101
|
Ao Q, Wang S, He Q, Ten H, Oyama K, Ito A, He J, Javed R, Wang A, Matsuno A. Fibrin Glue/Fibronectin/Heparin-Based Delivery System of BMP2 Induces Osteogenesis in MC3T3-E1 Cells and Bone Formation in Rat Calvarial Critical-Sized Defects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13400-13410. [PMID: 32091872 DOI: 10.1021/acsami.0c01371] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bone morphogenetic proteins (BMPs) have been used to promote bone formation in many clinical scenarios. However, the BMPs are inherently unstable in vivo and therefore need to be combined with carriers for controlled delivery. In this study, an innovative and efficient fibrin glue/fibronectin/heparin (FG/Fn/Hep)-based delivery system was developed for controlled release of BMP2. The incorporation of heparin can significantly slow the release of BMP2 without substantially affecting the structure and stiffness of the FG/Fn. The BMP2 release from the FG/Fn/Hep-BMP2 hydrogel is largely dominated by hydrogel degradation rather than simple diffusion. In vitro release experiments and MC3T3-E1 cell induction experiments showed that BMP2 can be released steadily and can induce MC3T3-E1 cells to differentiate into osteoblasts efficiently. This process is characterized by the significantly increased expression of calcium deposits, alkaline phosphatase, runt-related transcription factor-2, osteopontin, osteocalcin, and collagen I in comparison with the negative control. In vivo assessments revealed that the FG/Fn/Hep-BMP2 hydrogel significantly promotes bone regeneration in a rat calvarial critical-sized defect model. Our investigation indicates that FG/Fn/Hep-BMP2 hydrogel holds promise to be used as an alternative biomaterial for the repair of bone defects.
Collapse
Affiliation(s)
- Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shilin Wang
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
| | - Qing He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hirotomo Ten
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| | - Kenichi Oyama
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| | - Akihiro Ito
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| | - Jing He
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
| | - Akira Matsuno
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| |
Collapse
|
102
|
Zhao X, Li X, Xie X, Lei J, Ge L, Yuan L, Li D, Mu C. Controlling the Pore Structure of Collagen Sponge by Adjusting the Cross-Linking Degree for Construction of Heterogeneous Double-Layer Bone Barrier Membranes. ACS APPLIED BIO MATERIALS 2020; 3:2058-2067. [DOI: 10.1021/acsabm.9b01175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xi Zhao
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiaofen Xie
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jinfeng Lei
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Lun Yuan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
103
|
Liu L, Lam WMR, Yang Z, Wang M, Ren X, Hu T, Li J, Goh JCH, Wong HK. Improving the handling properties and long-term stability of polyelectrolyte complex by freeze-drying technique for low-dose bone morphogenetic protein 2 delivery. J Biomed Mater Res B Appl Biomater 2020; 108:2450-2460. [PMID: 32017424 DOI: 10.1002/jbm.b.34577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 11/09/2022]
Abstract
A variety of controlled release carriers for bone morphogenetic protein 2 (BMP-2) delivery have been developed and tested in animal models. An alginate-based polyelectrolyte complex (PEC) for controlled release of low-dose BMP-2 has shown promising results in preclinical research. However, the poor handling properties and long-term stability of PEC need to be improved for translational applications. This study aimed to address these limitations of alginate-based PEC by employing a freeze-drying technique. The size and structure of freeze-dried PEC (FD-PEC) were maintained with the addition of a cryoprotectant, trehalose. The release profile of BMP-2 from FD-PEC was similar to that of freshly prepared PEC. In vitro bioactivity analysis of the released BMP-2 showed that the carrier performance of PEC was not compromised by freeze-drying up to three-month storage at room temperature. BMP-2-bound FD-PEC induced comparable bone formation to that using freshly prepared regular PEC in a rat posterolateral spinal fusion model. These results suggest that FD-PEC is capable of delivering low-dose BMP-2 and could be developed as an off-the-shelf product for translational applications. The simplicity of this preservation method provides promise for the translational application of PEC.
Collapse
Affiliation(s)
- Ling Liu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wing M R Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zheng Yang
- NUS Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, Singapore
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xiafei Ren
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Shanghai, China
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - James Cho-Hong Goh
- NUS Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Tissue Engineering Program (NUSTEP), Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
104
|
Biocompatible PLGA-Mesoporous Silicon Microspheres for the Controlled Release of BMP-2 for Bone Augmentation. Pharmaceutics 2020; 12:pharmaceutics12020118. [PMID: 32024134 PMCID: PMC7076394 DOI: 10.3390/pharmaceutics12020118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) has been demonstrated to be one of the most vital osteogenic factors for bone augmentation. However, its uncontrolled administration has been associated with catastrophic side effects, which compromised its clinical use. To overcome these limitations, we aimed at developing a safer controlled and sustained release of BMP-2, utilizing poly(lactic-co-glycolic acid)-multistage vector composite microspheres (PLGA-MSV). The loading and release of BMP-2 from PLGA-MSV and its osteogenic potential in vitro and in vivo was evaluated. BMP-2 in vitro release kinetics was assessed by ELISA assay. It was found that PLGA-MSV achieved a longer and sustained release of BMP-2. Cell cytotoxicity and differentiation were evaluated in vitro by MTT and alkaline phosphatase (ALP) activity assays, respectively, with rat mesenchymal stem cells. The MTT results confirmed that PLGA-MSVs were not toxic to cells. ALP test demonstrated that the bioactivity of BMP-2 released from the PLGA-MSV was preserved, as it allowed for the osteogenic differentiation of rat mesenchymal stem cells, in vitro. The biocompatible, biodegradable, and osteogenic PLGA-MSVs system could be an ideal candidate for the safe use of BMP-2 in orthopedic tissue engineering applications.
Collapse
|
105
|
Yang SS, Oh JM, Chun S, Kim BS, Kim CS, Lee J. Tauroursodeoxycholic acid induces angiogenic activity in endothelial cells and accelerates bone regeneration. Bone 2020; 130:115073. [PMID: 31626993 DOI: 10.1016/j.bone.2019.115073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022]
Abstract
Angiogenesis is a crucial process during bone tissue regeneration. The aim of this study was to investigate the angiogenic activity and the potentiation of bone regeneration via angiogenesis using tauroursodeoxycholic acid (TUDCA) in vitro and in vivo. We investigated the effect of TUDCA on proliferation and angiogenic differentiation in human umbilical vein endothelial cells (HUVECs) and the associated signaling pathway. Proliferation was determined using crystal violet assay. Angiogenic effects were evaluated based on cell migration and tube formation. In order to explore TUDCA-signaling pathways, phosphorylation of mitogen activated protein kinase, protein kinase B (AKT), and endothelial nitric oxide synthase (eNOS) was determined using western blot. Furthermore, in vivo bone formation and angiogenesis were determined using a New Zealand outbred albino rabbit calvarial defect model, while angiogenesis and bone formation were evaluated using micro-CT and histological analysis. Our results show that TUDCA significantly increased cell proliferation. Moreover, TUDCA enhanced cell migration and tube formation in HUVECs. TUDCA increased the phosphorylation of AKT, ERK1/2, c-Jun N-terminal kinase, and eNOS. Specific inhibitors of ERK1/2 (PD98059), JNK (SP600125), and AKT (AKT1/2) inhibited the TUDCA-induced migration and tube formation, while the p38 inhibitor (SB203580) did not. The in vivo study used TUDCA to accelerate new blood vessel formation and promoted bone formation in rabbit calvarial defect model. These results indicate that TUDCA plays a critical role in enhancing the angiogenesis of endothelial cells and in vivo new bone regeneration. The use of TUDCA may contribute to the regeneration of bone tissue by improving angiogenesis.
Collapse
Affiliation(s)
- Sun-Sik Yang
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University 77 Dunsan-ro, Seo-gu, Daejeon 302-120, Republic of Korea
| | - Jung-Mi Oh
- Department of Physiology, Chonbuk National Medical School, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Chonbuk National Medical School, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Beom-Su Kim
- Carbon Nano Convergence Technology Center for Next Generation Engineers (CNN), Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Jun Lee
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University 77 Dunsan-ro, Seo-gu, Daejeon 302-120, Republic of Korea.
| |
Collapse
|
106
|
Peña Fernández M, Black C, Dawson J, Gibbs D, Kanczler J, Oreffo ROC, Tozzi G. Exploratory Full-Field Strain Analysis of Regenerated Bone Tissue from Osteoinductive Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E168. [PMID: 31906343 PMCID: PMC6981952 DOI: 10.3390/ma13010168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/02/2019] [Accepted: 12/28/2019] [Indexed: 12/25/2022]
Abstract
Biomaterials for bone regeneration are constantly under development, and their application in critical-sized defects represents a promising alternative to bone grafting techniques. However, the ability of all these materials to produce bone mechanically comparable with the native tissue remains unclear. This study aims to explore the full-field strain evolution in newly formed bone tissue produced in vivo by different osteoinductive strategies, including delivery systems for BMP-2 release. In situ high-resolution X-ray micro-computed tomography (microCT) and digital volume correlation (DVC) were used to qualitatively assess the micromechanics of regenerated bone tissue. Local strain in the tissue was evaluated in relation to the different bone morphometry and mineralization for specimens (n = 2 p/treatment) retrieved at a single time point (10 weeks in vivo). Results indicated a variety of load-transfer ability for the different treatments, highlighting the mechanical adaptation of bone structure in the early stages of bone healing. Although exploratory due to the limited sample size, the findings and analysis reported herein suggest how the combination of microCT and DVC can provide enhanced understanding of the micromechanics of newly formed bone produced in vivo, with the potential to inform further development of novel bone regeneration approaches.
Collapse
Affiliation(s)
- Marta Peña Fernández
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK;
| | - Cameron Black
- Bone & Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.B.); (J.D.); (D.G.); (J.K.); (R.O.C.O.)
| | - Jon Dawson
- Bone & Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.B.); (J.D.); (D.G.); (J.K.); (R.O.C.O.)
| | - David Gibbs
- Bone & Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.B.); (J.D.); (D.G.); (J.K.); (R.O.C.O.)
- School of Maritime Science and Engineering, Solent University, Southampton SO14 0YN, UK
| | - Janos Kanczler
- Bone & Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.B.); (J.D.); (D.G.); (J.K.); (R.O.C.O.)
| | - Richard O. C. Oreffo
- Bone & Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.B.); (J.D.); (D.G.); (J.K.); (R.O.C.O.)
| | - Gianluca Tozzi
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK;
| |
Collapse
|
107
|
Brown JL, Laurencin CT. Bone Tissue Engineering. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
108
|
Hettiaratchi MH, Krishnan L, Rouse T, Chou C, McDevitt TC, Guldberg RE. Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration. SCIENCE ADVANCES 2020; 6:eaay1240. [PMID: 31922007 PMCID: PMC6941907 DOI: 10.1126/sciadv.aay1240] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/07/2019] [Indexed: 05/25/2023]
Abstract
Supraphysiologic doses of bone morphogenetic protein-2 (BMP-2) are used clinically to promote bone formation in fracture nonunions, large bone defects, and spinal fusion. However, abnormal bone formation (i.e., heterotopic ossification) caused by rapid BMP-2 release from conventional collagen sponge scaffolds is a serious complication. We leveraged the strong affinity interactions between heparin microparticles (HMPs) and BMP-2 to improve protein delivery to bone defects. We first developed a computational model to investigate BMP-2-HMP interactions and demonstrated improved in vivo BMP-2 retention using HMPs. We then evaluated BMP-2-loaded HMPs as a treatment strategy for healing critically sized femoral defects in a rat model that displays heterotopic ossification with clinical BMP-2 doses (0.12 mg/kg body weight). HMPs increased BMP-2 retention in vivo, improving spatial localization of bone formation in large bone defects and reducing heterotopic ossification. Thus, HMPs provide a promising opportunity to improve the safety profile of scaffold-based BMP-2 delivery.
