101
|
A five-year follow-up study of antioxidants, oxidative stress and polyunsaturated fatty acids in schizophrenia. Acta Neuropsychiatr 2019; 31:202-212. [PMID: 31178002 DOI: 10.1017/neu.2019.14] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Oxidative stress and dysregulated antioxidant defence may be involved in the pathophysiology of schizophrenia. In the present study, we investigated changes in antioxidants and oxidative stress from an acute to a later stable phase. We hypothesised that the levels of oxidative markers are increased in schizophrenia compared with healthy controls; change from the acute to the stable phase; and are associated with the levels of membrane polyunsaturated fatty acids (PUFAs) and symptom severity. METHODS Fifty-five patients with schizophrenia spectrum disorders, assessed during an acute phase and 5 years later during a stable phase, and 51 healthy controls were included. We measured antioxidants (α-tocopherol, uric acid, albumin and bilirubin), markers of oxidative stress (F2-isoprostane and reactive oxygen metabolites) and membrane fatty acids. Antioxidants and oxidative stress markers were compared in schizophrenia versus healthy controls, adjusting for differences in sex, age and smoking, and changes over time. Associations between symptoms and PUFA were also investigated. RESULTS In the acute phase, α-tocopherol was significantly higher (p < 0.001), while albumin was lower (p < 0.001) compared with the stable phase. Changes in α-tocopherol were associated with PUFA levels in the acute phase. In the stable phase, schizophrenia patients had higher uric acid (p = 0.009) and lower bilirubin (p = 0.046) than healthy controls. CRP was higher in patients in the stable phase (p < 0.001), and there was no significant change from the acute phase. CONCLUSION The present findings of change in antioxidant levels in the acute versus stable phase of schizophrenia the present findings suggest that redox regulation is dynamic and changes during different phases of the disorder.
Collapse
|
102
|
Tang Y, Zhou Q, Chang M, Chekroud A, Gueorguieva R, Jiang X, Zhou Y, He G, Rowland M, Wang D, Fu S, Yin Z, Leng H, Wei S, Xu K, Wang F, Krystal JH, Driesen NR. Altered functional connectivity and low-frequency signal fluctuations in early psychosis and genetic high risk. Schizophr Res 2019; 210:172-179. [PMID: 30685394 DOI: 10.1016/j.schres.2018.12.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
Studying individuals at increased genetic risk for schizophrenia may generate important theories regarding the emergence of the illness. In this investigation, genetic high-risk individuals (GHR, n = 37) were assessed with functional magnetic resonance imaging and compared to individuals in the first episode of schizophrenia (FESZ, n = 42) and healthy comparison subjects (HCS, n = 59). Measures of functional connectivity and the amplitude of low-frequency fluctuation (ALFF) were obtained in a global, data-driven analysis. The functional connectivity measure, termed degree centrality, assessed each voxel's connectivity with all the other voxels in the brain. GHR and FESZ displayed increased degree centrality globally and locally. On ALFF measures, GHR were indistinguishable from HCS in the majority of areas but resembled FESZ in insula, basal ganglia and hippocampus. FESZ evidenced reduced amplitude of the global neural signal as compared to HCS and GHR. Results support the hypothesis that schizophrenia diathesis involves functional connectivity and ALFF abnormalities. In addition, they further an emerging theory suggesting that increased connectivity and metabolism may be involved in schizophrenia vulnerability and early stages of the illness.
Collapse
Affiliation(s)
- Yanqing Tang
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China; Department of Gerontology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Qian Zhou
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Miao Chang
- Brain Function Research Section, Department of Radiology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Adam Chekroud
- Department of Psychology, Yale University, USA; Centre for Outcomes Research and Evaluation, Yale-New Haven Hospital, USA
| | - Ralitza Gueorguieva
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Xiaowei Jiang
- Brain Function Research Section, Department of Radiology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yifang Zhou
- Department of Gerontology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - George He
- Department of Psychology, Yale University, USA
| | - Margaret Rowland
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Veterans Affairs Connecticut Health System, West Haven, CT 06516, USA
| | - Dahai Wang
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shinan Fu
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhiyang Yin
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Haixia Leng
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shengnan Wei
- Brain Function Research Section, Department of Radiology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ke Xu
- Brain Function Research Section, Department of Radiology, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Fei Wang
- Department of Psychiatry, 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Department of Psychology, Yale University, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Veterans Affairs Connecticut Health System, West Haven, CT 06516, USA
| | - Naomi R Driesen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Veterans Affairs Connecticut Health System, West Haven, CT 06516, USA
| |
Collapse
|
103
|
Arakawa Y, Yokoyama K, Tasaki S, Kato J, Nakashima K, Takeyama M, Nakatani A, Suzuki M. Transgenic mice overexpressing miR-137 in the brain show schizophrenia-associated behavioral deficits and transcriptome profiles. PLoS One 2019; 14:e0220389. [PMID: 31361772 PMCID: PMC6667145 DOI: 10.1371/journal.pone.0220389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/14/2019] [Indexed: 01/20/2023] Open
Abstract
Schizophrenia is a psychiatric disorder characterized by positive and negative symptoms and cognitive deficits. The exact cause of schizophrenia is still unknown, but substantial evidence indicates that it has a genetic component. Genome wide association studies demonstrate variants within miR-137 host gene are a risk factor for schizophrenia. However, the direct relationship between the pathophysiology of schizophrenia and the dosage of miR-137 remains unclear. Therefore, in this study, we generated transgenic mice overexpressing miR-137 (miR-137 Tg mice) with the neuron-specific Thy-1 promoter and examined schizophrenia-related phenotypes in these mice. Overexpression of miR-137 was observed in various brain regions of the miR-137 Tg mice, with down-regulation of putative miR-137 targets. MiR-137 Tg mice showed sensory gating deficits in a prepulse inhibition test, social deficits in a sociability and social novelty test, and cognitive deficits in a novel object recognition test. Interestingly, the predicted-altered pathways of the medial prefrontal cortex of miR-137 Tg mice were partially overlapped with those of the dorsolateral prefrontal cortex in postmortem brain of patients who died in equal to or less than 4 years after initial diagnosis of schizophrenia in published data. These results suggest that overexpression of miR-137 in the whole brain induces the several phenotypes that are relevant to aspects of psychiatric disorders, such as schizophrenia. Based on these findings, miR-137 Tg mice may have the potential to become a useful tool in researching the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Yuuichi Arakawa
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kazumasa Yokoyama
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shinya Tasaki
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Junichi Kato
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kosuke Nakashima
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Michiyasu Takeyama
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Atsushi Nakatani
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Motohisa Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
104
|
Grent-'t-Jong T, Rivolta D, Gross J, Gajwani R, Lawrie SM, Schwannauer M, Heidegger T, Wibral M, Singer W, Sauer A, Scheller B, Uhlhaas PJ. Acute ketamine dysregulates task-related gamma-band oscillations in thalamo-cortical circuits in schizophrenia. Brain 2019; 141:2511-2526. [PMID: 30020423 PMCID: PMC6061682 DOI: 10.1093/brain/awy175] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/10/2018] [Indexed: 12/29/2022] Open
Abstract
Hypofunction of the N-methyl-d-aspartate receptor (NMDAR) has been implicated as a possible mechanism underlying cognitive deficits and aberrant neuronal dynamics in schizophrenia. To test this hypothesis, we first administered a sub-anaesthetic dose of S-ketamine (0.006 mg/kg/min) or saline in a single-blind crossover design in 14 participants while magnetoencephalographic data were recorded during a visual task. In addition, magnetoencephalographic data were obtained in a sample of unmedicated first-episode psychosis patients (n = 10) and in patients with chronic schizophrenia (n = 16) to allow for comparisons of neuronal dynamics in clinical populations versus NMDAR hypofunctioning. Magnetoencephalographic data were analysed at source-level in the 1–90 Hz frequency range in occipital and thalamic regions of interest. In addition, directed functional connectivity analysis was performed using Granger causality and feedback and feedforward activity was investigated using a directed asymmetry index. Psychopathology was assessed with the Positive and Negative Syndrome Scale. Acute ketamine administration in healthy volunteers led to similar effects on cognition and psychopathology as observed in first-episode and chronic schizophrenia patients. However, the effects of ketamine on high-frequency oscillations and their connectivity profile were not consistent with these observations. Ketamine increased amplitude and frequency of gamma-power (63–80 Hz) in occipital regions and upregulated low frequency (5–28 Hz) activity. Moreover, ketamine disrupted feedforward and feedback signalling at high and low frequencies leading to hypo- and hyper-connectivity in thalamo-cortical networks. In contrast, first-episode and chronic schizophrenia patients showed a different pattern of magnetoencephalographic activity, characterized by decreased task-induced high-gamma band oscillations and predominantly increased feedforward/feedback-mediated Granger causality connectivity. Accordingly, the current data have implications for theories of cognitive dysfunctions and circuit impairments in the disorder, suggesting that acute NMDAR hypofunction does not recreate alterations in neural oscillations during visual processing observed in schizophrenia.
