101
|
An G, Chen J. Frequent gain- and loss-of-function mutations of the BjMYB113 gene accounted for leaf color variation in Brassica juncea. BMC PLANT BIOLOGY 2021; 21:301. [PMID: 34187365 PMCID: PMC8240407 DOI: 10.1186/s12870-021-03084-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/04/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mustard (Brassica juncea) is an important economic vegetable, and some cultivars have purple leaves and accumulate more anthocyanins than the green. The genetic and evolution of purple trait in mustard has not been well studied. RESULT In this study, free-hand sections and metabolomics showed that the purple leaves of mustard accumulated more anthocyanins than green ones. The gene controlling purple leaves in mustard, Mustard Purple Leaves (MPL), was genetically mapped and a MYB113-like homolog was identified as the candidate gene. We identified three alleles of the MYB113-like gene, BjMYB113a from a purple cultivar, BjMYB113b and BjMYB113c from green cultivars. A total of 45 single nucleotide polymorphisms (SNPs) and 8 InDels were found between the promoter sequences of the purple allele BjMYB113a and the green allele BjMYB113b. On the other hand, the only sequence variation between the purple allele BjMYB113a and the green allele BjMYB113c is an insertion of 1,033-bp fragment in the 3'region of BjMYB113c. Transgenic assay and promoter activity studies showed that the polymorphism in the promoter region was responsible for the up-regulation of the purple allele BjMYB113a and high accumulation of anthocyanin in the purple cultivar. The up-regulation of BjMYB113a increased the expression of genes in the anthocyanin biosynthesis pathway including BjCHS, BjF3H, BjF3'H, BjDFR, BjANS and BjUGFT, and consequently led to high accumulation of anthocyanin. However, the up-regulation of BjMYB113 was compromised by the insertion of 1,033-bp in 3'region of the allele BjMYB113c. CONCLUSIONS Our results contribute to a better understanding of the genetics and evolution of the BjMYB113 gene controlling purple leaves and provide useful information for further breeding programs of mustard.
Collapse
Affiliation(s)
- Guanghui An
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.
| |
Collapse
|
102
|
Tan C, Dadmohammadi Y, Lee MC, Abbaspourrad A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr Rev Food Sci Food Saf 2021; 20:3164-3191. [PMID: 34118125 DOI: 10.1111/1541-4337.12772] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Copigmentation and encapsulation are the two most commonly used techniques for anthocyanin stabilization. However, each of these techniques by itself suffers from many challenges associated with the simultaneous achievement of color intensification and high stability of anthocyanins. Integrating copigmentation and encapsulation may overcome the limitation of usage of a single technique. This review summarizes the most recent studies and their challenges aiming at combining copigmentation and encapsulation techniques. The effective approaches for encapsulating copigmented anthocyanins are described, including spray/freeze-drying, emulsification, gelation, polyelectrolyte complexation, and their combinations. Other emerging approaches, such as layer-by-layer deposition and ultrasonication, are also reviewed. The physicochemical principles underlying the combined strategies for the fabrication of various delivery systems are discussed. Particular emphasis is directed toward the synergistic effects of copigmentation and encapsulation, for example, modulating roles of copigments in the processes of gelation and complexation. Finally, some of the major challenges and opportunities for future studies are highlighted. The trend of integrating copigmentation and encapsulation has been just started to develop. The information in this review should facilitate the exploration of the combination of multistrategy and the fabrication of robust delivery systems for copigmented anthocyanins.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Younas Dadmohammadi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| |
Collapse
|
103
|
Strugała P, Urbaniak A, Kuryś P, Włoch A, Kral T, Ugorski M, Hof M, Gabrielska J. Antitumor and antioxidant activities of purple potato ethanolic extract and its interaction with liposomes, albumin and plasmid DNA. Food Funct 2021; 12:1271-1290. [PMID: 33434253 DOI: 10.1039/d0fo01667e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of the study was to broadly determine the biological activities of purple potato ethanolic extract of the Blue Congo variety (BCE). The antioxidant activity of BCE was determined in relation to liposome membranes, and peroxidation was induced by UVB and AAPH. To clarify the antioxidant activity of BCE, we investigated its interactions with hydrophilic and hydrophobic regions of a membrane using fluorimetric and FTIR methods. Next, we investigated the cytotoxicity and pro-apoptotic activities of BCE in two human colon cancer cell lines (HT-29 and Caco-2) and in normal cells (IPEC-J2). In addition, the ability to inhibit enzymes that are involved in pro-inflammatory reactions was examined. Furthermore, BCE interactions with serum albumin and plasmid DNA were investigated using steady state fluorescence spectroscopy and a single molecule fluorescence technique (TCSPC-FCS). We proved that BCE effectively protects lipid membranes against the process of peroxidation and successfully inhibits the cyclooxygenase and lipoxygenase enzymes. Furthermore, it interacts with the hydrophilic and hydrophobic parts of lipid membranes as well as with albumin and plasmid DNA. It was observed that BCE is more cytotoxic against colon cancer cell lines than normal IPEC-J2 cells; it also induces apoptosis in cancer cell lines, but does not induce cell death in normal cells.
Collapse
Affiliation(s)
- Paulina Strugała
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland.
| | - Anna Urbaniak
- Laboratory of Glycobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland and Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375, Wrocław, Poland
| | - Patryk Kuryś
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland.
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland.
| | - Teresa Kral
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland. and Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375, Wrocław, Poland
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Janina Gabrielska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
104
|
Preparation and characterization of smart therapeutic pH-sensitive wound dressing from red cabbage extract and chitosan hydrogel. Int J Biol Macromol 2021; 182:1820-1831. [PMID: 34052272 DOI: 10.1016/j.ijbiomac.2021.05.167] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Developing a multifunctional wound dressing that protects, cures and indicates the healing progress, is a new approach of investigation. Red cabbage extract (RCE), consisting of bioactive compounds that have antioxidant, anti-inflammatory, anti-carcinogenic, bactericidal, antifungal, and antiviral activities, was utilized as a natural pH-sensitive indicator. Chitosan-based hydrogel, encapsulating RCE, was developed to obtain a smart therapeutic pH-sensitive wound dressing as antimicrobial bio-matrix provides a comfortable cushion for wound bed and indicates its status. Methacrylated-chitosan was crosslinked by different concentrations of methylenebisacrylamide (MBAA) by which hydrogel mechanical and morphological properties were tuned. The proposed mechanism for hydrogel formation was confirmed by FT-IR. The coloristic properties of the RCE and the changes in color intensity as a function of pH were confirmed by UV-Vis spectroscopy. The effect of MBAA on the mechanical, swelling, release and morphological properties of hydrogel were investigated. MBAA (2.5% wt/v) in 2% wt/v chitosan showed preferable mechanical (20 KPa), swelling (1294% at pH 8 ± 0.2), and release (prolonged up to 5 days) properties. Hydrogel matrices, loaded on cotton gauze submerged in different pH buffer solutions, showed explicit color changes from green to red as pH changed from 9 to 4.
Collapse
|
105
|
Chen J, Xu B, Sun J, Jiang X, Bai W. Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review. Crit Rev Food Sci Nutr 2021; 62:7242-7254. [PMID: 33872094 DOI: 10.1080/10408398.2021.1913092] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Anthocyanins are natural pigments proven to be beneficial in the vast majority of health problems with no side effects. In this review, the latest progress on the cancer prevention and management of anthocyanins in treating cancers ranked in the top 5 of incidence and mortality was summarized, and the interaction and corresponding mechanisms were established based on a systematic review of electronic libraries. Several studies have revealed that anthocyanins have positive impact on human health with anti-cancer capacity. This review aimed to accumulate the evidence on the anti-cancer effects of anthocyanins, corresponding mechanisms and limitation of anthocyanins on cancer prevention and management. Notably, this review updated the latest studies on cancer prevention and management of anthocyanins and also inputted the future perspectives and the demanding questions for the possible contribution of anthocyanins as anti-cancer adjuvant.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| | - Jianxia Sun
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
106
|
Gales O, Rodemann T, Jones J, Swarts N. Application of near infra-red spectroscopy as an instantaneous and simultaneous prediction tool for anthocyanins and sugar in whole fresh raspberry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2449-2454. [PMID: 33022086 DOI: 10.1002/jsfa.10869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The determination of fresh whole raspberry quality is a laborious and expensive process for commercial producers and researchers. Quantitative results for raspberry quality parameters are currently determined using a range of chemical tests within a commercial laboratory. The present work is the first calibration and validation of near infra-red spectroscopy (NIRS) for instantaneous and simultaneous of prediction of raspberry quality parameters. The importance and applicability of the findings of this research underscore its need and importance for both producers and researchers. RESULTS Near infra-red quantification models were developed to predict the level of soluble solid concentration (SSC) and anthocyanins present in whole fresh raspberries. Results highlighted a promising application for the prediction of anthocyanins (R2 cv = 0.77) and SSC (R2 cv = 0.77). The anthocyanin model had an root mean square error (RMSE) of 12.57 mg/L whilst SSC had 0.76 °Brix. CONCLUSION Both NIR models combined with new portable NIR devices provide unprecedented opportunity for the application of instantaneous and simultaneous quality parameter prediction for commercial raspberry producers and researchers. The numerous benefits NIR has brought to other horticultural industries are now closer for the raspberry industry with this proof of concept. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Oliver Gales
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Thomas Rodemann
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - Joanna Jones
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Nigel Swarts
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| |
Collapse
|
107
|
Ghiman R, Nistor M, Focșan M, Pintea A, Aștilean S, Rugina D. Fluorescent Polyelectrolyte System to Track Anthocyanins Delivery inside Melanoma Cells. NANOMATERIALS 2021; 11:nano11030782. [PMID: 33808532 PMCID: PMC8003217 DOI: 10.3390/nano11030782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
Over the past decades, there has been a growing interest in using natural molecules with therapeutic potential for biomedical applications. In this context, our aim is focused on anthocyanins (AN) as molecules with anticancer properties that could be used in melanoma local therapies. Due to their susceptibility to environmental changes, current study is based on the design and development of a fluorescent system for carrying and trafficking AN inside melanoma cells. The architectural structure of the proposed system CaCO3(PAH)@RBITC@AN reflects a spherical shape, 1080 nm diameter and a solid groundwork CaCO3(PAH), on which rhodamine B isothiocyanate (RBITC) fluorophore was firstly added; then, poly(acrylic acid) (PAA) polyelectrolytes and poly(allylamine hydrochloride) (PAH) were successfully deposited. Purified AN from chokeberries were entrapped between PAA layers (rate of 94.6%). In vitro tests confirmed that CaCO3(PAH)@RBITC@AN does not affect the proliferation of melanoma B16-F10 cells and proved that their internalization and trafficking can be followed after 24 h of treatment. Data presented here could contribute not only to the existing knowledge about the encapsulation technology of AN but also might bring relevant information for a novel formula to deliver therapeutic molecules or other bio-imaging agents directly into melanoma cells, a strategy that could positively improve tumor therapies.