Collapse
Affiliation(s)
- Marian H. Hettiaratchi
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
- The Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Laxminarayanan Krishnan
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Tel Rouse
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Catherine Chou
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Todd C. McDevitt
- The Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Robert E. Guldberg
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
- The Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
109
|
Obeid BA. Implants and grafts used in fractures for early healing. JOURNAL OF ORTHOPAEDICS AND SPINE 2020. [DOI: 10.4103/joas.joas_45_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
110
|
Implantable electrical stimulation bioreactor with liquid crystal polymer-based electrodes for enhanced bone regeneration at mandibular large defects in rabbit. Med Biol Eng Comput 2019; 58:383-399. [PMID: 31853774 DOI: 10.1007/s11517-019-02046-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
The osseous regeneration of large bone defects is still a major clinical challenge in maxillofacial and orthopedic surgery. Previous studies demonstrated that biphasic electrical stimulation (ES) stimulates bone formation; however, polyimide electrode should be removed after regeneration. This study presents an implantable electrical stimulation bioreactor with electrodes based on liquid crystal polymer (LCP), which can be permanently implanted due to excellent biocompatibility to bone tissue. The bioreactor was implanted into a critical-sized bone defect and subjected to ES for one week, where bone regeneration was evaluated four weeks after surgery using micro-CT. The effect of ES via the bioreactor was compared with a sham control group and a positive control group that received recombinant human bone morphogenetic protein (rhBMP)-2 (20 μg). New bone volume per tissue volume (BV/TV) in the ES and rhBMP-2 groups increased to 132% (p < 0.05) and 174% (p < 0.01), respectively, compared to that in the sham control group. In the histological evaluation, there was no inflammation within the bone defects and adjacent to LCP in all the groups. This study showed that the ES bioreactor with LCP electrodes could enhance bone regeneration at large bone defects, where LCP can act as a mechanically resistant outer box without inflammation. Graphical abstract To enhance bone regeneration, a bioreactor comprising collagen sponge and liquid crystal polymer-based electrode was implanted in the bone defect. Within the defect, electrical current pulses having biphasic waveform were applied from the implanted bioreactor.
Collapse
|
111
|
Guan S, Zhang K, Li J. Recent Advances in Extracellular Matrix for Engineering Stem Cell Responses. Curr Med Chem 2019; 26:6321-6338. [DOI: 10.2174/0929867326666190704121309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/02/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Stem cell transplantation is an advanced medical technology, which brings hope for the
treatment of some difficult diseases in the clinic. Attributed to its self-renewal and differential
ability, stem cell research has been pushed to the forefront of regenerative medicine and has become
a hot topic in tissue engineering. The surrounding extracellular matrix has physical functions
and important biological significance in regulating the life activities of cells, which may play crucial
roles for in situ inducing specific differentiation of stem cells. In this review, we discuss the
stem cells and their engineering application, and highlight the control of the fate of stem cells, we
offer our perspectives on the various challenges and opportunities facing the use of the components
of extracellular matrix for stem cell attachment, growth, proliferation, migration and differentiation.
Collapse
Affiliation(s)
- Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
112
|
Kim MS, Kim KJ, Kim BJ, Kim CH, Kim JH. Immediate reconstruction of mandibular defect after treatment of medication-related osteonecrosis of the jaw (MRONJ) with rhBMP-2/ACS and miniplate: Review of 3 cases. Int J Surg Case Rep 2019; 66:25-29. [PMID: 31790947 PMCID: PMC6909046 DOI: 10.1016/j.ijscr.2019.11.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/28/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of MRONJ is related to repression of osteoclast mediated bone remodeling. rhBMP-2 can stimulate not only osteoblasts but also osteoclasts and induce new bone formation. ACS has been proved to be a good carrier of rhBMP-2 with maximal efficacy. Application of rhBMP-2/ACS can be a new approach to surgical treatment for MRONJ patients.
Introduction The purpose of this study was to pursue, and to report the results of, mandibular reconstruction and rehabilitation of medication-related osteonecrosis of the jaw (MRONJ) patients having large critical-sized defects of the mandible using a combination of recombinant human bone morphogenetic protein-2 (rhBMP-2) and absorbable collagen sponge (ACS) with surgical miniplate without any grafting materials. Case presentation Three (3) patients aged 67 and 86 (2 patients) presented due to discomfort on the mandible. They all had a medical history of bisphosphonate and steroids treatment orally or intravenously, and all had been diagnosed as MRONJ stage 3. Sequestrectomy and saucerization were performed, and then a surgical miniplate (Hansolmedical, Korea) was adapted and fixed on the sound portion of the mandible. rhBMP-2 was loaded onto an ACS at a dose of 1.5 mg/cc. Several rhBMP-2 (Cowellmedi, Korea)/ACS (Ateloplug, TRMkorea, Korea) were placed into the bony defect with a surgical miniplate. All 3 patients recovered without complications. They all exhibited radiographic evidence of bone formation by 3 months postoperatively in every case. Conclusions All 3 patients were treated successfully with rhBMP-2/ACS and miniplate without any complications. This protocol reported herein represents a new approach to the surgical treatment of maxillofacial bone defects and deficiencies, especially in MRONJ patients.
Collapse
Affiliation(s)
- Mu-Seong Kim
- Department of Oral and Maxillofacial Surgery, Dong-A University Medical Center, 26, Daesingongwon-ro Seo-gu Busan, Republic of Korea
| | - Kyung-Jin Kim
- Department of Oral and Maxillofacial Surgery, Dong-A University Medical Center, 26, Daesingongwon-ro Seo-gu Busan, Republic of Korea
| | - Bok-Joo Kim
- Department of Oral and Maxillofacial Surgery, Dong-A University Medical Center, 26, Daesingongwon-ro Seo-gu Busan, Republic of Korea
| | - Chul-Hoon Kim
- Department of Oral and Maxillofacial Surgery, Dong-A University Medical Center, 26, Daesingongwon-ro Seo-gu Busan, Republic of Korea
| | - Jung-Han Kim
- Department of Oral and Maxillofacial Surgery, Dong-A University Medical Center, 26, Daesingongwon-ro Seo-gu Busan, Republic of Korea.
| |
Collapse
|
113
|
Lommen J, Schorn L, Landers A, Holtmann H, Berr K, Kübler NR, Sproll C, Rana M, Depprich R. Release kinetics of the model protein FITC-BSA from different polymer-coated bovine bone substitutes. Head Face Med 2019; 15:27. [PMID: 31711509 PMCID: PMC6844035 DOI: 10.1186/s13005-019-0211-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/03/2022] Open
Abstract
Background Controlled release of proteins bound to conventional bone substitutes is still insufficient. Therefore, this study evaluates in-vitro release kinetics of the model protein FITC-BSA (fluorescein conjugated bovine serum albumine) from insoluble bovine collagenous bone matrices (ICBM) with different polymer coatings. Analyzes aim at comparing FITC-BSA release from uncoated versus coated ICBM over time to find bone substitute coatings with consistent release profiles. Methods Release kinetics of FITC-BSA from uncoated as well as coated ICBM with five different polymers (RESOMER R 203 H, RG 503 H, RG 504 H, RG 505, L 206 S) were measured over a period of 11 days (d). Measurements were conducted after 6 h (h), 12 h, 24 h, 3 d, 5 d, 7 d, 9 d and 11 d with six samples for each coated ICBM. Two groups were formed (1) with and (2) without medium change at times of measurement. For each group ANOVA with post-hoc Bonferroni testing was used. Scanning electron microscopy assessed morphologic differences between ICBM coating. Results In group 1 approx. 70% of FITC-BSA release from uncoated ICBM occurred after 6 h compared to approx. 50% in group 2. Only polymers with medium inherent viscosity, i.e. RESOMER RG 503 H, constantly showed significantly more FITC-BSA release throughout 11 d than uncoated ICBM (p = 0.007). The same was found for group 2 (p = 0.005). No significant differences between PLA and PLGA polymers were found. Scanning electron microscopy results indicate a weak adhesion of polymer coatings to ICBM explaining its rather weak retentive effect on overall FITC-BSA release. Conclusions Medium molecular size polymers reduce the overall released FITC-BSA from ICBM over time. In clinical practice these polymers may prove ideal for bone substitute materials.
Collapse
Affiliation(s)
- Julian Lommen
- Department of Oral and Maxillofacial Surgery, Heinrich-Heine-University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Lara Schorn
- Department of Oral and Maxillofacial Surgery, Heinrich-Heine-University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Alexis Landers
- Department of Oral and Maxillofacial Surgery, Evangelisches Krankenhaus Hattingen, Bredenscheider Straße 54, 45525, Hattingen, Germany
| | - Henrik Holtmann
- Department of Oral and Maxillofacial Surgery, Malteser Clinic St. Johannes, Johannisstraße 21, 47198, Duisburg, Germany
| | - Karin Berr
- Department of Oral and Maxillofacial Surgery, Heinrich-Heine-University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Norbert R Kübler
- Department of Oral and Maxillofacial Surgery, Heinrich-Heine-University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christoph Sproll
- Department of Oral and Maxillofacial Surgery, Heinrich-Heine-University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Majeed Rana
- Department of Oral and Maxillofacial Surgery, Heinrich-Heine-University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Rita Depprich
- Department of Oral and Maxillofacial Surgery, Heinrich-Heine-University, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
114
|
Rational design of type-IA receptor-derived cyclic peptides to target human bone morphogenic protein 2. J Biosci 2019. [DOI: 10.1007/s12038-019-9945-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
115
|
|
116
|
Stuckensen K, Lamo-Espinosa JM, Muiños-López E, Ripalda-Cemboráin P, López-Martínez T, Iglesias E, Abizanda G, Andreu I, Flandes-Iparraguirre M, Pons-Villanueva J, Elizalde R, Nickel J, Ewald A, Gbureck U, Prósper F, Groll J, Granero-Moltó F. Anisotropic Cryostructured Collagen Scaffolds for Efficient Delivery of RhBMP-2 and Enhanced Bone Regeneration. MATERIALS 2019; 12:ma12193105. [PMID: 31554158 PMCID: PMC6804013 DOI: 10.3390/ma12193105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/22/2023]
Abstract
In the treatment of bone non-unions, an alternative to bone autografts is the use of bone morphogenetic proteins (BMPs), e.g., BMP–2, BMP–7, with powerful osteoinductive and osteogenic properties. In clinical settings, these osteogenic factors are applied using absorbable collagen sponges for local controlled delivery. Major side effects of this strategy are derived from the supraphysiological doses of BMPs needed, which may induce ectopic bone formation, chronic inflammation, and excessive bone resorption. In order to increase the efficiency of the delivered BMPs, we designed cryostructured collagen scaffolds functionalized with hydroxyapatite, mimicking the structure of cortical bone (aligned porosity, anisotropic) or trabecular bone (random distributed porosity, isotropic). We hypothesize that an anisotropic structure would enhance the osteoconductive properties of the scaffolds by increasing the regenerative performance of the provided rhBMP–2. In vitro, both scaffolds presented similar mechanical properties, rhBMP–2 retention and delivery capacity, as well as scaffold degradation time. In vivo, anisotropic scaffolds demonstrated better bone regeneration capabilities in a rat femoral critical-size defect model by increasing the defect bridging. In conclusion, anisotropic cryostructured collagen scaffolds improve bone regeneration by increasing the efficiency of rhBMP–2 mediated bone healing.
