101
|
Zhu WL, Wang SJ, Liu MM, Shi HS, Zhang RX, Liu JF, Ding ZB, Lu L. Glycine site N-methyl-D-aspartate receptor antagonist 7-CTKA produces rapid antidepressant-like effects in male rats. J Psychiatry Neurosci 2013; 38:306-16. [PMID: 23611177 PMCID: PMC3756114 DOI: 10.1503/jpn.120228] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glutamate N-methyl-D-aspartate (NMDA) receptor antagonists exert fast-acting antidepressant effects, providing a promising way to develop a new classification of antidepressant that targets the glutamatergic system. In the present study, we examined the potential antidepressant action of 7-chlorokynurenic acid (7-CTKA), a glycine recognition site NMDA receptor antagonist, in a series of behavioural models of depression and determined the molecular mechanisms that underlie the behavioural actions of 7-CTKA. METHODS We administered the forced swim test, novelty-suppressed feeding test, learned helplessness paradigm and chronic mild stress (CMS) paradigm in male rats to evaluate the possible rapid antidepressant-like actions of 7-CTKA. In addition, we assessed phospho-glycogen synthase kinase-3β (p-GSK3β) level, mammalian target of rapamycin (mTOR) function, and postsynaptic protein expression in the medial prefrontal cortex (mPFC) and hippocampus. RESULTS Acute 7-CTKA administration produced rapid antidepressant-like actions in several behavioural tests. It increased p-GSK3β, enhanced mTOR function and increased postsynaptic protein levels in the mPFC. Activation of GSK3β by LY294002 completely blocked the antidepressant-like effects of 7-CTKA. Moreover, 7-CTKA did not produce rewarding properties or abuse potential. LIMITATIONS It is possible that 7-CTKA modulates glutamatergic transmission, thereby causing enduring alterations of GSK3β and mTOR signalling, although we did not provide direct evidence to support this possibility. Thus, the therapeutic involvement of synaptic adaptions engaged by 7-CTKA requires further study. CONCLUSION Our findings demonstrate that acute 7-CTKA administration produced rapid antidepressant-like effects, indicating that the behavioural response to 7-CTKA is mediated by GSK3β and mTOR signalling function in the mPFC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Lu
- Correspondence to: L. Lu, National Institute on Drug Dependence, Peking University, 38 Xue Yuan Rd., Hai Dian District, Beijing 100191, China;
| |
Collapse
|
102
|
Seese RR, Chen LY, Cox CD, Schulz D, Babayan AH, Bunney WE, Henn FA, Gall CM, Lynch G. Synaptic abnormalities in the infralimbic cortex of a model of congenital depression. J Neurosci 2013; 33:13441-8. [PMID: 23946402 PMCID: PMC3742930 DOI: 10.1523/jneurosci.2434-13.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/07/2013] [Accepted: 07/13/2013] [Indexed: 01/17/2023] Open
Abstract
Multiple lines of evidence suggest that disturbances in excitatory transmission contribute to depression. Whether these defects involve the number, size, or composition of glutamatergic contacts is unclear. This study used recently introduced procedures for fluorescence deconvolution tomography in a well-studied rat model of congenital depression to characterize excitatory synapses in layer I of infralimbic cortex, a region involved in mood disorders, and of primary somatosensory cortex. Three groups were studied: (1) rats bred for learned helplessness (cLH); (2) rats resistant to learned helplessness (cNLH); and (3) control Sprague Dawley rats. In fields within infralimbic cortex, cLH rats had the same numerical density of synapses, immunolabeled for either the postsynaptic density (PSD) marker PSD95 or the presynaptic protein synaptophysin, as controls. However, PSD95 immunolabeling intensities were substantially lower in cLH rats, as were numerical densities of synapse-sized clusters of the AMPA receptor subunit GluA1. Similar but less pronounced differences (comparable numerical densities but reduced immunolabeling intensity for PSD95) were found in the somatosensory cortex. In contrast, non-helpless rats had 25% more PSDs than either cLH or control rats without any increase in synaptophysin-labeled terminal frequency. Compared with controls, both cLH and cNLH rats had fewer GABAergic contacts. These results indicate that congenital tendencies that increase or decrease depression-like behavior differentially affect excitatory synapses.
Collapse
Affiliation(s)
| | | | | | - Daniela Schulz
- Brookhaven National Laboratory, Upton, New York 11973, and
| | | | | | - Fritz A. Henn
- Brookhaven National Laboratory, Upton, New York 11973, and
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Christine M. Gall
- Departments of Anatomy and Neurobiology
- Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Gary Lynch
- Departments of Anatomy and Neurobiology
- Psychiatry and Human Behavior, and
| |
Collapse
|
103
|
Wuwongse S, Cheng SSY, Wong GTH, Hung CHL, Zhang NQ, Ho YS, Law ACK, Chang RCC. Effects of corticosterone and amyloid-beta on proteins essential for synaptic function: implications for depression and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2245-56. [PMID: 23928361 DOI: 10.1016/j.bbadis.2013.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 07/02/2013] [Accepted: 07/29/2013] [Indexed: 11/30/2022]
Abstract
The relationship between Alzheimer's disease (AD) and depression has been well established in terms of epidemiological and clinical observations. Depression has been considered to be both a symptom and risk factor of AD. Several genetic and neurobiological mechanisms have been described to underlie these two disorders. Despite the accumulating knowledge on this topic, the precise neuropathological mechanisms remain to be elucidated. In this study, we propose that synaptic degeneration plays an important role in the disease progression of depression and AD. Using primary culture of hippocampal neurons treated with oligomeric Aβ and corticosterone as model agents for AD and depression, respectively, we found significant changes in the pre-synaptic vesicle proteins synaptophysin and synaptotagmin. We further investigated whether the observed protein changes affected synaptic functions. By using FM(®)4-64 fluorescent probe, we showed that synaptic functions were compromised in treated neurons. Our findings led us to investigate the involvement of protein degradation mechanisms in mediating the observed synaptic protein abnormalities, namely, the ubiquitin-proteasome system and autophagy. We found up-regulation of ubiquitin-mediated protein degradation, and the preferential signaling for the autophagic-lysosomal degradation pathway. Lastly, we investigated the neuroprotective role of different classes of antidepressants. Our findings demonstrated that the antidepressants Imipramine and Escitalopram were able to rescue the observed synaptic protein damage. In conclusion, our study shows that synaptic degeneration is an important common denominator underlying depression and AD, and alleviation of this pathology by antidepressants may be therapeutically beneficial.
Collapse
Affiliation(s)
- Suthicha Wuwongse
- Neurodysfunction Research Laboratory, Department of Psychiatry, LKS Faculty of Medicine, Hong Kong, China; Laboratory of Neurodegenerative Diseases, Department of Anatomy, LKS Faculty of Medicine, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Bedrosian TA, Weil ZM, Nelson RJ. Chronic dim light at night provokes reversible depression-like phenotype: possible role for TNF. Mol Psychiatry 2013; 18:930-6. [PMID: 22824811 DOI: 10.1038/mp.2012.96] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 11/09/2022]
Abstract
The prevalence of major depression has increased in recent decades and women are twice as likely as men to develop the disorder. Recent environmental changes almost certainly have a role in this phenomenon, but a complete set of contributors remains unspecified. Exposure to artificial light at night (LAN) has surged in prevalence during the past 50 years, coinciding with rising rates of depression. Chronic exposure to LAN is linked to increased risk of breast cancer, obesity and mood disorders, although the relationship to mood is not well characterized. In this study, we investigated the effects of chronic exposure to 5 lux LAN on depression-like behaviors in female hamsters. Using this model, we also characterized hippocampal brain-derived neurotrophic factor expression and hippocampal dendritic morphology, and investigated the reversibility of these changes 1, 2 or 4 weeks following elimination of LAN. Furthermore, we explored the mechanism of action, focusing on hippocampal proinflammatory cytokines given their dual role in synaptic plasticity and the pathogenesis of depression. Using reverse transcription-quantitative PCR, we identified a reversible increase in hippocampal tumor necrosis factor (TNF), but not interleukin-1β, mRNA expression in hamsters exposed to LAN. Direct intracerebroventricular infusion of a dominant-negative inhibitor of soluble TNF, XPro1595, prevented the development of depression-like behavior under LAN, but had no effect on dendritic spine density in the hippocampus. These results indicate a partial role for TNF in the reversible depression-like phenotype observed under chronic dim LAN. Recent environmental changes, such as LAN exposure, may warrant more attention as possible contributors to rising rates of mood disorders.