Collapse
Affiliation(s)
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Institute of Biomagnetism and Biosignalanalysis, University of Muenster, Germany
| | - Ruchika Gajwani
- Institute of Health and Wellbeing, University of Glasgow, UK
| | | | | | - Tonio Heidegger
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | | | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Ernst Strüngmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt am Main, Germany.,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Andreas Sauer
- MEG-Unit, Goethe University, Frankfurt am Main, Germany.,Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Bertram Scheller
- Department of Anaesthesia, Intensive Care Medicine and Pain Therapy, Goethe University, Frankfurt am Main, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
105
|
Davies C, Paloyelis Y, Rutigliano G, Cappucciati M, De Micheli A, Ramella-Cravaro V, Provenzani U, Antoniades M, Modinos G, Oliver D, Stahl D, Murguia S, Zelaya F, Allen P, Shergill S, Morrison P, Williams S, Taylor D, McGuire P, Fusar-Poli P. Oxytocin modulates hippocampal perfusion in people at clinical high risk for psychosis. Neuropsychopharmacology 2019; 44:1300-1309. [PMID: 30626906 PMCID: PMC6784972 DOI: 10.1038/s41386-018-0311-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/27/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Preclinical and human studies suggest that hippocampal dysfunction is a key factor in the onset of psychosis. People at Clinical High Risk for psychosis (CHR-P) present with a clinical syndrome that can include social withdrawal and have a 20-35% risk of developing psychosis in the next 2 years. Recent research shows that resting hippocampal blood flow is altered in CHR-P individuals and predicts adverse clinical outcomes, such as non-remission/transition to frank psychosis. Previous work in healthy males indicates that a single dose of intranasal oxytocin has positive effects on social function and marked effects on resting hippocampal blood flow. The present study examined the effects of intranasal oxytocin on hippocampal blood flow in CHR-P individuals. In a double-blind, placebo-controlled, crossover design, 30 CHR-P males were studied using pseudo-continuous Arterial Spin Labelling on 2 occasions, once after 40IU intranasal oxytocin and once after placebo. The effects of oxytocin on left hippocampal blood flow were examined in a region-of-interest analysis of data acquired at 22-28 and at 30-36 minutes post-intranasal administration. Relative to placebo, administration of oxytocin was associated with increased hippocampal blood flow at both time points (p = .0056; p = .034), although the effect at the second did not survive adjustment for the effect of global blood flow. These data indicate that oxytocin can modulate hippocampal function in CHR-P individuals and therefore merits further investigation as a candidate novel treatment for this group.
Collapse
Grants
- G0901868 Medical Research Council
- 22593 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- Dominic Oliver is supported by the UK Medical Research Council (MR/N013700/1) and is a King’s College London member of the MRC Doctoral Training Partnership in Biomedical Sciences.
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust and King’s College London, London, UK
- DH | National Institute for Health Research (NIHR)
- This work was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust and King’s College London (PFP, PM, DS); by a Brain & Behaviour Research Foundation NARSAD Award (grant number 22593 to PFP); and by the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. The funders had no influence on the design, collection, analysis and interpretation of the data, writing of the report and decision to submit this article for publication.
Collapse
Affiliation(s)
- Cathy Davies
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Grazia Rutigliano
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco Cappucciati
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andrea De Micheli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Valentina Ramella-Cravaro
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Umberto Provenzani
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Mathilde Antoniades
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gemma Modinos
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dominic Oliver
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniel Stahl
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Silvia Murguia
- Tower Hamlets Early Detection Service (THEDS), East London NHS Foundation Trust, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychology, University of Roehampton, London, UK
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Morrison
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David Taylor
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Philip McGuire
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Outreach And Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK.
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
- Outreach And Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
106
|
Zhang J, Magioncalda P, Huang Z, Tan Z, Hu X, Hu Z, Conio B, Amore M, Inglese M, Martino M, Northoff G. Altered Global Signal Topography and Its Different Regional Localization in Motor Cortex and Hippocampus in Mania and Depression. Schizophr Bull 2019; 45:902-910. [PMID: 30285255 PMCID: PMC6581125 DOI: 10.1093/schbul/sby138] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bipolar disorder (BD) is a complex psychiatric disorder characterized by dominant symptom swings across different phases (manic, depressive, and euthymic). Different symptoms in BD such as abnormal episodic memory recall and psychomotor activity have been related to alterations in different regions, ie, hippocampus and motor cortex. How the abnormal regional distribution of neuronal activity relates to specific symptoms remains unclear, however. One possible neuronal mechanism of the relationship is the alteration of the global distribution of neuronal activity manifested in specific local regions; this can be measured as the correlation between the global signal (GS) and local regions. To understand the GS and its relationship to psychopathological symptoms, we here investigated the alteration of both GS variance and its regional topography in healthy controls and 3 phases of BD. We found that the variance of GS showed no significant difference between the 4 groups. In contrast, the GS topography was significantly altered in the different phases of BD, ie, the regions showing abnormally strong topographical GS contribution changed from hippocampus (and parahippocampus/fusiform gyrus) in depression to motor cortex in mania. Importantly, topographical GS changes in these regions correlated with psychopathological measures in both depression and mania. Taken together, our findings demonstrate the central importance of GS topography for psychopathological symptoms. This sheds lights on the neuronal mechanisms of specific psychopathological symptoms in BD, and its relevance in the relationship between global and local neuronal activities for behavior in general.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Brain Functioning Research, Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang, China,College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Paola Magioncalda
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Zirui Huang
- Department of Anesthesiology, University of Michigan, Ann Arbor MI,Center for Consciousness Science, University of Michigan, Ann Arbor, MI
| | - Zhonglin Tan
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiwen Hu
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiguo Hu
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| | - Benedetta Conio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matilde Inglese
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy,Department of Neurology, Radiology, and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matteo Martino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Georg Northoff
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China,The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada,Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan,To whom correspondence should be addressed; Tianmu Road 305, Hangzhou, Zhejiang 310013, China; tel: 613-722-6521 ex. 6959, fax: 613-798-2982, e-mail:
| |
Collapse
|
107
|
Curic S, Leicht G, Thiebes S, Andreou C, Polomac N, Eichler IC, Eichler L, Zöllner C, Gallinat J, Steinmann S, Mulert C. Reduced auditory evoked gamma-band response and schizophrenia-like clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 2019; 44:1239-1246. [PMID: 30758327 PMCID: PMC6785009 DOI: 10.1038/s41386-019-0328-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022]
Abstract
Abnormal gamma-band oscillations (GBO) have been frequently associated with the pathophysiology of schizophrenia. GBO are modulated by glutamate, a neurotransmitter, which is continuously discussed to shape the complex symptom spectrum in schizophrenia. The current study examined the effects of ketamine, a glutamate N-methyl-D-aspartate receptor (NMDAR) antagonist, on the auditory-evoked gamma-band response (aeGBR) and psychopathological outcomes in healthy volunteers to investigate neuronal mechanisms of psychotic behavior. In a placebo-controlled, randomized crossover design, the aeGBR power, phase-locking factor (PLF) during a choice reaction task, the Positive and Negative Syndrome Scale (PANSS) and the Altered State of Consciousness (5D-ASC) Rating Scale were assessed in 25 healthy subjects. Ketamine was applied in a subanaesthetic dose. Low-resolution brain electromagnetic tomography was used for EEG source localization. Significant reductions of the aeGBR power and PLF were identified under ketamine administration compared to placebo (p < 0.01). Source-space analysis of aeGBR generators revealed significantly reduced current source density (CSD) within the anterior cingulate cortex during ketamine administration. Ketamine induced an increase in all PANSS (p < 0.001) as well as 5D-ASC scores (p < 0.01) and increased response times (p < 0.001) and error rates (p < 0.01). Only negative symptoms were significantly associated with an aeGBR power decrease (p = 0.033) as revealed by multiple linear regression. These findings argue for a substantial role of the glutamate system in the mediation of dysfunctional gamma band responses and negative symptomatology of schizophrenia and are compatible with the NMDAR hypofunction hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Stjepan Curic
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute for Sex Research and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Thiebes
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Andreou
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Psychotic Disorders, University Psychiatric Hospital, University of Basel, Basel, Switzerland
| | - Nenad Polomac
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Iris-Carola Eichler
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Eichler
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Zöllner
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus Liebig University, Gießen, Germany
| |
Collapse
|
108
|
Davies C, Rutigliano G, De Micheli A, Stone JM, Ramella-Cravaro V, Provenzani U, Cappucciati M, Scutt E, Paloyelis Y, Oliver D, Murguia S, Zelaya F, Allen P, Shergill S, Morrison P, Williams S, Taylor D, Lythgoe DJ, McGuire P, Fusar-Poli P. Neurochemical effects of oxytocin in people at clinical high risk for psychosis. Eur Neuropsychopharmacol 2019; 29:601-615. [PMID: 30928180 DOI: 10.1016/j.euroneuro.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/10/2019] [Accepted: 03/07/2019] [Indexed: 01/12/2023]
Abstract
Alterations in neurochemical metabolites are thought to play a role in the pathophysiology of psychosis onset. Oxytocin, a neuropeptide with prosocial and anxiolytic properties, modulates glutamate neurotransmission in preclinical models but its neurochemical effects in people at high risk for psychosis are unknown. We used proton magnetic resonance spectroscopy (1H-MRS) to examine the effects of intranasal oxytocin on glutamate and other metabolites in people at Clinical High Risk for Psychosis (CHR-P) in a double-blind, placebo-controlled, crossover design. 30 CHR-P males were studied on two occasions, once after 40IU intranasal oxytocin and once after placebo. The effects of oxytocin on the concentration of glutamate, glutamate+glutamine and other metabolites (choline, N-acetylaspartate, myo-inositol) scaled to creatine were examined in the left thalamus, anterior cingulate cortex (ACC) and left hippocampus, starting approximately 75, 84 and 93 min post-dosing, respectively. Relative to placebo, administration of oxytocin was associated with an increase in choline levels in the ACC (p=.008, Cohen's d = 0.54). There were no other significant effects on metabolite concentrations (all p>.05). Our findings suggest that, at ∼75-99 min post-dosing, a single dose of intranasal oxytocin does not alter levels of neurochemical metabolites in the thalamus, ACC, or hippocampus in those at CHR-P, aside from potential effects on choline in the ACC.