Collapse
Affiliation(s)
- Raluca Ghiman
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurean, 400271 Cluj-Napoca, Romania; (R.G.); (S.A.)
| | - Madalina Nistor
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (M.N.); (A.P.)
| | - Monica Focșan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurean, 400271 Cluj-Napoca, Romania; (R.G.); (S.A.)
- Correspondence: (M.F.); (D.R.)
| | - Adela Pintea
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (M.N.); (A.P.)
| | - Simion Aștilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurean, 400271 Cluj-Napoca, Romania; (R.G.); (S.A.)
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu, 400084 Cluj-Napoca, Romania
| | - Dumitrita Rugina
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (M.N.); (A.P.)
- Correspondence: (M.F.); (D.R.)
| |
Collapse
|
108
|
Verdoliva SG, Gwyn-Jones D, Detheridge A, Robson P. Controlled comparisons between soil and hydroponic systems reveal increased water use efficiency and higher lycopene and β-carotene contents in hydroponically grown tomatoes. SCIENTIA HORTICULTURAE 2021; 279:109896. [PMID: 33731973 PMCID: PMC7885021 DOI: 10.1016/j.scienta.2021.109896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
There are many different types of systems used to grow food that are distinguished by ideology or the technology used. It is often difficult to directly compare yield and quality in different growth systems due to the complicated interactions between genotype, physiology and environment. Many published comparisons do not identify and acknowledge confounding factors. However, there is urgency to undertake controlled comparisons to identify the most efficient and effective food production systems, because the world faces considerable challenges to food supply with population rise, ongoing environmental degradation and the threat of climatic change. Here we compared soil with two hydroponic growth systems, drip irrigation and deep-water culture (DWC). It is often claimed that such systems differ in water use, yield and crop quality; however, such comparisons are often confounded by assessing plant and system parameters in different growth environments or where factors that are difficult to standardise between systems, such as nutrient status, are not controlled. We grew tomato (Solanum lycopersicum L.) in the three growth systems in two replicated experiments, in either a polytunnel or glasshouse. We controlled and monitored water use and nutrient levels across all systems as different fertilizer applications can influence the nutritional values of produce. Plants in the two hydroponic systems transpired less water and were more water-efficient with a lower product water use than plants grown in soil. Fruit yield was similar and total soluble solids and sugar levels were not significantly different between the three growing systems. However, levels of lycopene and β-carotene were either similar or significantly higher in DWC compared to growth systems using soil or drip irrigation. Our results identify hydroponic systems as more water use efficient with DWC also capable of producing higher quality produce.
Collapse
Key Words
- CEA, Controlled environment agriculture
- DI, drip irrigation
- DW, dry weight
- DWC, deep water culture
- Deep Water culture
- EC, electrical conductivity
- Fertilization
- Hydroponic
- Lycopene
- NFT, Nutrient Film Technique
- PWU, product water use
- S, soil
- TAA, total antioxidant activity
- TSS, total soluble solids
- Tomato
- WUE, water use efficiency
- Water use efficiency
Collapse
Affiliation(s)
- Salvatore Gaetano Verdoliva
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Wales, SY23 3EE, United Kingdom
| | - Dylan Gwyn-Jones
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Wales, SY23 3EE, United Kingdom
| | - Andrew Detheridge
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Wales, SY23 3EE, United Kingdom
| | - Paul Robson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Wales, SY23 3EE, United Kingdom
| |
Collapse
|
109
|
Lima ÁS, Oliveira BSD, Shabudin SV, Almeida M, Freire MG, Bica K. Purification of anthocyanins from grape pomace by centrifugal partition chromatography. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
110
|
Kim WS, Kim CH, Lee JM, Jeon JH, Kang BG, Warkad MS, Inci G, Suh HW, Lim SS, Kim SC, Kim J, Lee JY. Purple corn extract (PCE) alleviates cigarette smoke (CS)-induced DNA damage in rodent blood cells by activation of AMPK/Foxo3a/MnSOD pathway. Anim Cells Syst (Seoul) 2021; 25:65-73. [PMID: 33717418 PMCID: PMC7935119 DOI: 10.1080/19768354.2021.1883734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Purple corn extract (PCE) is a nutraceutical, an activator of AMPK, and it has antioxidants and anticancer properties. Therefore, PCE could be a candidate for alleviating cigarette smoke (CS)-induced oxidative DNA damage. This study examined whether PCE can have a protective effect on blood cells in an animal model of cigarette smoke (CS)-induced DNA damage. PCE was orally administered to CS-inhaled Spraque-Dawley (SD) rats, followed by the target cells being examined for markers of DNA damage. The study also sought to elucidate the mechanism of PCE action in the PCE treated animals. SD rat inhalation of CS was for once a day for 30 min, repeated for 7 days. PCE was administered orally before CS inhalation. Pretreatment of the animals with oral PCE kept the numbers of white blood cells (WBC) as well as neutrophils (NE), lymphocytes (LY), monocytes (Mo), eosinophils (EO), abd jasophils (BA) from increasing as those were increased in the CS-inhaling SD rats. The amount of phosphorylated γ-H2AX, a DNA damage marker, was assayed in the circulating blood cells collected from the animals and western blot analysis with anti-Foxo3a, p-Foxo3a, p-AMPK, MnSOD antibodies were performed on those cells. PCE protected the circulating blood cells from CS inhalation-induced DNA damage by 44% as assayed by increases in γ-H2AX. PCE also increased the nuclear localization of Foxo3a by 52% over control cells. Mechanistically, PCE appears to efficiently protect various blood cell types from CS-induced DNA damage through removal of ROS via activation of the AMPK/Foxo3a/MnSOD pathway.
Collapse
Affiliation(s)
- Wan-Sik Kim
- Biochemistry, Hallym University College of Medicine, Chuncheon, The Republic of Korea
| | - Chea-Ha Kim
- Biochemistry, Hallym University College of Medicine, Chuncheon, The Republic of Korea
| | - Jung-Min Lee
- Biochemistry, Hallym University College of Medicine, Chuncheon, The Republic of Korea
| | - Jeong-Ho Jeon
- Biochemistry, Hallym University College of Medicine, Chuncheon, The Republic of Korea
| | - Beom-Goo Kang
- Biochemistry, Hallym University College of Medicine, Chuncheon, The Republic of Korea
| | - Madhuri Shende Warkad
- Biochemistry, Hallym University College of Medicine, Chuncheon, The Republic of Korea
| | - Gozde Inci
- Biochemistry, Hallym University College of Medicine, Chuncheon, The Republic of Korea
| | - Hong-Won Suh
- Pharmacology, Hallym University College of Medicine, Chuncheon, The Republic of Korea
| | - Soon Sung Lim
- Department of Food and Nutrition, Hallym University, College of Natural Science, Chuncheon, The Republic of Korea
| | - Sung-Chan Kim
- Biochemistry, Hallym University College of Medicine, Chuncheon, The Republic of Korea
| | - Jaebong Kim
- Biochemistry, Hallym University College of Medicine, Chuncheon, The Republic of Korea
| | - Jae-Yong Lee
- Biochemistry, Hallym University College of Medicine, Chuncheon, The Republic of Korea
| |
Collapse
|
111
|
Kim SH, Jung HJ, Lee JH. Changes in the levels of headspace volatiles, including acetaldehyde and formaldehyde, in red and white wine following light irradiation. J Food Sci 2021; 86:834-841. [PMID: 33580549 DOI: 10.1111/1750-3841.15642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
The effects of fluorescence light irradiation on the changes in the levels of volatiles, especially acetaldehyde and formaldehyde, were determined in red and white wines. Three different red or white wine brands were mixed and subjected to light irradiation for 5 days. Generally, the levels of total volatiles in white wine were higher than those in red wine were and decreased during light irradiation. The level of 1,1,6-trimethyl-1,2-dihydronaphthalene, an aromatic compound commonly found in aging wine, decreased significantly following light irradiation (p < 0.05), whereas those of acetaldehyde and formaldehyde increased significantly in white wine (p < 0.05). Furthermore, the formaldehyde content in white wine was higher than that in red wine. Thus, light irradiation promotes the decomposition of major volatiles to a greater degree in white wine than in red wine. This implies that white wine may require more attention and caution against light exposure than red wine. PRACTICAL APPLICATION: Red and white wines are two globally consumed alcoholic beverages; several factors influence their quality. This study evaluates the effects of light irradiation on the profiles of headspace volatiles, such as formaldehyde and acetaldehydes, which are harmful chemicals. Generally, the levels of total headspace volatiles decreased during storage, while those of acetaldehyde and formaldehyde increased markedly in white wine. This increase in aldehyde levels suggests that wines should not be exposed to light irradiation. The results of this study will help wine producers, distributors, and consumers maintain wines with low contents of acetaldehyde and formaldehyde.
Collapse
Affiliation(s)
- Se Hyeok Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyun Jeong Jung
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea.,Food Flavor Sensory Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
112
|
Gordillo GM, Biswas A, Singh K, Sen A, Guda PR, Miller C, Pan X, Khanna S, Cadenas E, Sen CK. Mitochondria as Target for Tumor Management of Hemangioendothelioma. Antioxid Redox Signal 2021; 34:137-153. [PMID: 32597200 PMCID: PMC7757590 DOI: 10.1089/ars.2020.8059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022]
Abstract
Aims: Hemangioendothelioma (HE) may be benign or malignant. Mouse hemangioendothelioma endothelial (EOMA) cells are validated to study mechanisms in HE. This work demonstrates that EOMA cells heavily rely on mitochondria to thrive. Thus, a combination therapy, including weak X-ray therapy (XRT, 0.5 Gy) and a standardized natural berry extract (NBE) was tested. This NBE is known to be effective in managing experimental HE and has been awarded with the Food and Drug Administration Investigational New Drug (FDA-IND) number 140318 for clinical studies on infantile hemangioma. Results: NBE treatment alone selectively attenuated basal oxygen consumption rate of EOMA cells. NBE specifically sensitized EOMA, but not murine aortic endothelial cells to XRT-dependent attenuation of mitochondrial respiration and adenosine triphosphate (ATP) production. Combination treatment, selectively and potently, influenced mitochondrial dynamics in EOMA cells such that fission was augmented. This was achieved by lowering of mitochondrial sirtuin 3 (SIRT3) causing increased phosphorylation of AMP-activated protein kinase (AMPK). A key role of SIRT3 in loss of EOMA cell viability caused by the combination therapy was evident when pyrroloquinoline quinone, an inducer of SIRT3, pretreatment rescued these cells. Innovation and Conclusion: Mitochondria-targeting NBE significantly extended survival of HE-affected mice. The beneficial effect of NBE in combination with weak X-ray therapy was, however, far more potent with threefold increase in murine survival. The observation that safe natural products may target tumor cell mitochondria and sharply lower radiation dosage required for tumor management warrants clinical testing.
