin membrane YTH system into a generally applicable in vivo screening approach to identify interacting partners of a particular mammalian transmembrane protein. We have demonstrated the effectiveness of this approach by using the mammalian ErbB3 receptor as bait and have identified three previously unknown ErbB3-interacting proteins. In addition, we have confirmed one of the newly found interactions between ErbB3 and the membrane-associated RGS4 protein by coimmunoprecipitating the two proteins from human cells. We expect the split-ubiquitin membrane YTH technology to be valuable for the identification of potential interacting partners of integral membrane proteins from many model organisms.
Collapse
Affiliation(s)
- Safia Thaminy
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich-Irchel, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
126
|
Hoare K, Hoare S, Smith OM, Kalmaz G, Small D, Stratford May W. Kos1, a nonreceptor tyrosine kinase that suppresses Ras signaling. Oncogene 2003; 22:3562-77. [PMID: 12789265 DOI: 10.1038/sj.onc.1206480] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kinase of embryonic stem cells (Kos1), a nonreceptor protein tyrosine kinase (NRPTK), was identified and cloned from differentiating murine embryonic stem cells. Kos1 is localized on mouse chromosome 11 that corresponds to human chromosome 17p13.1 and is homologous to Tnk1, Ack1 and Ack2, making it a new member of the Ack family of NRPTKs. Kos1 is a ubiquitously expressed 47-kDa protein with autotyrosine kinase activity that is developmentally regulated during embryogenesis. Kos1 is also upregulated following IL3 withdrawal from factor-dependent murine NSF/N1.H7 cells that undergo apoptosis, suggesting a role in growth inhibition. Stable overexpression of Kos1 inhibits growth of NIH 3T3 cells, while the kinase-dead Kos1(CN) promotes cell growth in both liquid culture and soft agar. In addition, forced expression of Kos1 inhibits Ras activity in an indirect mechanism that results in the downregulation of the Ras-Raf1-MAPK growth pathway. Furthermore, overexpression of Kos1 in NCI-H82 lung cancer cells that express oncogenic Ha-Ras(G12V) inhibits cell growth under reduced serum (0.5%) conditions in close association with the upregulation of the Ras inhibitor, Rap1A. Collectively, these data support a negative regulatory role for Kos1 in regulating the Ras-Raf1-MAPK growth pathway by a mechanism that requires its autotyrosine kinase activity.
Collapse
Affiliation(s)
- Kishalay Hoare
- University of Florida Shands Cancer Center, 1600 SW Archer Road, Gainesville, FL 32610-0232, USA
| | | | | | | | | | | |
Collapse
|
127
|
Moshkov IE, Novikova GV, Mur LAJ, Smith AR, Hall MA. Ethylene rapidly up-regulates the activities of both monomeric GTP-binding proteins and protein kinase(s) in epicotyls of pea. PLANT PHYSIOLOGY 2003; 131:1718-26. [PMID: 12692330 PMCID: PMC166927 DOI: 10.1104/pp.102.015057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Revised: 11/12/2002] [Accepted: 12/20/2002] [Indexed: 05/23/2023]
Abstract
It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants.
Collapse
Affiliation(s)
- Igor E Moshkov
- Timiryazev Institute of Plant Physiology RAS, Botanicheskaya 35, Moscow 127276, Russia
| | | | | | | | | |
Collapse
|
128
|
Maroun CR, Naujokas MA, Park M. Membrane targeting of Grb2-associated binder-1 (Gab1) scaffolding protein through Src myristoylation sequence substitutes for Gab1 pleckstrin homology domain and switches an epidermal growth factor response to an invasive morphogenic program. Mol Biol Cell 2003; 14:1691-708. [PMID: 12686619 PMCID: PMC153132 DOI: 10.1091/mbc.e02-06-0352] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The hepatocyte growth factor receptor tyrosine kinase Met promotes cell dissociation and the inherent morphogenic program of epithelial cells. In a search for substrates downstream from Met, we have previously identified the Grb2-associated binder-1 (Gab1) as critical for the morphogenic program. Gab1 is a scaffold protein that acts to diversify the signal downstream from the Met receptor through its ability to couple with multiple signal transduction pathways. Gab1 contains a pleckstrin homology (PH) domain with specificity for phosphatidylinositol 3,4,5-trisphosphate. The phospholipid binding capacity of the Gab1 PH domain is required for the localization of Gab1 at sites of cell-cell contact in colonies of epithelial cells and for epithelial morphogenesis, suggesting that PH domain-dependent subcellular localization of Gab1 is a prerequisite for function. We have investigated the requirement for membrane localization of Gab1 for biological activity. We show that substitution of the Gab1 PH domain with the myristoylation signal from the c-Src protein is sufficient to replace the Gab1 PH domain for epithelial morphogenesis. The membrane targeting of Gab1 enhances Rac activity in the absence of stimulation and switches a nonmorphogenic noninvasive response to epidermal growth factor to a morphogenic invasive program. These results suggest that the subcellular localization of Gab1 is a critical determinant for epithelial morphogenesis and invasiveness.