Collapse
Affiliation(s)
- Kai Stuckensen
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany
| | - José M Lamo-Espinosa
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Emma Muiños-López
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Purificación Ripalda-Cemboráin
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Elena Iglesias
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Gloria Abizanda
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ion Andreu
- Department of Materials CEIT-TECNUN, Universidad de Navarra, 20018 San Sebastian, Spain
| | | | - Juan Pons-Villanueva
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Reyes Elizalde
- Department of Materials CEIT-TECNUN, Universidad de Navarra, 20018 San Sebastian, Spain
| | - Joachim Nickel
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Andrea Ewald
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany
| | - Felipe Prósper
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Haematology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, D-97070 Würzburg, Germany.
| | - Froilán Granero-Moltó
- Department of Orthopaedic Surgery and Traumatology, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- Cell Therapy Area. Clínica Universidad de Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
117
|
Jang HJ, Lee EC, Kwon GJ, Seo YK. The effect of coated nano-hydroxyapatite concentration on scaffolds for osteogenesis. J Biomater Appl 2019; 34:827-839. [PMID: 31526073 DOI: 10.1177/0885328219875275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hyun Jun Jang
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University Biomedi Campus, Gyeonggi-do, Korea
| | - Eun Cheol Lee
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University Biomedi Campus, Gyeonggi-do, Korea
| | | | - Young Kwon Seo
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University Biomedi Campus, Gyeonggi-do, Korea
| |
Collapse
|
118
|
Rahman MS, Rana MM, Spitzhorn LS, Akhtar N, Hasan MZ, Choudhury N, Fehm T, Czernuszka JT, Adjaye J, Asaduzzaman SM. Fabrication of biocompatible porous scaffolds based on hydroxyapatite/collagen/chitosan composite for restoration of defected maxillofacial mandible bone. Prog Biomater 2019; 8:137-154. [PMID: 31144260 PMCID: PMC6825626 DOI: 10.1007/s40204-019-0113-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Fabrication of scaffolds from biomaterials for restoration of defected mandible bone has attained increased attention due to limited accessibility of natural bone for grafting. Hydroxyapatite (Ha), collagen type 1 (Col1) and chitosan (Cs) are widely used biomaterials which could be fabricated as a scaffold to overcome the paucity of bone substitutes. Here, rabbit Col1, shrimp Cs and bovine Ha were extracted and characterized with respect to physicochemical properties. Following the biocompatibility, degradability and cytotoxicity tests for Ha, Col1 and Cs a hydroxyapatite/collagen/chitosan (Ha·Col1·Cs) scaffold was fabricated using thermally induced phase separation technique. This scaffold was cross-linked with (1) either glutaraldehyde (GTA), (2) de-hydrothermal treatment (DTH), (3) irradiation (IR) and (4) 2-hydroxyethyl methacrylate (HEMA), resulting in four independent types (Ha·Col1·Cs-GTA, Ha·Col1·Cs-IR, Ha·Col1·Cs-DTH and Ha·Col1·Cs-HEMA). The developed composite scaffolds were porous with 3D interconnected fiber microstructure. However, Ha·Col1·Cs-IR and Ha·Col1·Cs-GTA showed better hydrophilicity and biodegradability. All four scaffolds showed desirable blood biocompatibility without cytotoxicity for brine shrimp. In vitro studies in the presence of human amniotic fluid-derived mesenchymal stem cells revealed that Ha·Col1·Cs-IR and Ha·Col1·Cs-DHT scaffolds were non-cytotoxic and compatible for cell attachment, growth and mineralization. Further, grafting of Ha·Col1·Cs-IR and Ha·Col1·Cs-DHT was performed in a surgically created non-load-bearing rabbit maxillofacial mandible defect model. Histological and radiological observations indicated the restoration of defected bone. Ha·Col1·Cs-IR and Ha·Col1·Cs-DHT could be used as an alternative treatment in bone defects and may contribute to further development of scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Md Masud Rana
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment, 1349, Dhaka, Bangladesh
| | - Lucas-Sebastian Spitzhorn
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Naznin Akhtar
- School of Medicine, Geelong Waurn Ponds Campus, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Md Zahid Hasan
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment, 1349, Dhaka, Bangladesh
| | | | - Tanja Fehm
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Jan T Czernuszka
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Sikder M Asaduzzaman
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment, 1349, Dhaka, Bangladesh.
| |
Collapse
|
119
|
Tonndorf R, Aibibu D, Cherif C. Collagen multifilament spinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110105. [PMID: 31753356 DOI: 10.1016/j.msec.2019.110105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
The benefits of fiber based implants and scaffolds for tissue engineering applications are their anisotropic, highly porous, and controllable macro-, micro-, and nanostructure. Collagen is one of the most commonly used material for the fabrication of scaffolds, as this biopolymer is present in the natural extracellular matrix. For textile processing and textile scaffold fabrication methods, multifilament yarns are required, however, only monofilaments can be generated by state-of-the-art collagen spinning. Hence, the research presented in here aimed at the development of a collagen multifilament wet-spinning process in reproducible quality as well as the characterization of non-crosslinked and crosslinked wet-spun multifilament yarns. Wet spun collagen yarns were comprised of 6 single filaments each having a fineness of 5 tex and a diameter of 80 μm. The tensile strength of the glutaraldehyde crosslinked yarns was 169 MPa (Young's modulus 3534 MPa) in the dry state and 40 MPa (Young's modulus 281 MPa) in the wet state. Furthermore, wet spun collagen filaments showed a characteristic fibrillar structure, which was similar the morphological structure of natural collagen fibers. The textile processing of collagen multifilament yarn was demonstrated by means of knitting technology.
Collapse
Affiliation(s)
- Robert Tonndorf
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Germany.
| | - Dilbar Aibibu
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Germany
| | - Chokri Cherif
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Germany
| |
Collapse
|
120
|
Walsh DP, Raftery RM, Chen G, Heise A, O'Brien FJ, Cryan SA. Rapid healing of a critical-sized bone defect using a collagen-hydroxyapatite scaffold to facilitate low dose, combinatorial growth factor delivery. J Tissue Eng Regen Med 2019; 13:1843-1853. [PMID: 31306563 DOI: 10.1002/term.2934] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/02/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Abstract
The healing of large, critically sized bone defects remains an unmet clinical need in modern orthopaedic medicine. The tissue engineering field is increasingly using biomaterial scaffolds as 3D templates to guide the regenerative process, which can be further augmented via the incorporation of recombinant growth factors. Typically, this necessitates supraphysiological doses of growth factor to facilitate an adequate therapeutic response. Herein, we describe a cell-free, biomaterial implant which is functionalised with a low dose, combinatorial growth factor therapy that is capable of rapidly regenerating vascularised bone tissue within a critical-sized rodent calvarial defect. Specifically, we demonstrate that the dual delivery of the growth factors bone morphogenetic protein-2 (osteogenic) and vascular endothelial growth factor (angiogenic) at a low dose (5 μg/scaffold) on an osteoconductive collagen-hydroxyapatite scaffold is highly effective in healing these critical-sized bone defects. The high affinity between the hydroxyapatite component of this biomimetic scaffold and the growth factors functions to sequester them locally at the defect site. Using this growth factor-loaded scaffold, we show complete bridging of a critical-sized calvarial defect in all specimens at a very early time point of 4 weeks, with a 28-fold increase in new bone volume and seven-fold increase in new bone area compared with a growth factor-free scaffold. Overall, this study demonstrates that a collagen-hydroxyapatite scaffold can be used to locally harness the synergistic relationship between osteogenic and angiogenic growth factors to rapidly regenerate bone tissue without the need for more complex controlled delivery vehicles or high total growth factor doses.
Collapse
Affiliation(s)
- David P Walsh
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI, TCD, Dublin, Ireland
| | - Rosanne M Raftery
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI, TCD, Dublin, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), RCSI, Dublin, Ireland
| | - Andreas Heise
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI, TCD, Dublin, Ireland
- Department of Chemistry, RCSI, Dublin, Ireland
- Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway, Ireland
| | - Fergal J O'Brien
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI, TCD, Dublin, Ireland
- Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway, Ireland
| | - Sally-Ann Cryan
- Drug Delivery and Advanced Materials Team, School of Pharmacy, RCSI, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI, TCD, Dublin, Ireland
- Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway, Ireland
| |
Collapse
|
121
|
Loozen LD, Kruyt MC, Kragten AHM, Schoenfeldt T, Croes M, Oner CF, Dhert WJA, Alblas J. BMP-2 gene delivery in cell-loaded and cell-free constructs for bone regeneration. PLoS One 2019; 14:e0220028. [PMID: 31365542 PMCID: PMC6668905 DOI: 10.1371/journal.pone.0220028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
To induce osteogenicity in bone graft substitutes, plasmid-based expression of BMP-2 (pBMP-2) has been successfully applied in gene activated matrices based on alginate polymer constructs. Here, we investigated whether cell seeding is necessary for non-viral BMP-2 gene expression in vivo. Furthermore, to gain insight in the role of BMP-producing cells, we compared inclusion of bone progenitor cells with non-osteogenic target cells in gene delivery constructs. Plasmid DNA encoding GFP (pGFP) was used to trace transfection of host tissue cells and seeded cells in a rat model. Transgene expression was followed in both cell-free alginate-ceramic constructs as well as constructs seeded with syngeneic fibroblasts or multipotent mesenchymal stromal cells (MSCs). Titration of pGFP revealed that the highest pGFP dose resulted in frequent presence of positive host cells in the constructs. Both cell-loaded groups were associated with transgene expression, most effectively in the MSC-loaded constructs. Subsequently, we investigated effectiveness of cell-free and cell-loaded alginate-ceramic constructs with pBMP-2 to induce bone formation. Local BMP-2 production was found in all groups containing BMP-2 plasmid DNA, and was most pronounced in the groups with MSCs transfected with high concentration pBMP-2. Bone formation was only apparent in the recombinant protein BMP-2 group. In conclusion, we show that non-viral gene delivery of BMP-2 is a potentially effective way to induce transgene expression in vivo, both in cell-seeded as well as cell-free conditions. However, alginate-based gene delivery of BMP-2 to host cells or seeded cells did not result in protein levels adequate for bone formation in this setting, calling for more reliable scaffold compatible transfection methods.