Collapse
Affiliation(s)
- Gayle M. Gordillo
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ayan Biswas
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abhishek Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Poornachander R. Guda
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Caroline Miller
- Electron Microscopy Core, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xueliang Pan
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Savita Khanna
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
113
|
Feng X, Zhang Y, Wang H, Tian Z, Xin S, Zhu P. The dihydroflavonol 4-reductase BoDFR1 drives anthocyanin accumulation in pink-leaved ornamental kale. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:159-169. [PMID: 33011819 DOI: 10.1007/s00122-020-03688-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Overexpression and virus-induced gene silencing verified BoDFR1 conferred the anthocyanin accumulation in pink-leaved ornamental kale. Leaf color is an essential trait in the important horticultural biennial plant ornamental kale (Brassica oleracea var. acephala). The identity of the gene conferring this striking trait and its mode of inheritance are topics of debate. Based on an analysis of F1, F2, BC1P1, and BC1P2 ornamental kale populations derived from a cross between a pink-leaved P28 and white-leaved D10 line, we determined that the pink leaf trait is controlled by a semi-dominant gene. We cloned two genes potentially involved in anthocyanin biosynthesis in ornamental kale: Bo9g058630 and Bo6g100940. Based on their variation in sequence, we speculated that Bo9g058630, encoding the kale dihydroflavonol-4 reductase (BoDFR1) enzyme, plays a critical role in the development of the pink leaf trait. Indeed, an InDel marker specific for BoDFR1 completely co-segregated with the pink leaf trait in our F2 population. We then generated the 35Spro: DFR-GUS overexpression vector, which we transformed into D10. Overexpression of BoDFR1 indeed restored some anthocyanin accumulation in this white-leaved parental line. In addition, we targeted BoDFR1 in P28 using virus-induced gene silencing. Again, silencing of BoDFR1 resulted in a substantial decrease in anthocyanin accumulation. This work lays the foundation for further exploration of the mechanism underlying anthocyanin accumulation in pink-leaved ornamental kale.
Collapse
Affiliation(s)
- Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Yuting Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Huan Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Zhendong Tian
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Siyao Xin
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China.
| |
Collapse
|
114
|
Gonzalez de Mejia E, Rebollo-Hernanz M, Aguilera Y, Martín-Cabrejas MA. Role of anthocyanins in oxidative stress and the prevention of cancer in the digestive system. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
115
|
Jongsomchai K, Leardkamolkarn V, Mahatheeranont S. A rice bran phytochemical, cyanidin 3-glucoside, inhibits the progression of PC3 prostate cancer cell. Anat Cell Biol 2020; 53:481-492. [PMID: 32839357 PMCID: PMC7769112 DOI: 10.5115/acb.20.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is one of the high incidences and the most invasive cancer that is also highly resistant to chemotherapy. Currently, several natural products have been considering using as the supplements for anti-cancer therapy. This study aims to identify the potential active anti-cancer ingredients in the bran extracts of the native Thai rice (Luempua cultivar). Rice bran fraction enriched in anthocyanins was successively isolated and processed until the major purified compound obtained. The sub-fractions and the purified, rice bran, cyanidin 3-glucoside (RBC3G), were studied for biological effects (cell viability, migration, and invasion assays) on human prostatic cancer (PC3) cells using immunohistochemical-staining and immuno-blotting approaches. The sub-fractions and the purified RBC3G inhibited epithelial mesenchymal transition (EMT) characteristics of PC3 cells by blocking the expression of several cytoskeletal associate proteins in a concentration dependent manner, leading to decreasing of the cancer cell motility. RBC3G reduced the expression of Smad/Snail signaling molecules but enhanced the expression of cell surface protein, E-cadherin, leading to a delay tumor transformation. The RBC3G also inhibited matrix metalloproteinase-9 and nuclear factor-kappa B expression levels and the enzymes activity in PC3 cells, leading to a slow cell migration/invasion process. The results suggested that RBC3G blunt and/or delay the progressive cancer cell behaviors by inhibit EMT through Smad signaling pathway(s) mediating Snail/E-cadherin expression.
Collapse
Affiliation(s)
- Kamonwan Jongsomchai
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
116
|
Cammarisano L, Donnison IS, Robson PRH. Producing Enhanced Yield and Nutritional Pigmentation in Lollo Rosso Through Manipulating the Irradiance, Duration, and Periodicity of LEDs in the Visible Region of Light. FRONTIERS IN PLANT SCIENCE 2020; 11:598082. [PMID: 33391308 PMCID: PMC7775386 DOI: 10.3389/fpls.2020.598082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/23/2020] [Indexed: 06/01/2023]
Abstract
Pigmented food are an important part of the human diet, and anthocyanins have demonstrable protection against tumor production in mouse models and beneficial effects on human liver chemistry. As such, producing pigmented crops is important for a nutritionally diverse diet. Lollo rosso lettuce is a fast-growing pigmented plant, is rich in phenolic compounds, and represents a suitable system to test optimization strategies for yield and anthocyanin production. High-energy UV wavebands are often used to stimulate increased pigmentation; however, we hypothesized that optimizing visible wavebands would deliver both yield and quality improvements. Growing Lollo rosso under irradiances between 5 and 180 W m-2 using visible waveband LEDs produced 0.4 g fresh weight per W m-2 in the linear portion of the curve between 5 and 40 W m-2 and achieved an approximate asymptote of 20 g fresh weight at around 100-120 W m-2 for yield. Anthocyanin content increased linearly with irradiance. We attempted to optimize the visible wavebands by supplementing half the asymptotic energy for 15 days with supplemental red (R) or blue (B) wavebands in the peaks of photosynthetic activity (430-460 and 630-660 nm). R and B affected rosette morphology with no significant impact on yield, but B significantly increased anthocyanin content by 94% compared to R. We therefore focused on further optimizing B by shortening the daily duration of supplemental B. The minimum B treatment that lacked significant pigment induction was 1 h. We hypothesized that short durations would be more active at different times in the diurnal cycle. Supplemental B was applied for 2 h at four different times. A night-break with B produced the highest yield and anthocyanin content. Our research demonstrates new ways to efficiently use readily available LEDs within the PAR wavebands to increase both yield and crop quality in controlled environment agriculture.
Collapse
Affiliation(s)
- Laura Cammarisano
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- Next-Generation Horticultural Systems, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
| | - Iain S. Donnison
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Paul R. H. Robson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
117
|
Huang YW, Lin CW, Pan P, Shan T, Echeveste CE, Mo YY, Wang HT, Aldakkak M, Tsai S, Oshima K, Yearsley M, Xiao J, Cao H, Sun C, Du M, Bai W, Yu J, Wang LS. Black Raspberries Suppress Colorectal Cancer by Enhancing Smad4 Expression in Colonic Epithelium and Natural Killer Cells. Front Immunol 2020; 11:570683. [PMID: 33424832 PMCID: PMC7793748 DOI: 10.3389/fimmu.2020.570683] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
Innate immune cells in the tumor microenvironment have been proposed to control the transition from benign to malignant stages. In many cancers, increased infiltration of natural killer (NK) cells associates with good prognosis. Although the mechanisms that enable NK cells to restrain colorectal cancer (CRC) are unclear, the current study suggests the involvement of Smad4. We found suppressed Smad4 expression in circulating NK cells of untreated metastatic CRC patients. Moreover, NK cell-specific Smad4 deletion promoted colon adenomas in DSS-treated ApcMin/+ mice and adenocarcinomas in AOM/DSS-treated mice. Other studies have shown that Smad4 loss or weak expression in colonic epithelium associates with poor survival in CRC patients. Therefore, targeting Smad4 in both colonic epithelium and NK cells could provide an excellent opportunity to manage CRC. Toward this end, we showed that dietary intervention with black raspberries (BRBs) increased Smad4 expression in colonic epithelium in patients with FAP or CRC and in the two CRC mouse models. Also, benzoate metabolites of BRBs, such as hippurate, upregulated Smad4 and Gzmb expression that might enhance the cytotoxicity of primary human NK cells. Of note, increased levels of hippurate is a metabolomic marker of a healthy gut microbiota in humans, and hippurate also has antitumor effects. In conclusion, our study suggests a new mechanism for the action of benzoate metabolites derived from plant-based foods. This mechanism could be exploited clinically to upregulate Smad4 in colonic epithelium and NK cells, thereby delaying CRC progression.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics & Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tianjiao Shan
- Department of Obstetrics & Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yue Yang Mo
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hsin-Tzu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammed Aldakkak
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Hui Cao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, United States
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
118
|
Zhang J, Qiu X, Tan Q, Xiao Q, Mei S. A Comparative Metabolomics Study of Flavonoids in Radish with Different Skin and Flesh Colors ( Raphanus sativus L .). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14463-14470. [PMID: 33216541 DOI: 10.1021/acs.jafc.0c05031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Radish (Raphanus sativus) is an important worldwide vegetable with a wide variety of colors that affect its appearance and nutritional quality. However, the large-scale detection, identification, and quantification of flavonoids in multicolor radish have rarely been studied. To uncover the diversity and accession-specific flavonoids in radish, liquid chromatography electrospray ionization-tandem mass spectrometry was used to analyze the metabolic profiles in the skin and flesh of six colored radish accessions: light-red Manshenhong, dark-red Touxinhong (TXH), purple Zijinling (ZJL), Xinlimei with red flesh (XLMF) and green skin, white Shizhuangbai (SZB), and black radish. In total, 133 flavonoids, including 16 dihydroflavones, 44 flavones, 14 flavonoids, 9 anthocyanins, and 28 flavonols, were characterized. The flavonoid metabolic profiles differed among the different colored radishes. Red and purple radishes contained similar anthocyanin compounds responsible for color pigmentation, including red cyanidin, callistephin, and pelargonin. Purple ZJL was most enriched with cyanidin o-syringic acid and cyanin, whereas callistephin and pelargonin were more abundant in dark-red TXH. Additionally, the black and white radishes shared similar anthocyanin and flavonoid profiles, suggesting that the color of black radishes was not caused by anthocyanin but by other metabolites. The metabolites in colored radishes that differed from SZB were mainly involved in the biosynthesis of plant secondary metabolites, such as flavonoid, flavone, flavonol, isoflavonoid, and phenylpropanoid biosynthesis. This study provides new insights into the differences in metabolite profiles among radishes with different skin and flesh colors. The results will be useful for aiding the cultivation of valuable new radish varieties.