Collapse
Affiliation(s)
- Cathy Davies
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Grazia Rutigliano
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Andrea De Micheli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK; National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - James M Stone
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Valentina Ramella-Cravaro
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Umberto Provenzani
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Marco Cappucciati
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Eleanor Scutt
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dominic Oliver
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Silvia Murguia
- Tower Hamlets Early Detection Service (THEDS), East London NHS Foundation Trust, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychology, University of Roehampton, London, UK
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Morrison
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David Taylor
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip McGuire
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Outreach and Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK; National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Outreach and Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
109
|
Fukuda Y, Katthagen T, Deserno L, Shayegan L, Kaminski J, Heinz A, Schlagenhauf F. Reduced parietofrontal effective connectivity during a working-memory task in people with high delusional ideation. J Psychiatry Neurosci 2019; 44:195-204. [PMID: 30657658 PMCID: PMC6488486 DOI: 10.1503/jpn.180043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Working-memory impairment is a core cognitive dysfunction in people with schizophrenia and people at mental high risk. Recent imaging studies on working memory have suggested that abnormalities in prefrontal activation and in connectivity between the frontal and parietal regions could be neural underpinnings of the different stages of psychosis. However, it remains to be explored whether comparable alterations are present in people with subclinical levels of psychosis, as experienced by a small proportion of the general population who neither seek help nor show constraints in daily functioning. METHODS We compared 24 people with subclinical high delusional ideation and 24 people with low delusional ideation. Both groups performed an n-back working-memory task during functional magnetic resonance imaging. We characterized frontoparietal effective connectivity using dynamic causal modelling. RESULTS Compared to people who had low delusional ideation, people with high delusional ideation showed a significant increase in dorsolateral prefrontal activation during the working-memory task, as well as reduced working-memory-dependent parietofrontal effective connectivity in the left hemisphere. Group differences were not evident at the behavioural level. LIMITATIONS The current experimental design did not distinguish among the working-memory subprocesses; it remains unexplored whether differences in connectivity exist at that level. CONCLUSION These findings suggest that alterations in the working-memory network are also present in a nonclinical population with psychotic experiences who do not display cognitive deficits. They also suggest that alterations in working-memory-dependent connectivity show a putative continuity along the spectrum of psychotic symptoms.
Collapse
Affiliation(s)
- Yu Fukuda
- From the Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany (Fukuda, Katthagen, Kaminski, Heinz, Schlagenhauf); the Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Leipzig, Leipzig, Germany (Deserno); Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Deserno, Kaminski, Schlagenhauf); the Columbia University College of Physicians and Surgeons, New York, NY (Shayegan); and the Berlin Institute of Health, Berlin, Germany (Kaminski)
| | - Teresa Katthagen
- From the Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany (Fukuda, Katthagen, Kaminski, Heinz, Schlagenhauf); the Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Leipzig, Leipzig, Germany (Deserno); Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Deserno, Kaminski, Schlagenhauf); the Columbia University College of Physicians and Surgeons, New York, NY (Shayegan); and the Berlin Institute of Health, Berlin, Germany (Kaminski)
| | - Lorenz Deserno
- From the Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany (Fukuda, Katthagen, Kaminski, Heinz, Schlagenhauf); the Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Leipzig, Leipzig, Germany (Deserno); Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Deserno, Kaminski, Schlagenhauf); the Columbia University College of Physicians and Surgeons, New York, NY (Shayegan); and the Berlin Institute of Health, Berlin, Germany (Kaminski)
| | - Leila Shayegan
- From the Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany (Fukuda, Katthagen, Kaminski, Heinz, Schlagenhauf); the Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Leipzig, Leipzig, Germany (Deserno); Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Deserno, Kaminski, Schlagenhauf); the Columbia University College of Physicians and Surgeons, New York, NY (Shayegan); and the Berlin Institute of Health, Berlin, Germany (Kaminski)
| | - Jakob Kaminski
- From the Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany (Fukuda, Katthagen, Kaminski, Heinz, Schlagenhauf); the Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Leipzig, Leipzig, Germany (Deserno); Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Deserno, Kaminski, Schlagenhauf); the Columbia University College of Physicians and Surgeons, New York, NY (Shayegan); and the Berlin Institute of Health, Berlin, Germany (Kaminski)
| | - Andreas Heinz
- From the Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany (Fukuda, Katthagen, Kaminski, Heinz, Schlagenhauf); the Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Leipzig, Leipzig, Germany (Deserno); Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Deserno, Kaminski, Schlagenhauf); the Columbia University College of Physicians and Surgeons, New York, NY (Shayegan); and the Berlin Institute of Health, Berlin, Germany (Kaminski)
| | - Florian Schlagenhauf
- From the Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy CCM, Berlin, Germany (Fukuda, Katthagen, Kaminski, Heinz, Schlagenhauf); the Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Leipzig, Leipzig, Germany (Deserno); Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Deserno, Kaminski, Schlagenhauf); the Columbia University College of Physicians and Surgeons, New York, NY (Shayegan); and the Berlin Institute of Health, Berlin, Germany (Kaminski)
| |
Collapse
|
110
|
Duman RS, Sanacora G, Krystal JH. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 2019; 102:75-90. [PMID: 30946828 PMCID: PMC6450409 DOI: 10.1016/j.neuron.2019.03.013] [Citation(s) in RCA: 538] [Impact Index Per Article: 107.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
The mechanisms underlying the pathophysiology and treatment of depression and stress-related disorders remain unclear, but studies in depressed patients and rodent models are beginning to yield promising insights. These studies demonstrate that depression and chronic stress exposure cause atrophy of neurons in cortical and limbic brain regions implicated in depression, and brain imaging studies demonstrate altered connectivity and network function in the brains of depressed patients. Studies of the neurobiological basis of the these alterations have focused on both the principle, excitatory glutamate neurons, as well as inhibitory GABA interneurons. They demonstrate structural, functional, and neurochemical deficits in both major neuronal types that could lead to degradation of signal integrity in cortical and hippocampal regions. The molecular mechanisms underlying these changes have not been identified but are thought to be related to stress induced excitotoxic effects in combination with elevated adrenal glucocorticoids and inflammatory cytokines as well as other environmental factors. Transcriptomic studies are beginning to demonstrate important sex differences and, together with genomic studies, are starting to reveal mechanistic domains of overlap and uniqueness with regards to risk and pathophysiological mechanisms with schizophrenia and bipolar disorder. These studies also implicate GABA and glutamate dysfunction as well as immunologic mechanisms. While current antidepressants have significant time lag and efficacy limitations, new rapid-acting agents that target the glutamate and GABA systems address these issues and offer superior therapeutic interventions for this widespread and debilitating disorder.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA.