Collapse
Affiliation(s)
- Loek D. Loozen
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moyo C. Kruyt
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ted Schoenfeldt
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel Croes
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cumhur F. Oner
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wouter J. A. Dhert
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
122
|
Zhang B, Skelly JD, Maalouf JR, Ayers DC, Song J. Multifunctional scaffolds for facile implantation, spontaneous fixation, and accelerated long bone regeneration in rodents. Sci Transl Med 2019; 11:11/502/eaau7411. [DOI: 10.1126/scitranslmed.aau7411] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/23/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Graft-guided regenerative repair of critical long bone defects achieving facile surgical delivery, stable graft fixation, and timely restoration of biomechanical integrity without excessive biotherapeutics remains challenging. Here, we engineered hydration-induced swelling/stiffening and thermal-responsive shape-memory properties into scalable, three-dimensional–printed amphiphilic degradable polymer-osteoconductive mineral composites as macroporous, non–load-bearing, resorbable synthetic grafts. The distinct physical properties of the grafts enabled straightforward surgical insertion into critical-size rat femoral segmental defects. Grafts rapidly recovered their precompressed shape, stiffening and swelling upon warm saline rinse to result in 100% stable graft fixation. The osteoconductive macroporous grafts guided bone formation throughout the defect as early as 4 weeks after implantation; new bone remodeling correlated with rates of scaffold composition-dependent degradation. A single dose of 400-ng recombinant human bone morphogenetic protein-2/7 heterodimer delivered via the graft accelerated bone regeneration bridging throughout the entire defect by 4 weeks after delivery. Full restoration of torsional integrity and complete scaffold resorption were achieved by 12 to 16 weeks after surgery. This biomaterial platform enables personalized bone regeneration with improved surgical handling, in vivo efficacy and safety.
Collapse
|
123
|
Zeng Y, Hoque J, Varghese S. Biomaterial-assisted local and systemic delivery of bioactive agents for bone repair. Acta Biomater 2019; 93:152-168. [PMID: 30711659 PMCID: PMC6615988 DOI: 10.1016/j.actbio.2019.01.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
Abstract
Although bone tissues possess an intrinsic capacity for repair, there are cases where bone healing is either impaired or insufficient, such as fracture non-union, osteoporosis, osteomyelitis, and cancers. In these cases, treatments like surgical interventions are used, either alone or in combination with bioactive agents, to promote tissue repair and manage associated clinical complications. Improving the efficacy of bioactive agents often requires carriers, with biomaterials being a pivotal player. In this review, we discuss the role of biomaterials in realizing the local and systemic delivery of biomolecules to the bone tissue. The versatility of biomaterials enables design of carriers with the desired loading efficiency, release profile, and on-demand delivery. Besides local administration, systemic administration of drugs is necessary to combat diseases like osteoporosis, warranting bone-targeting drug delivery systems. Thus, chemical moieties with the affinity towards bone extracellular matrix components like apatite minerals have been widely utilized to create bone-targeting carriers with better biodistribution, which cannot be achieved by the drugs alone. Bone-targeting carriers combined with the desired drugs or bioactive agents have been extensively investigated to enhance bone healing while minimizing off-target effects. Herein, these advancements in the field have been systematically reviewed. STATEMENT OF SIGNIFICANCE: Drug delivery is imperative when surgical interventions are not sufficient to address various bone diseases/defects. Biomaterial-assisted delivery systems have been designed to provide drugs with the desired loading efficiency, sustained release, and on-demand delivery to enhance bone healing. By surveying recent advances in the field, this review outlines the design of biomaterials as carriers for the local and systemic delivery of bioactive agents to the bone tissue. Particularly, biomaterials that bear chemical moieties with affinity to bone are attractive, as they can present the desired bioactive agents to the bone tissue efficiently and thus enhance the drug efficacy for bone repair.
Collapse
Affiliation(s)
- Yuze Zeng
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
124
|
Whitely M, Rodriguez-Rivera G, Waldron C, Mohiuddin S, Cereceres S, Sears N, Ray N, Cosgriff-Hernandez E. Porous PolyHIPE microspheres for protein delivery from an injectable bone graft. Acta Biomater 2019; 93:169-179. [PMID: 30685476 PMCID: PMC6615946 DOI: 10.1016/j.actbio.2019.01.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/03/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
Delivery of osteoinductive factors such as bone morphogenetic protein 2 (BMP-2) has emerged as a prominent strategy to improve regeneration in bone grafting procedures. However, it remains challenging to identify a carrier that provides the requisite loading efficiency and release kinetics without compromising the mechanical properties of the bone graft. Previously, we reported on porous, polymerized high internal phase emulsion (polyHIPE) microspheres fabricated using controlled fluidics. Uniquely, this solvent-free method provides advantages over current microsphere fabrication strategies including in-line loading of growth factors to improve loading efficiency. In the current study, we utilized this platform to fabricate protein-loaded microspheres and investigated the effect of particle size (∼400 vs ∼800 μm) and pore size (∼15 vs 30 μm) on release profiles. Although there was no significant effect of these variables on the substantial burst release profile of the microspheres, the incorporation of the protein-loaded microspheres within the injectable polyHIPE resulted in a sustained release of protein from the bulk scaffold over a two-week period with minimal burst release. Bioactivity retention of encapsulated BMP-2 was confirmed first using a genetically-modified osteoblast reporter cell line. A functional assay with human mesenchymal stem cells established that the BMP-2 release from microspheres induced osteogenic differentiation. Finally, microsphere incorporation had minimal effect on the cure and compressive properties of an injectable polyHIPE bone graft. Overall, this work demonstrates that these microsphere-polyHIPE composites have strong potential to enhance bone regeneration through controlled release of BMP-2 and other growth factors. STATEMENT OF SIGNIFICANCE: This manuscript describes a method for solvent-free fabrication of porous microspheres from high internal phase emulsions using a controlled fluids setup. The principles of emulsion templating and fluid dynamics provide exceptional control of particle size and pore architecture. In addition to the advantage of solvent-free fabrication, this method provides in-line loading of protein directly into the pores of the microspheres with high loading efficiencies. The incorporation of the protein-loaded microspheres within an injectable polyHIPE scaffold resulted in a sustained release of protein over a two-week period with minimal burst release. Retention of BMP-2 bioactivity and incorporation of microspheres with minimal effect on scaffold compressive properties highlights the potential of these new bone grafts.
Collapse
Affiliation(s)
- Michael Whitely
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Gabriel Rodriguez-Rivera
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, U.S.A
| | - Christina Waldron
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, U.S.A
| | - Sahar Mohiuddin
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Stacy Cereceres
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Nicholas Sears
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120, U.S.A
| | - Nicholas Ray
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, U.S.A
| | | |
Collapse
|
125
|
Robles-Bykbaev Y, Naya S, Díaz-Prado S, Calle-López D, Robles-Bykbaev V, Garzón L, Sanjurjo-Rodríguez C, Tarrío-Saavedra J. An artificial-vision- and statistical-learning-based method for studying the biodegradation of type I collagen scaffolds in bone regeneration systems. PeerJ 2019; 7:e7233. [PMID: 31316873 PMCID: PMC6613533 DOI: 10.7717/peerj.7233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
This work proposes a method based on image analysis and machine and statistical learning to model and estimate osteocyte growth (in type I collagen scaffolds for bone regeneration systems) and the collagen degradation degree due to cellular growth. To achieve these aims, the mass of collagen -subjected to the action of osteocyte growth and differentiation from stem cells- was measured on 3 days during each of 2 months, under conditions simulating a tissue in the human body. In addition, optical microscopy was applied to obtain information about cellular growth, cellular differentiation, and collagen degradation. Our first contribution consists of the application of a supervised classification random forest algorithm to image texture features (the structure tensor and entropy) for estimating the different regions of interest in an image obtained by optical microscopy: the extracellular matrix, collagen, and image background, and nuclei. Then, extracellular-matrix and collagen regions of interest were determined by the extraction of features related to the progression of the cellular growth and collagen degradation (e.g., mean area of objects and the mode of an intensity histogram). Finally, these critical features were statistically modeled depending on time via nonparametric and parametric linear and nonlinear models such as those based on logistic functions. Namely, the parametric logistic mixture models provided a way to identify and model the degradation due to biological activity by estimating the corresponding proportion of mass loss. The relation between osteocyte growth and differentiation from stem cells, on the one hand, and collagen degradation, on the other hand, was determined too and modeled through analysis of image objects' circularity and area, in addition to collagen mass loss. This set of imaging techniques, machine learning procedures, and statistical tools allowed us to characterize and parameterize type I collagen biodegradation when collagen acts as a scaffold in bone regeneration tasks. Namely, the parametric logistic mixture models provided a way to identify and model the degradation due to biological activity and thus to estimate the corresponding proportion of mass loss. Moreover, the proposed methodology can help to estimate the degradation degree of scaffolds from the information obtained by optical microscopy.
Collapse
Affiliation(s)
- Yaroslava Robles-Bykbaev
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Universidade da Coruña, A Coruña, Spain.,Cátedra UNESCO UPS Tecnologías de apoyo para la Inclusión Educativa, Universidad Politécnica Salesiana, Cuenca, Ecuador.,Grupo de Investigación en Materiales (GiMaT), Universidad Politécnica Salesiana, Cuenca, Ecuador
| | - Salvador Naya
- Grupo MODES, CITIC, ITMATI, Departamento de Matemáticas, Universidade da Coruña, Ferrol, Spain
| | - Silvia Díaz-Prado
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Universidade da Coruña, A Coruña, Spain
| | - Daniel Calle-López
- Cátedra UNESCO UPS Tecnologías de apoyo para la Inclusión Educativa, Universidad Politécnica Salesiana, Cuenca, Ecuador
| | - Vladimir Robles-Bykbaev
- Cátedra UNESCO UPS Tecnologías de apoyo para la Inclusión Educativa, Universidad Politécnica Salesiana, Cuenca, Ecuador
| | - Luis Garzón
- Grupo de Investigación en Materiales (GiMaT), Universidad Politécnica Salesiana, Cuenca, Ecuador
| | - Clara Sanjurjo-Rodríguez
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Universidade da Coruña, A Coruña, Spain
| | - Javier Tarrío-Saavedra
- Grupo MODES, CITIC, ITMATI, Departamento de Matemáticas, Universidade da Coruña, Ferrol, Spain
| |
Collapse
|
126
|
Fahimipour F, Dashtimoghadam E, Mahdi Hasani-Sadrabadi M, Vargas J, Vashaee D, Lobner DC, Jafarzadeh Kashi TS, Ghasemzadeh B, Tayebi L. Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel. Dent Mater 2019; 35:990-1006. [PMID: 31027908 PMCID: PMC7193177 DOI: 10.1016/j.dental.2019.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Design of bioactive scaffolds with osteogenic capacity is a central challenge in cell-based patient-specific bone tissue engineering. Efficient and spatially uniform seeding of (stem) cells onto such constructs is vital to attain functional tissues. Herein we developed heparin functionalized collagen gels supported by 3D printed bioceramic scaffolds, as bone extracellular matrix (ECM)-mimetic matrices. These matrices were designed to enhance cell seeding efficiency of mesenchymal stem cells (MSCs) as well as improve their osteogenic differentiation through immobilized bone morphogenic protein 2 (BMP2) to be used for personalized bone regeneration. METHODS A 3D gel based on heparin-conjugated collagen matrix capable of immobilizing recombinant human bone morphogenic protein 2 (BMP2) was synthesized. Isolated dental pulp Mesenchymal stem cells (MSCs) were then encapsulated into the bone ECM microenvironment to efficiently and uniformly seed a bioactive ceramic-based scaffold fabricated using additive manufacturing technique. The designed 3D cell-laden constructs were comprehensively investigated trough in vitro assays and in vivo study. RESULTS In-depth rheological characterizations of heparin-conjugated collagen gel revealed that elasticity of the matrix is significantly improved compared with freely incorporated heparin. Investigation of the MSCs laden collagen-heparin hydrogels revealed their capability to provide spatiotemporal bioavailability of BMP2 while suppressing the matrix contraction over time. The in vivo histology and real-time polymerase chain reaction (qPCR) analysis showed that the designed construct supported the osteogenic differentiation of MSCs and induced the ectopic bone formation in rat model. SIGNIFICANCE The presented hybrid constructs combine bone ECM chemical cues with mechanical function providing an ideal 3D microenvironment for patient-specific bone tissue engineering and cell therapy applications. The implemented methodology in design of ECM-mimetic 3D matrix capable of immobilizing BMP2 to improve seeding efficiency of customized scaffolds can be exploited for other bioactive molecules.