Collapse
Affiliation(s)
- T A Bedrosian
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
105
|
Ikeno T, Weil ZM, Nelson RJ. Photoperiod affects the diurnal rhythm of hippocampal neuronal morphology of siberian hamsters. Chronobiol Int 2013; 30:1089-100. [DOI: 10.3109/07420528.2013.800090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
106
|
Huang Y, Coupland NJ, Lebel RM, Carter R, Seres P, Wilman AH, Malykhin NV. Structural changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance imaging study. Biol Psychiatry 2013; 74:62-8. [PMID: 23419546 DOI: 10.1016/j.biopsych.2013.01.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) has shown lower hippocampal volume in major depressive disorder (MDD). Preclinical and postmortem studies show that chronic stress and MDD may affect hippocampal subfields differently, but MRI spatial resolution has previously been insufficient to measure subfield volumes. METHODS Twenty MDD participants (9 unmedicated and 11 medicated, both > 6 months) and 27 healthy control subjects were studied. We used T2-weighted two-dimensional fast spin echo and T1-weighted three-dimensional magnetization prepared rapid acquisition gradient-echo sequences at 4.7 T to compare hippocampal subfield volumes at .09 μL voxel volume. RESULTS Unmedicated MDD participants had a lower dentate gyrus volume than control subjects or medicated MDD participants and a lower cornu ammonis (CA1-3) volume in the hippocampal body subregion than control subjects. CONCLUSIONS Hippocampal volumes in unmedicated MDD showed evidence of localization to specific subfields and subregions, findings that appear, on the surface, consistent with preclinical evidence for localized mechanisms of hippocampal neuroplasticity. Strengths include in vivo measurement of entire hippocampal subfields and separation between unmedicated and medicated MDD. Limitations include power to control for multiple comparisons and that MRI landmarks approximate the subfields defined by cellular microstructure.
Collapse
Affiliation(s)
- Yushan Huang
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
107
|
Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology 2013; 70:27-34. [DOI: 10.1016/j.neuropharm.2012.12.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/27/2012] [Accepted: 12/10/2012] [Indexed: 11/21/2022]
|
108
|
Abstract
Humans and other organisms have adapted to a consistent and predictable 24-h solar cycle, but over the past ~130 years the widespread adoption of electric light has transformed our environment. Instead of aligning behavioral and physiological processes to the natural solar cycle, individuals respond to artificial light cycles created by social and work schedules. Urban light pollution, night shift work, transmeridian travel, televisions and computers have dramatically altered the timing of light used to entrain biological rhythms. In humans and other mammals, light is detected by the retina and intrinsically photosensitive retinal ganglion cells project this information both to the circadian system and limbic brain regions. Therefore, it is possible that exposure to light at night, which has become pervasive, may disrupt both circadian timing and mood. Notably, the rate of major depression has increased in recent decades, in parallel with increasing exposure to light at night. Strong evidence already links circadian disruption to major depression and other mood disorders. Emerging evidence from the past few years suggests that exposure to light at night also negatively influences mood. In this review, we discuss evidence from recent human and rodent studies supporting the novel hypothesis that nighttime exposure to light disrupts circadian organization and contributes to depressed mood.
Collapse
Affiliation(s)
- T A Bedrosian
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | |
Collapse
|
109
|
Musazzi L, Treccani G, Mallei A, Popoli M. The action of antidepressants on the glutamate system: regulation of glutamate release and glutamate receptors. Biol Psychiatry 2013; 73:1180-8. [PMID: 23273725 DOI: 10.1016/j.biopsych.2012.11.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 01/09/2023]
Abstract
Recent compelling evidence has suggested that the glutamate system is a primary mediator of psychiatric pathology and also a target for rapid-acting antidepressants. Clinical research in mood and anxiety disorders has shown alterations in levels, clearance, and metabolism of glutamate and consistent volumetric changes in brain areas where glutamate neurons predominate. In parallel, preclinical studies with rodent stress and depression models have found dendritic remodeling and synaptic spines reduction in corresponding areas, suggesting these as major factors in psychopathology. Enhancement of glutamate release/transmission, in turn induced by stress/glucocorticoids, seems crucial for structural/functional changes. Understanding mechanisms of maladaptive plasticity may allow identification of new targets for drugs and therapies. Interestingly, traditional monoaminergic-based antidepressants have been repeatedly shown to interfere with glutamate system function, starting with modulation of N-methyl-D-aspartate (NMDA) receptors. Subsequently, it has been shown that antidepressants reduce glutamate release and synaptic transmission; in particular, it was found antidepressants prevent the acute stress-induced enhancement of glutamate release. Additional studies have shown that antidepressants may partly reverse the maladaptive changes in synapses/circuitry in stress and depression models. Finally, a number of studies over the years have shown that these drugs regulate glutamate receptors, reducing the function of NMDA receptors, potentiating the function of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, and, more recently, exerting variable effects on different subtypes of metabotropic glutamate receptors. The development of NMDA receptor antagonists has opened new avenues for glutamatergic, rapid acting, antidepressants, while additional targets in the glutamate synapse await development of new compounds for better, faster antidepressant action.
Collapse
Affiliation(s)
- Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics-Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases-CEND, Università degli Studi di Milano, Milano, Italy
| | | | | | | |
Collapse
|
110
|
Hiester BG, Galati DF, Salinas PC, Jones KR. Neurotrophin and Wnt signaling cooperatively regulate dendritic spine formation. Mol Cell Neurosci 2013; 56:115-27. [PMID: 23639831 PMCID: PMC3793870 DOI: 10.1016/j.mcn.2013.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 04/20/2013] [Accepted: 04/23/2013] [Indexed: 01/13/2023] Open
Abstract
Dendritic spines are major sites of excitatory synaptic transmission and changes in their numbers and morphology have been associated with neurodevelopmental and neurodegenerative disorders. Brain-derived Neurotrophic Factor (BDNF) is a secreted growth factor that influences hippocampal, striatal and neocortical pyramidal neuron dendritic spine density. However, the mechanisms by which BDNF regulates dendritic spines and how BDNF interacts with other regulators of spines remain unclear. We propose that one mechanism by which BDNF promotes dendritic spine formation is through an interaction with Wnt signaling. Here, we show that Wnt signaling inhibition in cultured cortical neurons disrupts dendritic spine development, reduces dendritic arbor size and complexity, and blocks BDNF-induced dendritic spine formation and maturation. Additionally, we show that BDNF regulates expression of Wnt2, and that Wnt2 is sufficient to promote cortical dendrite growth and dendritic spine formation. Together, these data suggest that BDNF and Wnt signaling cooperatively regulate dendritic spine formation.
Collapse
Affiliation(s)
- Brian G Hiester
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309, United States
| | | | | | | |
Collapse
|
111
|
Castrén E, Hen R. Neuronal plasticity and antidepressant actions. Trends Neurosci 2013; 36:259-67. [PMID: 23380665 DOI: 10.1016/j.tins.2012.12.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 01/22/2023]
Abstract
Antidepressant treatments enhance plasticity and increase neurogenesis in the adult brain, but it has been unclear how these effects influence mood. We propose that, like environmental enrichment and exercise, antidepressant treatments enhance adaptability by increasing structural variability within the nervous system at many levels, from proliferating precursors to immature synaptic contacts. Conversely, sensory deprivation and chronic stress reduce this structural variability. Activity-dependent competition within the mood-related circuits, guided by rehabilitation, then selects for the survival and stabilization of those structures that best represent the internal or external milieu. Increased variability together with competition-mediated selection facilitates normal function, such as pattern separation within the dentate gyrus and other mood-related circuits, thereby enhancing adaptability toward novel experiences.
Collapse
Affiliation(s)
- Eero Castrén
- Neuroscience Center, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| | | |
Collapse
|
112
|
Impaired structural hippocampal plasticity is associated with emotional and memory deficits in the olfactory bulbectomized rat. Neuroscience 2013; 236:233-43. [PMID: 23357118 DOI: 10.1016/j.neuroscience.2013.01.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022]
Abstract
Disturbances in olfactory circuitry have been associated with depression in humans. The olfactory bulbectomized (OBX lesion) has been largely used as a model of depression-like behavior in the rat. However, quantitative neuronal rearrangements in key brain regions in this animal model have not been evaluated yet. Accordingly, we investigated changes in hippocampal plasticity as well as behavioral deficits in this animal model. OBX-induced behavioral deficits were studied in a battery of tests, namely the open field test (OFT), forced swim test (FST), and spatial memory disturbances in the Morris water maze (MWM). To characterize the neuronal remodeling, neuroanatomical rearrangements were investigated in the CA1 hippocampus and piriform cortex (PirC), brain regions receiving inputs from the olfactory bulbs and associated with emotional or olfactory processes. Additionally, cell proliferation and survival of newborn cells in the adult dentate gyrus (DG) of the hippocampus were also determined. OBX induced hyperlocomotion and enhanced rearing and grooming in the OFT, increased immobility in the FST as well as required a longer time to find the hidden platform in the MWM. OBX also induced dendritic atrophy in the hippocampus and PirC. In addition, cell proliferation was decreased while the survival remained unchanged in the DG of these animals. These various features are also observed in depressed subjects, adding further support to the validity and usefulness of this model to evaluate potential novel antidepressants.
