101
|
Memel M, Wank AA, Ryan L, Grilli MD. The relationship between episodic detail generation and anterotemporal, posteromedial, and hippocampal white matter tracts. Cortex 2019; 123:124-140. [PMID: 31783222 DOI: 10.1016/j.cortex.2019.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/23/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022]
Abstract
Episodic details populate autobiographical memories with vivid representations of people, objects, and event happenings, and they link events to a specific time and place. Episodic detail generation is believed to be a function of medial temporal lobe (MTL)-cortical interaction, but much remains unclear about how this retrieval process unfolds. In the present study, we combined an autobiographical interview and diffusion magnetic resonance imaging to investigate the relationships of two types of episodic detail, namely details about entities of an event (people and objects) or "event elements" and details about spatiotemporal context, to the integrity of anterotemporal (uncinate fasciculus; UF) and posteromedial (cingulum bundle; CB) cortical pathways. We also measured the relationships of these detail types to the fornix, and the relationship between non-episodic details and these tracts. We found that only episodic detail generation was significantly related to cortical and hippocampal pathways. Notably, the UF was more strongly related to event element details than it was to spatiotemporal context details. In contrast, CB was significantly and similarly related to the generation of event element and spatiotemporal context details (when not controlling for age and global diffusion). The fornix was also significantly related to both types of episodic detail, although the relationship to spatiotemporal context was particularly robust. These findings support the idea that anterotemporal cortical regions are related to the retrieval of episodic details about the entities that are incorporated into autobiographical events. Our findings also align with the notion that posteromedial and hippocampal-cortical involvement support the retrieval of episodic details.
Collapse
Affiliation(s)
- Molly Memel
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Aubrey A Wank
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Lee Ryan
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA; McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Matthew D Grilli
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA; McKnight Brain Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
102
|
Becker N, Kalpouzos G, Salami A, Laukka EJ, Brehmer Y. Structure-function associations of successful associative encoding. Neuroimage 2019; 201:116020. [DOI: 10.1016/j.neuroimage.2019.116020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 11/25/2022] Open
|
103
|
Liuzzi AG, Bruffaerts R, Vandenberghe R. The medial temporal written word processing system. Cortex 2019; 119:287-300. [DOI: 10.1016/j.cortex.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/14/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
|
104
|
Higher CSF Tau Levels Are Related to Hippocampal Hyperactivity and Object Mnemonic Discrimination in Older Adults. J Neurosci 2019; 39:8788-8797. [PMID: 31541019 PMCID: PMC6820211 DOI: 10.1523/jneurosci.1279-19.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 01/03/2023] Open
Abstract
Mnemonic discrimination, the ability to distinguish similar events in memory, relies on subregions in the human medial temporal lobes (MTLs). Tau pathology is frequently found within the MTL of older adults and therefore likely to affect mnemonic discrimination, even in healthy older individuals. The MTL subregions that are known to be affected early by tau pathology, the perirhinal-transentorhinal region (area 35) and the anterior-lateral entorhinal cortex (alEC), have recently been implicated in the mnemonic discrimination of objects rather than scenes. Here we used an object-scene mnemonic discrimination task in combination with fMRI recordings and analyzed the relationship between subregional MTL activity, memory performance, and levels of total and phosphorylated tau as well as Aβ42/40 ratio in CSF. We show that activity in alEC was associated with mnemonic discrimination of similar objects but not scenes in male and female cognitively unimpaired older adults. Importantly, CSF tau levels were associated with increased fMRI activity in the hippocampus, and both increased hippocampal activity as well as tau levels were associated with mnemonic discrimination of objects, but again not scenes. This suggests that dysfunction of the alEC-hippocampus object mnemonic discrimination network might be a marker for tau-related cognitive decline.SIGNIFICANCE STATEMENT Subregions in the human medial temporal lobe are critically involved in episodic memory and, at the same time, affected by tau pathology. Impaired object mnemonic discrimination performance as well as aberrant activity within the entorhinal-hippocampal circuitry have been reported in earlier studies involving older individuals, but it has thus far remained elusive whether and how tau pathology is implicated in this specific impairment. Using task-related fMRI in combination with measures of tau pathology in CSF, we show that measures of tau pathology are associated with increased hippocampal activity and reduced mnemonic discrimination of similar objects but not scenes. This suggests that object mnemonic discrimination tasks could be promising markers for tau-related cognitive decline.
Collapse
|
105
|
Hogeveen J, Krug MK, Geddert RM, Ragland JD, Solomon M. Compensatory Hippocampal Recruitment Supports Preserved Episodic Memory in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:97-109. [PMID: 31676207 DOI: 10.1016/j.bpsc.2019.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND The degree to which individuals with autism spectrum disorder (ASD) evidence impairments in episodic memory relative to their typically developing (TD) counterparts remains unclear. According to a prominent view, ASD is associated with deficits in encoding associations between items and recollecting precise context details. Here, we evaluated behavioral and neural evidence for this impaired relational binding hypothesis using a task involving relational encoding and recollection during functional magnetic resonance imaging. METHODS Adolescents and young adults (nASD = 47, nTD = 60) performed the Relational and Item-Specific Encoding task during functional magnetic resonance imaging, including item and associative recognition testing. We modeled functional recruitment within the medial temporal lobes (MTLs), and connectivity between MTL and the posterior medial (PM) network thought to underlie relational memory. The impaired relational binding model would predict a behavioral deficit driven by aberrant recruitment and connectivity of MTL and the PM network. RESULTS The ASD and TD groups showed indistinguishable item and associative recognition performance. During relational encoding, the ASD group demonstrated increased hippocampal recruitment, and decreased connectivity between MTL and PM regions relative to the TD group. Within ASD, hippocampal recruitment and MTL-PM connectivity were inversely correlated. CONCLUSIONS The lack of a behavioral deficit in ASD does not support the impaired relational binding hypothesis. Instead, the current data suggest that increased recruitment of the hippocampus compensates for decreased MTL-PM connectivity to support preserved episodic memory in ASD. These findings suggest a compensatory neurodevelopmental mechanism that may support preserved cognitive domains in ASD: local hyperrecruitment may offset connectivity aberrations in individuals with ASD relative to TD subjects.
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico; Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, New Mexico.
| | - Marie K Krug
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California
| | - Raphael M Geddert
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - J Daniel Ragland
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; Imaging Research Center, University of California, Davis, Davis, California
| | - Marjorie Solomon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California; Imaging Research Center, University of California, Davis, Davis, California
| |
Collapse
|
106
|
Nilssen ES, Doan TP, Nigro MJ, Ohara S, Witter MP. Neurons and networks in the entorhinal cortex: A reappraisal of the lateral and medial entorhinal subdivisions mediating parallel cortical pathways. Hippocampus 2019; 29:1238-1254. [PMID: 31408260 DOI: 10.1002/hipo.23145] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022]
Abstract
In this review, we aim to reappraise the organization of intrinsic and extrinsic networks of the entorhinal cortex with a focus on the concept of parallel cortical connectivity streams. The concept of two entorhinal areas, the lateral and medial entorhinal cortex, belonging to two parallel input-output streams mediating the encoding and storage of respectively what and where information hinges on the claim that a major component of their cortical connections is with the perirhinal cortex and postrhinal or parahippocampal cortex in, respectively, rodents or primates. In this scenario, the lateral entorhinal cortex and the perirhinal cortex are connectionally associated and likewise the postrhinal/parahippocampal cortex and the medial entorhinal cortex are partners. In contrast, here we argue that the connectivity matrix emphasizes the potential of substantial integration of cortical information through interactions between the two entorhinal subdivisions and between the perirhinal and postrhinal/parahippocampal cortices, but most importantly through a new observation that the postrhinal/parahippocampal cortex projects to both lateral and medial entorhinal cortex. We suggest that entorhinal inputs provide the hippocampus with high-order complex representations of the external environment, its stability, as well as apparent changes either as an inherent feature of a biological environment or as the result of navigating the environment. This thus indicates that the current connectional model of the parahippocampal region as part of the medial temporal lobe memory system needs to be revised.