Collapse
Affiliation(s)
- Farahnaz Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA; Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Mahdi Hasani-Sadrabadi
- Parker H. Petit Institute for Bioengineering and Bioscience, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prothodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Jessica Vargas
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Daryoosh Vashaee
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606, USA
| | - Douglas C Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Tahereh S Jafarzadeh Kashi
- Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Ghasemzadeh
- Department of Biomedical Sciences, Integrative Neuroscience Research Center, Marquette University, Milwaukee, WI 53201, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
127
|
Hang K, Ye C, Xu J, Chen E, Wang C, Zhang W, Ni L, Kuang Z, Ying L, Xue D, Pan Z. Apelin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly through Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2019; 10:189. [PMID: 31238979 PMCID: PMC6593611 DOI: 10.1186/s13287-019-1286-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Management of fracture healing with a large bone defect remains a tricky subject in orthopedic trauma. Enhancing osteogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs) is one of the useful therapeutic strategies for fracture healing. Previous studies have revealed that Apelin may play an important role in bone metabolism. However, its function in the osteogenesis of hBMSCs remains unclear. Therefore, in this study, we investigated the effects and mechanism of Apelin on osteogenic differentiation. METHODS We investigated the osteogenesis effects of hBMSCs by both exogenous Apelin protein and overexpression Apelin in vitro. Cell proliferation assay was used to assess the effect of Apelin on the proliferation of hBMSCs. ALP staining and Alizarin Red staining were used to evaluate ALP activity and mineral deposition respectively. qPCR and Western blotting analysis were used to detect the expression of target genes and proteins. In vivo, a rat tibial osteotomy model was established; radiographic analysis and histological evaluation were used to confirm the therapeutic effects of Apelin in fracture healing. Statistical significance was determined by two-tailed Student's t test when 2 groups were compared. When more than 2 groups were compared, one-way ANOVA followed by Bonferroni's post-hoc test was used. And two-way ANOVA, followed by Bonferroni multiple comparisons post-hoc test, was performed when the treatment groups at different time points were compared. RESULTS The addition of exogenous Apelin protein or overexpression of Apelin promoted osteoblast differentiation of hBMSCs in vitro. Increased mineral deposits were observed after treatment with extracellular Apelin protein or after the upregulation of Apelin. Moreover, β-catenin levels were upregulated by Apelin. The enhancement of osteogenic differentiation induced by Apelin was attenuated by specific Wnt/β-catenin signaling pathway inhibitors. In a rat tibial osteotomy model, local injection of exogenous Apelin protein improved bone healing, as demonstrated by imaging and histological analyses. CONCLUSIONS Taken together, these findings indicate that Apelin regulates osteogenic differentiation of hMSCs partly via the Wnt/β-catenin signaling pathway and effectively promotes fracture healing.
Collapse
Affiliation(s)
- Kai Hang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Chenyi Ye
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Jianxiang Xu
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Erman Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Cong Wang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Wei Zhang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Lic Ni
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Zhih Kuang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Li Ying
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Deting Xue
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| | - Zhijun Pan
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
128
|
Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. POLYMERIC BIOMATERIALS FOR SCAFFOLD-BASED BONE REGENERATIVE ENGINEERING. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:128-154. [PMID: 31423461 PMCID: PMC6697158 DOI: 10.1007/s40883-018-0072-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
Abstract
Reconstruction of large bone defects resulting from trauma, neoplasm, or infection is a challenging problem in reconstructive surgery. The need for bone grafting has been increasing steadily partly because of our enhanced capability to salvage limbs after major bone loss. Engineered bone graft substitutes can have advantages such as lack of antigenicity, high availability, and varying properties depending on the applications chosen for use. These favorable attributes have contributed to the rise of scaffold-based polymeric tissue regeneration. Critical components in the scaffold-based polymeric regenerative engineering approach often include 1. The existence of biodegradable polymeric porous structures with properties selected to promote tissue regeneration and while providing appropriate mechanical support during tissue regeneration. 2. Cellular populations that can influence and enhance regeneration. 3. The use of growth and morphogenetic factors which can influence cellular migration, differentiation and tissue regeneration in vivo. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and their ability to produce biocompatible degradation products. This paper presents an overview of polymeric scaffold-based bone tissue regeneration and reviews approaches as well as the particular roles of biodegradable polymers currently in use.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tahereh Jafari
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jorge L. Escobar Ivirico
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
129
|
Singhatanadgit W, Sungkhaphan P, Theerathanagorn T, Patntirapong S, Janvikul W. Analysis of sequential dual immobilization of type I collagen and BMP-2 short peptides on hydrolyzed poly(buthylene succinate)/ β-tricalcium phosphate composites for bone tissue engineering. J Biomater Appl 2019; 34:351-364. [PMID: 31137998 DOI: 10.1177/0885328219852820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Weerachai Singhatanadgit
- 1 Craniofacial Reconstruction Cluster, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | | | | | - Somying Patntirapong
- 3 Department of Oral Biology, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | - Wanida Janvikul
- 2 National Metal and Materials Technology Center, Pathum Thani, Thailand
| |
Collapse
|
130
|
Akino N, Tachikawa N, Miyahara T, Ikumi R, Kasugai S. Vertical ridge augmentation using a porous composite of uncalcined hydroxyapatite and poly-DL-lactide enriched with types 1 and 3 collagen. Int J Implant Dent 2019; 5:16. [PMID: 31041549 PMCID: PMC6491530 DOI: 10.1186/s40729-019-0167-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/13/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous studies have shown that porous composite blocks containing uncalcined hydroxyapatite (u-HA; 70 wt%) with a scaffold of poly-DL-lactide (PDLLA, 30 wt%) are biodegradable, encourage appropriate bone formation, and are suitable for use as a bone substitute in vertical ridge augmentation. The present study aimed to accelerate osteogenesis in vertical ridge formation by adding types 1 and 3 collagen to the u-HA/PDLLA blocks and assessing the effect. MATERIAL AND METHODS The bone substitute in the present study comprised porous composite blocks of u-HA (70 wt%) with a PDLLA (27-29 wt%) scaffold and enriched with types 1 and 3 collagen (1.7 ~ 3.4 wt%). The control blocks were composed of u-HA (70 wt%) and PDLLA (30 wt%). The materials were formed into 8-mm diameter, 2-mm high discs and implanted onto the cranial bones of six rabbits. The animals were sacrificed 4 weeks after implantation, and histological and histomorphometrical analyses were performed to quantitatively evaluate newly formed bone. RESULTS New bone formation occurred with both block types, showing direct contact with the original bone. Mean ± standard deviation bone formation was significantly greater in the experimental blocks (25.6% ± 4.8%) than in the control blocks (17.0% ± 4.7%). CONCLUSIONS Histological and histomorphometrical observations indicated that new bone was formed with both block types. The u-HA/PDLLA block with types 1 and 3 collagen is a more promising candidate for vertical ridge augmentation than the u-HA/PDLLA alone block.
Collapse
Affiliation(s)
- Norio Akino
- Implant Dentistry, Dental Hospital, Tokyo Medical and Dental University, 113-8510 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan.
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 113-8510 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Noriko Tachikawa
- Implant Dentistry, Dental Hospital, Tokyo Medical and Dental University, 113-8510 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 113-8510 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Takayuki Miyahara
- Implant Dentistry, Dental Hospital, Tokyo Medical and Dental University, 113-8510 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Reo Ikumi
- Implant Dentistry, Dental Hospital, Tokyo Medical and Dental University, 113-8510 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Shohei Kasugai
- Implant Dentistry, Dental Hospital, Tokyo Medical and Dental University, 113-8510 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
- Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 113-8510 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
131
|
Xia YJ, Wei W, Xia H, Ying QS, Yu X, Li LH, Wang JH, Zhang Y. Effect of recombinant human bone morphogenetic protein delivered by chitosan microspheres on ectopic osteogenesis in rats. Exp Ther Med 2019; 17:3891-3898. [PMID: 30988773 PMCID: PMC6447930 DOI: 10.3892/etm.2019.7406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
In the present study, the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) delivered by chitosan (CS) microspheres on ectopic osteogenesis was investigated in a rat model. rhBMP-2-loaded CS microspheres and blank CS microspheres were prepared. A total of 24 male Sprague Dawley rats were divided into 4 groups with 6 rats in each group: The CS/rhBMP-2 group, the rhBMP-2 group, in which rhBMP-2 was directly implanted (rhBMP-2 dose in either group, 1 mg), the CS blank group and the control group. X-ray was performed at 4 weeks after ectopic osteogenesis surgery and micro-computed tomography (CT) examination was scheduled at 1, 2, 3 and 4 weeks after the surgery to determine ectopic osteogenesis in the different groups. Histological analysis, and determination of alkaline phosphatase (ALP) activity and calcium content were also performed. The mean diameter of the osteoid tissues was 1.1±0.3 cm (range, 0.8-1.4 cm) in the CS/rhBMP-2 group, which was significantly bigger than that in the rhBMP-2 group (0.3±0.1 cm; range, 0.1-0.4 cm) at 4 weeks after the surgery. X-ray analysis and micro-CT scan indicated that the area of high-density tissues and the radionuclide intensity, as well as bone volume in the 3-dimensional reconstruction were greatest in the CS/rhBMP-2 group, followed by those in the rhBMP-2 group. All parameters, including bone mineral density, tissue mineral density, tissue mineral content and bone volume fraction, were significantly higher in the CS/rhBMP-2 group at 3 and 4 weeks after the surgery, compared with those in the rhBMP-2 group. The histological analysis, ALP activity analysis and determination of calcium content revealed that the CS/rhBMP-2 system had the greatest ability to induce osteoblast differentiation. In conclusion, the CS/rhBMP-2 microsphere delivery system significantly enhanced the induction and promotion effects of rhBMP-2 regarding ectopic osteogenesis. The present study enhances the basic data available for future application of the CS/rhBMP-2 microspheres delivery system and provides a deeper understanding of the role of BMP-2 in bone regeneration.