Collapse
Affiliation(s)
- Jifang Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
- Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
- Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
| | - Qunyun Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
- Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
| | - Qingming Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
- Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
| | - Shiyong Mei
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
- Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, Hunan, China
| |
Collapse
|
119
|
Torrens-Mas M, Roca P. Phytoestrogens for Cancer Prevention and Treatment. BIOLOGY 2020; 9:E427. [PMID: 33261116 PMCID: PMC7759898 DOI: 10.3390/biology9120427] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Phytoestrogens are a large group of natural compounds found in more than 300 plants. They have a close structural similarity to estrogens, which allow them to bind to both estrogen receptors (ER), ERα and ERβ, presenting a weak estrogenic activity. Phytoestrogens have been described as antioxidant, anti-inflammatory, anti-thrombotic, anti-allergic, and anti-tumoral agents. Their role in cancer prevention has been well documented, although their impact on treatment efficiency is controversial. Several reports suggest that phytoestrogens may interfere with the effect of anti-cancer drugs through the regulation of oxidative stress and other mechanisms. Furthermore, some phytoestrogens could exert a protective effect on healthy cells, thus reducing the secondary effects of cancer treatment. In this review, we have studied the recent research in this area to find evidence for the role of phytoestrogens in cancer prevention and therapy efficacy.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut, Universitat de les Illes Balears, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07010 Palma, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut, Universitat de les Illes Balears, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07010 Palma, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
120
|
Namdeo AG, Boddu SHS, Amawi H, Ashby CR, Tukaramrao DB, Trivedi P, Babu RJ, Tiwari AK. Flavonoids as Multi-Target Compounds: A Special Emphasis on their Potential as Chemo-adjuvants in Cancer Therapy. Curr Pharm Des 2020; 26:1712-1728. [PMID: 32003663 DOI: 10.2174/1381612826666200128095248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Flavonoids are low molecular weight, polyphenolic phytochemicals, obtained from secondary metabolism of various plant compounds. They have a spectrum of pharmacological efficacies, including potential anticancer efficacy. Natural flavonoids are present in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. Flavonoids can attenuate or inhibit the initiation, promotion and progression of cancer by modulating various enzymes and receptors in diverse pathways that involve cellular proliferation, differentiation, apoptosis, inflammation, angiogenesis and metastasis. Furthermore, in vitro, flavonoids have been shown to reverse multidrug resistance when used as chemo-adjuvants. Flavonoids (both natural and synthetic analogues) interact with several oncogenic targets through dependent and independent mechanisms to mediate their anticancer efficacy in different types of cancer cells.
Collapse
Affiliation(s)
- Ajay G Namdeo
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Haneen Amawi
- Department of Pharmacy practice, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, United States
| | - Diwakar B Tukaramrao
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH 43606, United States
| | - Piyush Trivedi
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH 43606, United States
| |
Collapse
|
121
|
Farvid MS, Holmes MD, Chen WY, Rosner BA, Tamimi RM, Willett WC, Eliassen AH. Postdiagnostic Fruit and Vegetable Consumption and Breast Cancer Survival: Prospective Analyses in the Nurses' Health Studies. Cancer Res 2020; 80:5134-5143. [PMID: 33188079 PMCID: PMC7932849 DOI: 10.1158/0008-5472.can-18-3515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/22/2020] [Accepted: 09/01/2020] [Indexed: 01/10/2023]
Abstract
Fruits and vegetables contain many bioactive components that may contribute to improved survival after diagnosis of breast cancer, however, evidence to date is insufficient. We prospectively assessed the associations of postdiagnostic fruit and vegetable consumption with breast cancer-specific and all-cause mortality among 8,927 women with stage I-III breast cancer identified during follow-up of the Nurses' Health Study (NHS; 1980-2010) and NHSII (1991-2011), using a validated food frequency questionnaire completed every 4 years after diagnosis. We prospectively documented 2,521 deaths, including 1,070 from breast cancer through follow-up until 2014 in the NHS and 2015 in the NHSII. Total fruit and vegetable and total vegetable consumption was related to lower all-cause [HRQ5vsQ1, 0.82; 95% confidence interval (CI), 0.71-0.94; P trend = 0.004, and HRQ5vsQ1, 0.84; 95% CI, 0.72-0.97; P trend = 0.001, respectively], but not breast cancer-specific mortality. Total fruit consumption was not related to breast cancer-specific or all-cause mortality. Greater intake of green leafy and cruciferous vegetables was associated with lower all-cause mortality. Each 2 servings/week of blueberries was associated with a 25% (HR, 0.75; 95% CI, 0.60-0.94) lower breast cancer-specific and a 17% (HR, 0.83; 95% CI, 0.72-0.96) lower all-cause mortality. In contrast, higher fruit juice consumption was associated with higher breast cancer-specific (HRQ5vsQ1, 1.33; 95% CI, 1.09-1.63; P trend = 0.002) and all-cause mortality (HRQ5vsQ1, 1.19; 95% CI, 1.04-1.36; P trend = 0.003). Apple juice largely accounted for these higher risks and orange juice was not associated with risk. Higher postdiagnostic fruit and vegetable consumption among breast cancer survivors was not associated with breast cancer-specific mortality. However, our findings suggest that higher vegetable consumption, particularly green leafy and cruciferous vegetables, was associated with better overall survival among patients with breast cancer. Higher fruit juice consumption, but not orange juice, was associated with poorer breast cancer-specific and all-cause survival. SIGNIFICANCE: A large-scale study shows that high fruit and vegetable consumption may be associated with better overall survival among breast cancer patients, while high fruit juice consumption may be associated with poorer porgnosis.
Collapse
Affiliation(s)
- Maryam S Farvid
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| | - Michelle D Holmes
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wendy Y Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - Walter C Willett
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
122
|
Oyeyinka BO, Afolayan AJ. Potentials of Musa Species Fruits against Oxidative Stress-Induced and Diet-Linked Chronic Diseases: In Vitro and In Vivo Implications of Micronutritional Factors and Dietary Secondary Metabolite Compounds. Molecules 2020; 25:E5036. [PMID: 33142997 PMCID: PMC7663138 DOI: 10.3390/molecules25215036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nutritional quality and the well-being of the body system are directly linked aspects of human survival. From the unborn foetus to adulthood, the need for sustainable access to micronutrient-rich foods is pertinent and the global consumption of banana and plantain fruits, in effect, contributes to the alleviation of the scourge of malnutrition. This review is particularly aimed at evaluating the pharmacological dimensions through the biological mechanisms of Musa fruits in the body, which represent correlations with their constituent micronutrient factors and dietary polyphenolic constituents such as minerals, vitamin members, anthocyanins, lutein, α-,β- carotenes, neoxanthins and cryptoxanthins, epi- and gallo catechins, catecholamines, 3-carboxycoumarin, β-sitosterol, monoterpenoids, with series of analytical approaches for the various identified compounds being highlighted therein. Derivative value-products from the compartments (flesh and peel) of Musa fruits are equally highlighted, bringing forth the biomedicinal and nutritional relevance, including the potentials of Musa species in dietary diversification approaches.
Collapse
Affiliation(s)
| | - Anthony Jide Afolayan
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa;
| |
Collapse
|
123
|
Nistor M, Diaconeasa Z, Frond AD, Stirbu I, Socaciu C, Pintea A, Rugina D. Comparative efficiency of different solvents for the anthocyanins extraction from chokeberries and black carrots, to preserve their antioxidant activity. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01344-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
124
|
Diaconeasa Z, Știrbu I, Xiao J, Leopold N, Ayvaz Z, Danciu C, Ayvaz H, Stǎnilǎ A, Nistor M, Socaciu C. Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines 2020; 8:336. [PMID: 32916849 PMCID: PMC7555344 DOI: 10.3390/biomedicines8090336] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Until today, numerous studies evaluated the topic of anthocyanins and various types of cancer, regarding the anthocyanins' preventative and inhibitory effects, underlying molecular mechanisms, and such. However, there is no targeted review available regarding the anticarcinogenic effects of dietary anthocyanins on skin cancers. If diagnosed at the early stages, the survival rate of skin cancer is quite high. Nevertheless, the metastatic form has a short prognosis. In fact, the incidence of melanoma skin cancer, the type with high mortality, has increased exponentially over the last 30 years, causing the majority of skin cancer deaths. Malignant melanoma is considered a highly destructive type of skin cancer due to its particular capacity to grow and spread faster than any other type of cancers. Plants, in general, have been used in disease treatment for a long time, and medicinal plants are commonly a part of anticancer drugs on the market. Accordingly, this work primarily aims to emphasize the most recent improvements on the anticarcinogenic effects of anthocyanins from different plant sources, with an in-depth emphasis on melanoma skin cancer. We also briefly summarized the anthocyanin chemistry, their rich dietary sources in flowers, fruits, and vegetables, as well as their associated potential health benefits. Additionally, the importance of anthocyanins in topical applications such as their use in cosmetics is also given.
Collapse
Affiliation(s)
- Zorița Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Ioana Știrbu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
- Faculty of Physics, Babeș-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau 999078, China;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Zayde Ayvaz
- Faculty of Marine Science and Technology, Department of Marine Technology Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey;
| | - Corina Danciu
- Victor Babes University of Medicine and Pharmacy, Department of Pharmacognosy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Huseyin Ayvaz
- Department of Food Engineering, Engineering Faculty, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey;
| | - Andreea Stǎnilǎ
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Mǎdǎlina Nistor
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.S.); (M.N.); (C.S.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
125
|
Lee AY, Choi JM, Lee YA, Shin SH, Cho EJ. Beneficial effect of black rice ( Oryza sativa L. var. japonica ) extract on amyloid β-induced cognitive dysfunction in a mouse model. Exp Ther Med 2020; 20:64. [PMID: 32963594 DOI: 10.3892/etm.2020.9192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is an age-dependent progressive neurodegenerative disease, resulting in memory loss and cognitive dysfunction. The accumulation of amyloid β (Aβ) has been identified as the most important risk factor for AD. Black rice (BR; Oryza sativa L. var. japonica), which is widely consumed in Asia, is a good source of bioactive compounds including anthocyanins. Therefore, the aim of the present study was to evaluate the protective effect of BR extracts against Aβ25-35-induced memory impairment in an in vivo AD mouse model. After intracerebroventricular injection of Aβ25-35, mice were treated with BR extract supplementation for 14 days. Memory and cognition function were evaluated over this period in both treated and untreated animals using T-maze, novel object recognition and Morris water maze tests. After behavioral tests, malondialdehyde (MDA) and nitric oxide (NO) concentrations in brain, liver and kidney tissues were analyzed. Mice treated with Aβ25-35 had impaired memory and cognitive function; however, mice administered BR extract (100 mg/kg/day) demonstrated an improvement in cognition and memory function compared with the Aβ25-35-injected control group. Furthermore, injection of Aβ25-35 significantly increased MDA and NO generation in the brain, liver and kidney of mice. However, the group administered with BR extract had significantly inhibited lipid peroxidation and NO generation in the brain, liver and kidney. In addition, the protective effect of BR on lipid peroxidation and NO production by Aβ25-35 was stronger in the brain compared with other tissues. Collectively, these findings suggested that BR supplementation may prevent memory and cognition deficits caused by Aβ25-35-induced oxidative stress.