Collapse
Affiliation(s)
- Eirik S Nilssen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Thanh P Doan
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Maximiliano J Nigro
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Shinya Ohara
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
107
|
Schwarb H, Johnson CL, Dulas MR, McGarry MDJ, Holtrop JL, Watson PD, Wang JX, Voss JL, Sutton BP, Cohen NJ. Structural and Functional MRI Evidence for Distinct Medial Temporal and Prefrontal Roles in Context-dependent Relational Memory. J Cogn Neurosci 2019; 31:1857-1872. [PMID: 31393232 DOI: 10.1162/jocn_a_01454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Declarative memory is supported by distributed brain networks in which the medial-temporal lobes (MTLs) and pFC serve as important hubs. Identifying the unique and shared contributions of these regions to successful memory performance is an active area of research, and a growing literature suggests that these structures often work together to support declarative memory. Here, we present data from a context-dependent relational memory task in which participants learned that individuals belonged in a single room in each of two buildings. Room assignment was consistent with an underlying contextual rule structure in which male and female participants were assigned to opposite sides of a building and the side assignment switched between buildings. In two experiments, neural correlates of performance on this task were evaluated using multiple neuroimaging tools: diffusion tensor imaging (Experiment 1), magnetic resonance elastography (Experiment 1), and functional MRI (Experiment 2). Structural and functional data from each individual modality provided complementary and consistent evidence that the hippocampus and the adjacent white matter tract (i.e., fornix) supported relational memory, whereas the ventromedial pFC/OFC (vmPFC/OFC) and the white matter tract connecting vmPFC/OFC to MTL (i.e., uncinate fasciculus) supported memory-guided rule use. Together, these data suggest that MTL and pFC structures differentially contribute to and support contextually guided relational memory.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joel L Voss
- Northwestern University, Feinberg School of Medicine
| | | | | |
Collapse
|
108
|
Bellmund JLS, Deuker L, Doeller CF. Mapping sequence structure in the human lateral entorhinal cortex. eLife 2019; 8:e45333. [PMID: 31383256 PMCID: PMC6684227 DOI: 10.7554/elife.45333] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
Remembering event sequences is central to episodic memory and presumably supported by the hippocampal-entorhinal region. We previously demonstrated that the hippocampus maps spatial and temporal distances between events encountered along a route through a virtual city (Deuker et al., 2016), but the content of entorhinal mnemonic representations remains unclear. Here, we demonstrate that multi-voxel representations in the anterior-lateral entorhinal cortex (alEC) - the human homologue of the rodent lateral entorhinal cortex - specifically reflect the temporal event structure after learning. Holistic representations of the sequence structure related to memory recall and the timeline of events could be reconstructed from entorhinal multi-voxel patterns. Our findings demonstrate representations of temporal structure in the alEC; dovetailing with temporal information carried by population signals in the lateral entorhinal cortex of navigating rodents and alEC activations during temporal memory retrieval. Our results provide novel evidence for the role of the alEC in representing time for episodic memory.
Collapse
Affiliation(s)
- Jacob LS Bellmund
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Kavli Institute for Systems NeuroscienceNorwegian University of Science and TechnologyTrondheimNorway
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenNetherlands
| | - Lorena Deuker
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of PsychologyRuhr University BochumBochumGermany
| | - Christian F Doeller
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Kavli Institute for Systems NeuroscienceNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
109
|
Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ. Neuroimaging Impaired Response Inhibition and Salience Attribution in Human Drug Addiction: A Systematic Review. Neuron 2019; 98:886-903. [PMID: 29879391 DOI: 10.1016/j.neuron.2018.03.048] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022]
Abstract
The impaired response inhibition and salience attribution (iRISA) model proposes that impaired response inhibition and salience attribution underlie drug seeking and taking. To update this model, we systematically reviewed 105 task-related neuroimaging studies (n > 15/group) published since 2010. Results demonstrate specific impairments within six large-scale brain networks (reward, habit, salience, executive, memory, and self-directed networks) during drug cue exposure, decision making, inhibitory control, and social-emotional processing. Addicted individuals demonstrated increased recruitment of these networks during drug-related processing but a blunted response during non-drug-related processing, with the same networks also being implicated during resting state. Associations with real-life drug use, relapse, therapeutic interventions, and the relevance to initiation of drug use during adolescence support the clinical relevance of the results. Whereas the salience and executive networks showed impairments throughout the addiction cycle, the reward network was dysregulated at later stages of abuse. Effects were similar in alcohol, cannabis, and stimulant addiction.
Collapse
Affiliation(s)
- Anna Zilverstand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna S Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
110
|
Shields GS, McCullough AM, Ritchey M, Ranganath C, Yonelinas AP. Stress and the medial temporal lobe at rest: Functional connectivity is associated with both memory and cortisol. Psychoneuroendocrinology 2019; 106:138-146. [PMID: 30981087 PMCID: PMC6615559 DOI: 10.1016/j.psyneuen.2019.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 11/27/2022]
Abstract
When acute stress is experienced immediately after memory encoding (i.e., post-encoding stress) it can significantly impact subsequent memory for that event. For example, recent work has suggested that post-encoding stress occurring in a different context from encoding impairs memory. However, the neural processes underlying these effects are poorly understood. We aimed to expand this understanding by conducting an analysis of resting functional connectivity in the period following post-encoding stress that occurred in a different context than encoding, using seed regions in the medial temporal lobes known for their roles in memory. In the current study of 44 males randomized to stress (n = 23) or control (n = 21) groups, we found that stress increased cortisol, impaired recollection of neutral materials, and altered functional connectivity with medial temporal lobe regions. Although stress did not significantly alter hippocampus-amygdala functional connectivity, relative to participants in the control group, participants in the post-encoding stress group showed lower functional connectivity between the hippocampus and a region with a peak in the superior temporal gyrus. Across participants in both groups, functional connectivity between these regions was related to greater increases in cortisol, and it was also inversely related to recollection of neutral materials. In contrast, the stress group showed greater parahippocampal cortex functional connectivity with a region in the left middle temporal gyrus than the control group. Moreover, greater functional connectivity between the parahippocampal cortex and the observed cluster in the middle temporal gyrus was associated with greater cortisol changes from pre- to post-manipulation, but was not related to differences in memory. The results show that post-encoding stress can alter the resting-state functional connectivity between the medial temporal lobe and neocortex, which may help explain how stress impacts memory.
Collapse
Affiliation(s)
- Grant S. Shields
- Department of Psychology and Center for Neuroscience,
University of California, Davis, USA
| | - Andrew M. McCullough
- Department of Psychology and Center for Neuroscience,
University of California, Davis, USA
| | | | - Charan Ranganath
- Department of Psychology and Center for Neuroscience,
University of California, Davis, USA
| | - Andrew P. Yonelinas
- Department of Psychology and Center for Neuroscience,
University of California, Davis, USA
| |
Collapse
|
111
|
Ho NSP, Wang X, Vatansever D, Margulies DS, Bernhardt B, Jefferies E, Smallwood J. Individual variation in patterns of task focused, and detailed, thought are uniquely associated within the architecture of the medial temporal lobe. Neuroimage 2019; 202:116045. [PMID: 31349068 DOI: 10.1016/j.neuroimage.2019.116045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/26/2019] [Accepted: 07/21/2019] [Indexed: 11/29/2022] Open
Abstract
Understanding the neural processes that support different patterns of ongoing thought is an important goal of contemporary cognitive neuroscience. Early accounts assumed the default mode network (DMN) was especially important for conscious attention to task-irrelevant/personally relevant materials. However, simple task-negative accounts of the DMN are incompatible with more recent evidence that neural patterns within the system can be related to ongoing processing during active task states. To better characterise the contribution of the DMN to ongoing thought, we conducted a cross-sectional analysis of the relationship between the structural organisation of the brain, as indexed by cortical thickness, and patterns of experience, identified using experience sampling in the cognitive laboratory. In a sample of 181 healthy individuals (mean age 20 years, 117 females) we identified an association between cortical thickness in the anterior parahippocampus and patterns of task focused thought, as well as an adjacent posterior region in which cortical thickness was associated with experiences with higher levels of subjective detail. Both regions fell within regions of medial temporal lobe associated with the DMN, yet varied in their functional connectivity: the time series of signals in the 'on-task' region were more correlated with systems important for external task-relevant processing (as determined by meta-analysis) including the dorsal and ventral attention, and fronto-parietal networks. In contrast, connectivity within the region linked to subjective 'detail' was more correlated with the medial core of the DMN (posterior cingulate and the medial pre-frontal cortex) and regions of primary visual cortex. These results provide cross-sectional evidence that confirms a role of the DMN in how detailed experiences are and so provide further evidence that the role of this system in experience is not simply task-irrelevant. Our results also highlight processes within the medial temporal lobe, and their interactions with other regions of cortex, as important in determining multiple aspects of how human cognition unfolds.