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA
| |
Collapse
|
111
|
Sheth C, Prescot AP, Legarreta M, Renshaw PF, McGlade E, Yurgelun-Todd D. Reduced gamma-amino butyric acid (GABA) and glutamine in the anterior cingulate cortex (ACC) of veterans exposed to trauma. J Affect Disord 2019; 248:166-174. [PMID: 30735853 DOI: 10.1016/j.jad.2019.01.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/01/2019] [Accepted: 01/22/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Trauma-related diagnoses such as posttraumatic stress disorder (PTSD) are prevalent in veterans. The identification of mechanisms related to stress vulnerability and development of PTSD specifically in a veteran population may aid in the prevention of PTSD and identification of novel treatment targets. METHODS Veterans with PTSD (n = 27), trauma-exposed veterans with no PTSD (TEC, n = 18) and non-trauma-exposed controls (NTEC, n = 28) underwent single-voxel proton (1H) magnetic resonance spectroscopy (MRS) at 3 Tesla in the dorsal anterior cingulate cortex (dACC) using a two-dimensional (2D) J-resolved point spectroscopy sequence in addition to completing a clinical battery. RESULTS The PTSD and TEC groups demonstrated lower gamma-amino butyric acid (GABA)/H2O (p = 0.02) and glutamine (Gln)/H2O (p = 0.02) in the dACC as compared to the NTEC group. The PTSD group showed a trend towards higher Glu/GABA (p = 0.053) than the NTEC group. Further, GABA/H2O in the dACC correlated negatively with sleep symptoms in the PTSD group (p = 0.03) but not in the TEC and NTEC groups. LIMITATIONS Cross-sectional study design, concomitant medications, single voxel measurement as opposed to global changes, absence of measure of childhood or severity of trauma and objective sleep measures, female participants not matched for menstrual cycle phase. CONCLUSIONS Exposure to trauma in veterans may be associated with lower GABA/H2O and Gln/H2O in the dACC, suggesting disruption in the GABA-Gln-glutamate cycle. Further, altered Glu/GABA in the dACC in the PTSD group may indicate an excitatory-inhibitory imbalance. Further, lower GABA/H2O in the ACC was associated with poor sleep in the PTSD group. Treatments that restore GABAergic balance may be particularly effective in reducing sleep symptoms in PTSD.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA.
| | - Andrew P Prescot
- Department of Radiology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Margaret Legarreta
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Erin McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| |
Collapse
|
112
|
Hauser TU, Will GJ, Dubois M, Dolan RJ. Annual Research Review: Developmental computational psychiatry. J Child Psychol Psychiatry 2019; 60:412-426. [PMID: 30252127 DOI: 10.1111/jcpp.12964] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2018] [Indexed: 11/29/2022]
Abstract
Most psychiatric disorders emerge during childhood and adolescence. This is also a period that coincides with the brain undergoing substantial growth and reorganisation. However, it remains unclear how a heightened vulnerability to psychiatric disorder relates to this brain maturation. Here, we propose 'developmental computational psychiatry' as a framework for linking brain maturation to cognitive development. We argue that through modelling some of the brain's fundamental cognitive computations, and relating them to brain development, we can bridge the gap between brain and cognitive development. This in turn can lead to a richer understanding of the ontogeny of psychiatric disorders. We illustrate this perspective with examples from reinforcement learning and dopamine function. Specifically, we show how computational modelling deepens an understanding of how cognitive processes, such as reward learning, effort learning, and social learning might go awry in psychiatric disorders. Finally, we sketch the promises and limitations of a developmental computational psychiatry.
Collapse
Affiliation(s)
- Tobias U Hauser
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Geert-Jan Will
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK.,Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Magda Dubois
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
113
|
Fleming LM, Javitt DC, Carter CS, Kantrowitz JT, Girgis RR, Kegeles LS, Ragland JD, Maddock RJ, Lesh TA, Tanase C, Robinson J, Potter WZ, Carlson M, Wall MM, Choo TH, Grinband J, Lieberman J, Krystal JH, Corlett PR. A multicenter study of ketamine effects on functional connectivity: Large scale network relationships, hubs and symptom mechanisms. NEUROIMAGE-CLINICAL 2019; 22:101739. [PMID: 30852397 PMCID: PMC6411494 DOI: 10.1016/j.nicl.2019.101739] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Ketamine is an uncompetitive N-methyl-d-aspartate (NMDA) glutamate receptor antagonist. It induces effects in healthy individuals that mimic symptoms associated with schizophrenia. We sought to root these experiences in altered brain function, specifically aberrant resting state functional connectivity (rsfMRI). In the present study, we acquired rsfMRI data under ketamine and placebo in a between-subjects design and analyzed seed-based measures of rsfMRI using large-scale networks, dorsolateral prefrontal cortex (DLPFC) and sub-nuclei of the thalamus. We found ketamine-induced alterations in rsfMRI connectivity similar to those seen in patients with schizophrenia, some changes that may be more comparable to early stages of schizophrenia, and other connectivity signatures seen in patients that ketamine did not recreate. We do not find any circuits from our regions of interest that correlates with positive symptoms of schizophrenia in our sample, although we find that DLPFC connectivity with ACC does correlate with a mood measure. These results provide support for ketamine's use as a model of certain biomarkers of schizophrenia, particularly for early or at-risk patients. Ketamine altered connectivity in default mode network, thalamus and DLPFC at rest. Similar patterns of altered connectivity are seen with ketamine as in psychotic patients. Mood symptoms correlated with DLPFC connectivity with ACC and frontal orbital cortex.
Collapse
Affiliation(s)
- Leah M Fleming
- Department of Psychiatry, Yale University, New Haven, CT, United States of America; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States of America
| | - Daniel C Javitt
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America; Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States of America
| | - Cameron S Carter
- Department of Psychiatry, University of California, Davis, United States of America
| | - Joshua T Kantrowitz
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America; Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States of America
| | - Ragy R Girgis
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Lawrence S Kegeles
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - John D Ragland
- Department of Psychiatry, University of California, Davis, United States of America
| | - Richard J Maddock
- Department of Psychiatry, University of California, Davis, United States of America
| | - Tyler A Lesh
- Department of Psychiatry, University of California, Davis, United States of America
| | - Costin Tanase
- Department of Psychiatry, University of California, Davis, United States of America
| | - James Robinson
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States of America
| | - William Z Potter
- National Institute of Mental Health, Rockville, MD, United States of America
| | - Marlene Carlson
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Melanie M Wall
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America; National Institute of Mental Health, Rockville, MD, United States of America
| | - Tse-Hwei Choo
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Jack Grinband
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - Jeffrey Lieberman
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States of America
| | - John H Krystal
- Department of Psychiatry, Yale University, New Haven, CT, United States of America
| | - Philip R Corlett
- Department of Psychiatry, Yale University, New Haven, CT, United States of America.
| |
Collapse
|
114
|
Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 2019; 44:111-128. [PMID: 30061743 PMCID: PMC6235863 DOI: 10.1038/s41386-018-0148-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Observations of the disproportionate incidence of depression in women compared with men have long preceded the recent explosion of interest in sex differences. Nonetheless, the source and implications of this epidemiologic sex difference remain unclear, as does the practical significance of the multitude of sex differences that have been reported in brain structure and function. In this article, we attempt to provide a framework for thinking about how sex and reproductive hormones (particularly estradiol as an example) might contribute to affective illness. After briefly reviewing some observed sex differences in depression, we discuss how sex might alter brain function through hormonal effects (both organizational (programmed) and activational (acute)), sex chromosome effects, and the interaction of sex with the environment. We next review sex differences in the brain at the structural, cellular, and network levels. We then focus on how sex and reproductive hormones regulate systems implicated in the pathophysiology of depression, including neuroplasticity, genetic and neural networks, the stress axis, and immune function. Finally, we suggest several models that might explain a sex-dependent differential regulation of affect and susceptibility to affective illness. As a disclaimer, the studies cited in this review are not intended to be comprehensive but rather serve as examples of the multitude of levels at which sex and reproductive hormones regulate brain structure and function. As such and despite our current ignorance regarding both the ontogeny of affective illness and the impact of sex on that ontogeny, sex differences may provide a lens through which we may better view the mechanisms underlying affective regulation and dysfunction.