Collapse
|
113
|
Leuner K, Li W, Amaral MD, Rudolph S, Calfa G, Schuwald AM, Harteneck C, Inoue T, Pozzo-Miller L. Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca(2+) -permeable TRPC6 channels. Hippocampus 2013; 23:40-52. [PMID: 22815087 PMCID: PMC3538039 DOI: 10.1002/hipo.22052] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2012] [Indexed: 12/11/2022]
Abstract
The standardized extract of the St. John's wort plant (Hypericum perforatum) is commonly used to treat mild to moderate depression. Its active constituent is hyperforin, a phloroglucinol derivative that reduces the reuptake of serotonin and norepinephrine by increasing intracellular Na(+) concentration through the activation of nonselective cationic TRPC6 channels. TRPC6 channels are also Ca(2+) -permeable, resulting in intracellular Ca(2+) elevations. Indeed, hyperforin activates TRPC6-mediated currents and Ca(2+) transients in rat PC12 cells, which induce their differentiation, mimicking the neurotrophic effect of nerve growth factor. Here, we show that hyperforin modulates dendritic spine morphology in CA1 and CA3 pyramidal neurons of hippocampal slice cultures through the activation of TRPC6 channels. Hyperforin also evoked intracellular Ca(2+) transients and depolarizing inward currents sensitive to the TRPC channel blocker La(3+) , thus resembling the actions of the neurotrophin brain-derived neurotrophic factor (BDNF) in hippocampal pyramidal neurons. These results suggest that the antidepressant actions of St. John's wort are mediated by a mechanism similar to that engaged by BDNF.
Collapse
Affiliation(s)
- Kristina Leuner
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Hatcher AM, Tsai AC, Kumbakumba E, Dworkin SL, Hunt PW, Martin JN, Clark G, Bangsberg DR, Weiser SD. Sexual relationship power and depression among HIV-infected women in Rural Uganda. PLoS One 2012; 7:e49821. [PMID: 23300519 PMCID: PMC3530575 DOI: 10.1371/journal.pone.0049821] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/17/2012] [Indexed: 11/26/2022] Open
Abstract
Background Depression is associated with increased HIV transmission risk, increased morbidity, and higher risk of HIV-related death among HIV-infected women. Low sexual relationship power also contributes to HIV risk, but there is limited understanding of how it relates to mental health among HIV-infected women. Methods Participants were 270 HIV-infected women from the Uganda AIDS Rural Treatment Outcomes study, a prospective cohort of individuals initiating antiretroviral therapy (ART) in Mbarara, Uganda. Our primary predictor was baseline sexual relationship power as measured by the Sexual Relationship Power Scale (SRPS). The primary outcome was depression severity, measured with the Hopkins Symptom Checklist (HSCL), and a secondary outcome was a functional scale for mental health status (MHS). Adjusted models controlled for socio-demographic factors, CD4 count, alcohol and tobacco use, baseline WHO stage 4 disease, social support, and duration of ART. Results The mean HSCL score was 1.34 and 23.7% of participants had HSCL scores consistent with probable depression (HSCL>1.75). Compared to participants with low SRPS scores, individuals with both moderate (coefficient b = −0.21; 95%CI, −0.36 to −0.07) and high power (b = −0.21; 95%CI, −0.36 to −0.06) reported decreased depressive symptomology. High SRPS scores halved the likelihood of women meeting criteria for probable depression (adjusted odds ratio = 0.44; 95%CI, 0.20 to 0.93). In lagged models, low SRPS predicted subsequent depression severity, but depression did not predict subsequent changes in SPRS. Results were similar for MHS, with lagged models showing SRPS predicts subsequent mental health, but not visa versa. Both Decision-Making Dominance and Relationship Control subscales of SRPS were associated with depression symptom severity. Conclusions HIV-infected women with high sexual relationship power had lower depression and higher mental health status than women with low power. Interventions to improve equity in decision-making and control within dyadic partnerships are critical to prevent HIV transmission and to optimize mental health of HIV-infected women.
Collapse
Affiliation(s)
- Abigail M Hatcher
- Division of HIV/AIDS, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
GluA1 and its PDZ-interaction: a role in experience-dependent behavioral plasticity in the forced swim test. Neurobiol Dis 2012; 52:160-7. [PMID: 23262314 DOI: 10.1016/j.nbd.2012.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 12/05/2012] [Accepted: 12/08/2012] [Indexed: 01/10/2023] Open
Abstract
Glutamate receptor dependent synaptic plasticity plays an important role in the pathophysiology of depression. Hippocampal samples from clinically depressed patients display reduced mRNA levels for GluA1, a major subunit of AMPA receptors. Moreover, activation and synaptic incorporation of GluA1-containing AMPA receptors are required for the antidepressant-like effects of NMDA receptor antagonists. These findings argue that GluA1-dependent synaptic plasticity might be critically involved in the expression of depression. Using an animal model of depression, we demonstrate that global or hippocampus-selective deletion of GluA1 impairs expression of experience-dependent behavioral despair. This impairment is mediated by the interaction of GluA1 with PDZ-binding domain proteins, as deletion of the C-terminal leucine alone is sufficient to replicate the behavioral phenotype. Our results provide evidence for a significant role of hippocampal GluA1-containing AMPA receptors and their PDZ-interaction in experience-dependent expression of behavioral despair and link mechanisms of hippocampal synaptic plasticity with behavioral expression of depression.
Collapse
|
116
|
Fonken LK, Kitsmiller E, Smale L, Nelson RJ. Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J Biol Rhythms 2012; 27:319-27. [PMID: 22855576 DOI: 10.1177/0748730412448324] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Circadian disruption is a common by-product of modern life. Although jet lag and shift work are well-documented challenges to circadian organization, many more subtle environmental changes cause circadian disruption. For example, frequent fluctuations in the timing of the sleep/wake schedule, as well as exposure to nighttime lighting, likely affect the circadian system. Most studies of these effects have focused on nocturnal rodents, which are very different from diurnal species with respect to their patterns of light exposure and the effects that light can have on their activity. Thus, the authors investigated the effect of nighttime light on behavior and the brain of a diurnal rodent, the Nile grass rat. Following 3 weeks of exposure to standard light/dark (LD; 14:10 light [~150 lux] /dark [0 lux]) or dim light at night (dLAN; 14:10 light [~150 lux] /dim [5 lux]), rats underwent behavioral testing, and hippocampal neurons within CA1, CA3, and the dentate gyrus (DG) were examined. Three behavioral effects of dLAN were observed: (1) decreased preference for a sucrose solution, (2) increased latency to float in a forced swim test, and (3) impaired learning and memory in the Barnes maze. Light at night also reduced dendritic length in DG and basilar CA1 dendrites. Dendritic length in the DG positively correlated with sucrose consumption in the sucrose anhedonia task. Nighttime light exposure did not disrupt the pattern of circadian locomotor activity, and all grass rats maintained a diurnal activity pattern. Together, these data suggest that exposure to dLAN can alter affective responses and impair cognition in a diurnal animal.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
117
|
Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, Lepack A, Majik MS, Jeong LS, Banasr M, Son H, Duman RS. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012; 18:1413-7. [PMID: 22885997 PMCID: PMC3491115 DOI: 10.1038/nm.2886] [Citation(s) in RCA: 556] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 06/23/2012] [Indexed: 01/01/2023]
Abstract
Previous imaging and postmortem studies have reported a lower brain volume and a smaller size and density of neurons in the dorsolateral prefrontal cortex (dlPFC) of subjects with major depressive disorder (MDD). These findings suggest that synapse number and function are decreased in the dlPFC of patients with MDD. However, there has been no direct evidence reported for synapse loss in MDD, and the gene expression alterations underlying these effects have not been identified. Here we use microarray gene profiling and electron microscopic stereology to reveal lower expression of synaptic-function–related genes (CALM2, SYN1, RAB3A, RAB4B and TUBB4) in the dlPFC of subjects with MDD and a corresponding lower number of synapses. We also identify a transcriptional repressor, GATA1, expression of which is higher in MDD and that, when expressed in PFC neurons, is sufficient to decrease the expression of synapse-related genes, cause loss of dendritic spines and dendrites, and produce depressive behavior in rat models of depression.
Collapse
Affiliation(s)
- Hyo Jung Kang
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Huang YF, Yang CH, Huang CC, Hsu KS. Vascular endothelial growth factor-dependent spinogenesis underlies antidepressant-like effects of enriched environment. J Biol Chem 2012; 287:40938-55. [PMID: 23074224 DOI: 10.1074/jbc.m112.392076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Current antidepressant treatments remain limited by poor efficacy and a slow onset of action. Increasing evidence demonstrates that enriched environment (EE) treatment can promote structural and behavioral plasticity in the brain and dampen stress-induced alterations of neuroplasticity. Here, we have examined whether short term exposure to EE is able to produce antidepressant-like effects. Our results show that housing adult mice in an EE cage for 7 days led to antidepressant-like behavioral profiles and a significant increase in the number of dendritic spines in hippocampal CA1 pyramidal neurons. These EE-induced antidepressant-like effects are primarily attributed to increased vascular endothelial growth factor (VEGF) expression through a hypoxia-inducible factor-1α (HIF-1α)-mediated transcriptional mechanism. Blockade of HIF-1α synthesis by lentiviral infection with HIF-1α small hairpin RNAs completely blocked the increase in expression of VEGF and the antidepressant-like effects induced by EE. Moreover, no significant antidepressant-like effects were observed with EE treatment in VEGF receptor 2 (Flk-1) knock-out mice. The increase in HIF-1α expression in the hippocampus induced by EE was associated with a decrease in endogenous levels of microRNA-107 (miR-107). Overexpression of miR-107 in the hippocampus completely blocked EE-induced HIF-1α expression and the antidepressant-like effects. These results support a model in which the down-regulation of miR-107, acting through HIF-1α, mediates VEGF-dependent spinogenesis to underlie the EE-induced antidepressant-like effects.