Collapse
Affiliation(s)
| | - Xiuyi Wang
- Department of Psychology, University of York, England, UK
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, PR China
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Boris Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
112
|
Abstract
The influence of emotion on association-memory is often attributed to arousal, but negative stimuli are typically used to test for these effects. While prior studies of negative emotion on association-memory have found impairments, theories suggest that positive emotion may have a distinct effect on memory, and may lead to enhanced association-memory. Here we tested participants' memory for pairs of positive and neutral words using cued recall, supplemented with a mathematical modeling approach designed to disentangle item- versus association-memory effects that may otherwise confound cued-recall performance. In our main experiment, as well as in additional supplemental experiments, we consistently found enhanced association-memory due to positive emotion. Interestingly, we observed enhanced association-memory in pairs composed of two positive words, but not in pairings of one positive and one neutral word, indicating that this enhancement may only when a sufficient amount of positive emotion is present. These results provide further evidence that positive information is processed differently than negative and that, when examining association formation, valence as well as arousal must be considered. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Christopher R. Madan
- Department of Psychology, Boston College, Chestnut Hill,
MA, USA
- Department of Psychology, University of Alberta, Edmonton,
AB, Canada
- School of Psychology, University of Nottingham, Nottingham,
UK
| | | | | |
Collapse
|
113
|
Abstract
Increasing evidence indicates that the subjective experience of recollection is diminished in autism spectrum disorder (ASD) compared to neurotypical individuals. The neurocognitive basis of this difference in how past events are re-experienced has been debated and various theoretical accounts have been proposed to date. Although each existing theory may capture particular features of memory in ASD, recent research questions whether any of these explanations are alone sufficient or indeed fully supported. This review first briefly considers the cognitive neuroscience of how episodic recollection operates in the neurotypical population, informing predictions about the encoding and retrieval mechanisms that might function atypically in ASD. We then review existing research on recollection in ASD, which has often not distinguished between different theoretical explanations. Recent evidence suggests a distinct difficulty engaging recollective retrieval processes, specifically the ability to consciously reconstruct and monitor a past experience, which is likely underpinned by altered functional interactions between neurocognitive systems rather than brain region-specific or process-specific dysfunction. This integrative approach serves to highlight how memory research in ASD may enhance our understanding of memory processes and networks in the typical brain. We make suggestions for future research that are important for further specifying the neurocognitive basis of episodic recollection in ASD and linking such difficulties to social developmental and educational outcomes.
Collapse
|
114
|
Sheldon S, Cool K, El-Asmar N. The processes involved in mentally constructing event- and scene-based autobiographical representations. JOURNAL OF COGNITIVE PSYCHOLOGY 2019. [DOI: 10.1080/20445911.2019.1614004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Signy Sheldon
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Kelly Cool
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Nadim El-Asmar
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
115
|
Barsegyan A, Mirone G, Ronzoni G, Guo C, Song Q, van Kuppeveld D, Schut EHS, Atsak P, Teurlings S, McGaugh JL, Schubert D, Roozendaal B. Glucocorticoid enhancement of recognition memory via basolateral amygdala-driven facilitation of prelimbic cortex interactions. Proc Natl Acad Sci U S A 2019; 116:7077-7082. [PMID: 30877244 PMCID: PMC6452745 DOI: 10.1073/pnas.1901513116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extensive evidence indicates that the basolateral amygdala (BLA) interacts with other brain regions in mediating stress hormone and emotional arousal effects on memory consolidation. Brain activation studies have shown that arousing conditions lead to the activation of large-scale neural networks and several functional connections between brain regions beyond the BLA. Whether such distal interactions on memory consolidation also depend on BLA activity is not as yet known. We investigated, in male Sprague-Dawley rats, whether BLA activity enables prelimbic cortex (PrL) interactions with the anterior insular cortex (aIC) and dorsal hippocampus (dHPC) in regulating glucocorticoid effects on different components of object recognition memory. The glucocorticoid receptor (GR) agonist RU 28362 administered into the PrL, but not infralimbic cortex, immediately after object recognition training enhanced 24-hour memory of both the identity and location of the object via functional interactions with the aIC and dHPC, respectively. Importantly, posttraining inactivation of the BLA by the noradrenergic antagonist propranolol abolished the effect of GR agonist administration into the PrL on memory enhancement of both the identity and location of the object. BLA inactivation by propranolol also blocked the effect of GR agonist administration into the PrL on inducing changes in neuronal activity within the aIC and dHPC during the postlearning consolidation period as well as on structural changes in spine morphology assessed 24 hours later. These findings provide evidence that BLA noradrenergic activity enables functional interactions between the PrL and the aIC and dHPC in regulating stress hormone and emotional arousal effects on memory.
Collapse
Affiliation(s)
- Areg Barsegyan
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Gabriele Mirone
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Giacomo Ronzoni
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Chunan Guo
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Qi Song
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Daan van Kuppeveld
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Evelien H S Schut
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Piray Atsak
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Selina Teurlings
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - James L McGaugh
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697-3800;
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
116
|
Poverty and self-regulation: Connecting psychosocial processes, neurobiology, and the risk for psychopathology. Compr Psychiatry 2019; 90:52-64. [PMID: 30711814 DOI: 10.1016/j.comppsych.2018.12.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 02/08/2023] Open
Abstract
In the United States, over 40% of youth under the age of 18 live at or near the federal poverty line. Several decades of research have established clear links between exposure to child poverty and the development of psychopathology, yet the mechanisms that convey this risk remain unclear. We review research in developmental science and other allied disciplines that identify self-regulation as a critical factor that may influence the development of psychopathology after exposure to poverty. We then connect this work with neurobiological research in an effort to further inform these associations. We propose a starting framework focused on the neural correlates of self-regulation, and discuss recent work relating poverty to alterations in brain regions related to self-regulation. We close this review by highlighting important considerations for future research on poverty/socioeconomic status, neurobiology, self-regulation, and the risks related to the development of negative mental health outcomes.
Collapse
|
117
|
Cooper RA, Ritchey M. Cortico-hippocampal network connections support the multidimensional quality of episodic memory. eLife 2019; 8:45591. [PMID: 30900990 PMCID: PMC6450667 DOI: 10.7554/elife.45591] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022] Open
Abstract
Episodic memories reflect a bound representation of multimodal features that can be reinstated with varying precision. Yet little is known about how brain networks involved in memory, including the hippocampus and posterior-medial (PM) and anterior-temporal (AT) systems, interact to support the quality and content of recollection. Participants learned color, spatial, and emotion associations of objects, later reconstructing the visual features using a continuous color spectrum and 360-degree panorama scenes. Behaviorally, dependencies in memory were observed for the gist but not precision of event associations. Supporting this integration, hippocampus, AT, and PM regions showed increased connectivity and reduced modularity during retrieval compared to encoding. These inter-network connections tracked a multidimensional, objective measure of memory quality. Moreover, distinct patterns of connectivity tracked item color and spatial memory precision. These findings demonstrate how hippocampal-cortical connections reconfigure during episodic retrieval, and how such dynamic interactions might flexibly support the multidimensional quality of remembered events.
Collapse
Affiliation(s)
- Rose A Cooper
- Department of Psychology, Boston College, Boston, United States
| | - Maureen Ritchey
- Department of Psychology, Boston College, Boston, United States
| |
Collapse
|
118
|
Jun S, Kim JS, Chung CK. Direct Stimulation of Human Hippocampus During Verbal Associative Encoding Enhances Subsequent Memory Recollection. Front Hum Neurosci 2019; 13:23. [PMID: 30804768 PMCID: PMC6371751 DOI: 10.3389/fnhum.2019.00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/18/2019] [Indexed: 11/16/2022] Open
Abstract
Previous studies have reported conflicting results regarding the effect of direct electrical stimulation of the human hippocampus on memory performance. A major function of the hippocampus is to form associations between individual elements of experience. However, the effect of direct hippocampal stimulation on associative memory remains largely inconclusive, with most evidence coming from studies employing non-invasive stimulation. Here, we therefore tested the hypothesis that direct electrical stimulation of the hippocampus specifically enhances hippocampal-dependent associative memory. To test this hypothesis, we recruited surgical patients with implanted subdural electrodes to perform a word pair memory task during which the hippocampus was stimulated. Our results indicate that stimulation of the hippocampus during encoding helped to build strong associative memories and enhanced recollection in subsequent trials. Moreover, stimulation significantly increased theta power in the lateral middle temporal cortex during successful memory encoding. Overall, our findings indicate that hippocampal stimulation positively impacts performance during a word pair memory task, suggesting that successful memory encoding involves the temporal cortex, which may act together with the hippocampus.
Collapse
Affiliation(s)
- Soyeon Jun
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - June Sic Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea.,Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
119
|
Sheldon S, Fenerci C, Gurguryan L. A Neurocognitive Perspective on the Forms and Functions of Autobiographical Memory Retrieval. Front Syst Neurosci 2019; 13:4. [PMID: 30760984 PMCID: PMC6361758 DOI: 10.3389/fnsys.2019.00004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
Autobiographical memory retrieval involves constructing mental representations of personal past episodes by associating together an array of details related to the retrieved event. This construction process occurs flexibly so that the event details can be associated together in different ways during retrieval. Here, we propose that differences in how this association occurs support a division in autobiographical remembering. We first review theories of autobiographical memory organization that suggest that episodic details of an experience are processed along a gradient of abstraction. This organization allows for the same autobiographical event to be recalled as either a conceptualized or perceptually-based episodic memory. We then use neuroimaging evidence to show how this division within episodic autobiographical memory is also present in the brain, both at a network level and within the hippocampus. Specifically, we suggest that the anterior and posterior hippocampus are obligatorily tuned towards constructing conceptual vs. perceptual episodic representations of autobiographical memories. Finally, we discuss the directive purpose of this proposed division of episodic remembering by reviewing decision scenarios that benefit from recalling the past as a conceptual vs. a perceptual episode. Conceptual remembering is useful to guide ambiguous decisions that have yet to be encountered whereas perceptual remembering is useful to guide decisions for well-structured tasks that have been previously experienced. We emphasize that the ability to shift between conceptual and perceptual forms of remembering, by virtue of hippocampal specialization, during decision-making and other memory-guided actions is the key to adaptive behavior.