Collapse
Affiliation(s)
- Christiane R Maroun
- Department of Medicine, Molecular Oncology Group, McGill University Health Centre, McGill University, Montreal, Quebec, H3A 1A1, Canada
| | | | | |
Collapse
|
129
|
Yamasaki S, Nishida K, Yoshida Y, Itoh M, Hibi M, Hirano T. Gab1 is required for EGF receptor signaling and the transformation by activated ErbB2. Oncogene 2003; 22:1546-56. [PMID: 12629518 DOI: 10.1038/sj.onc.1206284] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Grb2-associated binder-1 (Gab1) is a pleckstrin homology (PH) domain-containing adapter molecule that is believed to function downstream of receptors for growth factors and cytokines. We previously found that deficiency in the mouse Gab1 gene led to embryonic lethality and defects in ERK activation in response to growth factors and cytokines. Here, we established immortalized Gab1-/- cell lines and analysed roles of Gab1 in growth factor-mediated signaling and oncogenesis. EGF-dependent activation of c-Raf and Mek1/2, which function upstream of ERKs, was perturbed in Gab1-/- cells. EGF-mediated upregulation of GTP-bound form of Ras was also reduced in these cells. EGF-dependent GTP/GDP exchange activity for Ras was suppressed in the Gab1-/- cells and expression of a constitutively active Sos restored ERK activation in these cells, indicating that Gab1 functions upstream of Ras. Furthermore, activated form of ErbB2 (active ErbB2)-mediated transformation, such as colony formation in soft agar and tumor formation in nude mice, was strongly suppressed when the Gab1-/- cells were transfected with active ErbB2, whereas the active Sos efficiently induced transformation of Gab1-/- cells. The data show that Gab1 plays an essential role in EGF-receptor/ErbB-mediated cell proliferation and oncogenesis.
Collapse
Affiliation(s)
- Satoru Yamasaki
- Department of Molecular Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
130
|
Ma C, Cummings C, Liu XJ. Biphasic activation of Aurora-A kinase during the meiosis I- meiosis II transition in Xenopus oocytes. Mol Cell Biol 2003; 23:1703-16. [PMID: 12588989 PMCID: PMC151708 DOI: 10.1128/mcb.23.5.1703-1716.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus Aurora-A (also known as Eg2) is a member of the Aurora family of mitotic serine/threonine kinases. In Xenopus oocytes, Aurora-A phosphorylates and activates a cytoplasmic mRNA polyadenylation factor (CPEB) and therefore plays a pivotal role in MOS translation. However, hyperphosphorylation and activation of Aurora-A appear to be dependent on maturation-promoting factor (MPF) activation. To resolve this apparent paradox, we generated a constitutively activated Aurora-A by engineering a myristylation signal at its N terminus. Injection of Myr-Aurora-A mRNA induced germinal vesicle breakdown (GVBD) with the concomitant activation of MOS, mitogen-activated protein kinase, and MPF. Myr-Aurora-A-injected oocytes, however, appeared to arrest in meiosis I with high MPF activity and highly condensed, metaphase-like chromosomes but no organized microtubule spindles. No degradation of CPEB or cyclin B2 was observed following GVBD in Myr-Aurora-A-injected oocytes. In the presence of progesterone, the endogenous Aurora-A became hyperphosphorylated and activated at the time of MPF activation. Following GVBD, Aurora-A was gradually dephosphorylated and inactivated before it was hyperphosphorylated and activated again. This biphasic pattern of Aurora-A activation mirrored that of MPF activation and hence may explain meiosis I arrest by the constitutively activated Myr-Aurora-A.
Collapse
Affiliation(s)
- Chunqi Ma
- Ottawa Health Research Institute, Ottawa Hospital Civic Campus, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
131
|
Jiang X, Edstrom E, Altun M, Ulfhake B. Differential regulation of Shc adaptor proteins in skeletal muscle, spinal cord and forebrain of aged rats with sensorimotor impairment. Aging Cell 2003; 2:47-57. [PMID: 12882334 DOI: 10.1046/j.1474-9728.2003.00030.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Shc family of proteins participates in mitogenic and survival signalling through binding to receptor tyrosine kinases. We report here on the expression of Shc in forebrain, spinal cord and hind limb muscles from 30-month-old rats with different degrees of sensorimotor impairment. ShcA (mRNA and protein) is up-regulated in skeletal muscles and spinal cord of aged rats, and this change relates to biological age, i.e. degree of behavioural incapacitation, rather than to chronological age. Western blot and RT-PCR revealed that the increase in ShcA selectively affected the p46 isoform in the spinal cord, whereas in muscle tissue a robust increase of p66(ShcA) was also evident. Furthermore, in parallel with the up-regulation of ShcA, an increase of p75(NTR) mRNA in the aged animals was observed. ShcB mRNA showed a tendency for down-regulation in both spinal cord and skeletal muscles, whereas the expression of ShcC was unaltered. Our data show that the regulation of Shc mRNAs in senescence is region as well as isoform specific. The regulatory changes may reflect changes in mitogenic/survival signalling induced by age-related cell and tissue damage. The coup-regulation of p66(ShcA) and p75(NTR) is interesting since both molecules have been associated with apoptosis.