Collapse
Affiliation(s)
- Ah Young Lee
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Ji Myung Choi
- Department of Food Science and Nutrition, Research Institute of Ecology, Pusan National University, Busan 46241, Republic of Korea
| | - Young A Lee
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongsan 38430, Republic of Korea
| | - Seon Hwa Shin
- Department of Food Science and Nutrition, Research Institute of Ecology, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Research Institute of Ecology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
126
|
Stuppner S, Mayr S, Beganovic A, Beć K, Grabska J, Aufschnaiter U, Groeneveld M, Rainer M, Jakschitz T, Bonn GK, Huck CW. Near-Infrared Spectroscopy as a Rapid Screening Method for the Determination of Total Anthocyanin Content in Sambucus Fructus. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4983. [PMID: 32887485 PMCID: PMC7506738 DOI: 10.3390/s20174983] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/26/2022]
Abstract
Elderberry (Sambucus nigra L., fructus) is a very potent herbal drug, deriving from traditional European medicine (TEM). Ripe elderberries are rich in anthocyanins, flavonols, flavonol esters, flavonol glycosides, lectins, essential oils, unsaturated fatty acids and vitamins. Nevertheless, unripe elderflower fruits contain a certain amount of sambunigrin, a toxic cyanogenic glycoside, whose concentration decreases in the ripening process. Therefore, quality assurance must be carried out. The standard method described in literature is the photometric determination (pH-differential method) of the total anthocyanin content (TAC) that is the highest when the berries are ripe. The drawback of the pH-differential method is the extensive sample preparation and the low accuracy of the method. Therefore, the goal of this publication was to develop a fast non invasive near-infrared (NIR) method for the determination of TAC in whole berries. TAC of elderberries was measured using pH-differentiation method where TAC values of 632.87 mg/kg to 4342.01 mg/kg were measured. Additionally, cyanidin-3-O-glucoside, cyanidin-3-O-sambubioside and cyanidin-3-O-sambubioside-5-O-glucoside which represent more than 98% of TAC in elderberry were quantified using ultra high performance liquid chromatography-multiple wavelength detection-ultra high resolution-quadrupole-time of flight-mass spectrometry (UHPLC-MWD-UHR-Q-TOF-MS) and their sum parameter was determined, ranging between 499.43 mg/kg and 8199.07 mg/kg. Using those two methods as reference, whole elderberries were investigated by NIR spectroscopy with the Büchi NIRFlex N-500 benchtop spectrometer. According to the constructed partial least squares regression (PLSR) models the performance was as follows: a relative standard deviation (RSDPLSR) of 13.5% and root mean square error of calibration (RMSECV/RMSEC) of 1.31 for pH-differentiation reference and a RSDPLSR of 12.9% and RMSECV/RMSEC of 1.28 for the HPLC reference method. In this study, we confirm that it is possible to perform a NIR screening for TAC in whole elderberries. Using quantum chemical calculations, we obtained detailed NIR band assignments of the analyzed compounds and interpreted the wavenumber regions established in PLSR models as meaningful for anthocyanin content. The NIR measurement turned out to be a fast and cost-efficient alternative for the determination of TAC compared to pH-differential method and UHPLC-MWD-UHR-Q-TOF-MS. Due to the benefit of no sample preparation and extraction the technology can be considered as sustainable green technology. With the above mentioned inversely proportional ratio of TAC to total amount of toxic cyanogenic glycosides, NIR proves to be a reliable screening method for the ideal harvest time with maximal content of TAC and lowest content of cyanogenic glycosides in elderberry.
Collapse
Affiliation(s)
- Stefan Stuppner
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66A, 6020 Innsbruck, Austria;
| | - Sophia Mayr
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Anel Beganovic
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Krzysztof Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Urban Aufschnaiter
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Magdalena Groeneveld
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| | - Thomas Jakschitz
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66A, 6020 Innsbruck, Austria;
| | - Günther K. Bonn
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66A, 6020 Innsbruck, Austria;
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (S.S.); (S.M.); (A.B.); (K.B.); (J.G.); (U.A.); (M.G.); (M.R.); (G.K.B.)
| |
Collapse
|
127
|
Hu X, Liu J, Li W, Wen T, Li T, Guo XB, Liu RH. Anthocyanin accumulation, biosynthesis and antioxidant capacity of black sweet corn (Zea mays L.) during kernel development over two growing seasons. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
128
|
Iorizzo M, Curaba J, Pottorff M, Ferruzzi MG, Simon P, Cavagnaro PF. Carrot Anthocyanins Genetics and Genomics: Status and Perspectives to Improve Its Application for the Food Colorant Industry. Genes (Basel) 2020; 11:E906. [PMID: 32784714 PMCID: PMC7465225 DOI: 10.3390/genes11080906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Purple or black carrots (Daucus carota ssp. sativus var. atrorubens Alef) are characterized by their dark purple- to black-colored roots, owing their appearance to high anthocyanin concentrations. In recent years, there has been increasing interest in the use of black carrot anthocyanins as natural food dyes. Black carrot roots contain large quantities of mono-acylated anthocyanins, which impart a measure of heat-, light- and pH-stability, enhancing the color-stability of food products over their shelf-life. The genetic pathway controlling anthocyanin biosynthesis appears well conserved among land plants; however, different variants of anthocyanin-related genes between cultivars results in tissue-specific accumulations of purple pigments. Thus, broad genetic variations of anthocyanin profile, and tissue-specific distributions in carrot tissues and organs, can be observed, and the ratio of acylated to non-acylated anthocyanins varies significantly in the purple carrot germplasm. Additionally, anthocyanins synthesis can also be influenced by a wide range of external factors, such as abiotic stressors and/or chemical elicitors, directly affecting the anthocyanin yield and stability potential in food and beverage applications. In this study, we critically review and discuss the current knowledge on anthocyanin diversity, genetics and the molecular mechanisms controlling anthocyanin accumulation in carrots. We also provide a view of the current knowledge gaps and advancement needs as regards developing and applying innovative molecular tools to improve the yield, product performance and stability of carrot anthocyanin for use as a natural food colorant.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Julien Curaba
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Mario G. Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Philipp Simon
- Department of Horticulture, University of Wisconsin–Madison, Madison, WI 53706, USA;
- Vegetable Crops Research Unit, US Department of Agriculture–Agricultural Research Service, Madison, WI 53706, USA
| | - Pablo F. Cavagnaro
- National Scientific and Technical Research Council (CONICET), National Agricultural Technology Institute (INTA) E.E.A. La Consulta, Mendoza 5567, Argentina;
- Faculty of Agricultural Sciences, National University of Cuyo, Mendoza 5505, Argentina
| |
Collapse
|
129
|
Anthocyanin-fucoidan nanocomplex for preventing carcinogen induced cancer: Enhanced absorption and stability. Int J Pharm 2020; 586:119597. [DOI: 10.1016/j.ijpharm.2020.119597] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/08/2020] [Accepted: 06/27/2020] [Indexed: 12/30/2022]
|
130
|
May S, Parry C, Parry L. Berry chemoprevention: Do berries decrease the window of opportunity for tumorigenesis. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Stephanie May
- European Cancer Stem Cell Research Institute School of Biosciences Cardiff University Cardiff UK
| | - Connor Parry
- European Cancer Stem Cell Research Institute School of Biosciences Cardiff University Cardiff UK
| | - Lee Parry
- European Cancer Stem Cell Research Institute School of Biosciences Cardiff University Cardiff UK
| |
Collapse
|
131
|
Kim JT, Yi G, Chung IM, Son BY, Bae HH, Go YS, Ha JY, Baek SB, Kim SL. Timing and Pattern of Anthocyanin Accumulation during Grain Filling in Purple Waxy Corn ( Zea mays L.) Suggest Optimal Harvest Dates. ACS OMEGA 2020; 5:15702-15708. [PMID: 32637845 PMCID: PMC7331206 DOI: 10.1021/acsomega.0c02099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Purple-corn kernels contain anthocyanins, a group of antioxidants proposed to be beneficial to human health. This study investigated the concentrations of anthocyanins and amino acids and the composition of fatty acids in the kernels of purple waxy corn (Zea mays L.) "Heukjinjuchal" during grain filling to determine when the grain nutritional value is at its highest. During grain filling, anthocyanin contents increased as the kernel color darkened. Among the anthocyanins measured, cyanidin-3-β-O-glucoside reached the highest contents, 57.0-409.1 mg kg-1 fresh weight in raw kernels and 1027.6 mg kg-1 in dry seeds. Pelargonidin-3-β-O-glucoside and malvidin-3-β-O-glucoside became detectable at 21 days after silking; they occurred in the second- and third-highest amounts, respectively, among anthocyanins in the purple-corn cultivars tested. The anthocyanin accumulation pattern was strongly associated with physicochemical properties and partly associated with amino acid content. Anthocyanin contents increased in a stepwise rather than linear fashion. This study showed that kernels undergo dramatic changes that affect the nutritional value of fresh corn.
Collapse
Affiliation(s)
- Jung-Tae Kim
- Department of Central
Area Crop Science, National Institute of
Crop Science, RDA, Suwon-si 16429, Republic of Korea
| | - Gibum Yi
- Department of Central
Area Crop Science, National Institute of
Crop Science, RDA, Suwon-si 16429, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, Sanghuh College of Life Science, Konkuk University, Seoul 05029, Republic
of Korea
| | - Beom-Young Son
- Department of Central
Area Crop Science, National Institute of
Crop Science, RDA, Suwon-si 16429, Republic of Korea
| | - Hwan-Hee Bae
- Department of Central
Area Crop Science, National Institute of
Crop Science, RDA, Suwon-si 16429, Republic of Korea
| | - Young Sam Go
- Department of Central
Area Crop Science, National Institute of
Crop Science, RDA, Suwon-si 16429, Republic of Korea
| | - Jun Young Ha
- Department of Central
Area Crop Science, National Institute of
Crop Science, RDA, Suwon-si 16429, Republic of Korea
| | - Seong-Bum Baek
- Department of Central
Area Crop Science, National Institute of
Crop Science, RDA, Suwon-si 16429, Republic of Korea
| | - Sun-Lim Kim
- Department of Central
Area Crop Science, National Institute of
Crop Science, RDA, Suwon-si 16429, Republic of Korea
| |
Collapse
|
132
|
Roy S, Rhim JW. Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit Rev Food Sci Nutr 2020; 61:2297-2325. [PMID: 32543217 DOI: 10.1080/10408398.2020.1776211] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, interest in smart packaging, which can show the color change of the packaging film according to the state of the food and evaluate the quality or freshness of the packaged food in real-time, is increasing. As a color indicator, a natural colorant, anthocyanin, drew a lot of attention due to their various colors as well as useful functions properties such as antioxidant activity and anti-carcinogenic and anti-inflammatory effects, prevention of cardiovascular disease, obesity, and diabetes. In particular, the pH-responsive color-changing function of anthocyanins is useful for making color indicator smart packaging films. This review addressed the latest information on the use of natural pigment anthocyanins for intelligent and active food packaging applications. Recent studies on eco-friendly biodegradable polymer-based color indicator films incorporated with anthocyanins have been addressed. Also, studies on the use of smart packaging films to monitor the freshness of foods such as milk, meat, and fish were reviewed. This review highlights the potential and challenges for the use of anthocyanins as pH-responsive color-changing films for intelligent food packaging applications, which may be beneficial for further development of smart color indicator films for practical use.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
133
|
Yan G, Zhang J, Jiang M, Gao X, Yang H, Li L. Identification of Known and Novel MicroRNAs in Raspberry Organs Through High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2020; 11:728. [PMID: 32582255 PMCID: PMC7284492 DOI: 10.3389/fpls.2020.00728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are a class of small endogenous RNAs that play important regulatory roles in plants by negatively affecting gene expression. Studies on the identification of miRNAs and their functions in various plant species and organs have significantly contributed to plant development research. In the current study, we utilized high-throughput sequencing to detect the miRNAs in the root, stem, and leaf tissues of raspberry (Rubus idaeus). A total of more than 35 million small RNA reads ranging in size from 18 to 35 nucleotides were obtained, with 147 known miRNAs and 542 novel miRNAs identified among the three organs. Sequence verification and the relative expression profiles of the six known miRNAs were investigated by stem-loop quantitative real-time PCR. Furthermore, the potential target genes of the known and novel miRNAs were predicted and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway annotation. Enrichment analysis of the GO-associated biological processes and molecular functions revealed that these target genes were potentially involved in a wide range of metabolic pathways and developmental processes. Moreover, the miRNA target prediction revealed that most of the targets predicted as transcription factor-coding genes are involved in cellular and metabolic processes. This report is the first to identify miRNAs in raspberry. The detected miRNAs were analyzed by cluster analysis according to their expression, which revealed that these conservative miRNAs are necessary for plant functioning. The results add novel miRNAs to the raspberry transcriptome, providing a useful resource for the further elucidation of the functional roles of miRNAs in raspberry growth and development.