Collapse
Affiliation(s)
- Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Can Fenerci
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Lauri Gurguryan
- Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
120
|
Kim S, Voss JL. Large-scale network interactions supporting item-context memory formation. PLoS One 2019; 14:e0210167. [PMID: 30629666 PMCID: PMC6328164 DOI: 10.1371/journal.pone.0210167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/18/2018] [Indexed: 11/19/2022] Open
Abstract
Episodic memory is thought to involve functional interactions of large-scale brain networks that dynamically reconfigure depending on task demands. Although the hippocampus and closely related structures have been implicated, little is known regarding how large-scale and distributed networks support different memory formation demands. We investigated patterns of interactions among distributed networks while human individuals formed item-context memories for two stimulus categories. Subjects studied object-scene and object-location associations in different fMRI sessions. Stimulus-responsive brain regions were organized based on their fMRI interconnectivity into networks and modules using probabilistic module-detection algorithms to maximize measurement of individual differences in modular structure. Although there was a great deal of consistency in the modular structure between object-scene and object-location memory formation, there were also significant differences. Interactions among functional modules predicted later memory accuracy, explaining substantial portions of variability in memory formation success. Increased interactivity of modules associated with internal thought and anti-correlation of these modules with those related to stimulus-evoked processing robustly predicted object-scene memory, whereas decreased interactivity of stimulus-evoked processing modules predicted object-location memory. Assessment of individual differences in network organization therefore allowed identification of distinct patterns of functional interactions that robustly predicted memory formation. This highlights large-scale brain network interactions for memory formation and indicates that although networks are largely robust to task demands, reconfiguration nonetheless occurs to support distinct memory formation demands.
Collapse
Affiliation(s)
- Sungshin Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea
- Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Joel L. Voss
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, United States of America
| |
Collapse
|
121
|
Fields C, Glazebrook JF. A mosaic of Chu spaces and Channel Theory II: applications to object identification and mereological complexity. J EXP THEOR ARTIF IN 2018. [DOI: 10.1080/0952813x.2018.1544285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - James F. Glazebrook
- Department of Mathematics and Computer Science, Eastern Illinois University, Charleston, IL, USA
- Adjunct Faculty, Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| |
Collapse
|
122
|
Inhoff MC, Libby LA, Noguchi T, Love BC, Ranganath C. Dynamic integration of conceptual information during learning. PLoS One 2018; 13:e0207357. [PMID: 30427917 PMCID: PMC6235360 DOI: 10.1371/journal.pone.0207357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/30/2018] [Indexed: 01/20/2023] Open
Abstract
The development and application of concepts is a critical component of cognition. Although concepts can be formed on the basis of simple perceptual or semantic features, conceptual representations can also capitalize on similarities across feature relationships. By representing these types of higher-order relationships, concepts can simplify the learning problem and facilitate decisions. Despite this, little is known about the neural mechanisms that support the construction and deployment of these kinds of higher-order concepts during learning. To address this question, we combined a carefully designed associative learning task with computational model-based functional magnetic resonance imaging (fMRI). Participants were scanned as they learned and made decisions about sixteen pairs of cues and associated outcomes. Associations were structured such that individual cues shared feature relationships, operationalized as shared patterns of cue pair-outcome associations. In order to capture the large number of possible conceptual representational structures that participants might employ and to evaluate how conceptual representations are used during learning, we leveraged a well-specified Bayesian computational model of category learning [1]. Behavioral and model-based results revealed that participants who displayed a tendency to link experiences in memory benefitted from faster learning rates, suggesting that the use of the conceptual structure in the task facilitated decisions about cue pair-outcome associations. Model-based fMRI analyses revealed that trial-by-trial integration of cue information into higher-order conceptual representations was supported by an anterior temporal (AT) network of regions previously implicated in representing complex conjunctions of features and meaning-based information.
Collapse
Affiliation(s)
- Marika C. Inhoff
- Department of Psychology, University of California at Davis, Davis, CA, United States of America
| | - Laura A. Libby
- Center for Neuroscience, University of California at Davis, Davis, CA, United States of America
| | - Takao Noguchi
- Department of Experimental Psychology, University College London, London, United Kingdom
| | - Bradley C. Love
- Department of Experimental Psychology, University College London, London, United Kingdom
- Alan Turing Institute, Kings Cross, London, United Kingdom
| | - Charan Ranganath
- Department of Psychology, University of California at Davis, Davis, CA, United States of America
- Center for Neuroscience, University of California at Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
123
|
Libby LA, Reagh ZM, Bouffard NR, Ragland JD, Ranganath C. The Hippocampus Generalizes across Memories that Share Item and Context Information. J Cogn Neurosci 2018; 31:24-35. [PMID: 30240315 DOI: 10.1162/jocn_a_01345] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Episodic memory is known to rely on the hippocampus, but how the hippocampus organizes different episodes to permit their subsequent retrieval remains controversial. One major area of debate hinges on a discrepancy between two hypothesized roles of the hippocampus: differentiating between similar events to reduce interference and assigning similar representations to events that share overlapping items and contextual information. Here, we used multivariate analyses of activity patterns measured with fMRI to characterize how the hippocampus distinguishes between memories based on similarity at the level of items and/or context. Hippocampal activity patterns discriminated between events that shared either item or context information but generalized across events that shared similar item-context associations. The current findings provide evidence that, whereas the hippocampus can reduce mnemonic interference by separating events that generalize along a single attribute dimension, overlapping hippocampal codes may support memory for events with overlapping item-context relations. This lends new insights into the way the hippocampus may balance multiple mnemonic operations in adaptively guiding behavior.
Collapse
|
124
|
Ranganath C. Time, memory, and the legacy of Howard Eichenbaum. Hippocampus 2018; 29:146-161. [DOI: 10.1002/hipo.23007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Charan Ranganath
- Center for Neuroscience and Department of Psychology University of California at Davis Davis California
| |
Collapse
|
125
|
Busquets-Garcia A, Oliveira da Cruz JF, Terral G, Pagano Zottola AC, Soria-Gómez E, Contini A, Martin H, Redon B, Varilh M, Ioannidou C, Drago F, Massa F, Fioramonti X, Trifilieff P, Ferreira G, Marsicano G. Hippocampal CB1 Receptors Control Incidental Associations. Neuron 2018; 99:1247-1259.e7. [DOI: 10.1016/j.neuron.2018.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 03/16/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
|
126
|
Putcha D, McGinnis SM, Brickhouse M, Wong B, Sherman JC, Dickerson BC. Executive dysfunction contributes to verbal encoding and retrieval deficits in posterior cortical atrophy. Cortex 2018; 106:36-46. [PMID: 29864594 PMCID: PMC6120771 DOI: 10.1016/j.cortex.2018.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/30/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
Posterior Cortical Atrophy (PCA) is a neurodegenerative syndrome that typically presents with predominant visual and spatial impairments. The early diagnostic criteria specify a relative sparing of functioning in other cognitive domains, including executive functions, language, and episodic memory, yet little is known of the cognitive profile of PCA as the disease progresses. Studies of healthy adults and other posterior cortical lesion patients implicate posterior parietal and temporal regions in executive functions of working memory and verbal fluency, both of which may impact episodic memory. Relatively little has been reported about these cognitive functions in PCA, and to our knowledge there has not yet been a study of the impact of such deficits on memory function in PCA. We sought to examine PCA patients' performance on tests of executive function and the associations to verbal episodic memory encoding, storage, and delayed recall. Nineteen individuals with PCA underwent neuropsychological and neuroimaging evaluations as part of a comprehensive clinical assessment. We developed a novel consensus rating method-the Neuropsychological Assessment Rating (NAR) scale-to grade the severity of test performance impairments in selected cognitive domains and subdomains. Hypothesis-driven analyses demonstrated relative deficits in working memory and lexical-semantic retrieval. Preliminary analyses suggested associations between both deficits and atrophy in the left-hemisphere inferior parietal lobule. These executive deficits were also associated with impairments in verbal encoding and delayed recall, but not with recognition discriminability. We conclude that deficits in verbal executive functions impact verbal episodic memory in PCA. Our findings also support theories emphasizing the role of the posterior parietal cortex in supporting executive and lexical-semantic contributions to verbal episodic memory.