Collapse
Affiliation(s)
- Xiaogang Jiang
- Experimental Neurogerontology, Department of Neuroscience, Retzius Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
132
|
Quilliam LA, Rebhun JF, Castro AF. A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:391-444. [PMID: 12102558 DOI: 10.1016/s0079-6603(02)71047-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
GTPases of the Ras subfamily regulate a diverse array of cellular-signaling pathways, coupling extracellular signals to the intracellular response machinery. Guanine nucleotide exchange factors (GEFs) are primarily responsible for linking cell-surface receptors to Ras protein activation. They do this by catalyzing the dissociation of GDP from the inactive Ras proteins. GTP can then bind and induce a conformational change that permits interaction with downstream effectors. Over the past 5 years, approximately 20 novel Ras-family GEFs have been identified and characterized. These data indicate that a variety of different signaling mechanisms can be induced to activate Ras, enabling tyrosine kinases, G-protein-coupled receptors, adhesion molecules, second messengers, and various protein-interaction modules to relocate and/or activate GEFs and elevate intracellular Ras-GTP levels. This review discusses the structure and function of the catalytic or CDC25 homology domain common to almost all Ras-family GEFs. It also details our current knowledge about the regulation and function of this rapidly growing family of enzymes that include Sos1 and 2, GRF1 and 2, CalDAG-GEF/GRP1-4, C3G, cAMP-GEF/Epac 1 and 2, PDZ-GEFs, MR-GEF, RalGDS family members, RalGPS, BCAR3, Smg GDS, and phospholipase C(epsilon).
Collapse
Affiliation(s)
- Lawrence A Quilliam
- Department of Biochemistry and Molecular, Biology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
133
|
Chomchan P, Li SF, Shirako Y. Rice grassy stunt tenuivirus nonstructural protein p5 interacts with itself to form oligomeric complexes in vitro and in vivo. J Virol 2003; 77:769-75. [PMID: 12477884 PMCID: PMC140646 DOI: 10.1128/jvi.77.1.769-775.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the interaction of Rice grassy stunt tenuivirus (RGSV) nonstructural protein p5, a protein of 22 kDa encoded on vRNA 5, with all 12 RGSV proteins by using a GAL4 transcription activator-based yeast two-hybrid system. The p5 protein interacted only with itself and not with any other viral protein; the interacting domains were localized within the N-terminal 96 amino acids of p5. The p5-p5 interaction was reproduced in an Sos recruitment-mediated yeast two-hybrid system as well in by far-Western blots. Native p5 protein extracted from RGSV-infected rice tissue was detected in a large complex with a molecular mass of approximately 260 kDa composed of 12 molecules of p5 or a p5 oligomer with an unidentified host factor(s).
Collapse
Affiliation(s)
- Pritsana Chomchan
- Graduate School of Agricultural Life Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
134
|
Barr HM, Sharf R, Kleinberger T. Using the Ras Recruitment System to Identify PP2A–B55-Interacting Proteins. Methods Enzymol 2003; 366:175-87. [PMID: 14674249 DOI: 10.1016/s0076-6879(03)66015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The RRS system facilitated the discovery of hitherto unknown interactions with the PP2A-B55 subunit. The advantages of the system lie in its ability to identify interactions that may not be detected by traditional yeast two-hybrid systems. The RRS can thus provide a complementary genetic approach to the identification of protein-protein interactions.
Collapse
Affiliation(s)
- Haim M Barr
- Gonda Center for Molecular Biology, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P.O. Box 9649, Bat-Galim, Haifa, 31096, Israel
| | | | | |
Collapse
|
135
|
Sakakibara A, Ohba Y, Kurokawa K, Matsuda M, Hattori S. Novel function of Chat in controlling cell adhesion via Cas-Crk-C3G-pathway-mediated Rap1 activation. J Cell Sci 2002; 115:4915-24. [PMID: 12432078 DOI: 10.1242/jcs.00207] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chat (Cas/HEF1-associated signal transducer) is a novel signaling molecule with an N-terminal SH2 domain and C-terminal Cas/HEF1 association domain that is implicated in the regulation of cell adhesion. The Cas/HEF1 association domain also shows sequence similarity with guanine nucleotide exchange factors for Ras family small GTPases. In this study, we found significant activation of Rap1 in Chat-overexpressing cells. Myr-Chat, a membrane-targeted form of Chat, activated Rap1 more efficiently. Interestingly, Chat and Cas synergistically activated Rap1. Certain Cas, Crk or C3G mutants suppressed Rap1 activation by Chat. We also confirmed the ternary complex formation consisting of Chat, Cas and Crk. Thus, it is likely that Chat-induced Rap1 activation was mediated by upregulation of the Cas-Crk-C3G signaling pathway rather than direct guanine nucleotide exchange factor activity of Chat. We further demonstrated that Myr-Chat expression induced cell periphery spreading and cell shape branching and that this activity also depended on the Cas-Crk-C3G pathway and Rap1 activity. Moreover, expression of Myr-Chat enhanced integrin-mediated cell adhesion. Taken together we propose a novel role for the Chat-Cas complex in controlling cell adhesion via the activation of Rap1.