Collapse
|
115
|
Ichinose M, Park S. Mechanisms Underlying Visuospatial Working Memory Impairments in Schizophrenia. Curr Top Behav Neurosci 2019; 41:345-367. [PMID: 31407240 DOI: 10.1007/7854_2019_99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Working memory deficits are observed in the vast majority of individuals diagnosed with schizophrenia and those at risk for the disorder. Working memory impairments are present during the prodromal stage and persist throughout the course of schizophrenia. Given the importance of cognition in functional outcome, working memory deficits are an important therapeutic target for schizophrenia. This chapter examines mechanisms underlying working memory deficits in schizophrenia, focusing on the roles of perception and attention in the encoding process. Lastly, we present a comprehensive discussion of neural oscillation and internal noise in the context of the etiology of working memory deficits in schizophrenia and introduce noninvasive treatment strategies that could improve encoding processes.
Collapse
Affiliation(s)
- Megan Ichinose
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Sohee Park
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
116
|
Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry 2019; 24:549-561. [PMID: 29511299 PMCID: PMC6004314 DOI: 10.1038/s41380-018-0041-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
Although synaptic loss is thought to be core to the pathophysiology of schizophrenia, the nature, consistency and magnitude of synaptic protein and mRNA changes has not been systematically appraised. Our objective was thus to systematically review and meta-analyse findings. The entire PubMed database was searched for studies from inception date to the 1st of July 2017. We selected case-control postmortem studies in schizophrenia quantifying synaptic protein or mRNA levels in brain tissue. The difference in protein and mRNA levels between cases and controls was extracted and meta-analysis conducted. Among the results, we found a significant reduction in synaptophysin in schizophrenia in the hippocampus (effect size: -0.65, p < 0.01), frontal (effect size: -0.36, p = 0.04), and cingulate cortices (effect size: -0.54, p = 0.02), but no significant changes for synaptophysin in occipital and temporal cortices, and no changes for SNAP-25, PSD-95, VAMP, and syntaxin in frontal cortex. There were insufficient studies for meta-analysis of complexins, synapsins, rab3A and synaptotagmin and mRNA measures. Findings are summarised for these, which generally show reductions in SNAP-25, PSD-95, synapsin and rab3A protein levels in the hippocampus but inconsistency in other regions. Our findings of moderate-large reductions in synaptophysin in hippocampus and frontal cortical regions, and a tendency for reductions in other pre- and postsynaptic proteins in the hippocampus are consistent with models that implicate synaptic loss in schizophrenia. However, they also identify potential differences between regions and proteins, suggesting synaptic loss is not uniform in nature or extent.
Collapse
|
117
|
Lee J, Reavis EA, Engel SA, Altshuler LL, Cohen MS, Glahn DC, Nuechterlein KH, Wynn JK, Green MF. fMRI evidence of aberrant neural adaptation for objects in schizophrenia and bipolar disorder. Hum Brain Mapp 2018; 40:1608-1617. [PMID: 30575206 DOI: 10.1002/hbm.24472] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 01/15/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) adaptation (also known as fMRI repetition suppression) has been widely used to characterize stimulus selectivity in vivo, a fundamental feature of neuronal processing in the brain. We investigated whether SZ patients and BD patients show aberrant fMRI adaptation for object perception. About 52 SZ patients, 55 BD patients, and 53 community controls completed an object discrimination task with three conditions: the same object presented twice, two exemplars from the same category, and two exemplars from different categories. We also administered two functional localizer tasks. A region of interest analysis was employed to evaluate a priori hypotheses about the lateral occipital complex (LOC) and early visual cortex (EVC). An exploratory whole brain analysis was also conducted. In the LOC and EVC, controls showed the expected reduced fMRI responses to repeated presentation of the same objects compared with different objects (i.e., fMRI adaptation for objects, p < .001). SZ patients showed an adaptation effect that was significantly smaller compared with controls. BD patients showed a lack of fMRI adaptation. The whole brain analyses showed enhanced fMRI responses to repeated presentation of the same objects only in BD patients in several brain regions including anterior cingulate cortex. This study was the first to employ fMRI adaptation for objects in SZ and BD. The current findings provide empirical evidence of aberrant fMRI adaptation in the visual cortex in SZ and BD, but in distinctly different ways.
Collapse
Affiliation(s)
- Junghee Lee
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California.,Desert Pacific Mental Illness Research, Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Eric A Reavis
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California.,Desert Pacific Mental Illness Research, Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Stephen A Engel
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Lori L Altshuler
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Mark S Cohen
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - David C Glahn
- Department of Psychiatry, Yale University, New Haven, Connecticut.,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital Whitehall Research Building, Hartford, Connecticut
| | - Keith H Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California.,Department of Psychology, University of California Los Angeles, Los Angeles, California
| | - Jonathan K Wynn
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California.,Desert Pacific Mental Illness Research, Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California.,Desert Pacific Mental Illness Research, Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| |
Collapse
|
118
|
John YJ, Zikopoulos B, Bullock D, Barbas H. Visual Attention Deficits in Schizophrenia Can Arise From Inhibitory Dysfunction in Thalamus or Cortex. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2018; 2:223-257. [PMID: 30627672 PMCID: PMC6317791 DOI: 10.1162/cpsy_a_00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/17/2018] [Indexed: 01/13/2023]
Abstract
Schizophrenia is associated with diverse cognitive deficits, including disorders of attention-related oculomotor behavior. At the structural level, schizophrenia is associated with abnormal inhibitory control in the circuit linking cortex and thalamus. We developed a spiking neural network model that demonstrates how dysfunctional inhibition can degrade attentive gaze control. Our model revealed that perturbations of two functionally distinct classes of cortical inhibitory neurons, or of the inhibitory thalamic reticular nucleus, disrupted processing vital for sustained attention to a stimulus, leading to distractibility. Because perturbation at each circuit node led to comparable but qualitatively distinct disruptions in attentive tracking or fixation, our findings support the search for new eye movement metrics that may index distinct underlying neural defects. Moreover, because the cortico-thalamic circuit is a common motif across sensory, association, and motor systems, the model and extensions can be broadly applied to study normal function and the neural bases of other cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
| | - Daniel Bullock
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
119
|
Toker L, Mancarci BO, Tripathy S, Pavlidis P. Transcriptomic Evidence for Alterations in Astrocytes and Parvalbumin Interneurons in Subjects With Bipolar Disorder and Schizophrenia. Biol Psychiatry 2018; 84:787-796. [PMID: 30177255 PMCID: PMC6226343 DOI: 10.1016/j.biopsych.2018.07.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND High-throughput expression analyses of postmortem brain tissue have been widely used to study bipolar disorder and schizophrenia. However, despite the extensive efforts, no consensus has emerged as to the functional interpretation of the findings. We hypothesized that incorporating information on cell type-specific expression would provide new insights. METHODS We reanalyzed 15 publicly available bulk tissue expression datasets on schizophrenia and bipolar disorder, representing various brain regions from eight different cohorts of subjects (unique subjects: 332 control, 129 bipolar disorder, 341 schizophrenia). We studied changes in the expression profiles of cell type marker genes and evaluated whether these expression profiles could serve as surrogates for relative abundance of their corresponding cells. RESULTS In both bipolar disorder and schizophrenia, we consistently observed an increase in the expression profiles of cortical astrocytes and a decrease in the expression profiles of fast-spiking parvalbumin interneurons. No changes in astrocyte expression profiles were observed in subcortical regions. Furthermore, we found that many of the genes previously identified as differentially expressed in schizophrenia are highly correlated with the expression profiles of astrocytes or fast-spiking parvalbumin interneurons. CONCLUSIONS Our results indicate convergence of transcriptome studies of schizophrenia and bipolar disorder on changes in cortical astrocytes and fast-spiking parvalbumin interneurons, providing a unified interpretation of numerous studies. We suggest that these changes can be attributed to alterations in the relative abundance of the cells and are important for understanding the pathophysiology of the disorders.
Collapse
Affiliation(s)
- Lilah Toker
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Burak Ogan Mancarci
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shreejoy Tripathy
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Pavlidis
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
120
|
Gu H, Hu Y, Chen X, He Y, Yang Y. Regional excitation-inhibition balance predicts default-mode network deactivation via functional connectivity. Neuroimage 2018; 185:388-397. [PMID: 30359729 DOI: 10.1016/j.neuroimage.2018.10.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/05/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
Abstract
Deactivation of the default mode network (DMN) is one of the most reliable observations from neuroimaging and has significant implications in development, aging, and various neuropsychiatric disorders. However, the neural mechanism underlying DMN deactivation remains elusive. As the coordination of regional neurochemical substrates and interregional neural interactions are both essential in support of brain functions, a quantitative description of how they impact DMN deactivation may provide new insights into the mechanism. Using an n-back working memory task fMRI and magnetic resonance spectroscopy, we probed the pairwise relationship between task-induced deactivation, interregional functional connectivity and regional excitation-inhibition balance (evaluated by glutamate/GABA ratio) in the posterior cingulate cortex/precuneus (PCC/PCu). Task-induced PCC/PCu deactivation correlated with its excitation-inhibition balance and interregional functional connectivity, where participants with lower glutamate/GABA ratio, stronger intra-DMN connections and stronger antagonistic DMN-SN (salience network)/ECN (executive control network) inter-network connections had greater PCC/PCu deactivation. Mediation analyses revealed that the DMN-SN functional interactions partially mediated the relationship between task-induced deactivation and the excitation-inhibition balance at the PCC/PCu. The triple-relationship discovered in the present study has the potential to bridge DMN-deactivation related findings from various neuroimaging modalities and may provide new insights into the neural mechanism of DMN deactivation. Moreover, this finding may have significant implications for neuropsychiatric disorders related to the DMN dysfunction and suggests an integrated application of pharmacological and neuromodulation-based strategies for rescuing DMN deactivation deficits.