Collapse
Affiliation(s)
- Deepti Putcha
- Psychology Assessment Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Scott M McGinnis
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham & Women's Hospital, Boston, MA, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Janet C Sherman
- Psychology Assessment Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
127
|
The Timing of Melatonin Administration Is Crucial for Its Antidepressant-Like Effect in Mice. Int J Mol Sci 2018; 19:ijms19082278. [PMID: 30081472 PMCID: PMC6121277 DOI: 10.3390/ijms19082278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Melatonin is synthesized by the pineal gland with a circadian rhythm in synchrony with the environmental light/dark cycle. A gradual increase in circulating levels of melatonin occur after lights off, reaching its maximum around the middle of the dark phase. Agonists of melatonin receptors have proved effectiveness as antidepressants in clinical trials. However, there is contradictory evidence about the potential antidepressant effect of melatonin itself. Herein we studied melatonin administration in mice at two zeitgeber times (ZT; ZT = 0 lights on; 12:12 L/D), one hour before the beginning (ZT11) and at the middle (ZT18) of the dark phase after either a single or a three-dose protocol. Behavioral despair was assessed through a forced-swimming test (FST) or a tail suspension test (TST), at ZT18.5. A single dose of 4 mg/kg melatonin at ZT11 was effective to reduce the immobility time in both tests. However, acute administration of melatonin at ZT18 was not effective in mice subjected to FST, and a higher dose (16 mg/kg) was required to reduce immobility time in the TST. A three-dose administration protocol of 16 mg/kg melatonin (ZT18, ZT11, and ZT18) significantly reduced immobility time in FST. Data indicate that the timely administration of melatonin could improve its antidepressant-like effect.
Collapse
|
128
|
Coelho CAO, Ferreira TL, Kramer-Soares JC, Sato JR, Oliveira MGM. Network supporting contextual fear learning after dorsal hippocampal damage has increased dependence on retrosplenial cortex. PLoS Comput Biol 2018; 14:e1006207. [PMID: 30086129 PMCID: PMC6097702 DOI: 10.1371/journal.pcbi.1006207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/17/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023] Open
Abstract
Hippocampal damage results in profound retrograde, but no anterograde amnesia in contextual fear conditioning (CFC). Although the content learned in the latter have been discussed, alternative regions supporting CFC learning were seldom proposed and never empirically addressed. Here, we employed network analysis of pCREB expression quantified from brain slices of rats with dorsal hippocampal lesion (dHPC) after undergoing CFC session. Using inter-regional correlations of pCREB-positive nuclei between brain regions, we modelled functional networks using different thresholds. The dHPC network showed small-world topology, equivalent to SHAM (control) network. However, diverging hubs were identified in each network. In a direct comparison, hubs in both networks showed consistently higher centrality values compared to the other network. Further, the distribution of correlation coefficients was different between the groups, with most significantly stronger correlation coefficients belonging to the SHAM network. These results suggest that dHPC network engaged in CFC learning is partially different, and engage alternative hubs. We next tested if pre-training lesions of dHPC and one of the new dHPC network hubs (perirhinal, Per; or disgranular retrosplenial, RSC, cortices) would impair CFC. Only dHPC-RSC, but not dHPC-Per, impaired CFC. Interestingly, only RSC showed a consistently higher centrality in the dHPC network, suggesting that the increased centrality reflects an increased functional dependence on RSC. Our results provide evidence that, without hippocampus, the RSC, an anatomically central region in the medial temporal lobe memory system might support CFC learning and memory.
Collapse
Affiliation(s)
- Cesar A. O. Coelho
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, São Paulo, Brazil
| | - Tatiana L. Ferreira
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, UFABC, São Bernardo do Campo, São Paulo, Brazil
| | - Juliana C. Kramer-Soares
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, São Paulo, Brazil
| | - João R. Sato
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, UFABC, São Bernardo do Campo, São Paulo, Brazil
| | - Maria Gabriela M. Oliveira
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, São Paulo, Brazil
| |
Collapse
|
129
|
Kim S, Nilakantan AS, Hermiller MS, Palumbo RT, VanHaerents S, Voss JL. Selective and coherent activity increases due to stimulation indicate functional distinctions between episodic memory networks. SCIENCE ADVANCES 2018; 4:eaar2768. [PMID: 30140737 PMCID: PMC6105230 DOI: 10.1126/sciadv.aar2768] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 07/18/2018] [Indexed: 05/25/2023]
Abstract
Posterior-medial and anterior-temporal cortical networks interact with the hippocampus and are thought to distinctly support episodic memory. We causally tested this putative distinction by determining whether targeted noninvasive stimulation could selectively affect neural signals of memory formation within the posterior-medial network. Stimulation enhanced the posterior-medial network's evoked response to stimuli during memory formation, and this activity increase was coherent throughout the network. In contrast, there was no increase in anterior-temporal network activity due to stimulation. In addition, control stimulation of an out-of-network prefrontal cortex location in a separate group of subjects did not influence memory-related activity in either network. The posterior-medial network is therefore a functional unit for memory processing that is distinct from the anterior-temporal network. These findings suggest that targeted stimulation can lead to network-specific increases in excitability during memory formation and hold promise for efforts to fine-tune network involvement in episodic memory via brain stimulation.
Collapse
Affiliation(s)
- Sungshin Kim
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, Department of Psychiatry and Behavioral Sciences, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Sungkyunkwan University, Suwon, Republic of Korea
| | - Aneesha S. Nilakantan
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, Department of Psychiatry and Behavioral Sciences, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Molly S. Hermiller
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, Department of Psychiatry and Behavioral Sciences, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Robert T. Palumbo
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, Department of Psychiatry and Behavioral Sciences, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephen VanHaerents
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, Department of Psychiatry and Behavioral Sciences, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joel L. Voss
- Department of Medical Social Sciences, Ken and Ruth Davee Department of Neurology, Department of Psychiatry and Behavioral Sciences, and Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
130
|
Herweg NA, Kahana MJ. Spatial Representations in the Human Brain. Front Hum Neurosci 2018; 12:297. [PMID: 30104966 PMCID: PMC6078001 DOI: 10.3389/fnhum.2018.00297] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
While extensive research on the neurophysiology of spatial memory has been carried out in rodents, memory research in humans had traditionally focused on more abstract, language-based tasks. Recent studies have begun to address this gap using virtual navigation tasks in combination with electrophysiological recordings in humans. These studies suggest that the human medial temporal lobe (MTL) is equipped with a population of place and grid cells similar to that previously observed in the rodent brain. Furthermore, theta oscillations have been linked to spatial navigation and, more specifically, to the encoding and retrieval of spatial information. While some studies suggest a single navigational theta rhythm which is of lower frequency in humans than rodents, other studies advocate for the existence of two functionally distinct delta-theta frequency bands involved in both spatial and episodic memory. Despite the general consensus between rodent and human electrophysiology, behavioral work in humans does not unequivocally support the use of a metric Euclidean map for navigation. Formal models of navigational behavior, which specifically consider the spatial scale of the environment and complementary learning mechanisms, may help to better understand different navigational strategies and their neurophysiological mechanisms. Finally, the functional overlap of spatial and declarative memory in the MTL calls for a unified theory of MTL function. Such a theory will critically rely upon linking task-related phenomena at multiple temporal and spatial scales. Understanding how single cell responses relate to ongoing theta oscillations during both the encoding and retrieval of spatial and non-spatial associations appears to be key toward developing a more mechanistic understanding of memory processes in the MTL.
Collapse
Affiliation(s)
- Nora A. Herweg
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael J. Kahana
- Computational Memory Lab, Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
131
|
Reagh ZM, Ranganath C. What does the functional organization of cortico-hippocampal networks tell us about the functional organization of memory? Neurosci Lett 2018; 680:69-76. [PMID: 29704572 PMCID: PMC6467646 DOI: 10.1016/j.neulet.2018.04.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Historically, research on the cognitive processes that support human memory proceeded, to a large extent, independently of research on the neural basis of memory. Accumulating evidence from neuroimaging, however, has enabled the field to develop a broader and more integrative perspective. Here, we briefly outline how advances in cognitive neuroscience can potentially shed light on concepts and controversies in human memory research. We argue that research on the functional properties of cortico-hippocampal networks informs us about how memories might be organized in the brain, which, in turn, helps to reconcile seemingly disparate perspectives in cognitive psychology. Finally, we discuss several open questions and directions for future research.