Collapse
Affiliation(s)
- Yu-Fei Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
119
|
Licznerski P, Duman RS. Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience 2012; 251:33-50. [PMID: 23036622 DOI: 10.1016/j.neuroscience.2012.09.057] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 09/10/2012] [Accepted: 09/22/2012] [Indexed: 01/22/2023]
Abstract
Dendritic spines provide a compartment for assembly and functional organization of synaptic machinery that plays a fundamental role in neuronal communication and neuroplasticity. Studies in humans as well as in animal models have demonstrated abnormal spine architecture in several psychiatric disorders, including depression and other stress-related illnesses. The negative impact of stress on the density and organization of spines is thought to contribute to the behavioral deficits caused by stress exposure. Moreover, there is now evidence that medication-induced recovery involves changes in synaptic plasticity and dendrite morphology, including increased expression of pre- and postsynaptic plasticity-related proteins, as well as the density and function of axo-spinous synapses. Here we review the evidence from brain imaging and postmortem studies demonstrating that depression is accompanied by structural and functional alterations of cortical and limbic brain regions, including the prefrontal cortex, hippocampus and amygdala. In addition, we present more direct evidence from basic research studies that exposure to stress alters spine morphology, function and plasticity and that antidepressants, particularly new rapid acting agents, reverse these effects. Elucidation of the signaling pathways and molecular mechanisms that control spine synapse assembly and plasticity will contribute to a better understanding of the pathophysiology of depression and development of novel, more effective therapeutic agents.
Collapse
Affiliation(s)
- P Licznerski
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT 06508, United States
| | | |
Collapse
|
120
|
Cottingham C, Wang Q. α2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev 2012; 36:2214-25. [PMID: 22910678 DOI: 10.1016/j.neubiorev.2012.07.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/27/2012] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
Abstract
Dysfunction in noradrenergic neurotransmission has long been theorized to occur in depressive disorders. The α2 adrenergic receptor (AR) family, as a group of key players in regulating the noradrenergic system, has been investigated for involvement in the neurobiology of depression and mechanisms of antidepressant therapies. However, a clear picture of the α2ARs in depressive disorders has not been established due to the existence of apparently conflicting findings in the literature. In this article, we report that a careful accounting of methodological differences within the literature can resolve the present lack of consensus on involvement of α2ARs in depression. In particular, the pharmacological properties of the radioligand (e.g. agonist versus antagonist) utilized for determining receptor density are crucial in determining study outcome. Upregulation of α2AR density detected by radiolabeled agonists but not by antagonists in patients with depressive disorders suggests a selective increase in the density of high-affinity conformational state α2ARs, which is indicative of enhanced G protein coupling to the receptor. Importantly, this high-affinity state α2AR upregulation can be normalized with antidepressant treatments. Thus, depressive disorders appear to be associated with increased α2AR sensitivity and responsiveness, which may represent a physiological basis for the putative noradrenergic dysfunction in depressive disorders. In addition, we review changes in some key α2AR accessory proteins in depressive disorders and discuss their potential contribution to α2AR dysfunction.
Collapse
Affiliation(s)
- Christopher Cottingham
- Department of Cell, Developmental & Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
121
|
Liu CY, Jiang XX, Zhu YH, Wei DN. Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine produces antidepressant effects in rats: role of brain-derived neurotrophic factor. Neuroscience 2012; 223:219-24. [PMID: 22890078 DOI: 10.1016/j.neuroscience.2012.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/17/2012] [Accepted: 08/06/2012] [Indexed: 02/07/2023]
Abstract
Recent studies highlight that the brain glutamate system is involved in the etiology of depression and glutamatergic-targeting drugs are currently being explored as novel antidepressant medications. Previous studies reveal that the selective metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) produces antidepressant-like effects in behavioral despair and olfactory bulbectomy models. The current study aimed to further explore its behavioral actions in additional animal models of depression (forced swimming test (FST) and learned helplessness (LH) test) and its underlying neurobiological mechanisms. The results demonstrated that acute treatment of MPEP at 30 but not 10mg/kg significantly reduced immobility in FST without affecting locomotor activities. Sub-chronic, five-day treatment of MPEP (30 mg/kg) decreased escape failures in animals that had developed LH symptoms. This sub-chronic treatment also increased hippocampal brain-derived neurotrophic factor (BDNF) protein levels in both non-stressed and stressed animals and restored the stress-induced down-regulation of BDNF expression. Current findings provide strong evidence for further studies of MPEP as a tool to explore novel antidepressants.
Collapse
Affiliation(s)
- C Y Liu
- Department of Neurosurgery, The Third Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | | | | | | |
Collapse
|
122
|
Benatti C, Valensisi C, Blom JMC, Alboni S, Montanari C, Ferrari F, Tagliafico E, Mendlewicz J, Brunello N, Tascedda F. Transcriptional profiles underlying vulnerability and resilience in rats exposed to an acute unavoidable stress. J Neurosci Res 2012; 90:2103-15. [PMID: 22807198 DOI: 10.1002/jnr.23100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/10/2012] [Accepted: 05/16/2012] [Indexed: 12/23/2022]
Abstract
A complex interplay between gene and environment influences the vulnerability or the resilience to stressful events. In the acute escape deficit (AED) paradigm, rats exposed to an acute unavoidable stress (AUS) develop impaired reactivity to noxious stimuli. Here we assessed the behavioral and molecular changes in rats exposed to AUS. A genome-wide microarray experiment generated a comprehensive picture of changes in gene expression in the hippocampus and the frontal cortex of animals exposed or not to AUS. Exposure to AUS resulted in two distinct groups of rats with opposite behavioral profiles: one developing an AED, called "stress vulnerable," and one that did not develop an AED, called "stress resilient." Genome-wide profiling revealed a low percentage of overlapping mechanisms in the two areas, suggesting that, in the presence of stress, resilience or vulnerability to AUS is sustained by specific changes in gene expression that can either buffer or promote the behavioral and molecular adverse consequences of stress. Specifically, we observed in the frontal cortex a downregulation of the transcript coding for interferon-β and leukemia inhibitory factor in resilient rats and an upregulation of neuroendocrine related genes, growth hormone and prolactin, in vulnerable rats. In the hippocampus, the muscarinic M2 receptor was downregulated in vulnerable but upregulated in resilient rats. Our findings demonstrate that opposite behavioral responses did not correspond to opposite regulatory changes of the same genes, but resilience rather than vulnerability to stress was associated with specific changes, with little overlap, in the expression of patterns of genes.
Collapse
Affiliation(s)
- Cristina Benatti
- Department of Biomedical Sciences; University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Dygalo NN, Kalinina TS, Bulygina VV, Shishkina GT. Increased expression of the anti-apoptotic protein Bcl-xL in the brain is associated with resilience to stress-induced depression-like behavior. Cell Mol Neurobiol 2012; 32:767-76. [PMID: 22278304 DOI: 10.1007/s10571-011-9794-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
Clinical observations and the results of animal studies have implicated changes in neuronal survival and plasticity in both the etiology of mood disorders, especially stress-induced depression, and anti-depressant drug action. Stress may predispose individuals toward depression through down-regulation of neurogenesis and an increase in apoptosis in the brain. Substantial individual differences in vulnerability to stress are evident in humans and were found in experimental animals. Recent studies revealed an association between the brain anti-apoptotic protein B cell lymphoma like X, long variant (Bcl-xL) expression and individual differences in behavioral vulnerability to stress. The ability to increase Bcl-xL gene expression in the hippocampus in response to stress may be an important factor for determining the resistance to the development of stress-induced depression. Treatment with anti-depressant drugs may change Bcl-xL response properties. In the rat brainstem, expression of this anti-apoptotic gene becomes sensitive to swim stress during the long-term fluoxetine treatment, an effect that appeared concomitantly with the anti-depressant-like action of the drug in the forced swim test, suggesting that Bcl-xL may be a new target for depression therapy. The processes and pathways linking stress stimuli to behavior via intracellular anti-apoptotic protein are discussed here in the context of Bcl-xL functions in the mechanisms of individual differences in behavioral resilience to stress and anti-depressant-induced effects on the behavioral despair.
Collapse
|
124
|
Lazic SE. Using causal models to distinguish between neurogenesis-dependent and -independent effects on behaviour. J R Soc Interface 2012; 9:907-17. [PMID: 21957118 PMCID: PMC3306643 DOI: 10.1098/rsif.2011.0510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/08/2011] [Indexed: 11/12/2022] Open
Abstract
There has been a substantial amount of research on the relationship between hippocampal neurogenesis and behaviour over the past 15 years, but the causal role that new neurons have on cognitive and affective behavioural tasks is still far from clear. This is partly due to the difficulty of manipulating levels of neurogenesis without inducing off-target effects, which might also influence behaviour. In addition, the analytical methods typically used do not directly test whether neurogenesis mediates the effect of an intervention on behaviour. Previous studies may have incorrectly attributed changes in behavioural performance to neurogenesis because the role of known (or unknown) neurogenesis-independent mechanisms was not formally taken into consideration during the analysis. Causal models can tease apart complex causal relationships and were used to demonstrate that the effect of exercise on pattern separation is via neurogenesis-independent mechanisms. Many studies in the neurogenesis literature would benefit from the use of statistical methods that can separate neurogenesis-dependent from neurogenesis-independent effects on behaviour.