Collapse
Affiliation(s)
- Yuan-Jun Xia
- Department of Trauma Orthopedics, Hospital of Osteopathics, General Hospital of Southern Theater Command, People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Wang Wei
- Department of Orthopaedics, The First Affiliated Hospital of Jiangxi Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Hong Xia
- Department of Trauma Orthopedics, Hospital of Osteopathics, General Hospital of Southern Theater Command, People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Qing-Shui Ying
- Department of Trauma Orthopedics, Hospital of Osteopathics, General Hospital of Southern Theater Command, People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Xiang Yu
- Department of Trauma Orthopedics, Hospital of Osteopathics, General Hospital of Southern Theater Command, People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Li-Hua Li
- Department of Trauma Orthopedics, Hospital of Osteopathics, General Hospital of Southern Theater Command, People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Jian-Hua Wang
- Department of Trauma Orthopedics, Hospital of Osteopathics, General Hospital of Southern Theater Command, People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Ying Zhang
- Department of Trauma Orthopedics, Hospital of Osteopathics, General Hospital of Southern Theater Command, People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
132
|
Rieu C, Parisi C, Mosser G, Haye B, Coradin T, Fernandes FM, Trichet L. Topotactic Fibrillogenesis of Freeze-Cast Microridged Collagen Scaffolds for 3D Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14672-14683. [PMID: 30913387 DOI: 10.1021/acsami.9b03219] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Type I collagen is the main component of the extracellular matrix (ECM). In vitro, under a narrow window of physicochemical conditions, type I collagen self-assembles to form complex supramolecular architectures reminiscent of those found in native ECM. Presently, a major challenge in collagen-based biomaterials is to couple the delicate collagen fibrillogenesis events with a controlled shaping process in non-denaturating conditions. In this work, an ice-templating approach promoting the structuration of collagen into macroporous monoliths is used. Instead of common solvent removal procedures, a new topotactic conversion approach yielding self-assembled ordered fibrous materials is implemented. These collagen-only, non-cross-linked scaffolds exhibit uncommon mechanical properties in the wet state, with a Young's modulus of 33 ± 12 kPa, an ultimate tensile stress of 33 ± 6 kPa, and a strain at failure of 105 ± 28%. With the help of the ice-patterned microridge features, normal human dermal fibroblasts and C2C12 murine myoblasts successfully migrate and form highly aligned populations within the resulting three-dimensional (3D) collagen scaffolds. These results open a new pathway to the development of new tissue engineering scaffolds ordered across various organization levels from the molecule to the macropore and are of particular interest for biomedical applications where large-scale 3D cell alignment is needed such as for muscular or nerve reconstruction.
Collapse
Affiliation(s)
- Clément Rieu
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Cleo Parisi
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Gervaise Mosser
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Bernard Haye
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Francisco M Fernandes
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Léa Trichet
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| |
Collapse
|
133
|
Minardi S, Taraballi F, Cabrera FJ, Van Eps J, Wang X, Gazze SA, Fernandez-Mourev JS, Tampieri A, Francis L, Weiner BK, Tasciotti E. Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model. Mater Today Bio 2019; 2:100005. [PMID: 32159142 PMCID: PMC7061691 DOI: 10.1016/j.mtbio.2019.100005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/02/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
Synthetic osteoinductive materials that mimic the human osteogenic niche have emerged as ideal candidates to address this area of unmet clinical need. In this study, we evaluated the osteoinductive potential in a rabbit orthotopic model of a magnesium-doped hydroxyapatite/type I collagen (MHA/Coll) composite. The composite was fabricated to exhibit a highly fibrous structure of carbonated MHA with 70% (±2.1) porosity and a Ca/P ratio of 1.5 (±0.03) as well as a diverse range of elasticity separated to two distinct stiffness peaks of low (2.35 ± 1.16 MPa) and higher (9.52 ± 2.10 MPa) Young's Modulus. Data suggested that these specific compositional and nanomechanical material properties induced the deposition of de novo mineral phase, while modulating the expression of early and late osteogenic marker genes, in a 3D in vitro model using human bone marrow-derived mesenchymal stem cells (hBM-MSCs). When tested in the rabbit orthotopic model, MHA/Col1 scaffold induction of new trabecular bone mass was observed by DynaCT scan, only 2 weeks after implantation. Bone histomorphometry at 6 weeks revealed a significant amount of de novo bone matrix formation. qPCR demonstrated MHA/Coll scaffold full cellularization in vivo and the expression of both osteogenesis-associated genes (Spp1, Sparc, Col1a1, Runx2, Dlx5) as well as hematopoietic (Vcam1, Cd38, Sele, Kdr) and bone marrow stromal cell marker genes (Vim, Itgb1, Alcam). Altogether, these data provide evidence of the solid osteoinductive potential of MHA/Coll and its suitability for multiple approaches of bone regeneration.
Collapse
Affiliation(s)
- S Minardi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA.,National Research Council of Italy, Institute of Science and Technology for Ceramics (ISTEC-CNR), Via Granarolo 64, 48018 Faenza, RA Italy.,Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA
| | - F Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA.,Houston Methodist Orthopedic and Sports Medicine, 6565 Fannin Street, Houston, TX 77030, USA
| | - F J Cabrera
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA
| | - J Van Eps
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA
| | - X Wang
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA
| | - S A Gazze
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Joseph S Fernandez-Mourev
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA.,Department of Surgery, Houston Methodist Hospital, 6565 Fannin St., Suite 1660, Houston, TX 77030, USA
| | - A Tampieri
- National Research Council of Italy, Institute of Science and Technology for Ceramics (ISTEC-CNR), Via Granarolo 64, 48018 Faenza, RA Italy
| | - L Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - B K Weiner
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA.,Houston Methodist Orthopedic and Sports Medicine, 6565 Fannin Street, Houston, TX 77030, USA
| | - E Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA.,Houston Methodist Orthopedic and Sports Medicine, 6565 Fannin Street, Houston, TX 77030, USA.,Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA
| |
Collapse
|
134
|
Paidikondala M, Wang S, Hilborn J, Larsson S, Varghese OP. Impact of Hydrogel Cross-Linking Chemistry on the in Vitro and in Vivo Bioactivity of Recombinant Human Bone Morphogenetic Protein-2. ACS APPLIED BIO MATERIALS 2019; 2:2006-2012. [DOI: 10.1021/acsabm.9b00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maruthibabu Paidikondala
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry-Ångstrom Laboratory, Uppsala University, Uppsala SE75121, Sweden
| | - Shujiang Wang
- Maisonneuve-Rosemont Hospital Research Centre & Department of Ophthalmology, University of Montreal, Montreal H3T 1J4, Canada
| | - Jöns Hilborn
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry-Ångstrom Laboratory, Uppsala University, Uppsala SE75121, Sweden
| | - Sune Larsson
- Department of Surgical Sciences, Section of Orthopedics, Uppsala University Hospital, Uppsala SE75185, Sweden
| | - Oommen P. Varghese
- Translational Chemical Biology Laboratory, Polymer Chemistry Division, Department of Chemistry-Ångstrom Laboratory, Uppsala University, Uppsala SE75121, Sweden
| |
Collapse
|
135
|
Liu S, Liu Y, Jiang L, Li Z, Lee S, Liu C, Wang J, Zhang J. Recombinant human BMP-2 accelerates the migration of bone marrow mesenchymal stem cells via the CDC42/PAK1/LIMK1 pathway in vitro and in vivo. Biomater Sci 2019; 7:362-372. [PMID: 30484785 DOI: 10.1039/c8bm00846a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biomaterials are widely used for bone regeneration and fracture repair. The migration of bone marrow mesenchymal stem cells (BMSCs) into bone defect sites or material implantation sites, and their differentiation into osteoblasts, is central to the fracture healing process, and the directional migration of BMSCs depends on cytokines or chemokines at the defect site. BMP-2 can stimulate the migration of a variety of cells, but it remains unclear whether BMSC migration can be induced. To provide evidence for BMP-2-induced BMSC migration, we tested the cytoskeletal changes and migration ability of BMSCs after treatment with recombinant human BMP-2 (rhBMP-2). We also explored the recruitment of BMSCs from the circulatory system using a collagen sponge incorporating rhBMP-2 that was implanted in vivo. Furthermore, to understand the mechanism underlying this migration, we investigated the effect of rhBMP-2 on migration-related signal pathways. Here, we found that, rhBMP-2 treatment significantly increased the migration of BMSCs in vitro via activation of the CDC42/PAK1/LIMK1 pathway, and that this migration could be blocked by silencing CDC42. In vivo, collagen sponge material loaded with rhBMP-2 could recruit BMSCs injected into the circulatory system. Moreover, inhibition using the small interfering RNA for CDC42 led to a significant decrease in the number of BMSCs within the material. In conclusion, our data prove that rhBMP-2 can accelerate BMSC migration via the CDC42/PAK1/LIMK1 pathway both in vivo and in vitro, and therefore provides a foundation for further understanding and application of rhBMP-2-incorporated materials by enhancing BMSC recruitment.
Collapse
Affiliation(s)
- Shuhao Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030 People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
136
|
González-Gil AB, Lamo-Espinosa JM, Muiños-López E, Ripalda-Cemboráin P, Abizanda G, Valdés-Fernández J, López-Martínez T, Flandes-Iparraguirre M, Andreu I, Elizalde MR, Stuckensen K, Groll J, De-Juan-Pardo EM, Prósper F, Granero-Moltó F. Periosteum-derived mesenchymal progenitor cells in engineered implants promote fracture healing in a critical-size defect rat model. J Tissue Eng Regen Med 2019; 13:742-752. [PMID: 30785671 DOI: 10.1002/term.2821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 11/06/2022]
Abstract
An attractive alternative to bone autografts is the use of autologous mesenchymal progenitor cells (MSCs) in combination with biomaterials. We compared the therapeutic potential of different sources of mesenchymal stem cells in combination with biomaterials in a bone nonunion model. A critical-size defect was created in Sprague-Dawley rats. Animals were divided into six groups, depending on the treatment to be applied: bone defect was left empty (CTL); treated with live bone allograft (LBA); hrBMP-2 in collagen scaffold (CSBMP2 ); acellular polycaprolactone scaffold (PCL group); PCL scaffold containing periosteum-derived MSCs (PCLPMSCs ) and PCL containing bone marrow-derived MSCs (PCLBMSCs ). To facilitate cell tracking, both MSCs and bone graft were isolated from green fluorescent protein (GFP)-transgenic rats. CTL group did not show any signs of healing during the radiological follow-up (n = 6). In the LBA group, all the animals showed bone bridging (n = 6) whereas in the CSBMP2 group, four out of six animals demonstrated healing. In PCL and PCLPMSCs groups, a reduced number of animals showed radiological healing, whereas no healing was detected in the PCLBMSCs group. Using microcomputed tomography, the bone volume filling the defect was quantified, showing significant new bone formation in the LBA, CSBMP2 , and PCLPMSCs groups when compared with the CTL group. At 10 weeks, GFP positive cells were detected only in the LBA group and restricted to the outer cortical bone in close contact with the periosteum. Tracking of cellular implants demonstrated significant survival of the PMSCs when compared with BMSCs. In conclusion, PMSCs improve bone regeneration being suitable for mimetic autograft design.