Collapse
Affiliation(s)
- Akira Sakakibara
- Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | | | |
Collapse
|
136
|
Jorge R, Zarich N, Oliva JL, Azañedo M, Martínez N, de la Cruz X, Rojas JM. HSos1 contains a new amino-terminal regulatory motif with specific binding affinity for its pleckstrin homology domain. J Biol Chem 2002; 277:44171-9. [PMID: 12223473 DOI: 10.1074/jbc.m204423200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein hSos1 is a Ras guanine nucleotide exchange factor. In the present study, we investigated the function of the amino-terminal region of the hSos1 protein, corresponding to the first 600 residues, which includes the Dbl and pleckstrin homology (DH and PH) domains. We demonstrated, using a series of truncated mutants, that this region is absolutely necessary for hSos1 activity. Our results suggest that the first 200 residues (upstream of DH domain), which we called the HF motif on the basis of their homology with histone H2A, may exert negative control over the functional activity of the whole hSos1 protein. In vitro binding analysis showed that the HF motif is able to interact specifically with the PH domain of hSos1. The amino-terminal region of hSos1 may be associated in vivo with an expressed HF motif. These findings document the existence of the HF motif located upstream of the DH domain in the hSos1 protein. This motif may be responsible for the negative control of hSos1, probably by intramolecular binding with the PH domain.
Collapse
Affiliation(s)
- Rocío Jorge
- Unidad de Biologia Celular, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
137
|
Hendron E, Patel P, Hausenfluke M, Gamper N, Shapiro MS, Booth RE, Stockand JD. Identification of cytoplasmic domains within the epithelial Na+ channel reactive at the plasma membrane. J Biol Chem 2002; 277:34480-8. [PMID: 12093811 DOI: 10.1074/jbc.m204615200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of membrane proteins is controlled, in part, by protein-protein interactions localized to the plasma membrane. In the current study, domains within the epithelial Na(+) channel (ENaC) reactive at the plasma membrane were identified using a novel yeast one-hybrid screen. The cytosolic N terminus of alphaENaC and the cytosolic C termini of alpha-, beta-, and gammaENaC contained domains reactive at the plasma membrane. Fluorescent micrographs of epithelial cells overexpressing fusion proteins of enhanced green fluorescent protein and mENaC cytosolic domains were consistent with those in yeast. A novel membrane reactive domain within the cytosolic C terminus of gamma-mENaC was localized to the 17 amino acids between residues Thr(584)-Pro(600). Two overlapping internalization signals within the C terminus of gamma-mENaC, a WW-binding domain (PY motif) and a tyrosine-based endocytic signal, were additive with respect to decreasing complementation and expression levels of hybrid proteins. Decreases in expression levels of hybrid proteins containing the PY and endocytic motif were reversed with latrunculin A, an inhibitor of endosomal movement. Decreases in complementation and expression levels of hybrid proteins mediated by the combined PY and overlapping endocytic motif proceeded in the absence of established ubiquitination sites within ENaC. In addition, the endocytic motif was active in the absence of the PY motif, demonstrating that these two domains, while possibly interacting, also have discrete functions. The novel domains within the cytosolic N terminus of alphaENaC and the C termini of alpha-, beta-, and gammaENaC identified here are likely to be involved in protein-protein and/or protein-lipid interactions localized to the plasma membrane. We hypothesize that these newly identified domains play a role in modulating ENaC activity.
Collapse
Affiliation(s)
- Eunan Hendron
- Department of Physiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-2900, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Dame G, Gloeckner G, Beck CF. Knock-out of a putative transporter results in altered blue-light signalling in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:577-587. [PMID: 12207648 DOI: 10.1046/j.1365-313x.2002.01379.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nitrogen starvation and blue light are the two environmental cues that control sexual differentiation in Chlamydomonas reinhardtii. Insertional mutagenesis was applied to generate mutants that still require nitrogen starvation as the initiating signal for gametogenesis but were no longer dependent on irradiation. In one mutant analysed, sequences adjacent to the site of insertion were cloned and used for the isolation of a genomic clone that, upon transformation, could complement the mutant phenotype. The gene identified (LRG6) encodes two mRNAs that appear to be the products of differential splicing. The two putative gene products derived from these mRNAs differ in their C-terminal ends. Both predicted gene products exhibit multiple hydrophobic domains with alpha-helical secondary structure typical for integral membrane proteins. These proteins may form pores, and may function as transporters of as-yet unknown substrates. Since rendering the LRG6 gene non-functional resulted in light-independence of gamete formation, it is suggested that this transporter may inhibit signal flux from the photoreceptor to target genes - either directly by its activity or indirectly by serving as a scaffold for signalling proteins. Shutting off this transporter may be required for the activation of signal flux in this pathway. This concept is supported by the observed reduction in LRG6 mRNA levels during the first phase of gametic differentiation.
Collapse
Affiliation(s)
- Gregory Dame
- Institut für Biologie III, Universität Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
139
|
Poirey R, Despons L, Leh V, Lafuente MJ, Potier S, Souciet JL, Jauniaux JC. Functional analysis of the Saccharomyces cerevisiae DUP240 multigene family reveals membrane-associated proteins that are not essential for cell viability. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2111-2123. [PMID: 12101299 DOI: 10.1099/00221287-148-7-2111] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The DUP240 gene family of Saccharomyces cerevisiae is composed of 10 members. They encode proteins of about 240 amino acids which contain two predicted transmembrane domains. Database searches identified only one homologue in the closely related species Saccharomyces bayanus, indicating that the DUP240 genes encode proteins specific to Saccharomyces sensu stricto. The short-flanking homology PCR gene-replacement strategy with a variety of selective markers for replacements, and classical genetic methods, were used to generate strains deleted for all 10 DUP240 genes. All of the knock-out strains were viable and had similar growth kinetics to the wild-type. Two-hybrid screens, hSos1p fusions and GFP fusions were carried out; the results indicated that the Dup240 proteins are membrane associated, and that some of them are concentrated around the plasma membrane.