Collapse
Affiliation(s)
- Gengxuan Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Meng Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xince Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China
| |
Collapse
|
134
|
Apaya MK, Kuo TF, Yang MT, Yang G, Hsiao CL, Chang SB, Lin Y, Yang WC. Phytochemicals as modulators of β-cells and immunity for the therapy of type 1 diabetes: Recent discoveries in pharmacological mechanisms and clinical potential. Pharmacol Res 2020; 156:104754. [DOI: 10.1016/j.phrs.2020.104754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
135
|
Chensom S, Shimada Y, Nakayama H, Yoshida K, Kondo T, Katsuzaki H, Hasegawa S, Mishima T. Determination of Anthocyanins and Antioxidants in 'Titanbicus' Edible Flowers In Vitro and In Vivo. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:265-271. [PMID: 32246240 DOI: 10.1007/s11130-020-00813-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Titanbicus (TB), a hybrid of Hibiscus moscheutos × H. coccineus (Medic.) Walt., has potential to be used as an edible flower. In this study, proximate nutritional content, anthocyanin content, total polyphenol content (TPC), and antioxidant activities in vitro and in vivo were investigated. Three cultivars of TB, namely Artemis (AR), Rhea (R), and Adonis (AD), were used as materials. Protein and carbohydrates were the primary macronutrients, while crude fat and ash were detected in trace amounts. Cyanidin 3-glucoside (Cy3-G) and cyanidin 3-sambubioside (Cy3-Sam), were identified in all TBs. The highest anthocyanin content was observed in AD (47.09 ± 1.45 mg/g extract), followed by R and AR (6.04 ± 0.20 and 2.72 ± 0.11 mg/g extract, respectively). The TPC of AD (225.01 ± 1.97 mg/g extract) was greater than that of AR and R (185.41 ± 3.24 and 144.10 ± 1.71 mg/g extract, respectively). AD exhibited the strongest in vitro antioxidant activity in hydrophilic oxygen radical absorbance capacity, compared to the other two TBs. In addition, AD extract suppressed the generation of reactive oxygen species in caudal fin of wounded zebrafish. Antioxidant activities of AD appeared to be related to its total anthocyanin content, Cy3-G, Cy3-Sam, and TPC. Our findings indicate that TB, particularly the AD cultivar, would be an attractive source of bioactive compounds with antioxidant activities, and can improve both nutritional value and appearance of food.
Collapse
Affiliation(s)
- Sasicha Chensom
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu city, Mie prefecture, 514-8507, Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu city, Mie Prefecture, 514-8507, Japan
- Department of Integrative Pharmacology, Graduate School of Medicine, Tsu city, Mie prefecture, 514-8507, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu city, Mie prefecture, 514-8507, Japan
| | - Hiroko Nakayama
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu city, Mie prefecture, 514-8507, Japan
- Mie University Zebrafish Drug Screening Center, Tsu city, Mie Prefecture, 514-8507, Japan
| | - Kumi Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya city, Aichi Prefecture, 464-601, Japan
| | - Tadao Kondo
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya city, Aichi Prefecture, 464-601, Japan
| | - Hirotaka Katsuzaki
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu city, Mie prefecture, 514-8507, Japan
| | - Sachiko Hasegawa
- Akatsuka Garden Co., Ltd., 1868-3 Takanoo-cho, Tsu City, Mie prefecture, 514-2293, Japan
| | - Takashi Mishima
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu city, Mie prefecture, 514-8507, Japan.
| |
Collapse
|
136
|
Fakhri S, Khodamorady M, Naseri M, Farzaei MH, Khan H. The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacol Res 2020; 159:104895. [PMID: 32422342 DOI: 10.1016/j.phrs.2020.104895] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/25/2022]
Abstract
Cancer cells underlie the dysregulated metabolism of carbohydrate, lipid and protein and thereby, employ interconnected cross-linked signaling pathways to supply adequate energy for growth and related biosynthetic procedures. In the present study, a comprehensive review of cancer metabolism and anthocyanin's effect was conducted using the existing electronic databases, including Medline, PubMed, Scopus, and Web of Science, as well as related articles in the field. Such keywords as "cancer", and "cancer metabolism" in the title/abstract/keyword and all the "anthocyanins" in the whole text were used. Data were collected without time restriction until February 2020. The results indicated the involvement of several signaling pathways, including inflammatory PI3K/Akt/mTOR pathway, Bax/Bcl-2/caspases as apoptosis modulators, and NF-κB/Nrf2 as oxidative stress mediators in the cancer dysregulated metabolism. Compelling studies have shown that targeting these pathways, as critical hallmarks of cancer, plays a critical role in combating cancer dysregulated metabolism. The complexity of cancer metabolism signaling pathways, along with toxicity, high costs, and resistance to conventional drugs urge the need to investigate novel multi-target agents. Increasing evidence has introduced plant-derived secondary metabolites as hopeful anticancer candidates which target multiple dysregulated cross-linked pathways of cancer metabolism. Amongst these metabolites, anthocyanins have demonstrated positive anticancer effects by targeting inflammation, oxidative stress, and apoptotic signaling pathways. The current study revealed the cross-linked signaling pathways of cancer metabolism, as well as the promising pharmacological mechanisms of anthocyanins in targeting the aforementioned signaling mediators. To overcome the pharmacokinetic limitations of anthocyanins in cancer treatment, their interactions with gut microbiota and the need to develop related nano-formulations were also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Minoo Khodamorady
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran.
| | - Maryam Naseri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
137
|
Sankaranarayanan R, Kumar DR, Patel J, Bhat GJ. Do Aspirin and Flavonoids Prevent Cancer through a Common Mechanism Involving Hydroxybenzoic Acids?-The Metabolite Hypothesis. Molecules 2020; 25:molecules25092243. [PMID: 32397626 PMCID: PMC7249170 DOI: 10.3390/molecules25092243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Despite decades of research to elucidate the cancer preventive mechanisms of aspirin and flavonoids, a consensus has not been reached on their specific modes of action. This inability to accurately pinpoint the mechanism involved is due to the failure to differentiate the primary targets from its associated downstream responses. This review is written in the context of the recent findings on the potential pathways involved in the prevention of colorectal cancers (CRC) by aspirin and flavonoids. Recent reports have demonstrated that the aspirin metabolites 2,3-dihydroxybenzoic acid (2,3-DHBA), 2,5-dihydroxybenzoic acid (2,5-DHBA) and the flavonoid metabolites 2,4,6-trihydroxybenzoic acid (2,4,6-THBA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4,5-trihydroxybenzoic acid (3,4,5-THBA) were effective in inhibiting cancer cell growth in vitro. Limited in vivo studies also provide evidence that some of these hydroxybenzoic acids (HBAs) inhibit tumor growth in animal models. This raises the possibility that a common pathway involving HBAs may be responsible for the observed cancer preventive actions of aspirin and flavonoids. Since substantial amounts of aspirin and flavonoids are left unabsorbed in the intestinal lumen upon oral consumption, they may be subjected to degradation by the host and bacterial enzymes, generating simpler phenolic acids contributing to the prevention of CRC. Interestingly, these HBAs are also abundantly present in fruits and vegetables. Therefore, we suggest that the HBAs produced through microbial degradation of aspirin and flavonoids or those consumed through the diet may be common mediators of CRC prevention.
Collapse
Affiliation(s)
- Ranjini Sankaranarayanan
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University, College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA; (R.S.); (J.P.)
| | - D. Ramesh Kumar
- Department of Entomology, University of Kentucky, Lexington, KY 40506, USA;
| | - Janki Patel
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University, College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA; (R.S.); (J.P.)
| | - G. Jayarama Bhat
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University, College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA; (R.S.); (J.P.)
- Correspondence: ; Tel.: +1-605-688-6894
| |
Collapse
|
138
|
Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:9081686. [PMID: 32455130 PMCID: PMC7229537 DOI: 10.1155/2020/9081686] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
The rise in consumption of energy-dense foods has resulted in the displacement of several essential dietary gaps, causing numerous long-lasting diseases, including obesity, stroke, hypertension, and several forms of cancer. Epidemiological studies encourage more fruit consumption to prevent these diseases. The defensive mechanisms provided by these fruits against illness are due to the existence of several antioxidants. Recent studies proved that (poly) phenolic compounds are ideally the core phytochemicals with both functional and health-promoting properties found in the plant's kingdom, and low intake could result in the risk of certain diseases. Phytonutrients are powerful antioxidants that can modify metabolic activation and detoxification of carcinogens. The ideal motive of this review is to provide an overview as well as illuminate the polyphenolic merits of fruits in general. Fruits have several merits, including weight maintenance, proper health development, and satiety. There are many analytical methods for determining and measuring the phenolic content of different products. Phenolic compounds are of nutritional interest since they aid in the retardation and inhibition of lipids by acting as scavengers that prevent and protect the proliferation of oxidative chains. Future studies are required to help identify the physiological metabolic activities as well as to improve human health.