Collapse
Affiliation(s)
- Stanley E Lazic
- Bioinformatics and Exploratory Data Analysis, F. Hoffmann-La Roche, Basel, Switzerland.
| |
Collapse
|
125
|
Radley JJ. Toward a limbic cortical inhibitory network: implications for hypothalamic-pituitary-adrenal responses following chronic stress. Front Behav Neurosci 2012; 6:7. [PMID: 22479241 PMCID: PMC3314944 DOI: 10.3389/fnbeh.2012.00007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 02/10/2012] [Indexed: 12/30/2022] Open
Abstract
A network of interconnected cell groups in the limbic forebrain regulates hypothalamic-pituitary-adrenal (HPA) axis activation during emotionally stressful experiences, and disruption of these systems is broadly implicated in the onset of psychiatric illnesses. A significant challenge has been to unravel the circuitry and mechanisms providing for regulation of HPA output, as these limbic forebrain regions do not provide any direct innervation of HPA effector cell groups in the paraventricular hypothalamus (PVH). Recent evidence will be highlighted that endorses a discrete region within the bed nuclei of the stria terminalis serving as a neural hub for integrating and relaying HPA-inhibitory influences to the PVH during emotional stress, whereas the prevailing view has involved a more complex organization of mulitple cell groups arranged in parallel between the forebrain and PVH. A hypothesis will be advanced that accounts for the capacity of this network to constrain the magnitude and/or duration of HPA axis output in response to emotionally stressful experiences, and for how chronic stress-induced synaptic reorganization in key cell groups may lead to an attrition of these influences, resulting in HPA axis hyperactivity.
Collapse
Affiliation(s)
- Jason J Radley
- Program in Neuroscience, Department of Psychology, University of Iowa, Iowa City IA, USA
| |
Collapse
|
126
|
Kaae SS, Chen F, Wegener G, Madsen TM, Nyengaard JR. Quantitative hippocampal structural changes following electroconvulsive seizure treatment in a rat model of depression. Synapse 2012; 66:667-76. [PMID: 22389166 DOI: 10.1002/syn.21553] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/24/2012] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The pathophysiology of depression and the effects of antidepressant treatment are hypothesized to be related to hippocampal structural changes. This study aims to investigate the effect of electroconvulsive seizures on behavior and hippocampal structure in a rat model of depression. METHODS Flinders Sensitive Line (FSL) and Flinders Resistant Line (FRL) rats were treated daily for 10 days with either electroconvulsive seizures or sham treatment. The behavior was evaluated using the forced swim test. Design-based stereological methods were used to quantify the hippocampal volume and the numbers of neurons and glial cells in specific hippocampal subregions. RESULTS The basal level of hippocampal volume and neuron number differed significantly between the two rat strains, and a trend toward the FSL strain having more glial cells was found. The structural differences found between the sham-treated animals were counteracted by electroconvulsive seizure (ECS) treatment, which also normalized the behavior. ECS treatment increased the number of glial cells in hilus significantly in the FRL rats and with the same tendency for the FSL rats. CONCLUSION Our results indicate that along with hippocampal neurogenesis, gliogenesis may also be involved in the pathophysiology of depression and in the effect of antidepressant treatment. The underlying mechanisms remain unknown, and further investigations are required to clarify whether the structural changes are necessary to induce a therapeutic effect of antidepressant treatment or if they rather represent an epiphenomenon.
Collapse
Affiliation(s)
- Susanne S Kaae
- Stereology and EM Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
127
|
Miklós IH, Kovács KJ. Reorganization of synaptic inputs to the hypothalamic paraventricular nucleus during chronic psychogenic stress in rats. Biol Psychiatry 2012; 71:301-8. [PMID: 22137593 DOI: 10.1016/j.biopsych.2011.10.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chronic stress in humans precipitates hyper-reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis and triggers symptoms associated with certain forms of depression. Reorganization of neuronal networks has been implicated in development of depression, however it remained unknown how chronic exposure to psychogenic challenges affects excitatory and inhibitory inputs to corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus that govern neuroendocrine stress response. METHODS Rats (n = 32) were exposed for 21 days to chronic variable stress and their behavioral (sucrose preference) and hormonal (corticosterone) responses were followed together with electron microscopic stereologic analysis of excitatory and gamma-aminobutyric acid (GABA)-containing, inhibitory synapses on the CRH synthesizing neurons. RESULTS Chronic stress in rats resulted in weight loss, anhedonia, and hyperactivity of hypothalamic-pituitary-adrenocortical axis. Following 3 weeks' exposure to variable psychologic stressors the number of synapses has been doubled in the paraventricular nucleus. Asymmetrical excitatory as well as GABAergic inhibitory synaptic contacts were increased on CRH neurons; however, the excitatory/inhibitory input ratio remained constant. In response to chronic stress, we found rearrangement of inhibitory GABA-containing inputs with the increase of contacts on dendrites and decrease at the soma region of CRH neurons. CONCLUSIONS Significant remodeling of synaptic contacts was found on CRH neurons in response to chronic stress. This morphologic plasticity might be related to the hyperactivity of the HPA axis and to development of stress-related psychopathologies such as depression.
Collapse
Affiliation(s)
- Ildikó H Miklós
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Szigony u. 43, Budapest, Hungary
| | | |
Collapse
|
128
|
Advances in Relationship Between Brain-derived Neurotrophic Factor and Depressive Disorder*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
129
|
Miettinen R, Hajszan T, Riedel A, Szigeti-Buck K, Leranth C. Estimation of the total number of hippocampal CA1 pyramidal neurons: new methodology applied to helpless rats. J Neurosci Methods 2012; 205:130-8. [PMID: 22230770 DOI: 10.1016/j.jneumeth.2011.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/02/2011] [Accepted: 12/20/2011] [Indexed: 11/29/2022]
Abstract
We have recently reported that in the learned helplessness model of depression, the less hippocampal spine synapses rats have, the more helpless they become. It remains unclear, however, whether the observed synaptic changes are associated with the loss of CA1 pyramidal cells. Cell bodies in the CA1 pyramidal layer are very densely packed, making cell counting difficult in this hippocampal subregion. To address this issue, we developed a new approach that (1) yields excellent preservation of the three-dimensional tissue structure; (2) utilizes osmium tetroxide to unambiguously label nucleoli; and (3) facilitates and accelerates unbiased, reliable counting of densely packed cell bodies. Our method provides an improved tool for studies aiming to evaluate hippocampal atrophy and cell loss, the most characteristic features in many neurodegenerative diseases, such as Alzheimer's disease, temporal lobe epilepsy and ischemia, as well as in several psychiatric disorders. Using this new method, we demonstrated no significant changes in the number of CA1 pyramidal cells in the rat learned helplessness paradigm. In addition, volumes of the CA1 pyramidal cell layer and the entire CA1 subfield remained unchanged among treatment groups. We conclude that previously observed synaptic alterations in helpless rats are not associated with CA1 pyramidal cell loss. This finding suggests that behavioral outcome in the learned helplessness paradigm is related to plastic events at the synaptic level, rather than at the level of principal cells.
Collapse
Affiliation(s)
- Riitta Miettinen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | |
Collapse
|
130
|
Evidence for impaired neocortical synaptic plasticity in bipolar II disorder. Biol Psychiatry 2012; 71:68-74. [PMID: 22036034 DOI: 10.1016/j.biopsych.2011.09.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/02/2011] [Accepted: 09/26/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Synaptic plasticity might play an important role in the pathophysiology and treatment of bipolar disorders. There is, however, a paucity of human evidence supporting this hypothesis, mainly due to a lack of methods for noninvasive assessment of synaptic plasticity. It has recently been demonstrated that plasticity of the visual evoked potential (VEP) induced by repeated visual stimulation might reflect synaptic plasticity. In this study, we examined VEP plasticity in healthy control subjects and patients with bipolar II disorder (BD-II). METHODS Forty healthy control subjects and 26 individuals with a DSM-IV diagnosis of BD-II matched for age and gender participated. The VEPs were evoked by checkerboard reversal stimulation before and after a modulation block of prolonged (10 min) visual stimulation. RESULTS The modulation block resulted in significant VEP plasticity in healthy control subjects. The VEP plasticity was significantly impaired in patients with BD-II. Explorative analyses indicated a trend toward a less severe impairment in medicated than in unmedicated patients. CONCLUSIONS Visual evoked potential plasticity might represent a reliable and robust assay for studies of synaptic plasticity in vivo in humans. In addition, our findings support the hypothesis of impaired synaptic plasticity in BD-II. Longitudinal studies are needed to fully clarify the effects of medication and mood state on VEP plasticity.