Collapse
Affiliation(s)
- Rémy Poirey
- Laboratoire de Génétique et Microbiologie, UPRES-A 7010 ULP/CNRS, Institut de Botanique, 28 rue Goethe, F-67083 Strasbourg cedex, France2
- Angewandte Tumorvirologie, Abteilung F0100 and Virologie Appliquée à l'Oncologie (Unité INSERM 375), Deutsches Krebsforschungszentrum, P. 1011949, D-69009 Heidelberg, Germany1
| | - Laurence Despons
- Laboratoire de Génétique et Microbiologie, UPRES-A 7010 ULP/CNRS, Institut de Botanique, 28 rue Goethe, F-67083 Strasbourg cedex, France2
| | - Véronique Leh
- Laboratoire de Génétique et Microbiologie, UPRES-A 7010 ULP/CNRS, Institut de Botanique, 28 rue Goethe, F-67083 Strasbourg cedex, France2
| | - Maria-Jose Lafuente
- Angewandte Tumorvirologie, Abteilung F0100 and Virologie Appliquée à l'Oncologie (Unité INSERM 375), Deutsches Krebsforschungszentrum, P. 1011949, D-69009 Heidelberg, Germany1
| | - Serge Potier
- Laboratoire de Génétique et Microbiologie, UPRES-A 7010 ULP/CNRS, Institut de Botanique, 28 rue Goethe, F-67083 Strasbourg cedex, France2
| | - Jean-Luc Souciet
- Laboratoire de Génétique et Microbiologie, UPRES-A 7010 ULP/CNRS, Institut de Botanique, 28 rue Goethe, F-67083 Strasbourg cedex, France2
| | - Jean-Claude Jauniaux
- Angewandte Tumorvirologie, Abteilung F0100 and Virologie Appliquée à l'Oncologie (Unité INSERM 375), Deutsches Krebsforschungszentrum, P. 1011949, D-69009 Heidelberg, Germany1
| |
Collapse
|
140
|
Thirone ACP, Scarlett JA, Gasparetti AL, Araujo EP, Lima MHL, Carvalho CRO, Velloso LA, Saad MJA. Modulation of growth hormone signal transduction in kidneys of streptozotocin-induced diabetic animals: effect of a growth hormone receptor antagonist. Diabetes 2002; 51:2270-81. [PMID: 12086960 DOI: 10.2337/diabetes.51.7.2270] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Growth hormone (GH) and IGFs have a long distinguished history in diabetes, with possible participation in the development of renal complications. The implicated effect of GH in diabetic end-stage organ damage may be mediated by growth hormone receptor (GHR) or postreceptor events in GH signal transduction. The present study investigates the effects of diabetes induced by streptozotocin (STZ) on renal GH signaling. Our results demonstrate that JAK2, insulin receptor substrate (IRS)-1, Shc, ERKs, and Akt are widely distributed in the kidney, and after GH treatment, there is a significant increase in phosphorylation of these proteins in STZ-induced diabetic rats compared with controls. Moreover, the GH-induced association of IRS-1/phosphatidylinositol 3-kinase, IRS-1/growth factor receptor bound 2 (Grb2), and Shc/Grb2 are increased in diabetic rats as well. Immunohistochemical studies show that GH-induced p-Akt and p-ERK activation is apparently more pronounced in the kidneys of diabetic rats. Administration of G120K-PEG, a GH antagonist, in diabetic mice shows inhibitory effects on diabetic renal enlargement and reverses the alterations in GH signal transduction observed in diabetic animals. The present study demonstrates a role for GH signaling in the pathogenesis of early diabetic renal changes and suggests that specific GHR blockade may present a new concept in the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Ana C P Thirone
- Department of Internal Medicine, FCM, State University Of Campinas, 13080-970 Campinas, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Jacob A, Cooney D, Pradhan M, Coggeshall KM. Convergence of signaling pathways on the activation of ERK in B cells. J Biol Chem 2002; 277:23420-6. [PMID: 11976336 DOI: 10.1074/jbc.m202485200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The B cell receptor (BCR) initiates three major signaling pathways: the Ras pathway, which leads to extracellular signal-regulated kinase (ERK) activation; the phospholipase C-gamma pathway, which causes calcium mobilization; and the phosphoinositide 3-kinase (PI 3-kinase) pathway. These combine to induce different biological responses depending on the context of the BCR signal. Both the Ras and PI 3-kinase pathways are important for B cell development and activation. Several model systems show evidence of cross-regulation between these pathways. Here we demonstrate through the use of PI 3-kinase inhibitors and a dominant-negative PI 3-kinase construct that the BCR-induced phosphorylation and activation of ERK is dependent on PI 3-kinase. PI 3-kinase feeds into the Ras signaling cascade at multiple points, both upstream and downstream of Ras. We also show that ERK activation is dependent on phospholipase C-gamma, in keeping with its dependence on calcium mobilization. Last, the activation of PI 3-kinase itself is completely dependent on Ras. We conclude that the PI 3-kinase and Ras signaling cascades are intimately connected in B cells and that the activation of ERK is a signal integration point, since it requires simultaneous input from all three major signaling pathways.