Collapse
Affiliation(s)
- Ana B González-Gil
- Orthopaedic Surgery and Traumatology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - José M Lamo-Espinosa
- Orthopaedic Surgery and Traumatology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Emma Muiños-López
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | | | - Gloria Abizanda
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - José Valdés-Fernández
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Tania López-Martínez
- Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | | | - Ion Andreu
- TECNUN, Universidad de Navarra, San Sebastian, Spain
| | - María Reyes Elizalde
- TECNUN, Universidad de Navarra, San Sebastian, Spain.,CEIT, San Sebastian, Spain
| | - Kai Stuckensen
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Elena M De-Juan-Pardo
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Felipe Prósper
- Orthopaedic Surgery and Traumatology Department, Clínica Universidad de Navarra, Pamplona, Spain.,Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain.,Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Froilán Granero-Moltó
- Orthopaedic Surgery and Traumatology Department, Clínica Universidad de Navarra, Pamplona, Spain.,Cell Therapy Area, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
137
|
Badieyan ZS, Evans T. Concise Review: Application of Chemically Modified mRNA in Cell Fate Conversion and Tissue Engineering. Stem Cells Transl Med 2019; 8:833-843. [PMID: 30891922 PMCID: PMC6646692 DOI: 10.1002/sctm.18-0259] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/27/2019] [Indexed: 12/19/2022] Open
Abstract
Chemically modified RNA (cmRNA) has potential as a safe and efficient tool for nucleic acid‐based therapies and regenerative medicine. Modifications in the chemistry of mRNA can enhance stability, reduce immunogenicity, and thus facilitate mRNA‐based nucleic acid therapy, which eliminates risk of insertional mutagenesis. In addition to these valuable advantages, the mRNA‐based method showed significantly higher efficacy for reprogramming somatic cells to pluripotency compared with DNA‐ or protein‐based methods. These findings suggest cmRNA can provide a powerful and safe tool for cell programming and reprogramming. Delivery methods, particularly using lipid nanoparticles, provide strategies for cell and organ‐specific targeting. The present study comprehensively compares studies that have used cmRNAs for cell fate conversion and tissue engineering. The information should be useful for investigators looking to choose the most efficient and straightforward cmRNA‐based strategy and protocol for tissue engineering and regenerative medicine research. stem cells translational medicine2019;8:833&843
Collapse
Affiliation(s)
- Zohreh Sadat Badieyan
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
138
|
Finamore TA, Curtis TE, Tedesco JV, Grandfield K, Roeder RK. Nondestructive, longitudinal measurement of collagen scaffold degradation using computed tomography and gold nanoparticles. NANOSCALE 2019; 11:4345-4354. [PMID: 30793721 DOI: 10.1039/c9nr00313d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biodegradable materials, such as collagen scaffolds, are used extensively in clinical medicine for tissue regeneration and/or as an implantable drug delivery vehicle. However, available methods to study biomaterial degradation are typically invasive, destructive, and/or non-volumetric. Therefore, the objective of this study was to investigate a new method for nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation. Gold nanoparticles (Au NPs) were covalently conjugated to collagen fibrils during scaffold preparation to enable contrast-enhanced imaging of collagen scaffolds. The X-ray attenuation of as-prepared scaffolds increased linearly with increased Au NP concentration such that ≥60 mM Au NPs provided sufficient contrast to measure scaffold degradation. Collagen scaffold degradation kinetics were measured to increase during in vitro enzymatic degradation in media with an increased concentration of collagenase. The scaffold degradation kinetics measured by micro-CT exhibited lower variability compared with gravimetric measurement and were validated by measurement of the release of Au NPs from the same samples by optical spectroscopy. Thus, Au NPs and CT synergistically enabled nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation.
Collapse
Affiliation(s)
- Tyler A Finamore
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA..
| | | | | | | | | |
Collapse
|
139
|
Lin SY, Kang L, Chen JC, Wang CZ, Huang HH, Lee MJ, Cheng TL, Chang CF, Lin YS, Chen CH. (-)-Epigallocatechin-3-gallate (EGCG) enhances healing of femoral bone defect. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:165-171. [PMID: 30668426 DOI: 10.1016/j.phymed.2018.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/24/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Previously, we found that (-)-epigallocatechin-3-gallate (EGCG) enhanced osteogenic differentiation of murine bone marrow mesenchymal stem cells by increasing the mRNA expression of osteogenesis-related genes, alkaline phosphatase activity and eventually mineralization. We further found EGCG supplementation preserved bone mass and microarchitecture in female rats during estrogen deficiency in the proximal tibia and lumbar spine at least in part by increasing bone morphogenetic protein-2 (BMP2). BMP2 can enhance de novo bone formation. PURPOSE In this study, we evaluate the effect of local EGCG application in de novo bone formation in bone defect healing. METHODS Twenty-four rats aged 4 months were weight-matched and randomly allocated to 2 groups: defect control with vehicle treatment (control) and defect with 10 µM EGCG treatment (EGCG). Daily vehicle and EGCG were applied locally by percutaneous local injection 2 days after defect creation for 2 weeks. Four weeks after treatment, animals were sacrificed for micro-computed tomography (μ-CT) and biomechanical analysis. RESULTS Local EGCG at femoral defect can enhance de novo bone formation by increasing bone volume and subsequently improve mechanical properties including max load, break point, stiffness, area under the max load curve, area under the break point curve and ultimate stress. CONCLUSIONS Local EGCG may enhance bone defect healing via at least partly by the de novo bone formation of BMP-2.
Collapse
Affiliation(s)
- Sung-Yen Lin
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jian-Chih Chen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City 60054, Taiwan
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan; Innovative Research Center of Medicine, Chang Jung Christian University, Tainan, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
140
|
|
141
|
Lang A, Kirchner M, Stefanowski J, Durst M, Weber MC, Pfeiffenberger M, Damerau A, Hauser AE, Hoff P, Duda GN, Buttgereit F, Schmidt-Bleek K, Gaber T. Collagen I-based scaffolds negatively impact fracture healing in a mouse-osteotomy-model although used routinely in research and clinical application. Acta Biomater 2019; 86:171-184. [PMID: 30616076 DOI: 10.1016/j.actbio.2018.12.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
Although several biomaterials for bone regeneration have been developed in the last decades, clinical application of bone morphogenetic protein 2 is clinically only approved when applied on an absorbable bovine collagen I scaffold (ACS) (Helistat; ACS-H). In research, another ACS, namely Lyostypt (ACS-L) is frequently used as a scaffold in bone-linked studies. Nevertheless, until today, the influence of ACS alone on bone healing remains unknown. Unexpectedly, in vitro studies using ASC-H revealed a suppression of osteogenic differentiation and a significant reduction of cell vitality when compared to ASC-L. In mice, we observed a significant delay in bone healing when applying ACS-L in the fracture gap during femoral osteotomy. The results of our study show for the first time a negative influence of both ACS-H and ACS-L on bone formation demonstrating a substantial need for more sophisticated delivery systems for local stimulation of bone healing in both clinical application and research. STATEMENT OF SIGNIFICANCE: Our study provides evidence-based justification to promote the development and approval of more suitable and sophisticated delivery systems in bone healing research. Additionally, we stimulate researchers of the field to consider that the application of those scaffolds as a delivery system for new substances represents a delayed healing approach rather than a normal bone healing which could greatly impact the outcome of those studies and play a pivotal role in the translation to the clinics. Moreover, we provide impulses on underlying mechanism involving the roles of small-leucine rich proteoglycans (SLRP) for further detailed investigations.
Collapse
|
142
|
Exosome-integrated titanium oxide nanotubes for targeted bone regeneration. Acta Biomater 2019; 86:480-492. [PMID: 30630122 DOI: 10.1016/j.actbio.2019.01.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Exosomes are extracellular nanovesicles that play an important role in cellular communication. The modulatory effects of bone morphogenetic protein 2 (BMP2) on macrophages have encouraged the functionalization of scaffolds through the integration of the exosomes from the BMP2-stimulated macrophages to avoid ectopic bone formation and reduce adverse effects. To determine the functionality of exosomal nanocarriers from macrophages after BMP2 stimulation, we isolated the exosomes from Dulbecco's modified Eagle's medium (DMEM)- or BMP2-stimulated macrophages and evaluated their effects on osteogenesis. Morphological characterization of the exosomes derived from DMEM- or BMP2-treated macrophages revealed no significant differences, and the bone marrow-derived mesenchymal stromal cells showed similar cellular uptake patterns for both exosomes. In vitro study using BMP2/macrophage-derived exosomes indicated their beneficial effects on osteogenic differentiation. To improve the bio-functionality for titanium implants, BMP2/macrophage-derived exosomes were used to modify titanium nanotube implants to favor osteogenesis. The incorporation of BMP2/macrophage-derived exosomes dramatically increased the expression of early osteoblastic differentiation markers, alkaline phosphatase (ALP) and BMP2, indicative of the pro-osteogenic role of the titanium nanotubes incorporated with BMP2/macrophage-derived exosomes. The titanium nanotubes functionalized with BMP2/macrophage-derived exosomes activated autophagy during osteogenic differentiation. In conclusion, the exosome-integrated titanium nanotube may serve as an emerging functional material for bone regeneration. STATEMENT OF SIGNIFICANCE: The clinical application of bone morphogenetic protein 2 (BMP2) is often limited by its side effects. Exosomes are naturally secreted nanosized vesicles derived from cells and play an important role in intercellular communication. The contributions of this study include (1) the demonstration of the potential regulatory role of BMP2/macrophage-derived exosomes on the osteogenic differentiation of mesenchymal stromal cells (MSCs); (2) fabrication of titanium nanotubes incorporated with exosomes; (3) new insights into the application of titanium nanotube-based materials for the safe use of BMP2.
Collapse
|
143
|
Griffanti G, Jiang W, Nazhat SN. Bioinspired mineralization of a functionalized injectable dense collagen hydrogel through silk sericin incorporation. Biomater Sci 2019; 7:1064-1077. [DOI: 10.1039/c8bm01060a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The incorporation of silk sericin into injectable dense collagen hydrogels represents a powerful approach to mimic the biomineralization process, together with the osteogenic stimulation of seeded mesenchymal stem cells, in vitro.