Collapse
|
131
|
MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness. Int J Neuropsychopharmacol 2011; 14:1315-25. [PMID: 21275079 DOI: 10.1017/s1461145710001628] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MicroRNA (miRNA) expression was measured within frontal cortex of male Holtzman rats subjected to repeated inescapable shocks at days 1 and 7, tested for learned helplessness (LH) at days 2 and 8, and sacrificed at day 15. We compared rats that did vs. did not exhibit LH, as well as rats that were placed in the apparatus and tested for avoidance but not given shocks (tested controls, TC). Non-learned helpless (NLH) rats showed a robust adaptive miRNA response to inescapable shock whereas LH rats showed a markedly blunted response. One set of 12 miRNAs showed particularly large, significant down-regulation in NLH rats relative to tested controls (mir-96, 141, 182, 183, 183*, 298, 200a, 200a*, 200b, 200b*, 200c, 429). These were encoded at a few shared polycistronic loci, suggesting that the down-regulation was coordinately controlled at the level of transcription. Most of these miRNAs are enriched in synaptic fractions. Moreover, almost all of these share 5'-seed motifs with other members of the same set, suggesting that they will hit similar or overlapping sets of target mRNAs. Finally, half of this set is predicted to hit Creb1 as a target. We also identified a core miRNA co-expression module consisting of 36 miRNAs that are highly correlated with each other across individuals of the LH group (but not in the NLH or TC groups). Thus, miRNAs participate in the alterations of gene expression networks that underlie the normal (NLH) as well as aberrant (LH) response to repeated shocks.
Collapse
|
132
|
Workman JL, Manny N, Walton JC, Nelson RJ. Short day lengths alter stress and depressive-like responses, and hippocampal morphology in Siberian hamsters. Horm Behav 2011; 60:520-8. [PMID: 21851822 DOI: 10.1016/j.yhbeh.2011.07.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/29/2011] [Accepted: 07/31/2011] [Indexed: 01/27/2023]
Abstract
Many psychological disorders comprise a seasonal component. For instance, seasonal affective disorder (SAD) is characterized by depression during autumn and winter. Because hippocampal atrophy may underlie the symptoms of depression and depressive-like behaviors, one goal of this study was to determine whether short days also induce structural changes in the hippocampus using photoperiod responsive rodents--Siberian hamsters. Exposure to short days increases depressive-like responses (increased immobility in the forced swim test) in hamsters. Male hamsters were housed in either short (LD 8:16) or long days (LD 16:8) for 10 weeks and tested in the forced swim test. Brains were removed and processed for Golgi impregnation. HPA axis function may account for photoperiod-related changes in depressive-like responses. Thus, stress reactivity was assessed in another cohort of photoperiod-manipulated animals. Short days reduced soma size and dendritic complexity in the CA1 region. Photoperiod did not induce gross changes in stress reactivity, but an acute stressor disrupted the typical nocturnal peak in cortisol concentrations. These data reveal that immobility induced by exposure to short days is correlated with reduced CA1 cell complexity (and perhaps connectivity). This study is the first to investigate hippocampal changes in the context of short-day induced immobility and may be relevant for understanding psychological disorders with a seasonal component.
Collapse
Affiliation(s)
- Joanna L Workman
- Department of Psychology, The Ohio State University, Columbus, OH 43201, USA.
| | | | | | | |
Collapse
|
133
|
Masi G, Brovedani P. The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. CNS Drugs 2011; 25:913-31. [PMID: 22054117 DOI: 10.2165/11595900-000000000-00000] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Depression is a prevalent, highly debilitating mental disorder affecting up to 15% of the population at least once in their lifetime, with huge costs for society. Neurobiological mechanisms of depression are still not well known, although there is consensus about interplay between genetic and environmental factors. Antidepressant medications are frequently used in depression, but at least 50% of patients are poor responders, even to more recently discovered medications. Furthermore, clinical response only occurs following weeks to months of treatment and only chronic treatment is effective, suggesting that actions beyond the rapidly occurring effect of enhancing monoaminergic systems, such as adaptation of these systems, are responsible for the effects of antidepressants. Recent studies indicate that an impairment of synaptic plasticity (neurogenesis, axon branching, dendritogenesis and synaptogenesis) in specific areas of the CNS, particularly the hippocampus, may be a core factor in the pathophysiology of depression. The abnormal neural plasticity may be related to alterations in the levels of neurotrophic factors, namely brain-derived neurotrophic factor (BDNF), which play a central role in plasticity. As BDNF is repressed by stress, epigenetic regulation of the BDNF gene may play an important role in depression. The hippocampus is smaller in depressed patients, although it is unclear whether smaller size is a consequence of depression or a pre-existing, vulnerability marker for depression. Environmental stressors triggering activation of the hypothalamic-pituitary-adrenal axis cause the brain to be exposed to corticosteroids, affecting neurobehavioural functions with a strong downregulation of hippocampal neurogenesis, and are a major risk factor for depression. Antidepressant treatment increases BDNF levels, stimulates neurogenesis and reverses the inhibitory effects of stress, but this effect is evident only after 3-4 weeks of administration, the time course for maturation of new neurons. The ablation of hippocampal neurogenesis blocks the behavioural effects of antidepressants in animal models. The above findings suggest new possible targets for the pharmacotherapy of depression such as neurotrophic factors, their receptors and related intracellular signalling cascades; agents counteracting the effects of stress on hippocampal neurogenesis (including antagonists of corticosteroids, inflammatory cytokines and their receptors); and agents facilitating the activation of gene expression and increasing the transcription of neurotrophins in the brain.
Collapse
Affiliation(s)
- Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, Pisa, Italy.
| | | |
Collapse
|
134
|
Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 2011; 62:63-77. [PMID: 21827775 DOI: 10.1016/j.neuropharm.2011.07.036] [Citation(s) in RCA: 751] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 12/12/2022]
Abstract
Half a century after the first formulation of the monoamine hypothesis, compelling evidence implies that long-term changes in an array of brain areas and circuits mediating complex cognitive-emotional behaviors represent the biological underpinnings of mood/anxiety disorders. A large number of clinical studies suggest that pathophysiology is associated with dysfunction of the predominant glutamatergic system, malfunction in the mechanisms regulating clearance and metabolism of glutamate, and cytoarchitectural/morphological maladaptive changes in a number of brain areas mediating cognitive-emotional behaviors. Concurrently, a wealth of data from animal models have shown that different types of environmental stress enhance glutamate release/transmission in limbic/cortical areas and exert powerful structural effects, inducing dendritic remodeling, reduction of synapses and possibly volumetric reductions resembling those observed in depressed patients. Because a vast majority of neurons and synapses in these areas and circuits use glutamate as neurotransmitter, it would be limiting to maintain that glutamate is in some way 'involved' in mood/anxiety disorders; rather it should be recognized that the glutamatergic system is a primary mediator of psychiatric pathology and, potentially, also a final common pathway for the therapeutic action of antidepressant agents. A paradigm shift from a monoamine hypothesis of depression to a neuroplasticity hypothesis focused on glutamate may represent a substantial advancement in the working hypothesis that drives research for new drugs and therapies. Importantly, despite the availability of multiple classes of drugs with monoamine-based mechanisms of action, there remains a large percentage of patients who fail to achieve a sustained remission of depressive symptoms. The unmet need for improved pharmacotherapies for treatment-resistant depression means there is a large space for the development of new compounds with novel mechanisms of action such as glutamate transmission and related pathways. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
|
135
|
Brenhouse HC, Andersen SL. Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci Biobehav Rev 2011; 35:1687-703. [PMID: 21600919 PMCID: PMC3134153 DOI: 10.1016/j.neubiorev.2011.04.013] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 04/14/2011] [Accepted: 04/21/2011] [Indexed: 11/20/2022]
Abstract
Adolescence is a transitional period between childhood and adulthood that encompasses vast changes within brain systems that parallel some, but not all, behavioral changes. Elevations in emotional reactivity and reward processing follow an inverted U shape in terms of onset and remission, with the peak occurring during adolescence. However, cognitive processing follows a more linear course of development. This review will focus on changes within key structures and will highlight the relationships between brain changes and behavior, with evidence spanning from functional magnetic resonance imaging (fMRI) in humans to molecular studies of receptor and signaling factors in animals. Adolescent changes in neuronal substrates will be used to understand how typical and atypical behaviors arise during adolescence. We draw upon clinical and preclinical studies to provide a neural framework for defining adolescence and its role in the transition to adulthood.