Collapse
Affiliation(s)
- Anand Jacob
- Oklahoma Medical Research Foundation, Immunobiology and Cancer Program, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
142
|
Abstract
The availability of completed genome sequences of several eukaryotic and prokaryotic species has shifted the focus towards the identification and characterization of all gene products that are expressed in a given organism. In order to cope with the huge amounts of data that have been provided by large-scale sequencing projects, high-throughout methodologies also need to be applied in the emerging field of proteomics. In this review, we discuss methods that have been recently developed in order to characterize protein interactions and their functional relevance on a large scale. We then focus on those methodologies that are suitable for the identification and characterization of protein-protein interactions, namely the yeast two-hybrid system and related methods. Several recent studies have demonstrated the power of automated approaches involving the yeast two-hybrid system in building so-called "interaction networks", which hold the promise of identifying the entirety of all interactions that take place between proteins expressed in a certain cell type or organism. We compare the yeast two-hybrid system with several other screening methods that have been developed to investigate interactions between proteins that are not amenable to conventional yeast two-hybrid screenings, such as transcriptional activators and integral membrane proteins. The eventual adaptation of such methods to a high-throughput format and their use in combination with automated yeast two-hybrid screenings will help in elucidating protein-protein interactions on a scale that would have been unthinkable just a few years ago.
Collapse
|
143
|
Ott VL, Tamir I, Niki M, Pandolfi PP, Cambier JC. Downstream of kinase, p62(dok), is a mediator of Fc gamma IIB inhibition of Fc epsilon RI signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4430-9. [PMID: 11970986 DOI: 10.4049/jimmunol.168.9.4430] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The low-affinity receptor for IgG, Fc gamma RIIB, is expressed widely in the immune system and functions to attenuate Ag-induced immune responses. In mast cells, coaggregation of Fc gamma RIIB with the high-affinity IgE receptor, Fc epsilon RI, leads to inhibition of Ag-induced degranulation and cytokine production. Fc gamma RIIB inhibitory activity requires a conserved motif within the Fc gamma RIIB cytoplasmic domain termed the immunoreceptor tyrosine-based inhibition motif. When coaggregated with an activating receptor (e.g., Fc epsilon RI, B cell Ag receptor), Fc gamma RIIB is rapidly phosphorylated on tyrosine and recruits the SH2 domain-containing inositol 5-phosphatase (SHIP). However, the mechanisms by which SHIP mediates Fc gamma RIIB inhibitory function in mast cells remain poorly defined. In this report we demonstrate that Fc gamma RIIB coaggregation with Fc epsilon RI stimulates enhanced SHIP tyrosine phosphorylation and association with Shc and p62(dok). Concurrently, enhanced p62(dok) tyrosine phosphorylation and association with RasGAP are observed, suggesting that SHIP may mediate Fc gamma RIIB inhibitory function in mast cells via recruitment of p62(dok) and RasGAP. Supporting this hypothesis, recruitment of p62(dok) to Fc epsilon RI is sufficient to inhibit Fc epsilon RI-induced calcium mobilization and extracellular signal-regulated kinase 1/2 activation. Interestingly, both the amino-terminal pleckstrin homology and phosphotyrosine binding domains and the carboxyl-terminal proline/tyrosine-rich region of p62(dok) can mediate inhibition, suggesting activation of parallel downstream signaling pathways that converge at extracellular signal-regulated kinase 1/2 activation. Finally, studies using gene-ablated mice indicate that p62(dok) is dispensable for Fc gamma RIIB inhibitory signaling in mast cells. Taken together, these data suggest a role for p62(dok) as a mediator of Fc gamma RIIB inhibition of Fc epsilon RI signal transduction in mast cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Antigens, CD/metabolism
- Calcium/metabolism
- Cell Membrane/metabolism
- Cells, Cultured
- DNA-Binding Proteins
- Mast Cells/immunology
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Phosphotyrosine/metabolism
- Proteins/metabolism
- RNA-Binding Proteins
- Rats
- Receptor Aggregation
- Receptors, IgE/antagonists & inhibitors
- Receptors, IgG/metabolism
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Tumor Cells, Cultured
- ras GTPase-Activating Proteins/metabolism
Collapse
Affiliation(s)
- Vanessa L Ott
- Integrated Department of Immunology, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
144
|
Saci A, Liu WQ, Vidal M, Garbay C, Rendu F, Bachelot-Loza C. Differential effect of the inhibition of Grb2-SH3 interactions in platelet activation induced by thrombin and by Fc receptor engagement. Biochem J 2002; 363:717-25. [PMID: 11964172 PMCID: PMC1222524 DOI: 10.1042/0264-6021:3630717] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adaptor protein Grb2 (growth factor receptor-bound protein 2) is involved in cell proliferation via the Ras signalling pathway. In order to study the role of Grb2 in blood platelet responses, we used a peptide containing two proline-rich sequences derived from Sos (peptidimer), which binds to Grb2-Src homology 3 domain (SH3) with a high affinity, and hence inhibits Grb2-SH3-mediated protein interactions. Platelet aggregation and 5-hydroxytryptamine (serotonin) release measured in the presence of the peptidimer were: (i) significantly decreased when induced by thrombin; and (ii) potentiated when induced by the engagement of the Fc receptor. In thrombin-activated platelets, the Grb2-SH2 domain formed an association with the beta3 subunit of the alphaIIb-beta3 integrin (GPIIb-IIIa), Shc, Syk, Src and SHP1 (SH2-containing phosphotyrosine phosphatase 1), whereas these associations did not occur after the engagement of the receptor for the Fc domain of IgG (FcgammaRIIa) or in resting platelets. Grb2-SH3 domains formed an association with the proline-rich sequences of Sos and Cbl in both resting and activated platelets, since the peptidimer abolished these associations. Inhibition of both fibrinogen binding and platelet aggregation by the peptide RGDS (Arg-Gly-Asp-Ser) had no effect on thrombin-induced Grb2-SH2 domain association with the aforementioned signalling molecules, indicating that these associations occurred during thrombin-induced 'inside-out' signalling. Platelet aggregation induced by direct activation via alphaIIb-beta3 ('outside-in' signalling) was potentiated by the peptidimer. The results show that inhibition of Grb2-SH3 interactions with signal-transduction proteins down-regulates thrombin-induced platelet activation, but also potentiates Fc receptor- and alphaIIb-beta3-mediated platelet activation.