Collapse
Affiliation(s)
- Hong Gu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yuzheng Hu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Xi Chen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, 21224, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
121
|
Cortico-thalamic hypo- and hyperconnectivity extend consistently to basal ganglia in schizophrenia. Neuropsychopharmacology 2018; 43:2239-2248. [PMID: 29899404 PMCID: PMC6135808 DOI: 10.1038/s41386-018-0059-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/14/2022]
Abstract
Schizophrenia is characterized by hypoconnectivity or decreased intrinsic functional connectivity (iFC) between prefrontal-limbic cortices and thalamic nuclei, as well as hyperconnectivity or increased iFC between primary-sensorimotor cortices and thalamic nuclei. However, cortico-thalamic iFC overlaps with larger, structurally defined cortico-striato-pallido-thalamo-cortical (CSPTC) circuits. If such an overlap is relevant for intrinsic hypo-/hyperconnectivity, it suggests (i) that patterns of cortico-subcortical hypo-/hyperconnectivity extend consistently from thalamus to basal ganglia nuclei; and (ii) such consistent hypo-/hyperconnectivity might link distinctively but consonant with different symptom dimensions, namely cognitive and psychotic impairments. To test this hypothesis, 57 patients with schizophrenia and 61 healthy controls were assessed by resting-state functional magnetic resonance imaging (fMRI) and clinical-behavioral testing. IFC from intrinsic cortical networks into thalamus, striatum, and pallidum was estimated by partial correlations between fMRI time courses. In patients, the salience network covering prefrontal-limbic cortices was hypoconnected with the mediodorsal thalamus and ventral parts of striatum and pallidum; these iFC-hypoconnectivity patterns were correlated both among each other and specifically with patients' impaired cognition. In contrast, the auditory-sensorimotor network covering primary-sensorimotor cortices was hyperconnected with the anterior ventral nucleus of the thalamus and dorsal parts of striatum and pallidum; these iFC-hyperconnectivity patterns were likewise correlated among each other and specifically with patients' psychotic symptoms. The results demonstrate that prefrontal-limbic hypoconnectivity and primary-sensorimotor hyperconnectivity extend consistently across subcortical nuclei and specifically across distinct symptom dimensions. Data support the model of consistent cortico-subcortical hypo-/hyperconnectivity within CSPTC circuits in schizophrenia.
Collapse
|
122
|
Pafundo DE, Miyamae T, Lewis DA, Gonzalez-Burgos G. Presynaptic Effects of N-Methyl-D-Aspartate Receptors Enhance Parvalbumin Cell-Mediated Inhibition of Pyramidal Cells in Mouse Prefrontal Cortex. Biol Psychiatry 2018; 84:460-470. [PMID: 29523414 PMCID: PMC6068001 DOI: 10.1016/j.biopsych.2018.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Testing hypotheses regarding the role of N-methyl-D-aspartate receptor (NMDAR) hypofunction in schizophrenia requires understanding the mechanisms of NMDAR regulation of prefrontal cortex (PFC) circuit function. NMDAR antagonists are thought to produce pyramidal cell (PC) disinhibition. However, inhibitory parvalbumin-positive basket cells (PVBCs) have modest NMDAR-mediated excitatory drive and thus are unlikely to participate in NMDAR antagonist-mediated disinhibition. Interestingly, recent studies demonstrated that presynaptic NMDARs enhance transmitter release at central synapses. Thus, if presynaptic NMDARs enhance gamma-aminobutyric acid release at PVBC-to-PC synapses, they could participate in NMDAR-dependent PC disinhibition. Here, we examined whether presynaptic NMDAR effects could modulate gamma-aminobutyric acid release at PVBC-to-PC synapses in mouse PFC. METHODS Using whole-cell recordings from synaptically connected pairs in mouse PFC, we determined whether NMDA or NMDAR antagonist application affects PVBC-to-PC inhibition in a manner consistent with a presynaptic mechanism. RESULTS NMDAR activation enhanced by ∼40% the synaptic current at PVBC-to-PC pairs. This effect was consistent with a presynaptic mechanism given that it was 1) observed with postsynaptic NMDARs blocked by intracellular MK801, 2) associated with a lower rate of transmission failures and a higher transmitter release probability, and 3) blocked by intracellular MK801 in the PVBC. NMDAR antagonist application did not affect the synaptic currents in PVBC-to-PC pairs, but it reduced the inhibitory currents elicited in PCs with simultaneous glutamate release by extracellular stimulation. CONCLUSIONS We demonstrate that NMDAR activation enhances PVBC-to-PC inhibition in a manner consistent with presynaptic mechanisms, and we suggest that the functional impact of this presynaptic effect depends on the activity state of the PFC network.
Collapse
Affiliation(s)
- Diego E Pafundo
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Takeaki Miyamae
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
123
|
Murray JD, Demirtaş M, Anticevic A. Biophysical Modeling of Large-Scale Brain Dynamics and Applications for Computational Psychiatry. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:777-787. [PMID: 30093344 PMCID: PMC6537601 DOI: 10.1016/j.bpsc.2018.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 01/09/2023]
Abstract
Noninvasive neuroimaging has revolutionized the study of the organization of the human brain and how its structure and function are altered in psychiatric disorders. A critical explanatory gap lies in our mechanistic understanding of how systems-level neuroimaging biomarkers emerge from underlying synaptic-level perturbations associated with a disease state. We describe an emerging computational psychiatry approach leveraging biophysically based computational models of large-scale brain dynamics and their potential integration with clinical and pharmacological neuroimaging. In particular, we focus on neural circuit models, which describe how patterns of functional connectivity observed in resting-state functional magnetic resonance imaging emerge from neural dynamics shaped by inter-areal interactions through underlying structural connectivity defining long-range projections. We highlight the importance of local circuit physiological dynamics, in combination with structural connectivity, in shaping the emergent functional connectivity. Furthermore, heterogeneity of local circuit properties across brain areas, which impacts large-scale dynamics, may be critical for modeling whole-brain phenomena and alterations in psychiatric disorders and pharmacological manipulation. Finally, we discuss important directions for future model development and biophysical extensions, which will expand their utility to link clinical neuroimaging to neurobiological mechanisms.