Collapse
Affiliation(s)
- Heather C. Brenhouse
- Laboratory of Developmental Neuropharmacology McLean Hospital and Department of Psychiatry, Harvard Medical School
| | - Susan L. Andersen
- Laboratory of Developmental Neuropharmacology McLean Hospital and Department of Psychiatry, Harvard Medical School
| |
Collapse
|
136
|
Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology 2011; 36:1062-9. [PMID: 21292405 DOI: 10.1016/j.psyneuen.2011.01.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/17/2010] [Accepted: 01/07/2011] [Indexed: 11/22/2022]
Abstract
The prevalence of major depression has increased in recent decades; however, the underlying causes of this phenomenon remain unspecified. One environmental change that has coincided with elevated rates of depression is increased exposure to artificial light at night. Shift workers and others chronically exposed to light at night are at increased risk of mood disorders, suggesting that nighttime illumination may influence brain mechanisms mediating affect. We tested the hypothesis that exposure to dim light at night may impact affective responses and alter morphology of hippocampal neurons. Ovariectomized adult female Siberian hamsters (Phodopus sungorus) were housed for 8 weeks in either a light/dark cycle (LD) or a light/dim light cycle (DM), and then behavior was assayed. DM-hamsters displayed more depression-like responses in the forced swim and the sucrose anhedonia tests compared with LD-hamsters. Conversely, in the elevated plus maze DM-hamsters reduced anxiety-like behaviors. Brains from the same animals were processed using the Golgi-Cox method and hippocampal neurons within CA1, CA3, and the dentate gyrus were analyzed for morphological characteristics. In CA1, DM-hamsters significantly reduced dendritic spine density on both apical and basilar dendrites, an effect which was not mediated by baseline cortisol, as concentrations were equivalent between groups. These results demonstrate dim light at night is sufficient to reduce synaptic spine connections to CA1. Importantly, the present results suggest that night-time low level illumination, comparable to levels that are pervasive in North America and Europe, may contribute to the increasing prevalence of mood disorders.
Collapse
|
137
|
Musazzi L, Racagni G, Popoli M. Stress, glucocorticoids and glutamate release: effects of antidepressant drugs. Neurochem Int 2011; 59:138-49. [PMID: 21689704 DOI: 10.1016/j.neuint.2011.05.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 12/21/2022]
Abstract
Stressful life events impact on memory, cognition and emotional responses, and are known to precipitate mood/anxiety disorders. It is increasingly recognized that stress and its neurochemical and endocrine mediators induce changes in glutamate synapses and circuitry, and this in turn modify mental states. Half a century after the monoamine hypothesis, it is widely accepted that maladaptive changes in excitatory/inhibitory circuitry have a primary role in the pathophysiology of mood/anxiety disorders. The neuroplasticity hypothesis posits that volumetric changes consistently found in limbic and cortical areas of depressed subjects are in good part due to remodeling of neuronal dendritic arbors and loss of synaptic spines. A considerable body of work, carried out with in vivo microdialysis as well as alternative methodologies, has shown that both stress and corticosterone treatment induce enhancement of activity-dependent glutamate release. Accordingly, results from preclinical studies suggest that stress- and glucocorticoid-induced enhancement of glutamate release and transmission plays a main role in the induction of maladaptive cellular effects, in turn responsible for dendritic remodeling. Additional recent work has showed that drugs employed for therapy of mood/anxiety disorders (antidepressants) prevent the enhancement of glutamate release induced by stress. Understanding the action of traditional drugs on glutamate transmission could be of great help in developing drugs that may work directly at this level.
Collapse
Affiliation(s)
- Laura Musazzi
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milano, Italy
| | | | | |
Collapse
|
138
|
Song C, Wang H. Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:760-8. [PMID: 20600462 DOI: 10.1016/j.pnpbp.2010.06.020] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/15/2010] [Accepted: 06/23/2010] [Indexed: 11/19/2022]
Abstract
In patients with major depression or in animal models of depression, significantly increases in the concentrations of pro-inflammatory cytokines have been consistently reported. Proinflammatory cytokines can stimulate the hypothalamic-pituitary-adrenal (HPA) axis to release stress hormone, glucocorticoids. As a consequence of excessive inflammatory response triggered by pro-inflammatory cytokines in the periphery, free radicals, oxidants and glucocorticoids are over-produced, which can affect glial cell functions and damage neurons in the brain. Indeed, decreased neurogenesis and the dysfunction of neurotrophic system (up- or down-regulations of neurotrophins and their receptors) have been recently found. Effective treatments for depressive symptoms, such as antidepressants and omega-3 fatty acids can increase or modulate neurotrophic system and enhance neurogenesis. However, the relationship between glial cells; microglia (mostly involved in neuroinflammation) and astrocytes (producing neurotrophins), and the contribution of inflammation to decreased neurogenesis and dysfunction of neurotrophic system are almost unknown. This review first introduces changes in behavior, neurotransmitter, cytokine and neurogenesis aspects in depressed patients and several animal models of depression, secondly explores the possible relationship between pro- and anti-inflammatory cytokines and neurogenesis in these models, then discusses the effects of current treatments on inflammation, neurotrophic system and neurogenesis, and finally pointes out the limitations and future research directions.
Collapse
Affiliation(s)
- Cai Song
- Department of Biomedical Sciences, AVC, University of Prince Edward Island, and Canada National Research Institute for Nutriscience and Health, Charlottetown, PE, Canada.
| | | |
Collapse
|
139
|
Mitschelen M, Yan H, Farley JA, Warrington JP, Han S, Hereñú CB, Csiszar A, Ungvari Z, Bailey-Downs LC, Bass CE, Sonntag WE. Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: a potential model of geriatric depression. Neuroscience 2011; 185:50-60. [PMID: 21524689 DOI: 10.1016/j.neuroscience.2011.04.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/28/2011] [Accepted: 04/13/2011] [Indexed: 12/21/2022]
Abstract
Numerous studies support the hypothesis that deficiency of insulin-like growth factor I (IGF-1) in adults contributes to depression, but direct evidence is limited. Many psychological and pro-cognitive effects have been attributed to IGF-1, but appropriate animal models of adult-onset IGF-1 deficiency are lacking. In this study, we use a viral-mediated Cre-loxP system to knockout the Igf1 gene in either the liver, neurons of the CA1 region of the hippocampus, or both. Knockout of liver Igf1 reduced serum IGF-1 levels by 40% and hippocampal IGF-1 levels by 26%. Knockout of Igf1 in CA1 reduced hippocampal IGF-1 levels by 13%. The most severe reduction in hippocampal IGF-1 occurred in the group with knockouts in both liver and CA1 (36% reduction), and was associated with a 3.5-fold increase in immobility in the forced swim test. Reduction of either circulating or hippocampal IGF-1 levels did not alter anxiety measured in an open field and elevated plus maze, nor locomotion in the open field. Furthermore, local compensation for deficiencies in circulating IGF-1 did not occur in the hippocampus, nor were serum levels of IGF-1 upregulated in response to the moderate decline of hippocampal IGF-1 caused by the knockouts in CA1. We conclude that adult-onset IGF-1 deficiency alone is sufficient to induce a depressive phenotype in mice. Furthermore, our results suggest that individuals with low brain levels of IGF-1 are at increased risk for depression and these behavioral effects are not ameliorated by increased local IGF-1 production or transport. Our study supports the hypothesis that the natural IGF-1 decline in aging humans may contribute to geriatric depression.
Collapse
Affiliation(s)
- M Mitschelen
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1303, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Bennett M. The prefrontal–limbic network in depression: A core pathology of synapse regression. Prog Neurobiol 2011; 93:457-67. [DOI: 10.1016/j.pneurobio.2011.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/10/2010] [Accepted: 01/03/2011] [Indexed: 01/06/2023]
|
141
|
Hoyle D, Juhasz G, Aso E, Chase D, del Rio J, Fabre V, Hamon M, Lanfumey L, Lesch KP, Maldonado R, Serra MA, Sharp T, Tordera R, Toro C, Deakin JFW. Shared changes in gene expression in frontal cortex of four genetically modified mouse models of depression. Eur Neuropsychopharmacol 2011; 21:3-10. [PMID: 21030216 DOI: 10.1016/j.euroneuro.2010.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 09/21/2010] [Accepted: 09/24/2010] [Indexed: 12/01/2022]
Abstract
This study aimed to identify whether genetic manipulation of four systems implicated in the pathogenesis of depression converge on shared molecular processes underpinning depression-like behaviour in mice. Altered 5HT function was modelled using the 5-HT transporter knock out mouse, impaired glucocorticoid receptor (GR) function using an antisense-induced knock down mouse, disrupted glutamate function using a heterozygous KO of the vesicular glutamate transporter 1 gene, and impaired cannabinoid signalling using the cannabinoid 1 receptor KO mouse. All 4 four genetically modified mice were previously shown to show exaggerated helpless behaviour compared to wild-type controls and variable degrees of anxiety and anhedonic behaviour. mRNA was extracted from frontal cortex and hybridised to Illumina microarrays. Combined contrast analysis was used to identify genes showing different patterns of up- and down-regulation across the 4 models. 1823 genes were differentially regulated. They were over-represented in gene ontology categories of metabolism, protein handling and synapse. In each model compared to wild-type mice of the same genetic background, a number of genes showed increased expression changes of >10%, other genes showed decreases in each model. Most of the genes showed mixed effects. Several previous array findings were replicated. The results point to cellular stress and changes in post-synaptic remodelling as final common mechanisms of depression and resilience.