Collapse
Affiliation(s)
- Abdelhafid Saci
- INSERM U428, Faculte de Pharmacie, 4 Avenue de l'Observatoire, Paris F-75006, France
| | | | | | | | | | | |
Collapse
|
145
|
Hart TC, Zhang Y, Gorry MC, Hart PS, Cooper M, Marazita ML, Marks JM, Cortelli JR, Pallos D. A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1. Am J Hum Genet 2002; 70:943-54. [PMID: 11868160 PMCID: PMC379122 DOI: 10.1086/339689] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2001] [Accepted: 01/10/2002] [Indexed: 11/04/2022] Open
Abstract
Hereditary gingival fibromatosis (HGF) is a rare, autosomal dominant form of gingival overgrowth. Affected individuals have a benign, slowly progressive, nonhemorrhagic, fibrous enlargement of the oral masticatory mucosa. Genetic loci for autosomal dominant forms of HGF have been localized to chromosome 2p21-p22 (HGF1) and chromosome 5q13-q22 (HGF2). To identify the gene responsible for HGF1, we extended genetic linkage studies to refine the chromosome 2p21-p22 candidate interval to approximately 2.3 Mb. Development of an integrated physical and genetic map of the interval identified 16 genes. Sequencing of these genes, in affected and unaffected HGF1 family members, identified a mutation in the Son of sevenless-1 (SOS1) gene in affected individuals. In this report, we describe the genomic structure of the SOS1 gene and present evidence that insertion of a cytosine between nucleotides 126,142 and 126,143 in codon 1083 of the SOS1 gene is responsible for HGF1. This insertion mutation, which segregates in a dominant manner over four generations, introduces a frameshift and creates a premature stop codon, abolishing four functionally important proline-rich SH3 binding domains normally present in the carboxyl-terminal region of the SOS1 protein. The resultant protein chimera contains the wild-type SOS1 protein for the N-terminal amino acids 1-1083 fused to a novel 22-amino acid carboxyl terminus. Similar SOS1 deletion constructs are functional in animal models, and a transgenic mouse construct with a comparable SOS1 chimera produces a phenotype with skin hypertrophy. Clarification of the functional role of this SOS1 mutant has implications for understanding other forms of gingival fibromatosis and corrective gingival-tissue management.
Collapse
Affiliation(s)
- Thomas C Hart
- Center For Craniofacial and Dental Genetics, Division of Oral Biology and Pathology, University of Pittsburgh School of Dental Medicine, 614 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Yoon SY, Jeong MJ, Yoo J, Lee KI, Kwon BM, Lim DS, Lee CE, Park YM, Han MY. Grb2 dominantly associates with dynamin II in human hepatocellular carcinoma HepG2 cells. J Cell Biochem 2002; 84:150-5. [PMID: 11746524 DOI: 10.1002/jcb.1275] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The two SH3 domains and one SH2 domain containing adaptor protein Grb2 is an essential element of the Ras signaling pathway in multiple systems. The SH2 domain of Grb2 recognizes and interacts with phosphotyrosine residues on activated tyrosine kinases, whereas the SH3 domains bind to several proline-rich domain-containing proteins such as Sos1. To define the difference in Grb2-associated proteins in hepatocarcinoma cells, we performed coprecipitation analysis using recombinant GST-Grb2 fusion proteins and found that several protein components (p170, p125, p100, and p80) differently associated with GST-Grb2 proteins in human Chang liver and hepatocarcinoma HepG2 cells. Sos1 and p80 proteins dominantly bind to Grb2 fusion proteins in Chang liver, whereas p100 remarkably associate with Grb2 in HepG2 cells. Also GST-Grb2 SH2 proteins exclusively bound to the p46(Shc), p52(Shc), and p66(Shc) are important adaptors of the Ras pathway in HepG2 cells. The p100 protein has been identified as dynamin II. We observed that the N-SH3 and C-SH3 domains of Grb2 fusion proteins coprecipitated with dynamin II besides Sos1. These results suggest that dynamin II may be a functional molecule involved in Grb2-mediated signaling pathway on Ras activation for tumor progression and differentiation of hepatocarcinoma cells.