Collapse
|
139
|
Seo HS, Adams SH, Howard LR, Brownmiller C, Hogan V, Chen JR, Pramudya RC. Children's liking and wanting of foods vary over multiple bites/sips of consumption: A case study of foods containing wild blueberry powder in the amounts targeted to deliver bioactive phytonutrients for children. Food Res Int 2020; 131:108981. [PMID: 32247487 DOI: 10.1016/j.foodres.2020.108981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/04/2020] [Accepted: 01/04/2020] [Indexed: 12/30/2022]
Abstract
To encourage children to frequently consume wild blueberries as part of their dietary patterns, incorporating blueberry powder into specific foods may be an effective strategy. Thus, it is important to determine appropriate types of food products that both minimize food processing-induced loss of beneficial components of blueberries (e.g., anthocyanins) and satisfy at the same time both nutritional and sensory aspects. For clinical studies assessing the health benefits of blueberry-containing food samples, it would be important to ensure children consume the entire portion of the test samples. This study, therefore, aimed at determining how sensory acceptability (liking) and psychological reward (wanting) of wild blueberry-based foods vary over multiple steps of ad libitum consumption: appearance, first bite/sip, half bite/sip, and full consumption. Five different types of foods containing the targeted amount of wild blueberry powder were prepared for sensory testing (oatmeal bar, beverage, ice pop, gummy, and cookie), and the residual amounts of total anthocyanin and chlorogenic acid were measured to confirm levels targeted to deliver bioactive amounts of these phytochemicals. Results showed that while overall liking and desire to eat did not differ among the five samples at the appearance and first bite/sip steps, they differed significantly at the end of consumption. Although children liked and wanted to consume the cookies more when compared to beverages, ice pops, and/or gummies, total anthocyanin contents were lower in cookies and gummies than in wild blueberry powder, beverage, and ice pop samples. Notably, the oatmeal bars with significant amounts of total anthocyanin and chlorogenic acid did not significantly differ from the cookies with respect to overall liking, desire to eat, and the amount consumed. In conclusion, this study shows that sensory evaluation using multiple bites/sips of ad libitum food consumption, along with a measurement of beneficial compounds, is efficient in determining appropriate vehicles for clinical studies of wild blueberry-containing foods.
Collapse
Affiliation(s)
- Han-Seok Seo
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR 72704, USA.
| | - Sean H Adams
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA; Arkansas Children's Nutrition Center, 15 Children's Way, 512-20B, Little Rock, AR 72202, USA
| | - Luke R Howard
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR 72704, USA
| | - Cindy Brownmiller
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR 72704, USA
| | - Victoria Hogan
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR 72704, USA
| | - Jin-Ran Chen
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA; Arkansas Children's Nutrition Center, 15 Children's Way, 512-20B, Little Rock, AR 72202, USA
| | - Ragita C Pramudya
- Department of Food Science, University of Arkansas, 2650 North Young Avenue, Fayetteville, AR 72704, USA
| |
Collapse
|
140
|
Zhao M, Lin Y, Chen H. Improving nutritional quality of rice for human health. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1397-1413. [PMID: 31915876 DOI: 10.1007/s00122-019-03530-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/30/2019] [Indexed: 05/27/2023]
Abstract
This review surveys rice nutritional value, mainly focusing on breeding achievements via adoption of both genetic engineering and non-transgenic strategies to improve key nutrients associated with human health. Rice (Oryza sativa) is an essential component of the diets and livelihoods of over 3.5 billion people. Polished rice is mostly consumed as staple food, fulfilling daily energy demands and part of the protein requirement. Brown rice is comparatively more nutritious, containing more lipids, minerals, vitamins, dietary fiber, micronutrients, and bioactive compounds. In this article, we review the nutritional facts about rice including the level of γ-aminobutyric acid, resistant starch, lysine, iron, zinc, β-carotene, folate, anthocyanin, various carotenoids, and flavonoids, focusing on their synthesis and metabolism and the advances in their biofortification via adoption of both conventional and genetic engineering strategies. We conclude that besides representing a staple food, rice has the potential to become a source of various essential nutrients or bioactive compounds through appropriate genetic improvements to benefit human health and prevent certain chronic diseases. Finally, we discuss the available, non-genetically engineering strategies for the nutritional improvement of rice, including their main strengths and constraints.
Collapse
Affiliation(s)
- Mingchao Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
141
|
Montmorency tart cherry (Prunus cerasus L.) acts as a calorie restriction mimetic that increases intestinal fat and lifespan in Caenorhabditis elegans. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
142
|
Network Analysis of Transcriptome and LC-MS Reveals a Possible Biosynthesis Pathway of Anthocyanins in Dendrobium officinale. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6512895. [PMID: 32420359 PMCID: PMC7210514 DOI: 10.1155/2020/6512895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/16/2020] [Accepted: 03/12/2020] [Indexed: 01/30/2023]
Abstract
Anthocyanins, a group of flavonoids, are widely present in plants and determine the colors of the peels of stems, fruits, and flowers. In this study, we used UHPLC-ESI-MS to identify anthocyanins in the herbal plant Dendrobium officinale, which has been used for centuries in China. The results indicated that the total anthocyanin content in samples from Guangxi was the highest. Seven anthocyanins were identified, and the fragmentation pathways were proposed from D. officinale. Most of the identified anthocyanins were composed of cyanidin and sinapoyl groups. We also carried out that the sinapoyl group had active sites on breast cancer receptors by using Schrödinger. The relative levels of the 7 anthocyanins in the samples from the three locations were determined. Transcriptomic analysis was used to analyze the sinapoyl anthocyanin synthesis-related genes in plants, such as genes encoding UGTs and serine carboxypeptidase. We speculated that sinapoyl anthocyanin biosynthesis was associated with the activities of certain enzymes, including chalcone flavonone isomerase-like, hydroxycinnamoyltransferase 1, UGT-83A1, UGT-88B1 isoform X1, serine carboxypeptidase-like 18 isoform X3, and serine carboxypeptidase-like 18.
Collapse
|
143
|
Bonta RK. Dietary Phenolic Acids and Flavonoids as Potential Anti-Cancer Agents: Current State of the Art and Future Perspectives. Anticancer Agents Med Chem 2020; 20:29-48. [PMID: 31648651 DOI: 10.2174/1871520619666191019112712] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/28/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Background:
Cancer is a rapidly growing disease and the second most leading cause of death
worldwide. Breast, colon, lung, and prostate cancer are the most diagnosed types of cancer among the majority
of the population. The prevalence of these cancers is increasing rapidly due to the lack of effective drugs. The
search for anti-cancer bioactive components from natural plant sources is gaining immense significance. The
aim of the paper is to introduce the readers about the in vitro and in vivo biochemical mechanisms of phenolic
acids and flavonoids in these four types of cancers.
Methods:
A literature search was carried out in databases, including Scopus, SciFinder, Springer, Science direct
and Google. The main keywords used were fruits & vegetables, phenolic acids, flavonoids, anticancer, bioavailability,
etc. The data obtained were integrated and analyzed.
Results:
The study revealed the potential molecular mechanisms of phenolic acids and flavonoids, which include
the induction of apoptosis, inhibition of cell proliferation, cell-cycle arrest, induction of Poly ADP ribose
polymerase cleavage, downregulation of Matrix metalloproteinases-2 and Matrix metalloproteinases-9 activities,
decreased levels of B-cell lymphoma-2, etc. Promising effects of phenolic acids and flavonoids have been observed
against breast, colon, lung and prostate cancers.
Conclusion:
The in vitro and in vivo anti-cancer mechanisms of phenolic acids and flavonoids have been revealed
in this study. With the knowledge of specific molecular targets and the structural-functional relationship
of bioactive compounds, the current review will open a new gateway for the scientific community and provide
them a viable option to exploit more of these compounds for the development of novel and efficacious anticancer
compounds.
Collapse
Affiliation(s)
- Ramesh K. Bonta
- Plant Metabolic Pathway Laboratory, Rajiv Gandhi School of Intellectual Property Law, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| |
Collapse
|
144
|
Plants and Lactic Acid Bacteria Combination for New Antimicrobial and Antioxidant Properties Product Development in a Sustainable Manner. Foods 2020; 9:foods9040433. [PMID: 32260398 PMCID: PMC7230466 DOI: 10.3390/foods9040433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, nutraceuticals based on antimicrobial ingredients (Artemisia absinthium water extract and essential oil (EO), Lactobacillus uvarum LUHS245 strain cultivated in a whey media, and blackcurrants juice (BCJ) preparation by-products were developed. In addition, two texture forming agents for nutraceutical preparations were tested (gelatin and agar). The developed nutraceutical ingredients showed antimicrobial properties: Artemisia absinthium EO (concentration 0.1%) inhibited methicillin-resistant Staphylococcus aureus, Enterococcus faecium, Bacillus cereus, Streptococcus mutans, Staphylococcus epidermidis, and Pasteurella multocida; LUHS245 strain inhibited 14 from the 15 tested pathogenic strains; and BCP inhibited 13 from the 15 tested pathogenic strains. The best formulation consisted of the Artemisia absinthium EO, LUHS245, and BCP immobilised in agar and this formulation showed higher TPC content (by 2.1% higher), as well as higher overall acceptability (by 17.7% higher), compared with the formulation prepared using gelatin.
Collapse
|
145
|
Belwal T, Li L, Yanqun X, Cravotto G, Luo Z. Ultrasonic-assisted modifications of macroporous resin to improve anthocyanin purification from a Pyrus communis var. Starkrimson extract. ULTRASONICS SONOCHEMISTRY 2020; 62:104853. [PMID: 31810871 DOI: 10.1016/j.ultsonch.2019.104853] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
The present study presents an attempt to modify the surface properties of macroporous resins (MRs) in order to improve anthocyanin adsorption and desorption from Pyrus communis var Starkrimson fruit peel extract. A number of MRs were tested to optimise the ultrasonic-assisted adsorption (UAA) conditions; including ultrasonic power (100-400 W), resin-to-extract ratio (1-3 g/50 mL) and temperature (20-40 °C). Similarly, varying ultrasonic-assisted desorption (UAD) conditions were optimised; including ultrasonic power (200-600 W), resin-to-solvent ratio (1-4 g/50 mL), ethanol concentration (60-90% v/v) and temperature (20-40 °C). The Amberlyst 15 (H) cationic resin was found to be superior to the other tested resins. The maximum adsorption capacity (659 µg/g) of cyanidin 3-galactoside (Cy 3-gal) was achieved under the optimised UAA conditions (400 W, 20 °C and 1 g/50 mL), while 616 µg/g of Cy 3-gal was recovered under the optimised UAD conditions (582 W, 1 g/50 mL, 60% and 20 °C). Moreover, titratable-acid and total-sugar contents were found to be significantly lower under UAA than under conventional-assisted adsorption (CAA). ANOVA revealed that process factors had significant effects on the Cy 3-gal purification, as depicted by their linear, quadratic and interactive effects. While anthocyanin adsorption was found to be significantly improved at lower ultrasonic power, higher power promoted the desorption process. Adsorption under optimized UAA conditions followed pseudo second-order kinetics and multilayer adsorption (Freundlich isotherm) onto the Amberlyst 15 (H) resin surface was observed. The particle-size distribution curve and scanning electron microscopic images also revealed higher resin-surface roughness, peeling and the appearance of pores on the surface under ultrasonication.This is the first study to use ultrasonication to modify a cationic exchange resin for the improvement of Cy 3-gal purification from a fruit extract. This study can recommend the use of ultrasonication as a low-cost green technique that can improve macroporous resin characteristics for better purification of compounds from an extract.