Collapse
Affiliation(s)
- D Hoyle
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Wager-Smith K, Markou A. Depression: a repair response to stress-induced neuronal microdamage that can grade into a chronic neuroinflammatory condition? Neurosci Biobehav Rev 2011; 35:742-64. [PMID: 20883718 PMCID: PMC3777427 DOI: 10.1016/j.neubiorev.2010.09.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 12/19/2022]
Abstract
Depression is a major contributor to the global burden of disease and disability, yet it is poorly understood. Here we review data supporting a novel theoretical model for the biology of depression. In this model, a stressful life event leads to microdamage in the brain. This damage triggers an injury repair response consisting of a neuroinflammatory phase to clear cellular debris and a spontaneous tissue regeneration phase involving neurotrophins and neurogenesis. During healing, released inflammatory mediators trigger sickness behavior and psychological pain via mechanisms similar to those that produce physical pain during wound healing. The depression remits if the neuronal injury repair process resolves successfully. Importantly, however, the acute psychological pain and neuroinflammation often transition to chronicity and develop into pathological depressive states. This hypothesis for depression explains substantially more data than alternative models, including why emerging data show that analgesic, anti-inflammatory, pro-neurogenic and pro-neurotrophic treatments have antidepressant effects. Thus, an acute depressive episode can be conceptualized as a normally self-limiting but highly error-prone process of recuperation from stress-triggered neuronal microdamage.
Collapse
Affiliation(s)
- Karen Wager-Smith
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA.
| | | |
Collapse
|
143
|
Ghose S, Winter MK, McCarson KE, Tamminga CA, Enna SJ. The GABAβ receptor as a target for antidepressant drug action. Br J Pharmacol 2011; 162:1-17. [PMID: 20735410 PMCID: PMC3012402 DOI: 10.1111/j.1476-5381.2010.01004.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/06/2010] [Accepted: 08/11/2010] [Indexed: 11/29/2022] Open
Abstract
Preclinical and clinical data suggest that a modification in GABA(B) receptor expression and function may contribute to the symptoms of major depression and the response to antidepressants. This includes laboratory animal experiments demonstrating that antidepressants modify brain GABA(B) receptor expression and function and that GABA(B) receptor antagonists display antidepressant potential in animal models of this condition. Clinical and post-mortem studies reveal changes in GABAergic transmission associated with depression as well as depression-related changes in GABA(B) subunit expression that are localized to the cortical depression network. Detailed in this review are the preclinical and clinical data implicating a role for the GABA(B) receptor system in mediating symptoms of this disorder and its possible involvement in the response to antidepressants. Particular emphasis is placed on clinical and post-mortem studies, including previously unpublished work demonstrating regionally-selective modifications in GABA(B) receptor subunit expression in brain samples obtained from depressed subjects. Together with the earlier preclinical studies, these new data point to a role for the GABA(B) system in major depression and support the antidepressant potential of GABA(B) receptor antagonists.
Collapse
Affiliation(s)
- Subroto Ghose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
144
|
Li N, He X, Qi X, Zhang Y, He S. The mood stabilizer lamotrigine produces antidepressant behavioral effects in rats: role of brain-derived neurotrophic factor. J Psychopharmacol 2010; 24:1772-8. [PMID: 20123938 DOI: 10.1177/0269881109359102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The anticonvulsant drug lamotrigine has been shown to produce strong antidepressant effects in the treatment of patients with bipolar disorder. However, to date there are few preclinical reports on its behavioral actions in animal models of depression or its underlying molecular mechanisms. The current study investigated the effects of lamotrigine in the forced swimming test and the learned helplessness test. The results demonstrate that both 15 and 30 mg/kg acute treatment of lamotrigine significantly reduced immobility in the forced swimming test without affecting locomotor activity. Sub-chronic twice daily injections of 30 mg/kg lamotrigine robustly decreased escape failures in animals that had developed learned helplessness symptoms. In parallel, the sub-chronic lamotrigine treatment also up-regulated frontal and hippocampal brain-derived neurotrophic factor expression in both naive and stressed animals and restored the stress-induced down-regulation of brain-derived neurotrophic factor expression. This study provides further evidence for the use of lamotrigine as a novel antidepressant in the treatment of bipolar disorders.
Collapse
Affiliation(s)
- Nanxin Li
- Division of Molecular Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA.
| | | | | | | | | |
Collapse
|
145
|
Chen F, Madsen TM, Wegener G, Nyengaard JR. Imipramine treatment increases the number of hippocampal synapses and neurons in a genetic animal model of depression. Hippocampus 2010; 20:1376-84. [DOI: 10.1002/hipo.20718] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
146
|
Yan HC, Cao X, Das M, Zhu XH, Gao TM. Behavioral animal models of depression. Neurosci Bull 2010; 26:327-37. [PMID: 20651815 DOI: 10.1007/s12264-010-0323-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Depression is a chronic, recurring and potentially life-threatening illness that affects up to 20% of the population across the world. Despite its prevalence and considerable impact on human, little is known about its pathogenesis. One of the major reasons is the restricted availability of validated animal models due to the absence of consensus on the pathology and etiology of depression. Besides, some core symptoms such as depressed mood, feeling of worthlessness, and recurring thoughts of death or suicide, are impossible to be modeled on laboratory animals. Currently, the criteria for identifying animal models of depression rely on either of the 2 principles: actions of known antidepressants and responses to stress. This review mainly focuses on the most widely used animal models of depression, including learned helplessness, chronic mild stress, and social defeat paradigms. Also, the behavioral tests for screening antidepressants, such as forced swimming test and tail suspension test, are also discussed. The advantages and major drawbacks of each model are evaluated. In prospective, new techniques that will be beneficial for developing novel animal models or detecting depression are discussed.
Collapse
Affiliation(s)
- Hua-Cheng Yan
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
147
|
Dendritic growth in medial prefrontal cortex and cognitive flexibility are enhanced during the postpartum period. J Neurosci 2010; 30:13499-503. [PMID: 20926675 DOI: 10.1523/jneurosci.3388-10.2010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The postpartum period is associated with numerous hormonal changes, some of which have been linked to detrimental effects on the medial prefrontal cortex (mPFC), a brain region involved in cognition. Here, we investigated whether mPFC structure and function are negatively influenced during the postpartum period, an outcome that might be predicted by the maternal hormonal milieu. Mother rats were tested on an attentional set-shifting task, and dendritic architecture of layer 2/3 mPFC pyramidal neurons was analyzed. Mother rats exhibited increased dendritic spine number in the mPFC, an effect that coincided with improved attention and behavioral flexibility. These findings suggest that the postpartum period is associated with promotion of neuronal growth in the mPFC and enhanced cognitive function.
Collapse
|
148
|
Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 2010; 31:519-30. [PMID: 20609373 PMCID: PMC2964437 DOI: 10.1016/j.yfrne.2010.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/11/2010] [Accepted: 06/25/2010] [Indexed: 11/21/2022]
Abstract
The potential adverse effects of Bisphenol A (BPA), a synthetic xenoestrogen, have long been debated. Although standard toxicology tests have revealed no harmful effects, recent research highlighted what was missed so far: BPA-induced alterations in the nervous system. Since 2004, our laboratory has been investigating one of the central effects of BPA, which is interference with gonadal steroid-induced synaptogenesis and the resulting loss of spine synapses. We have shown in both rats and nonhuman primates that BPA completely negates the ∼ 70-100% increase in the number of hippocampal and prefrontal spine synapses induced by both estrogens and androgens. Synaptic loss of this magnitude may have significant consequences, potentially causing cognitive decline, depression, and schizophrenia, to mention those that our laboratory has shown to be associated with synaptic loss. Finally, we discuss why children may particularly be vulnerable to BPA, which represents future direction of research in our laboratory.
Collapse
|
149
|
Cryan JF, O'Leary OF. Neuroscience. A glutamate pathway to faster-acting antidepressants? Science 2010; 329:913-4. [PMID: 20724626 DOI: 10.1126/science.1194313] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- John F Cryan
- School of Pharmacy, Department of Pharmacology and Therapeutics, Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland.
| | | |
Collapse
|
150
|
von Bohlen und Halbach O. Involvement of BDNF in age-dependent alterations in the hippocampus. Front Aging Neurosci 2010; 2. [PMID: 20941325 PMCID: PMC2952461 DOI: 10.3389/fnagi.2010.00036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/26/2010] [Indexed: 12/30/2022] Open
Abstract
It is known since a long time that the hippocampus is sensitive to aging. Thus, there is a reduction in the hippocampal volume during aging. This age-related volume reduction is paralleled by behavioral and functional deficits in hippocampus-dependent learning and memory tasks. This age-related volume reduction of the hippocampus is not a consequence of an age-related loss of hippocampal neurons. The morphological changes associated with aging include reductions in the branching pattern of dendrites, as well as reductions in spine densities, reductions in the densities of fibers projecting into the hippocampus as well as declines in the rate of neurogenesis. It is very unlikely that a single factor or a single class of molecules is responsible for all these age-related morphological changes in the hippocampus. Nevertheless, it would be of advantage to identify possible neuromodulators or neuropeptides that may contribute to these age-related changes. In this context, growth factors may play an important role in the maintenance of the postnatal hippocampal architecture. In this review it is hypothesized that brain-derived neurotrophic factor (BDNF) is a factor critically involved in the regulation of age-related processes in the hippocampus. Moreover, evidences suggest that disturbances in the BDNF-system also affect hippocampal dysfunctions, as e.g. seen in major depression or in Alzheimer disease.
Collapse
|