Collapse
Affiliation(s)
- John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Murat Demirtaş
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
124
|
Fang Q, Li Z, Huang GD, Zhang HH, Chen YY, Zhang LB, Ding ZB, Shi J, Lu L, Yang JL. Traumatic Stress Produces Distinct Activations of GABAergic and Glutamatergic Neurons in Amygdala. Front Neurosci 2018; 12:387. [PMID: 30186100 PMCID: PMC6110940 DOI: 10.3389/fnins.2018.00387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is an anxiety disorder characterized by intrusive recollections of a severe traumatic event and hyperarousal following exposure to the event. Human and animal studies have shown that the change of amygdala activity after traumatic stress may contribute to occurrences of some symptoms or behaviors of the patients or animals with PTSD. However, it is still unknown how the neuronal activation of different sub-regions in amygdala changes during the development of PTSD. In the present study, we used single prolonged stress (SPS) procedure to obtain the animal model of PTSD, and found that 1 day after SPS, there were normal anxiety behavior and extinction of fear memory in rats which were accompanied by a reduced proportion of activated glutamatergic neurons and increased proportion of activated GABAergic neurons in basolateral amygdala (BLA). About 10 days after SPS, we observed enhanced anxiety and impaired extinction of fear memory with increased activated both glutamatergic and GABAergic neurons in BLA and increased activated GABAergic neurons in central amygdala (CeA). These results indicate that during early and late phase after traumatic stress, distinct patterns of activation of glutamatergic neurons and GABAergic neurons are displayed in amygdala, which may be implicated in the development of PTSD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Psychiatric Department, Tianjin Anding Hospital, Tianjin, China
| | - Zhe Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Cangzhou Medical College, Cangzhou, China
| | - Geng-Di Huang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Huan-Huan Zhang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Ya-Yun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Li-Bo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zeng-Bo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Peking University Sixth Hospital/Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Jian-Li Yang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China.,Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
125
|
Insel N, Guerguiev J, Richards BA. Irrelevance by inhibition: Learning, computation, and implications for schizophrenia. PLoS Comput Biol 2018; 14:e1006315. [PMID: 30067746 PMCID: PMC6089457 DOI: 10.1371/journal.pcbi.1006315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/13/2018] [Accepted: 06/15/2018] [Indexed: 11/18/2022] Open
Abstract
Symptoms of schizophrenia may arise from a failure of cortical circuits to filter-out irrelevant inputs. Schizophrenia has also been linked to disruptions in cortical inhibitory interneurons, consistent with the possibility that in the normally functioning brain, these cells are in some part responsible for determining which sensory inputs are relevant versus irrelevant. Here, we develop a neural network model that demonstrates how the cortex may learn to ignore irrelevant inputs through plasticity processes affecting inhibition. The model is based on the proposal that the amount of excitatory output from a cortical circuit encodes the expected magnitude of reward or punishment ("relevance"), which can be trained using a temporal difference learning mechanism acting on feedforward inputs to inhibitory interneurons. In the model, irrelevant and blocked stimuli drive lower levels of excitatory activity compared with novel and relevant stimuli, and this difference in activity levels is lost following disruptions to inhibitory units. When excitatory units are connected to a competitive-learning output layer with a threshold, the relevance code can be shown to "gate" both learning and behavioral responses to irrelevant stimuli. Accordingly, the combined network is capable of recapitulating published experimental data linking inhibition in frontal cortex with fear learning and expression. Finally, the model demonstrates how relevance learning can take place in parallel with other types of learning, through plasticity rules involving inhibitory and excitatory components, respectively. Altogether, this work offers a theory of how the cortex learns to selectively inhibit inputs, providing insight into how relevance-assignment problems may emerge in schizophrenia.
Collapse
Affiliation(s)
- Nathan Insel
- Department of Psychology, University of Montana, Missoula, Montana, United States of America
- * E-mail: (NI); (BAR)
| | - Jordan Guerguiev
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Blake A. Richards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (NI); (BAR)
| |
Collapse
|
126
|
Cattane N, Richetto J, Cattaneo A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev 2018; 117:253-278. [PMID: 29981347 DOI: 10.1016/j.neubiorev.2018.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, 125 Coldharbour Lane, SE5 9NU, London, UK.
| |
Collapse
|
127
|
Alterations in interhemispheric gamma-band connectivity are related to the emergence of auditory verbal hallucinations in healthy subjects during NMDA-receptor blockade. Neuropsychopharmacology 2018; 43:1608-1615. [PMID: 29453445 PMCID: PMC5983549 DOI: 10.1038/s41386-018-0014-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Auditory verbal hallucinations (AVH) are a common positive symptom of schizophrenia. Excitatory-to-inhibitory (E/I) imbalance related to disturbed N-methyl-D-aspartate receptor (NMDAR) functioning has been suggested as a possible mechanism underlying altered connectivity and AVH in schizophrenia. The current study examined the effects of ketamine, a NMDAR antagonist, on glutamate-related mechanisms underlying interhemispheric gamma-band connectivity, conscious auditory perception during dichotic listening (DL), and the emergence of auditory verbal distortions and hallucinations (AVD/AVH) in healthy volunteers. In a single-blind, pseudo-randomized, placebo-controlled crossover design, nineteen male, right-handed volunteers were measured using 64 channel electroencephalography (EEG). Psychopathology was assessed with the PANSS interview and the 5D-ASC questionnaire, including a subscale to detect auditory alterations with regard to AVD/AVH (AUA-AVD/AVH). Interhemispheric connectivity analysis was performed using eLORETA source estimation and lagged phase synchronization (LPS) in the gamma-band range (30-100 Hz). Ketamine induced positive symptoms such as hallucinations in a subgroup of healthy subjects. In addition, interhemispheric gamma-band connectivity was found to be altered under ketamine compared to placebo, and subjects with AUA-AVD/AVH under ketamine showed significantly higher interhemispheric gamma-band connectivity than subjects without AUA-AVD/AVH. These findings demonstrate a relationship between NMDAR functioning, interhemispheric connectivity in the gamma-band frequency range between bilateral auditory cortices and the emergence of AVD/AVH in healthy subjects. The result is in accordance with the interhemispheric miscommunication hypothesis of AVH and argues for a possible role of glutamate in AVH in schizophrenia.
Collapse
|
128
|
Ferguson BR, Gao WJ. PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders. Front Neural Circuits 2018; 12:37. [PMID: 29867371 PMCID: PMC5964203 DOI: 10.3389/fncir.2018.00037] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023] Open
Abstract
Elucidating the prefrontal cortical microcircuit has been challenging, given its role in multiple complex behaviors, including working memory, cognitive flexibility, attention, social interaction and emotional regulation. Additionally, previous methodological limitations made it difficult to parse out the contribution of certain neuronal subpopulations in refining cortical representations. However, growing evidence supports a fundamental role of fast-spiking parvalbumin (PV) GABAergic interneurons in regulating pyramidal neuron activity to drive appropriate behavioral responses. Further, their function is heavily diminished in the prefrontal cortex (PFC) in numerous psychiatric diseases, including schizophrenia and autism. Previous research has demonstrated the importance of the optimal balance of excitation and inhibition (E/I) in cortical circuits in maintaining the efficiency of cortical information processing. Although we are still unraveling the mechanisms of information representation in the PFC, the E/I balance seems to be crucial, as pharmacological, chemogenetic and optogenetic approaches for disrupting E/I balance induce impairments in a range of PFC-dependent behaviors. In this review, we will explore two key hypotheses. First, PV interneurons are powerful regulators of E/I balance in the PFC, and help optimize the representation and processing of supramodal information in PFC. Second, diminishing the function of PV interneurons is sufficient to generate an elaborate symptom sequelae corresponding to those observed in a range of psychiatric diseases. Then, using this framework, we will speculate on whether this circuitry could represent a platform for the development of therapeutic interventions in disorders of PFC function.
Collapse
Affiliation(s)
- Brielle R Ferguson
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States.,Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
129
|
Lack of correlation between phonetic magnetic mismatch field and plasma d-serine levels in humans. Clin Neurophysiol 2018; 129:1444-1448. [PMID: 29735418 DOI: 10.1016/j.clinph.2018.04.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Uncovering molecular bases for auditory language processing in the human brain is a fundamental scientific challenge. The power and latency of the magnetic mismatch field (MMF) elicited by phoneme change, which are magnetoencephalographic indices of language function in its early stage of information processing, are theoretically thought to be modulated by N-methyl-d-aspartate-type glutamate receptor (NMDAR) function, but no study has yet assessed this possibility. We have thus sought to demonstrate an association between phonetic MMF power/latency and levels of plasma d-serine, an intrinsic co-agonist of glycine binding sites on NMDAR, in adults. METHODS The MMF response to phoneme changes was recorded using 204-channel magnetoencephalography in 61 healthy, right-handed, Japanese adults. Plasma levels of d- and l-serine were measured for each participant. RESULTS We did not find a significant correlation between MMF power/latency and plasma serine levels. CONCLUSIONS Despite a sufficient sample size, we failed to find an association between the physiological markers of the early stage of information processing of language in the auditory cortex and biomarkers indexing glutamatergic function. SIGNIFICANCE Our study did not indicate that a molecular index of glutamatergic function could be a surrogate marker for the early stage of information processing of language in humans.