Collapse
Affiliation(s)
- S Y Yoon
- Cell Biology Laboratory, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yusung, Taejon 305-600, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
An analytical solution is obtained for the steady-state reaction rate of an intracellular enzyme, recruited to the plasma membrane by active receptors, acting upon a membrane-associated substrate. Influenced by physical and chemical effects, such interactions are encountered in numerous signal-transduction pathways. The generalized modeling framework is the first to combine reaction and diffusion limitations in enzyme action, the finite mean lifetime of receptor-enzyme complexes, reactions in the bulk membrane, and constitutive and receptor-mediated substrate insertion. The theory is compared with other analytical and numerical approaches, and it is used to model two different signaling pathway types. For two-state mechanisms, such as activation of the Ras GTPase, the diffusion-limited activation rate constant increases with enhanced substrate inactivation, dissociation of receptor-enzyme complexes, or crowding of neighboring complexes. The latter effect is only significant when nearly all of the substrate is in the activated state. For regulated supply and turnover pathways, such as phospholipase C-mediated lipid hydrolysis, an additional influence is receptor-mediated substrate delivery. When substrate consumption is rapid, this process significantly enhances the effective enzymatic rate constant, regardless of whether enzyme action is diffusion limited. Under these conditions, however, enhanced substrate delivery can result in a decrease in the average substrate concentration.
Collapse
Affiliation(s)
- Jason M Haugh
- Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905 USA.
| |
Collapse
|
148
|
|
149
|
Le S, Connors TJ, Maroney AC. c-Jun N-terminal kinase specifically phosphorylates p66ShcA at serine 36 in response to ultraviolet irradiation. J Biol Chem 2001; 276:48332-6. [PMID: 11602589 DOI: 10.1074/jbc.m106612200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice lacking expression of the p66 isoform of the ShcA adaptor protein (p66(ShcA)) are less susceptible to oxidative stress and have an extended life span. Specifically, phosphorylation of p66(ShcA) at serine 36 is critical for the cell death response elicited by oxidative damage. We sought to identify the kinase(s) responsible for this phosphorylation. Utilizing the SH-SY5Y human neuroblastoma cell model, it is demonstrated that p66(ShcA) is phosphorylated on serine/threonine residues in response to UV irradiation. Both c-Jun N-terminal kinases (JNKs) and p38 mitogen-activated protein kinases are activated by UV irradiation, and we show that both are capable of phosphorylating serine 36 of p66(ShcA) in vitro. However, treatment of cells with a multiple lineage kinase inhibitor, CEP-1347, that blocks UV-induced JNK activation, but not p38, phosphatidylinositol 3-kinase, or MEK1 inhibitors, prevented p66(ShcA) phosphorylation in SH-SY5Y cells. Consistent with this finding, transfected activated JNK1, but not the kinase-dead JNK1, leads to phosphorylation of serine 36 of p66(ShcA) in Chinese hamster ovary cells. In conclusion, JNKs are the kinases that phosphorylate serine 36 of p66(ShcA) in response to UV irradiation in SH-SY5Y cells, and blocking p66(ShcA) phosphorylation by intervening in the JNK pathway may prevent cellular damage due to light-induced oxidative stress.
Collapse
Affiliation(s)
- S Le
- Cephalon, Inc., West Chester, Pennsylvania 19380, USA
| | | | | |
Collapse
|
150
|
Miura K, Miyazawa S, Furuta S, Mitsushita J, Kamijo K, Ishida H, Miki T, Suzukawa K, Resau J, Copeland TD, Kamata T. The Sos1-Rac1 signaling. Possible involvement of a vacuolar H(+)-ATPase E subunit. J Biol Chem 2001; 276:46276-83. [PMID: 11560919 DOI: 10.1074/jbc.m102387200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have purified and identified a 32-kDa protein interacting with the Dbl oncogene homology domain of mSos1(Sos-DH) from rat brains by glutathione S-transferase-Sos-DH affinity chromatography. Peptide sequencing revealed that the protein is identical to a positive regulatory E subunit (V-ATPase E) of a vacuolar H(+)-ATPase, which is responsible for acidification of endosome and alkalinization of intracellular pH. The interaction between V-ATPase E and Sos-DH was confirmed by yeast two-hybrid assay. A coimmunoprecipitation assay demonstrated that a V-ATPase E protein physiologically bound to mSos1, and the protein was colocalized with mSos1 in the cytoplasm, as determined by immunohistochemistry. mSos1 was found in the early endosome fraction together with V-ATPase E and Rac1, suggesting the functional involvement of mSos1/V-ATPase E complexes in the Rac1 activity at endosomes. Overexpression of V-ATPase E in COS cells enhanced the ability of mSos1 to promote the guanine nucleotide exchange activity for Rac1 and stimulated the kinase activity of Jun kinase, a downstream target of Rac1. Thus, the data indicate that V-ATPase E may participate in the regulation of the mSos1-dependent Rac1 signaling pathway involved in growth factor receptor-mediated cell growth control.
Collapse
Affiliation(s)
- K Miura
- Science Applications International Corporation, SAIC Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|