Collapse
Affiliation(s)
- Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Xu Yanqun
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy; Sechenov First Moscow State Medical University, 8 Trubetskaya ul, Moscow, Russia
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
146
|
Naseri E, Xiangyu K, Hu C, Ayaz A, Rahmani MM, Nasim M, Hamdard E, Zahir A, Zhou Q, Wang J, Hou X. Bok-choy promotes growth performance, lipid metabolism and related gene expression in Syrian golden hamsters fed with a high-fat diet. Food Funct 2020; 11:2693-2703. [PMID: 32182310 DOI: 10.1039/c9fo02975c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Broadly, bok-choy is known for its potential benefits as part of a human diet. However, the effects and deeper investigations of bok-choy on human health are still insufficient. This study aimed to investigate the beneficial effects of two cultivars of bok-choy, 'Suzhouqing' (green cultivar) and 'Ziluolan' (purple cultivar), on growth performance, lipid metabolism and related gene expressions in Syrian golden hamsters. Fifty six male Syrian golden hamsters (6-months-old) were randomly assigned into 6 groups: normal diet (A), high-fat diet (B), high-fat diet + 5% 'Suzhouqing' (C), high-fat diet + 7% 'Suzhouqing' (D), high-fat diet + 5% 'Ziluolan' (E), and high-fat diet + 7% 'Ziluolan' (F), fed for 56 consecutive days. On day 0, 28 and 56, blood and liver samples were collected to examine the lipid profile, liver enzymes, histomorphology and related gene expressions. The results showed that group B had significantly increased levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase, while (P < 0.05) showed impaired levels of high-density lipoprotein cholesterol compared with group A. Group D, E and F had significantly reduced levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase, while the level of high-density lipoprotein cholesterol was significantly increased compared with group B. Remarkably, the mRNA expressions of CEBP-α, DGAT1, lipoprotein lipase (LPL), FASN and 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA) were significantly up-regulated and carnitine palmitoyl transferase 2 (CPT2), Cyp27A1 and proliferator activated receptor alpha (PPAR-α) were significantly down-regulated in group B compared with group A. However, in group D, E and F, the mRNA expression levels of CCAAT enhancer binding protein alpha, DGAT1, LPL, FASN and HMG-CoA were significantly down-regulated and CPT2, Cyp27A1 and PPAR-α were significantly up-regulated compared with group B. In conclusion, different amounts of bok-choy added to the diets incredibly improved the lipid-profile, enhanced liver enzyme activities and related gene expression. The hamsters supplemented with 7% 'Ziluolan' exhibited the best performance among all the other high-fat groups, which shows that Ziluolan could be a great alternative for the reduction of fat accumulation and conserving health.
Collapse
Affiliation(s)
- Emal Naseri
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kong Xiangyu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunmei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China. and New Rural Research Institute in Lianyungang, Nanjing Agricultural University, Lianyungang 222002, China
| | - Aliya Ayaz
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mohammad Malyar Rahmani
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Maazullah Nasim
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Enayatullah Hamdard
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ahmadullah Zahir
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qian Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianjun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China. and New Rural Research Institute in Lianyungang, Nanjing Agricultural University, Lianyungang 222002, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
147
|
Cao H, Li X, Wang F, Zhang Y, Xiong Y, Yang Q. Phytochemical-Mediated Glioma Targeted Treatment: Drug Resistance and Novel Delivery Systems. Curr Med Chem 2020; 27:599-629. [PMID: 31400262 DOI: 10.2174/0929867326666190809221332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 03/15/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023]
Abstract
Glioma, especially its most malignant type, Glioblastoma (GBM), is the most common and the most aggressive malignant tumour in the central nervous system. Currently, we have no specific therapies that can significantly improve its dismal prognosis. Recent studies have reported promising in vitro experimental results of several novel glioma-targeting drugs; these studies are encouraging to both researchers and patients. However, clinical trials have revealed that novel compounds that focus on a single, clear glioma genetic alteration may not achieve a satisfactory outcome or have side effects that are unbearable. Based on this consensus, phytochemicals that exhibit multiple bioactivities have recently attracted much attention. Traditional Chinese medicine and traditional Indian medicine (Ayurveda) have shown that phytocompounds inhibit glioma angiogenesis, cancer stem cells and tumour proliferation; these results suggest a novel drug therapeutic strategy. However, single phytocompounds or their direct usage may not reverse comprehensive malignancy due to poor histological penetrability or relatively unsatisfactory in vivo efficiency. Recent research that has employed temozolomide combination treatment and Nanoparticles (NPs) with phytocompounds has revealed a powerful dual-target therapy and a high blood-brain barrier penetrability, which is accompanied by low side effects and strong specific targeting. This review is focused on major phytocompounds that have contributed to glioma-targeting treatment in recent years and their role in drug resistance inhibition, as well as novel drug delivery systems for clinical strategies. Lastly, we summarize a possible research strategy for the future.
Collapse
Affiliation(s)
- Hang Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Feiyifan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yueqi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
148
|
Pace B, Capotorto I, Cefola M, Minasi P, Montemurro N, Carbone V. Evaluation of quality, phenolic and carotenoid composition of fresh-cut purple Polignano carrots stored in modified atmosphere. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
149
|
Jia Y, Selva C, Zhang Y, Li B, McFawn LA, Broughton S, Zhang X, Westcott S, Wang P, Tan C, Angessa T, Xu Y, Whitford R, Li C. Uncovering the evolutionary origin of blue anthocyanins in cereal grains. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1057-1074. [PMID: 31571294 DOI: 10.1111/tpj.14557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 05/23/2023]
Abstract
Functional divergence after gene duplication plays a central role in plant evolution. Among cereals, only Hordeum vulgare (barley), Triticum aestivum (wheat) and Secale cereale (rye) accumulate delphinidin-derived (blue) anthocyanins in the aleurone layer of grains, whereas Oryza sativa (rice), Zea mays (maize) and Sorghum bicolor (sorghum) do not. The underlying genetic basis for this natural occurrence remains elusive. Here, we mapped the barley Blx1 locus involved in blue aleurone to an approximately 1.13 Mb genetic interval on chromosome 4HL, thus identifying a trigenic cluster named MbHF35 (containing HvMYB4H, HvMYC4H and HvF35H). Sequence and expression data supported the role of these genes in conferring blue-coloured (blue aleurone) grains. Synteny analyses across monocot species showed that MbHF35 has only evolved within distinct Triticeae lineages, as a result of dispersed gene duplication. Phylogeny analyses revealed a shared evolution pattern for MbHF35 in Triticeae, suggesting that these genes have co-evolved together. We also identified a Pooideae-specific flavonoid 3',5'-hydroxylase (F3'5'H) lineage, termed here Mo_F35H2, which has a higher amino acid similarity with eudicot F3'5'Hs, demonstrating a scenario of convergent evolution. Indeed, selection tests identified 13 amino acid residues in Mo_F35H2 that underwent positive selection, possibly driven by protein thermostablility selection. Furthermore, through the interrogation of barley germplasm there is evidence that HvMYB4H and HvMYC4H have undergone human selection. Collectively, our study favours blue aleurone as a recently evolved trait resulting from environmental adaptation. Our findings provide an evolutionary explanation for the absence of blue anthocyanins in other cereals and highlight the importance of gene functional divergence for plant diversity and environmental adaptation.
Collapse
Affiliation(s)
- Yong Jia
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia
- State Agricultural Biotechnology Centre (SABC), School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Caterina Selva
- School of Agriculture, Food and Wine, Adelaide University, Adelaide, SA, 5064, Australia
| | - Yujuan Zhang
- State Agricultural Biotechnology Centre (SABC), School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Bo Li
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Lee A McFawn
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, WA, 6155, Australia
| | - Sue Broughton
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, WA, 6155, Australia
| | - Xiaoqi Zhang
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia
- State Agricultural Biotechnology Centre (SABC), School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Sharon Westcott
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, WA, 6155, Australia
| | - Penghao Wang
- State Agricultural Biotechnology Centre (SABC), School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Cong Tan
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia
- State Agricultural Biotechnology Centre (SABC), School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Tefera Angessa
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, WA, 6155, Australia
| | - Yanhao Xu
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Ryan Whitford
- School of Agriculture, Food and Wine, Adelaide University, Adelaide, SA, 5064, Australia
| | - Chengdao Li
- Western Barley Genetic Alliance, Murdoch University, Murdoch, WA, 6150, Australia
- State Agricultural Biotechnology Centre (SABC), School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, South Perth, WA, 6155, Australia
| |
Collapse
|
150
|
REVEILLE Transcription Factors Contribute to the Nighttime Accumulation of Anthocyanins in 'Red Zaosu' ( Pyrus bretschneideri Rehd.) Pear Fruit Skin. Int J Mol Sci 2020; 21:ijms21051634. [PMID: 32120999 PMCID: PMC7084243 DOI: 10.3390/ijms21051634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022] Open
Abstract
Anthocyanin biosynthesis exhibits a rhythmic oscillation pattern in some plants. To investigate the correlation between the oscillatory regulatory network and anthocyanin biosynthesis in pear, the anthocyanin accumulation and the expression patterns of anthocyanin late biosynthetic genes (ALBGs) were investigated in fruit skin of ‘Red Zaosu’ (Pyrus bretschneideri Rehd.). The anthocyanin accumulated mainly during the night over three continuous days in the fruit skin, and the ALBGs’ expression patterns in ‘Red Zaosu’ fruit skin were oscillatory. However, the expression levels of typical anthocyanin-related transcription factors did not follow this pattern. Here, we found that the expression patterns of four PbREVEILLEs (PbRVEs), members of a class of atypical anthocyanin-regulated MYBs, were consistent with those of ALBGs in ‘Red Zaosu’ fruit skin over three continuous days. Additionally, transient expression assays indicated that the four PbRVEs promoted anthocyanin biosynthesis by regulating the expression of the anthocyanin biosynthetic genes encoding dihydroflavonol-4-reductase (DFR) and anthocyanidin synthase (ANS) in red pear fruit skin, which was verified using a dual-luciferase reporter assay. Moreover, a yeast one-hybrid assay indicated that PbRVE1a, 1b and 7 directly bound to PbDFR and PbANS promoters. Thus, PbRVEs promote anthocyanin accumulation at night by up-regulating the expression levels of PbDFR and PbANS in ‘Red Zaosu’ fruit skin.
Collapse
|