Collapse
Affiliation(s)
- Zachariah M Reagh
- Center for Neuroscience, United States; Department of Neurology, University of California, Davis, United States.
| | - Charan Ranganath
- Center for Neuroscience, United States; Memory and Plasticity (MAP) Program, United States; Department of Psychology, University of California, Davis, United States.
| |
Collapse
|
132
|
Aladro Y, López-Alvarez L, Sánchez-Reyes JM, Hernández-Tamames JA, Melero H, Rubio-Fernández S, Thuissard I, Cerezo-García M. Relationship between episodic memory and volume of the brain regions of two functional cortical memory systems in multiple sclerosis. J Neurol 2018; 265:2182-2189. [PMID: 29995292 DOI: 10.1007/s00415-018-8965-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND/OBJECTIVE Two functional networks are proposed as neuronal support for the complex processes of memory: the anterior temporal and the medial posterior systems. We examined the atrophy of hippocampus (HC) and of those areas constituting the two functional memory systems in multiple sclerosis (MS) patients with low disability. METHODS Episodic memory (EM) was assessed in 88 relapsing MS patients and in 40 healthy controls using Wechsler Memory Scale III (Spanish adaptation). FreeSurfer software was used to calculate normalized volume of total cortex, grey matter, white matter, subcortical grey matter (thalamus and striatum), HC and both the anterior temporal (entorhinal, ventral temporopolar, lateral orbitofrontal, amygdala) and posterior medial systems (thalamus, parahippocampal, posterior cingulate, precuneus, lateral parietal and medial prefrontal). Linear regression analysis was used to identify predictors of memory performance. RESULTS Total grey matter and cortex volumes correlated with all subtypes of EM, and the precuneus volume correlated with overall, immediate and delayed memories. Univariant regression analysis identified an association between the volumes of the posterior medial memory network regions and EM scores. The volume of the left precuneus area was the unique and independent predictor for all EM subtypes except for visual memory, for which left HC volume was also an independent predictor. CONCLUSION Left precuneus volume was the best predictor of memory in relapsing MS patients with low disability and mild deficits in EM.
Collapse
Affiliation(s)
- Yolanda Aladro
- Multiple Sclerosis Unit, Department of Neurology, Getafe University Hospital, European University of Madrid, Carretera de Toledo km 12,5, 28905, Madrid, Spain.
| | | | | | | | - Helena Melero
- Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Rey Juan Carlos University, Móstoles, Madrid, Spain
| | | | - Israel Thuissard
- Department of Statistic, European University of Madrid, Madrid, Spain
| | - Marta Cerezo-García
- Multiple Sclerosis Unit, Department of Neurology, Getafe University Hospital, European University of Madrid, Carretera de Toledo km 12,5, 28905, Madrid, Spain
| |
Collapse
|
133
|
Burke SN, Gaynor LS, Barnes CA, Bauer RM, Bizon JL, Roberson ED, Ryan L. Shared Functions of Perirhinal and Parahippocampal Cortices: Implications for Cognitive Aging. Trends Neurosci 2018; 41:349-359. [PMID: 29555181 PMCID: PMC5970964 DOI: 10.1016/j.tins.2018.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 01/13/2023]
Abstract
A predominant view of perirhinal cortex (PRC) and postrhinal/parahippocampal cortex (POR/PHC) function contends that these structures are tuned to represent objects and spatial information, respectively. However, known anatomical connectivity, together with recent electrophysiological, neuroimaging, and lesion data, indicate that both brain areas participate in spatial and nonspatial processing. Instead of content-based organization, the PRC and PHC/POR may participate in two computationally distinct cortical-hippocampal networks: one network that is tuned to process coarse information quickly, forming gist-like representations of scenes/environments, and a second network tuned to process information about the specific sensory details that are necessary for discrimination across sensory modalities. The available data suggest that the latter network may be more vulnerable in advanced age.
Collapse
Affiliation(s)
- Sara N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA.
| | - Leslie S Gaynor
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA; Division of Neural Systems Memory and Aging, University of Arizona, Tucson, AZ, USA; Department of Psychology, University of Arizona, Tucson, AZ, USA; Department of Neurology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Russell M Bauer
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Jennifer L Bizon
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Erik D Roberson
- Evelyn F. McKnight Brain Institute, Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, AL, USA
| | - Lee Ryan
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA; Department of Psychology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
134
|
Avery SN, Rogers BP, Heckers S. Hippocampal Network Modularity Is Associated With Relational Memory Dysfunction in Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:423-432. [PMID: 29653904 PMCID: PMC5940573 DOI: 10.1016/j.bpsc.2018.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/12/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Functional dysconnectivity has been proposed as a major pathophysiological mechanism for cognitive dysfunction in schizophrenia. The hippocampus is a focal point of dysconnectivity in schizophrenia, with decreased hippocampal functional connectivity contributing to the marked memory deficits observed in patients. Normal memory function relies on the interaction of complex corticohippocampal networks. However, only recent technological advances have enabled the large-scale exploration of functional networks with accuracy and precision. METHODS We investigated the modularity of hippocampal resting-state functional networks in a sample of 45 patients with schizophrenia spectrum disorders and 38 healthy control subjects. Modularity was calculated for two distinct functional networks: a core hippocampal-medial temporal lobe cortex network and an extended hippocampal-cortical network. As hippocampal function differs along its longitudinal axis, follow-up analyses examined anterior and posterior networks separately. To explore effects of resting network function on behavior, we tested associations between modularity and relational memory ability. Age, sex, handedness, and parental education were similar between groups. RESULTS Network modularity was lower in schizophrenia patients, especially in the posterior hippocampal network. Schizophrenia patients also showed markedly lower relational memory ability compared with control subjects. We found a distinct brain-behavior relationship in schizophrenia that differed from control subjects by network and anterior/posterior division-while relational memory in control subjects was associated with anterior hippocampal-cortical modularity, schizophrenia patients showed an association with posterior hippocampal-medial temporal lobe cortex network modularity. CONCLUSIONS Our findings support a model of abnormal resting-state corticohippocampal network coherence in schizophrenia, which may contribute to relational memory deficits.
Collapse
Affiliation(s)
- Suzanne N Avery
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
135
|
Berron D, Neumann K, Maass A, Schütze H, Fliessbach K, Kiven V, Jessen F, Sauvage M, Kumaran D, Düzel E. Age-related functional changes in domain-specific medial temporal lobe pathways. Neurobiol Aging 2018; 65:86-97. [DOI: 10.1016/j.neurobiolaging.2017.12.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022]
|
136
|
Brown TI, Rissman J, Chow TE, Uncapher MR, Wagner AD. Differential Medial Temporal Lobe and Parietal Cortical Contributions to Real-world Autobiographical Episodic and Autobiographical Semantic Memory. Sci Rep 2018; 8:6190. [PMID: 29670138 PMCID: PMC5906442 DOI: 10.1038/s41598-018-24549-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/06/2018] [Indexed: 01/05/2023] Open
Abstract
Autobiographical remembering can depend on two forms of memory: episodic (event) memory and autobiographical semantic memory (remembering personally relevant semantic knowledge, independent of recalling a specific experience). There is debate about the degree to which the neural signals that support episodic recollection relate to or build upon autobiographical semantic remembering. Pooling data from two fMRI studies of memory for real-world personal events, we investigated whether medial temporal lobe (MTL) and parietal subregions contribute to autobiographical episodic and semantic remembering. During scanning, participants made memory judgments about photograph sequences depicting past events from their life or from others’ lives, and indicated whether memory was based on episodic or semantic knowledge. Results revealed several distinct functional patterns: activity in most MTL subregions was selectively associated with autobiographical episodic memory; the hippocampal tail, superior parietal lobule, and intraparietal sulcus were similarly engaged when memory was based on retrieval of an autobiographical episode or autobiographical semantic knowledge; and angular gyrus demonstrated a graded pattern, with activity declining from autobiographical recollection to autobiographical semantic remembering to correct rejections of novel events. Collectively, our data offer insights into MTL and parietal cortex functional organization, and elucidate circuitry that supports different forms of real-world autobiographical memory.
Collapse
Affiliation(s)
- Thackery I Brown
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, United States of America.
| | - Jesse Rissman
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Tiffany E Chow
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Melina R Uncapher
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Anthony D Wagner
- Department of Psychology, Stanford University, Stanford, California, United States of America.,Stanford Neurosciences Institute, Stanford University, Stanford, California, United States of America
| |
Collapse
|
137
|
Robin J. Spatial scaffold effects in event memory and imagination. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 9:e1462. [PMID: 29485243 DOI: 10.1002/wcs.1462] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
Spatial context is a defining feature of episodic memories, which are often characterized as being events occurring in specific spatiotemporal contexts. In this review, I summarize research suggesting a common neural basis for episodic and spatial memory and relate this to the role of spatial context in episodic memory. I review evidence that spatial context serves as a scaffold for episodic memory and imagination, in terms of both behavioral and neural effects demonstrating a dependence of episodic memory on spatial representations. These effects are mediated by a posterior-medial set of neocortical regions, including the parahippocampal cortex, retrosplenial cortex, posterior cingulate cortex, precuneus, and angular gyrus, which interact with the hippocampus to represent spatial context in remembered and imagined events. I highlight questions and areas that require further research, including differentiation of hippocampal function along its long axis and subfields, and how these areas interact with the posterior-medial network. This article is categorized under: Psychology > Memory Neuroscience > Cognition.