Collapse
|
130
|
Wu M, Tian HL, Liu X, Lai JHC, Du S, Xia J. Impairment of Inhibitory Synapse Formation and Motor Behavior in Mice Lacking the NL2 Binding Partner LHFPL4/GARLH4. Cell Rep 2018; 23:1691-1705. [DOI: 10.1016/j.celrep.2018.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/26/2018] [Accepted: 04/02/2018] [Indexed: 12/25/2022] Open
|
131
|
Koh MT, Ahrens PS, Gallagher M. A greater tendency for representation mediated learning in a ketamine mouse model of schizophrenia. Behav Neurosci 2018; 132:106-113. [PMID: 29672108 DOI: 10.1037/bne0000238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Representation mediated learning is a behavioral paradigm that could be used to potentially capture psychotic symptoms including hallucinations and delusions in schizophrenia. In studies of mediated learning, representations of prior experience can enter into current associations. Using a ketamine model of schizophrenia, we investigated whether mice exposed to ketamine during late adolescence subsequently showed an increased tendency to use a representation of a prior gustatory experience to form associations in learning. Mice were given prior experience of an odor and a taste presented together. The odor was subsequently presented alone with gastrointestinal illness induced by a lithium chloride injection. A consumption test was then given to assess whether the taste, despite its absence during conditioning, entered into an association with the induced illness. Such learning would be mediated via a representation of the taste activated by the odor. Our results showed that control mice displayed no aversion to the taste following the procedures just described, but mice that had been treated developmentally with ketamine exhibited a significant taste aversion, suggesting a greater propensity for mediated learning. Complementary to that finding, ketamine-exposed mice also showed a greater susceptibility to mediated extinction. Chronic treatment with the antipsychotic drug, risperidone, in ketamine-exposed mice attenuated mediated learning, a finding that may be related to its known efficacy in reducing the positive symptoms of schizophrenia. These data provide a setting with potential relevance to preclinical research on schizophrenia, to study the neural mechanisms underlying a propensity for aberrant associations and assessment of therapeutics. (PsycINFO Database Record
Collapse
|
132
|
Popova P, Rockstroh B, Miller GA, Wienbruch C, Carolus AM, Popov T. The impact of cognitive training on spontaneous gamma oscillations in schizophrenia. Psychophysiology 2018; 55:e13083. [PMID: 29624694 DOI: 10.1111/psyp.13083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 12/27/2022]
Abstract
Schizophrenia patients exhibit less gamma-frequency EEG/MEG activity (>30 Hz), a finding interpreted as evidence of poor temporal neural organization and functional network communication. Research has shown that neuroplasticity-oriented training can improve task-related oscillatory dynamics, indicating some reorganization capacity in schizophrenia. Demonstrating a generalization of such task training effects to spontaneous oscillations at rest would not only enrich understanding of this neuroplastic potential but inform the interpretation of spontaneous gamma oscillations in the service of normal cognitive function. In the present study, neuromagnetic resting-state oscillatory brain activity and cognitive performance were assessed before and after training in 61 schizophrenia patients, who were randomly assigned to 4 weeks of neuroplasticity-oriented targeted cognitive training or treatment as usual (TAU). Gamma power of 40-90 Hz increased after training, but not after TAU, in a frontoparietal network. Across two types of training, this increase was related to improved cognitive test performance. These results indicate that abnormal oscillatory dynamics in schizophrenia patients manifested in spontaneous gamma activity can be changed with neuroplasticity-oriented training parallel to cognitive performance.
Collapse
Affiliation(s)
- Petia Popova
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | | | - Gregory A Miller
- Department of Psychology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | | | - Almut M Carolus
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Tzvetan Popov
- Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
133
|
Koh MT, Shao Y, Rosenzweig-Lipson S, Gallagher M. Treatment with levetiracetam improves cognition in a ketamine rat model of schizophrenia. Schizophr Res 2018; 193. [PMID: 28634087 PMCID: PMC5733713 DOI: 10.1016/j.schres.2017.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Imbalance in neural excitation and inhibition is associated with behavioral dysfunction in individuals with schizophrenia and at risk for this illness. We examined whether targeting increased neural activity with the antiepileptic agent, levetiracetam, would benefit memory performance in a preclinical model of schizophrenia that has been shown to exhibit hyperactivity in the hippocampus. Adult rats exposed to ketamine subchronically during late adolescence showed impaired hippocampal-dependent memory performance. Treatment with levetiracetam dose-dependently improved memory performance of the ketamine-exposed rats. In contrast, the antipsychotic medication risperidone was not effective in this assessment. Levetiracetam remained effective when administered concurrently with risperidone, supporting potential viability of adjunctive therapy with levetiracetam to treat cognitive deficits in schizophrenia patients under concurrent antipsychotic therapy. In addition to its pro-cognitive effect, levetiracetam was also effective in attenuating amphetamine-induced augmentation of locomotor activity, compatible with the need for therapeutic treatment of positive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | - Yi Shao
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | | | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA,AgeneBio, Inc, 1101 E. 33rd Street, Suite C310, Baltimore, MD 21218, USA
| |
Collapse
|
134
|
Anticevic A, Krystal JH, Murray JD. Meeting Emerging Challenges and Opportunities in Psychiatry Through Computational Neuroscience. COMPUTATIONAL PSYCHIATRY 2018. [DOI: 10.1016/b978-0-12-809825-7.02004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
135
|
Furth KE, McCoy AJ, Dodge C, Walters JR, Buonanno A, Delaville C. Neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus. PLoS One 2017; 12:e0186732. [PMID: 29095852 PMCID: PMC5667758 DOI: 10.1371/journal.pone.0186732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/08/2017] [Indexed: 01/19/2023] Open
Abstract
Alterations in the function of the medial prefrontal cortex (mPFC) and its major thalamic source of innervation, the mediodorsal (MD) thalamus, have been hypothesized to contribute to the symptoms of schizophrenia. The NMDAR antagonist ketamine, used to model schizophrenia, elicits a brain state resembling early stage schizophrenia characterized by cognitive deficits and increases in cortical low gamma (40-70 Hz) power. Here we sought to determine how ketamine differentially affects spiking and gamma local field potential (LFP) activity in the rat mPFC and MD thalamus. Additionally, we investigated the ability of drugs targeting the dopamine D4 receptor (D4R) to modify the effects of ketamine on gamma activity as a measure of potential cognitive therapeutic efficacy. Rats were trained to walk on a treadmill to reduce confounds related to hyperactivity after ketamine administration (10 mg/kg s.c.) while recordings were obtained from electrodes chronically implanted in the mPFC and MD thalamus. Ketamine increased gamma LFP power in mPFC and MD thalamus in a similar frequency range, yet did not increase thalamocortical synchronization. Ketamine also increased firing rates and spike synchronization to gamma oscillations in the mPFC but decreased both measures in MD thalamus. Conversely, walking alone increased both firing rates and spike-gamma LFP correlations in both mPFC and MD thalamus. The D4R antagonist alone (L-745,870) had no effect on gamma LFP power during treadmill walking, although it reversed increases induced by the D4R agonist (A-412997) in both mPFC and MD thalamus. Neither drug altered ketamine-induced changes in gamma power or firing rates in the mPFC. However, in MD thalamus, the D4R agonist increased ketamine-induced gamma power and prevented ketamine's inhibitory effect on firing rates. Results provide new evidence that ketamine differentially modulates spiking and gamma power in MD thalamus and mPFC, supporting a potential role for both areas in contributing to ketamine-induced schizophrenia-like symptoms.
Collapse
Affiliation(s)
- Katrina E. Furth
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alex J. McCoy
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline Dodge
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Judith R. Walters
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Claire Delaville
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
136
|
Berkovitch L, Dehaene S, Gaillard R. Disruption of Conscious Access in Schizophrenia. Trends Cogn Sci 2017; 21:878-892. [DOI: 10.1016/j.tics.2017.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
|
137
|
|
138
|
Forsyth JK, Lewis DA. Mapping the Consequences of Impaired Synaptic Plasticity in Schizophrenia through Development: An Integrative Model for Diverse Clinical Features. Trends Cogn Sci 2017; 21:760-778. [PMID: 28754595 DOI: 10.1016/j.tics.2017.06.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/13/2017] [Accepted: 06/09/2017] [Indexed: 01/19/2023]
Abstract
Schizophrenia is associated with alterations in sensory, motor, and cognitive functions that emerge before psychosis onset; identifying pathogenic processes that can account for this multi-faceted phenotype remains a challenge. Accumulating evidence suggests that synaptic plasticity is impaired in schizophrenia. Given the role of synaptic plasticity in learning, memory, and neural circuit maturation, impaired plasticity may underlie many features of the schizophrenia syndrome. Here, we summarize the neurobiology of synaptic plasticity, review evidence that plasticity is impaired in schizophrenia, and explore a framework in which impaired synaptic plasticity interacts with brain maturation to yield the emergence of sensory, motor, cognitive, and psychotic features at different times during development in schizophrenia. Key gaps in the literature and future directions for testing this framework are discussed.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA.
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
139
|
Anticevic A, Murray JD. Rebalancing Altered Computations: Considering the Role of Neural Excitation and Inhibition Balance Across the Psychiatric Spectrum. Biol Psychiatry 2017; 81:816-817. [PMID: 28434614 DOI: 10.1016/j.biopsych.2017.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut.
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Department of Physics, Yale University, New Haven, Connecticut; Department of Neuroscience, Yale University, New Haven, Connecticut
| |
Collapse
|