Collapse
Affiliation(s)
- Gabriele Griffanti
- Department of Mining and Materials Engineering
- McGill University
- Montréal
- Canada
| | - Wenge Jiang
- Department of Mining and Materials Engineering
- McGill University
- Montréal
- Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering
- McGill University
- Montréal
- Canada
| |
Collapse
|
144
|
Jin H, Liu Z, Li W, Jiang Z, Li Y, Zhang B. Polyethylenimine-alginate nanocomposites based bone morphogenetic protein 2 gene-activated matrix for alveolar bone regeneration. RSC Adv 2019; 9:26598-26608. [PMID: 35528551 PMCID: PMC9070436 DOI: 10.1039/c9ra05164c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
The repair and treatment of lost or damaged alveolar bone is of great significance in dentistry. Gene-activated matrix (GAM) technology provides a new way for bone regeneration. It is a local gene delivery system, which can not only recruit cells, but also influence their fate. For this purpose, we fabricated a bone morphogenetic protein 2 (BMP-2) gene-loaded absorbable gelatin sponge (AGS) and studied its effect on promoting alveolar bone formation and preventing resorption following tooth extraction in rats. In order to obtain better transfection efficiency, polyethylenimine-alginate (PEI-al) nanocomposites were synthesized and used as gene vectors to deliver BMP-2 cDNA plasmids (PEI-al/pBMP-2). The transfection efficiency, BMP-2 protein expression and osteogenic differentiation of the cells were investigated in vitro. In vivo, we established an alveolar bone regeneration model by extracting the rats' left mandibular incisors. The rats were randomly assigned into 3 groups: control group, unfilled sockets; AGS group, sockets filled with PEI-al solution-loaded gelatin sponges; AGS/BMP group, sockets filled with PEI-al/pBMP-2 solution-loaded gelatin sponge. Radiological and histological assays were performed at 4 and 8 weeks later. In vitro transfection assays indicated that PEI-al/pBMP-2 complexes could effectively transfect MC3T3-E1 cells, promoting the secretion of BMP-2 protein for at least 14 days, as well as increasing the expression of osteogenesis-related gene, ALP activity and calcium deposition. In vivo, western blot analysis showed BMP-2 protein was expressed in bone tissues of AGS/BMP group. The relative height of the residual alveolar ridge and bone mineral density (BMD) of the AGS/BMP group were significantly greater than those in the AGS and control groups at 4 and 8 weeks, respectively. Histological examination showed that, at 4 weeks, osteoblasts had grown in a cubic shape around the new bone in the AGS/BMP group, suggesting new bone formation. In conclusion, the combination of PEI-al/pBMP-2 complexes and gelatin sponge could promote alveolar bone regeneration, which may provide an easy and valuable method for alveolar ridge preservation and augmentation. Polyethylenimine-alginate nanocomposites based bone morphogenetic protein 2 gene-activated matrix may provide an easy and valuable method for alveolar ridge regeneration.![]()
Collapse
Affiliation(s)
- Han Jin
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| | - Zhongshuang Liu
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| | - Wei Li
- Department of Stomatology
- Harbin Children's Hospital
- Harbin
- China
| | - Zhuling Jiang
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Department of Implantology
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration
- The Second Affiliated Hospital of Harbin Medical University
- Harbin
- China
- Heilongjiang Academy of Medical Sciences
| |
Collapse
|
145
|
Toth JM, Wang M, Patel CK, Arora A. Early term effects of rhBMP-2 on pedicle screw fixation in a sheep model: histomorphometric and biomechanical analyses. JOURNAL OF SPINE SURGERY 2018; 4:534-545. [PMID: 30547116 DOI: 10.21037/jss.2018.06.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background The effects of recombinant human bone morphogenetic protein-2 (rhBMP-2) on pedicle screw pullout force and its potential to improve spinal fixation have not previously been investigated. rhBMP-2 on an absorbable collagen sponge (ACS) carrier was delivered in and around cannulated and fenestrated pedicle screws in a sheep lumbar spine instability model. Two control groups (empty screw and ACS with buffer) were also evaluated. We hypothesized that rhBMP-2 could stimulate bone growth in and around the cannulated and fenestrated pedicle screws to improve early bone purchase. Methods Eight skeletally mature sheep underwent destabilizing laminectomies at L2-L3 and L4-L5 followed by stabilization with pedicle screw and rod constructs. An ACS carrier was used to deliver 0.15 mg of rhBMP-2 within and around the cannulated and fenestrated titanium pedicle screws. Biomechanics and histomorphometry were used to evaluate the early term results at 6 and 12 postoperative weeks. Results rhBMP-2 was unable to improve bony purchase of the cannulated and fenestrated pedicle screws compared to both control groups. Although rhBMP-2 groups had pullout forces that were less than both control groups, both rhBMP-2 groups had pullout force values exceeding 2,000 N, which was comparable to previously published results for unmodified pedicle screws. Significant differences in the percentages of bone in peri-screw tissues was not observed amongst the four treatment groups. Microradiography and quantitative histomorphometry showed that at 6 weeks, rhBMP-2 induced peri-screw remodeling regions containing peri-implant bone which was hypodense with respect to surrounding native trabeculae. A moderate correlation between biomechanical pullout variables and histomorphometry data was observed. Conclusions The design of the cannulated and fenestrated pedicle screw was able to facilitate new bone formation to achieve high pullout forces. However, delivery of rhBMP-2 should be carefully controlled to prevent excessive bone remodeling which could cause early screw loosening.
Collapse
Affiliation(s)
- Jeffrey M Toth
- Department of Orthopaedic Surgery, The Medical College of Wisconsin Inc., Milwaukee, WI, USA.,Orthopaedic & Rehabilitation Engineering Center and Graduate Program in Dental Biomaterials, Marquette University, Milwaukee, WI, USA
| | - Mei Wang
- Department of Orthopaedic Surgery, The Medical College of Wisconsin Inc., Milwaukee, WI, USA.,Orthopaedic & Rehabilitation Engineering Center and Graduate Program in Dental Biomaterials, Marquette University, Milwaukee, WI, USA
| | - Chetan K Patel
- Spine Health Institute, Florida Hospital Medical Group, Altamonte Springs, FL, USA
| | - Akshi Arora
- Orthopaedic & Rehabilitation Engineering Center and Graduate Program in Dental Biomaterials, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
146
|
Kim S, Bark CW, Van Quy H, Seo S, Lim J, Lee J, Suh J, Lee Y, Um H, Kim Y. Photofunctionalizing effects of hydroxyapatite combined with TiO
2
on bone regeneration in rabbit calvarial defects. J Biomed Mater Res B Appl Biomater 2018; 107:1953-1959. [DOI: 10.1002/jbm.b.34288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Shin‐Young Kim
- Department of PeriodontologySchool of Dentistry, Kyungpook National University Daegu 41940 Republic of Korea
| | - Chung Wung Bark
- Department of Electrical EngineeringGachon University, Seongnam Gyeonggi 13120 Republic of Korea
| | - Hoang Van Quy
- Department of Electrical EngineeringGachon University, Seongnam Gyeonggi 13120 Republic of Korea
| | - Seung‐Jun Seo
- Department of PeriodontologySchool of Dentistry, A3DI, Kyungpook National University Daegu 41940 Republic of Korea
| | - Jae‐Hong Lim
- Industrial Technology Convergence Center, Pohang Accelerator Laboratory, POSTECH Pohang 37673 Gyeongbuk Republic of Korea
| | - Jae‐Mok Lee
- Department of PeriodontologySchool of Dentistry, Kyungpook National University Daegu 41940 Republic of Korea
| | - Jo‐Young Suh
- Department of PeriodontologySchool of Dentistry, Kyungpook National University Daegu 41940 Republic of Korea
| | - Youngkyun Lee
- Department of BiochemistrySchool of Dentistry, Kyungpook National University Daegu 41940 Republic of Korea
| | - Heung‐Sik Um
- Department of PeriodontologyResearch Institute for Oral Sciences, College of Dentistry, Gangneung‐Wonju National University Gangneung 25457 Republic of Korea
| | - Yong‐Gun Kim
- Department of PeriodontologySchool of Dentistry, Kyungpook National University Daegu 41940 Republic of Korea
| |
Collapse
|
147
|
Zhang Y, Yang W, Devit A, van den Beucken JJJP. Efficiency of coculture with angiogenic cells or physiological BMP-2 administration on improving osteogenic differentiation and bone formation of MSCs. J Biomed Mater Res A 2018; 107:643-653. [PMID: 30458064 DOI: 10.1002/jbm.a.36581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/15/2018] [Indexed: 01/10/2023]
Abstract
Cell-based bone regeneration with mesenchymal stem cells (MSCs) represents the current challenge toward repair of bone defects and fractures. The supposed hurdles for satisfactory performance of cell-based constructs include inadequate vascularization and osteogenic signals. Considering the reported beneficial role of angiogenic cells in promoting vascularization and osteogenic differentiation and the osteogenic potential of bone morphogenetic protein 2 (BMP-2), we here evaluated the efficiency of coculture with angiogenic cells or a physiological dose of BMP-2 on improving osteogenic differentiation of MSCs and bone formation in vivo. In three dimensional (3D) collagen hydrogels in vitro, cocultured human umbilical vein endothelial cells (HUVECs) in a 1:1 ratio or with a physiological dose of BMP-2 (2 ng/μL) promoted the osteogenic potential of MSCs evidenced by enhanced alkaline phosphatase activity and gene expression of osteogenic markers. Notably, HUVECs evoked similar osteogenic stimulation as BMP-2, albeit in a delayed manner. When their bone formation capacity was further evaluated in a mouse subcutaneous implantation model, MSCs with BMP-2 demonstrated the highest efficiency with reproducible bone formation. In contrast, MSCs cocultured with HUVECs constructs displayed substantial blood vessel-like structures with fibrous tissue rather than ectopic bone as MSC monoculture controls. Our findings confirm the priority of generating cell-based bone constructs with physiological BMP-2 administration and indicate the potential of using angiogenic cells to develop vascularized constructs. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 643-653, 2019.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | - Wanxun Yang
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands
| | - Amar Devit
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands.,Faculty of Medical Science, Radboud University, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Department of Biomaterials, Radboudumc, Nijmegen, the Netherlands.,Radboud Institute of Molecular Life Sciences (RIMLS), Theme Reconstructive & Regenerative Medicine, Nijmegen, the Netherlands
| |
Collapse
|
148
|
Engineered systems to study the synergistic signaling between integrin-mediated mechanotransduction and growth factors (Review). Biointerphases 2018; 13:06D302. [DOI: 10.1116/1.5045231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
149
|
Durham EL, Howie RN, Houck R, Oakes B, Grey Z, Hall S, Steed M, LaRue A, Muise-Helmericks R, Cray J. Involvement of calvarial stem cells in healing: A regional analysis of large cranial defects. Wound Repair Regen 2018; 26:359-365. [PMID: 30054956 DOI: 10.1111/wrr.12658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022]
Abstract
Large craniofacial defects present a substantial clinical challenge that often requires the use of osteoconductive matrices and osteoinductive cues (i.e., bone morphogenetic proteins [BMP2]) to augment healing. While these methods have improved clinical outcomes, a better understanding of how the osteogenic fronts surrounding the defect, the underlying dura mater, and the cranial suture area contribute to healing may lead to more targeted therapies to enhance bone regeneration. We hypothesized that healing within a large bone defect will be precipitated from cells within the remaining or available suture mesenchyme abutting the edges of a murine critical sized defect. To investigate this hypothesis, 39 adult, wild-type mice were randomly arranged into groups (9 or 10 per group) by time (4 and 8 weeks) and treatment (control, acellular collagen sponge alone, or acellular collagen sponge loaded with a clinically relevant scaled dosage of BMP2). The skulls were then subjected to microcomputed tomography and histological analysis to assess bone regeneration in regions of interest within the defect area. A regional assessment of healing indicated that BMP2 drives greater healing than control and that healing emanates from the surgical margin, particularly from the margin associated with undisrupted suture mesenchyme. Though BMP2 treatment drove an increase in cell presence within the healing defect, there was no regional orientation of craniofacial stem cells or vascularity. Overall, these data reinforce that osteoconductive matrices in conjunction with osteoinductive peptides result in better healing of large calvarial defects. This healing is characterized as emanating from the surgical margin where there is an abundant supply of vasculature and progenitor cells.
Collapse
Affiliation(s)
- Emily L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Reed Houck
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Brayden Oakes
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Zachary Grey
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - SarahRose Hall
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Martin Steed
- Department of Oral and Maxillofacial Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Amanda LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Robin Muise-Helmericks
- Department of Regenerative Medicine and Cellular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - James Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,Department of Regenerative Medicine and Cellular Biology, Medical University of South Carolina, Charleston, South Carolina.,Division of Anatomy, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
150
|
Diker N, Sarican H, Cumbul A, Kilic E. Effects of systemic erythropoietin treatment and heterogeneous xenograft in combination on bone regeneration of a critical-size defect in an experimental model. J Craniomaxillofac Surg 2018; 46:1919-1923. [DOI: 10.1016/j.jcms.2018.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/28/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
|