Collapse
Affiliation(s)
- Jessica Robin
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| |
Collapse
|
138
|
Long-term effects of brief hypoxia due to cardiac arrest: Hippocampal reductions and memory deficits. Resuscitation 2018; 126:65-71. [PMID: 29474878 DOI: 10.1016/j.resuscitation.2018.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/01/2018] [Accepted: 02/15/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To examine the effects of brief hypoxia (<7 min) due to cardiac arrest on the integrity of the brain and performance on memory and executive functions tasks. METHODS Patients after out-of-hospital cardiac arrest (CA) (n = 9), who were deemed neurologically intact on discharge, were compared to matched patients with myocardial infarction (MI) (n = 9). A battery of clinical and experimental memory and executive functions neuropsychological tests were administered and MRI scans for all patients were collected. Measures of subcortical and cortical volumes and cortical thickness were obtained using FreeSurfer. Manual segmentations of the hippocampus were also performed. APACHE-II scores were calculated based on metrics collected at admission to ICCU for all patients. RESULTS Significant differences between the two groups were observed on several verbal memory tests. Both hippocampi were significantly reduced (p < 0.05) in the CA patients, relative to MI patients. Hippocampal subfields segmentation showed significantly reduced presubiculum volumes bilaterally. CA patients had on average 10% reduction in volumes bilaterally across hippocampal subfields. No cortical thickness differences survived correction. Significant correlations were observed in the CA group only between the hippocampal volumes and performance on verbal memory tasks, including recollection. Hippocampal volumes and several memory measures (but not other cognitive domains) were strongly correlated with APACHE-II scores on admission in the CA group, but not in the MI group CONCLUSIONS: Chronic patients with cardiac arrest who were discharged from hospital in "good neurological condition" showed an average of 10% reduction in hippocampal volume bilaterally and significant verbal memory deficits relative to matched controls with myocardial infarction, suggesting even brief hypoxic periods suffice to lead to specific hippocampal damage.
Collapse
|
139
|
Sheldon S, Levine B. The medial temporal lobe functional connectivity patterns associated with forming different mental representations. Hippocampus 2018; 28:269-280. [PMID: 29341344 DOI: 10.1002/hipo.22829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/09/2022]
Abstract
The medial temporal lobes (MTL), and more specifically the hippocampus, are critical for forming mental representations of past experiences-autobiographical memories-and for forming other "nonexperienced" types of mental representations, such as imagined scenarios. How the MTL coordinate with other brain areas to create these different types of representations is not well understood. To address this issue, we performed a task-based functional connectivity analysis on a previously published dataset in which fMRI data were collected as participants created different types of mental representations under three conditions. One condition required forming and relating together details from a past event (autobiographical task), another required forming and relating together details of a spatial context (spatial task) and another condition required relating together conceptual/perceptual features of an object (conceptual task). We contrasted the connectivity patterns associated with a functionally defined region in the parahippocampal cortex (PHC) and anatomically defined anterior and posterior hippocampal segments across these tasks. Examining PHC connectivity patterns revealed that the PHC seed was distinctly connected to other MTL structures during the autobiographical task, to posterior parietal regions during the spatial task and to a distributed network of regions for the conceptual task. Examining hippocampal connectivity patterns revealed that the anterior hippocampus was preferentially connected to regions of default mode network during the autobiographical task and to areas implicated in semantic processing for the conceptual task whereas the posterior hippocampus was preferentially connected to medial-posterior regions of the brain during the spatial task. We interpret our findings as evidence that there are MTL-guided networks for forming distinct types of mental representations that align with functional distinctions within the hippocampus.
Collapse
Affiliation(s)
- Signy Sheldon
- Department of Psychology, McGill University, Montreal, Québec, Canada
| | - Brian Levine
- Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
140
|
Barrick EM, Dillon DG. An ERP study of multidimensional source retrieval in depression. Biol Psychol 2018; 132:176-191. [PMID: 29305874 DOI: 10.1016/j.biopsycho.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/02/2017] [Accepted: 01/03/2018] [Indexed: 11/16/2022]
Abstract
We collected event-related potentials (ERPs) from 24 unmedicated adults with Major Depressive Disorder (MDD) and 24 controls during source memory retrieval. Words were encoded on the left or right during animacy and mobility judgments. Mobility judgments were slower than animacy judgments, suggesting deeper encoding. Participants then recalled the encoding judgment (Question cue) and position (Side cue) for each word. Depressed adults, but not controls, showed better accuracy for words from the mobility task presented under the Question vs. Side Cue. Furthermore, depressed adults showed larger left parietal ERPs to words from the mobility task presented under the Question vs. the Side Cue from 400 to 800 ms and 800-1400 ms. This ERP effect was negatively correlated with sleep quality. Thus, deep encoding followed by retrieval of the encoding judgment supported memory in MDD and augmented left parietal ERPs that have been linked to recollection and that appear sensitive to sleep disturbance.
Collapse
Affiliation(s)
- Elyssa M Barrick
- Center for Depression, Anxiety and Stress Research, McLean Hospital, United States
| | - Daniel G Dillon
- Center for Depression, Anxiety and Stress Research, McLean Hospital, United States.
| |
Collapse
|
141
|
Kinnavane L, Vann SD, Nelson AJD, O’Mara SM, Aggleton JP. Collateral Projections Innervate the Mammillary Bodies and Retrosplenial Cortex: A New Category of Hippocampal Cells. eNeuro 2018; 5:ENEURO.0383-17.2018. [PMID: 29527569 PMCID: PMC5844061 DOI: 10.1523/eneuro.0383-17.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 11/21/2022] Open
Abstract
To understand the hippocampus, it is necessary to understand the subiculum. Unlike other hippocampal subfields, the subiculum projects to almost all distal hippocampal targets, highlighting its critical importance for external networks. The present studies, in male rats and mice, reveal a new category of dorsal subiculum neurons that innervate both the mammillary bodies (MBs) and the retrosplenial cortex (RSP). These bifurcating neurons comprise almost half of the hippocampal cells that project to RSP. The termination of these numerous collateral projections was visualized within the medial mammillary nucleus and the granular RSP (area 29). These collateral projections included subiculum efferents that cross to the contralateral MBs. Within the granular RSP, the collateral projections form a particularly dense plexus in deep Layer II and Layer III. This retrosplenial termination site colocalized with markers for VGluT2 and neurotensin. While efferents from the hippocampal CA fields standardly collateralize, subiculum projections often have only one target site. Consequently, the many collateral projections involving the RSP and the MBs present a relatively unusual pattern for the subiculum, which presumably relates to how both targets have complementary roles in spatial processing. Furthermore, along with the anterior thalamic nuclei, the MBs and RSP are key members of a memory circuit, which is usually described as both starting and finishing in the hippocampus. The present findings reveal how the hippocampus simultaneously engages different parts of this circuit, so forcing an important revision of this network.
Collapse
Affiliation(s)
- Lisa Kinnavane
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Seralynne D. Vann
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | | | - Shane M. O’Mara
- Trinity College Institute of Neuroscience, Trinity College, Dublin, D2, Ireland
| | - John P. Aggleton
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
142
|
Kim K, Schedlbauer A, Rollo M, Karunakaran S, Ekstrom AD, Tandon N. Network-based brain stimulation selectively impairs spatial retrieval. Brain Stimul 2018; 11:213-221. [PMID: 29042188 PMCID: PMC5729089 DOI: 10.1016/j.brs.2017.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Direct brain stimulation via electrodes implanted for intracranial electroencephalography (iEEG) permits the modulation of endogenous electrical signals with significantly greater spatial and temporal specificity than non-invasive approaches. It also allows for the stimulation of deep brain structures important to memory, such as the hippocampus, that are difficult, if not impossible, to target non-invasively. Direct stimulation studies of these deep memory structures, though, have produced mixed results, with some reporting improvement, some impairment, and others, no consistent changes. OBJECTIVE/HYPOTHESIS We hypothesize that to modulate cognitive function using brain stimulation, it is essential to modulate connected nodes comprising a network, rather than just alter local activity. METHODS iEEG data collected while patients performed a spatiotemporal memory retrieval task were used to map frequency-specific, coherent oscillatory activity between different brain regions associated with successful memory retrieval. We used these to identify two target nodes that exhibited selectively stronger coupling for spatial vs. temporal retrieval. In a subsequent session, electrical stimulation - theta-bursts with a fixed phase-lag (0° or 180°) - was applied to the two target regions while patients performed spatiotemporal retrieval. RESULTS Stimulation selectively impaired spatial retrieval while not affecting temporal retrieval, and this selective impairment was associated with theta decoupling of the spatial retrieval network. CONCLUSION These findings suggest that stimulating tightly connected nodes in a functional network at the appropriate phase-lag may effectively modulate the network function, and while in this case it impaired memory processes, it sets a foundation for further network-based perturbation studies.
Collapse
Affiliation(s)
- Kamin Kim
- Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Amber Schedlbauer
- Neuroscience Graduate Program, University of California Davis, 1544 Newton Court, Davis, CA 95616, USA
| | - Matthew Rollo
- Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Suganya Karunakaran
- Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Arne D Ekstrom
- Department of Psychology, University of California Davis, 135 Young Hall, One Shields Avenue, Davis, CA 95616, USA; Center for Neuroscience, University of California Davis, 1544 Newton Court, Davis, CA 95616, USA.
| | - Nitin Tandon
- Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
143
|
Sheldon S, El-Asmar N. The cognitive tools that support mentally constructing event and scene representations. Memory 2017; 26:858-868. [DOI: 10.1080/09658211.2017.1417440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Signy Sheldon
- Department of Psychology, McGill University, Montreal, Canada
| | - Nadim El-Asmar
- Department of Psychology, McGill University, Montreal, Canada
| |
Collapse
|
144
|
Campbell KL, Madore KP, Benoit RG, Thakral PP, Schacter DL. Increased hippocampus to ventromedial prefrontal connectivity during the construction of episodic future events. Hippocampus 2017; 28:76-80. [PMID: 29116660 DOI: 10.1002/hipo.22812] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/07/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022]
Abstract
Both the hippocampus and ventromedial prefrontal cortex (vmPFC) appear to be critical for episodic future simulation. Damage to either structure affects one's ability to remember the past and imagine the future, and both structures are commonly activated as part of a wider core network during future simulation. However, the precise role played by each of these structures and, indeed, the direction of information flow between them during episodic simulation, is still not well understood. In this study, we scanned participants using functional magnetic resonance imaging while they imagined future events in response to object cues. We then used dynamic causal modeling to examine effective connectivity between the left anterior hippocampus and vmPFC during the initial mental construction of the events. Our results show that while there is strong bidirectional intrinsic connectivity between these regions (i.e., irrespective of task conditions), only the hippocampus to vmPFC connection increases during the construction of episodic future events, suggesting that the hippocampus initiates event simulation in response to retrieval cues, driving activation in the vmPFC where episodic details may be further integrated.
Collapse
Affiliation(s)
- Karen L Campbell
- Department of Psychology, Brock University, St Catharines, Ontario, Canada
| | - Kevin P Madore
- Department of Psychology, Stanford University, Stanford, California
| | - Roland G Benoit
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Preston P Thakral
- Department of Psychology, Harvard University, Cambridge, Massachusetts
| | - Daniel L Schacter
- Department of Psychology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
145
|
|
146
|
Jha AB, Panchal SS. Neuroprotection and cognitive enhancement by treatment with γ-oryzanol in sporadic Alzheimer's disease. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
147
|
Sheldon S, Chu S. What versus Where: Investigating how Autobiographical Memory Retrieval Differs when Accessed with Thematic versus Spatial Information. Q J Exp Psychol (Hove) 2017; 70:1909-1921. [DOI: 10.1080/17470218.2016.1215478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autobiographical memory research has investigated how cueing distinct aspects of a past event can trigger different recollective experiences. This research has stimulated theories about how autobiographical knowledge is accessed and organized. Here, we test the idea that thematic information organizes multiple autobiographical events whereas spatial information organizes individual past episodes by investigating how retrieval guided by these two forms of information differs. We used a novel autobiographical fluency task in which participants accessed multiple memory exemplars to event theme and spatial (location) cues followed by a narrative description task in which they described the memories generated to these cues. Participants recalled significantly more memory exemplars to event theme than to spatial cues; however, spatial cues prompted faster access to past memories. Results from the narrative description task revealed that memories retrieved via event theme cues compared to spatial cues had a higher number of overall details, but those recalled to the spatial cues were recollected with a greater concentration on episodic details than those retrieved via event theme cues. These results provide evidence that thematic information organizes and integrates multiple memories whereas spatial information prompts the retrieval of specific episodic content from a past event.
Collapse
Affiliation(s)
- Signy Sheldon
- Department of Psychology, McGill University, Montreal, Canada
| | - Sonja Chu
- Department of Psychology, McGill University, Montreal, Canada
| |
Collapse
|
148
|
Ekstrom AD, Ranganath C. Space, time, and episodic memory: The hippocampus is all over the cognitive map. Hippocampus 2017; 28:680-687. [DOI: 10.1002/hipo.22750] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Arne D. Ekstrom
- Center for NeuroscienceUniversity of CaliforniaDavis, 1544 Newton Court, Davis California
- Department of PsychologyUniversity of CaliforniaDavis, Davis California
- Neuroscience Graduate GroupUniversity of CaliforniaDavis, Davis California
| | - Charan Ranganath
- Center for NeuroscienceUniversity of CaliforniaDavis, 1544 Newton Court, Davis California
- Department of PsychologyUniversity of CaliforniaDavis, Davis California
- Neuroscience Graduate GroupUniversity of CaliforniaDavis, Davis California
| |
Collapse
|
149
|
Powell AL, Vann SD, Olarte-Sánchez CM, Kinnavane L, Davies M, Amin E, Aggleton JP, Nelson AJD. The retrosplenial cortex and object recency memory in the rat. Eur J Neurosci 2017; 45:1451-1464. [PMID: 28394458 PMCID: PMC5488228 DOI: 10.1111/ejn.13577] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022]
Abstract
It has been proposed that the retrosplenial cortex forms part of a ‘where/when’ information network. The present study focussed on the related issue of whether retrosplenial cortex also contributes to ‘what/when’ information, by examining object recency memory. In Experiment 1, rats with retrosplenial lesions were found to be impaired at distinguishing the temporal order of objects presented in a continuous series (‘Within‐Block’ condition). The same lesioned rats could, however, distinguish between objects that had been previously presented in one of two discrete blocks (‘Between‐Block’ condition). Experiment 2 used intact rats to map the expression of the immediate‐early gene c‐fos in retrosplenial cortex following performance of a between‐block, recency discrimination. Recency performance correlated positively with levels of c‐fos expression in both granular and dysgranular retrosplenial cortex (areas 29 and 30). Expression of c‐fos in the granular retrosplenial cortex also correlated with prelimbic cortex and ventral subiculum c‐fos activity, the latter also correlating with recency memory performance. The combined findings from both experiments reveal an involvement of the retrosplenial cortex in temporal order memory, which includes both between‐block and within‐block problems. The current findings also suggest that the rat retrosplenial cortex comprises one of a group of closely interlinked regions that enable recency memory, including the hippocampal formation, medial diencephalon and medial frontal cortex. In view of the well‐established importance of the retrosplenial cortex for spatial learning, the findings support the notion that, with its frontal and hippocampal connections, retrosplenial cortex has a key role for both what/when and where/when information.
Collapse
Affiliation(s)
- Anna L Powell
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, CF10 3AT, UK
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, CF10 3AT, UK
| | | | - Lisa Kinnavane
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, CF10 3AT, UK
| | - Moira Davies
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, CF10 3AT, UK
| | - Eman Amin
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, CF10 3AT, UK
| | - John P Aggleton
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, CF10 3AT, UK
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
150
|
Anterolateral Entorhinal Cortex Volume Predicted by Altered Intra-Item Configural Processing. J Neurosci 2017; 37:5527-5538. [PMID: 28473640 DOI: 10.1523/jneurosci.3664-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/03/2023] Open
Abstract
Recent functional imaging studies have proposed that the human entorhinal cortex (ERC) is subdivided into functionally distinct anterolateral (alERC) and posteromedial (pmERC) subregions. The alERC overlaps with regions that are affected earliest by Alzheimer's disease pathology, yet its cognitive function remains poorly understood. Previous human fMRI studies have focused on its role in object memory, but rodent studies on the putatively homologous lateral entorhinal cortex suggest that it also plays an important role in representing spatial properties of objects. To investigate the cognitive effects of human alERC volume differences, we developed an eye-tracking-based task to evaluate intra-item configural processing (i.e., processing the arrangement of an object's features) and used manual segmentation based on a recently developed protocol to delineate the alERC/pmERC and other medial temporal lobe (MTL) subregions. In a group of older adult men and women at varying stages of brain atrophy and cognitive decline, we found that intra-item configural processing, regardless of an object's novelty, was strongly predicted by alERC volume, but not by the volume of any other MTL subregion. These results provide the first evidence that the human alERC plays a role in supporting a distinct aspect of object processing, namely attending to the arrangement of an object's component features.SIGNIFICANCE STATEMENT Alzheimer's disease pathology appears earliest in brain regions that overlap with the anterolateral entorhinal cortex (alERC). However, the cognitive role of the alERC is poorly understood. Previous human studies treat the alERC as an extension of the neighboring perirhinal cortex, supporting object memory. Animal studies suggest that the alERC may support the spatial properties of objects. In a group of older adult humans at the earliest stages of cognitive decline, we show here that alERC volume selectively predicted configural processing (attention to the spatial arrangement of an object's parts). This is the first study to demonstrate a cognitive role related to alERC volume in humans. This task can be adapted to serve as an early detection method for Alzheimer's disease pathology.
Collapse
|